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Abstract: In order to reconstruct past environmental conditions along the north-eastern Antarctic
Peninsula, we documented changes in grain size, grain roundness, onlap as seen in ground-penetrating
radar reflection profiles and ice-rafted debris on a set of 36 raised beaches developed over the last
∼7.7 ± 0.9 ka on Joinville Island. The most pronounced changes in beach character occur at
∼2.7–3.0 ka. At this time, there appears to have been a reintroduction of less rounded material, the
development of stratification within individual beach ridges, an introduction of seaweed and limpets
to the beach deposits, a change in clast provenance (although slightly earlier than the change in
cobble roundness) and a shallowing of the overall beach plain slope. Prolonged cooling associated
with the Neoglacial period may have contributed to these changes, as the readvance of glaciers
could have changed the provenance of the beach deposits and introduced more material, leading to
the change in roundness of the beach cobbles and the overall slope of the beach plain. This study
suggests that late Holocene environmental change left a measurable impact on the coastal zone of
Antarctica.
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Introduction

The Antarctic Peninsula (AP) is one of the fastest-
warming locations in the world and is experiencing
rapid environmental changes (Vaughan et al. 2003,
Ruiz-Fernandez et al. 2019, Turner et al. 2022, Siegert
et al. 2023). Late Holocene palaeoenvironmental data
are crucial for placing these observations of modern
changes into context. Holocene climate events across the
AP are recorded in high-resolution marine, lacustrine
and ice-core records (Michalchuk et al. 2009, Mulvaney
et al. 2012, Sterken et al. 2012, Totten et al. 2015,
Cejka et al. 2020, Groff et al. 2023). Proxy data from
these cores record past periods of warming and cooling
driven by wind shifts, ocean circulation changes and
El Niño-Southern Oscillation (ENSO) variability
(Domack et al. 2001, Shevenell et al. 2011, Barbara
et al. 2016, Nie et al. 2022). However, these proxy
reconstructions only indirectly record environmental
changes occurring within the coastal zone. One
underutilized palaeoenvironmental proxy is the
sedimentary characteristics of beach deposits (Scheffers
et al. 2012, Lindhorst & Schutter 2014, Simkins et al.

2015), which along most Antarctic coastlines have been
uplifted and thus preserved due to post-glacial rebound.
Because these beach deposits reflect coastal
environmental characteristics such as wave climate,
sea-ice cover and iceberg density (Hall & Perry 2004,
Simkins et al. 2015), changes in their characteristics may
reflect environmental changes occurring within the
coastal zone through the Holocene.
The purpose of this study is to characterize trends in

ground-penetrating radar (GPR) profiles, gross
morphology, grain size, clast roundness and ice-rafted
debris (IRD) on raised beach deposits through the late
Holocene on Joinville Island along the Eastern
Antarctic Peninsula (EAP; Fig. 1). Changes in these
proxies through time are hypothesized to reflect changes
in the processes operating on beaches through the late
Holocene and thus to reflect the environmental changes
impacting the area. This archive also augments studies
of palaeo-sea levels (e.g. Zurbuchen & Simms 2019)
derived from the same raised beaches by providing ages
for the older beach ridges and a background as to what
other changes may be responsible for beach-ridge
elevation changes.
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Background

Beaches as potential archives of past environmental
conditions

Wave climate provides a first-order control on beach
deposit characteristics (Butler 1999). Thus, the
granulometry of beach deposits may provide a proxy
archive of environmental conditions impacting wave
climate through time (Bentley et al. 2005, Simkins et al.
2015). The presence of sea ice restricts wave exposure and
sediment supply to the beach (Nichols 1961, Butler 1999)
by limiting fetch, thus decreasing wave energy. Therefore,
in the absence of significant fluvial sources in the area,
cooler conditions associated with sea ice and the less
frequent reworking of beach cobbles are thought to be
characteristic of beach deposits with more poorly rounded
clasts (Nichols 1961, Butler 1999, Simkins et al. 2015).
Warmer conditions associated with no sea ice and higher
wave energy are thought to be characteristic of beach
deposits consisting of more rounded clasts (Nichols 1961).
IRD prevalence is another aspect of beach deposits

that provides an archive of past environmental
conditions. Hall & Perry (2004) used IRD on Byers
Peninsula of Livingston Island in the South Shetland
Islands to create a climate proxy for the northern AP

during the Holocene. The proxy is based on IRD
densities from boulder counts along beach ridges.
Higher IRD counts were interpreted to represent cooler
climate conditions marked by glacial advances (Hall &
Perry 2004), whereas lower IRD counts were interpreted
to represent warmer conditions and glacial retreat
(Kanfoush et al. 2002).

Modern climate and oceanographic setting

The EAP is subjected to cold, saline Weddell Sea
Transitional Waters from the Weddell Gyre (García et al.
2002) and is associated with cold continental air masses
(Reynolds 1981) and extensive sea ice (Stammerjohn &
Smith 1996, Domack et al. 2003, Ingólfsson et al. 2003,
Michalchuk et al. 2009). Clockwise circulation of the
Weddell Gyre brings warm Circumpolar Deep Water into
the EAP (Orsi et al. 1993), turning the Circumpolar Deep
Water into Weddell Sea Transitional Water (Barbara et al.
2016, Vernet et al. 2019). The Antarctic Sound to the
west of Joinville Island is a zone of mixing between
Weddell Sea waters and those from the Bransfield Basin,
with waters from the Bransfield Basin being more
dominant during the summer months (Krek et al. 2021).
Due to its extensive sea ice, the influence of southern

barrier winds and fewer oceanic connections with the
Pacific Ocean, the Weddell Sea sector of the AP is much
cooler than other parts of the AP (Ambrozova et al.
2020). The coldest temperatures are recorded when
winds are out of the south, whereas they are warmer
when the winds blow from the north (Ambrozova et al.
2019). These southerly winds are sometimes referred to
as 'barrier winds' and are sourced from the interior of
the continent to the south of the Weddell Sea and kept
on the EAP due to the presence of the mountains of the
AP (Schwerdtfeger 1975). The EAP is less influenced by
westerly winds, which are a key climate driver across
West Antarctica (Marshall et al. 2006), than the western
AP because the mountains located along the AP act as a
barrier to winds and ocean currents (Bentley et al. 2009,
Dickens et al. 2019). However, landmasses and
surrounding bodies of water located at the northeastern
tip of the AP might not be completely shielded or
isolated from western influences due to low relief of the
islands and oceanographic connections (Michalchuk
et al. 2009, Krek et al. 2021).
The Weddell Sea contains the largest accumulation of

multiyear sea ice in the Southern Ocean, accounting for
over a third of the total sea ice in the Southern Ocean
(Parkinson & Cavelleri 2012). After a steady increase in
sea-ice extent through the latter half of the twentieth
century, sea ice started to experience an abrupt decrease
in extent after 2015, with several record low extents
being noted since that time (Kumar et al. 2021,
Parkinson & DiGirolamo 2021, Jena et al. 2022). Those

Fig. 1.Map showing the location of the field site and other places
mentioned in the text.
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trends vary according to season, with a general increase
occurring during summer months and a decrease
occurring during winter months (Kumar et al. 2021).
Some of these recent minimum sea-ice extents have been
linked to intense storms (Jena et al. 2022).

Ongoing and past climate changes

Climate in the AP region behaves differently than in the
continental interior of Antarctica. Although shifts in
westerly winds and the Antarctic Circumpolar Current
caused rapid sea-ice retreat in the western AP during the
Holocene (Shevenell et al. 2011, Mulvaney et al. 2012,
Barbara et al. 2016), Barbara et al. (2016) suggest that
the EAP responded differently than the western AP
because of the presence of the Weddell Gyre. Instead,
the circulation of the gyre transported more fresh, cold
surface waters and sea ice northwards, which slowed
ice-shelf retreat on the EAP and delayed seasonal open
water conditions. However, warming and sea-ice demise
have since continued on both sides of the AP over the
last 5 years (e.g. Kumar et al. 2021).
Over the Holocene, forcing mechanisms produced shifts

in climatic conditions, including the Early Holocene
Climate Optimum, the Mid-Holocene Warm Period, the
Neoglacial interval, the Mediaeval Warm Period, the
Little Ice Age (LIA) and the recent rapid regional
warming period (Bentley et al. 2009). However, the
various proxy records do not all record each of these
climate periods. The absence of climatic events might be
caused by the analysis of different proxy records. For
example, a marine core taken from the Palmer Deep,
Site IODP 1098, records the LIA at ∼0.70–0.15 ka
(Domack et al. 2001, Domack et al. 2003), whereas
marine cores taken from the Firth of Tay and Maxwell
Bay have no pronounced records of the LIA
(Michalchuk et al. 2009, Milliken et al. 2009), even
though terrestrial records nearby show clear evidence for
a LIA (Kaplan et al. 2020, Simms et al. 2021).
Bentley et al. (2009) described each of the Holocene

climate periods. The Early Holocene Climate Optimum
lasted from 11.0 to 9.5 ka (Johnson et al. 2011). This
period is characterized by significant widespread warming
(Masson-Delmotte et al. 2004) and ice retreat across
Antarctica during the early Holocene (Pudsey et al. 1994,
Domack et al. 2001, Domack 2002, Evans et al. 2005,
Bentley et al. 2009, Davies et al. 2014, Nyvlt et al. 2014).
Deglaciation continued, most likely at a slower rate,
during the period after the optimum from 9.5 to 4.5 ka,
reaching a similar glacial configuration as today sometime
around 5–6 ka (Johnson et al. 2011, Glasser et al. 2014,
Smith et al. 2021), with there being some geographical
variability in climatic responses (Bentley et al. 2009).
The Mid-Holocene Warm Period, also known as the

Mid- to Late Holocene Hypsithermal, was the next

climate period of significant warming across the AP
from 4.5 to 2.8 ka. This period is associated with rapid
sedimentation, high organic productivity and increased
species diversity in lake sediments (Björck et al. 1996,
Hodgson et al. 2004, Hodgson & Convey 2005, Sterken
et al. 2012) and reduced sea-ice coverage, greater
primary production and increased marine sedimentation
rates (Domack et al. 2003, Bentley et al. 2009, Totten
et al. 2015). However, unlike the optimum, not all proxy
records across the AP indicate a significant warming
trend during this period, and the timing of the
Mid-Holocene Warm Period varied by hundreds of
years depending upon the proxy (Bentley et al. 2009).
A shift from warmer conditions to colder conditions

marks the end of the Mid-to Late Holocene Warm
Period and the start of the Neoglacial period. According
to Bentley et al. (2009), the Neoglacial interval lasted
from ∼2.5 to 1.2 ka and probably started earlier on the
western AP (3.6 ka; Domack 2002) than the EAP (2.5
ka; Bentley et al. 2009). Cejka et al. (2020) provide a
well-documented shift to cooler conditions on the EAP
from a lake record on Vega Island that suggests a
slightly younger age of ∼2.1 ka for the onset of the
Neoglacial on the EAP. Shevenell & Kennett (2002)
suggest that the earlier onset in the Palmer Deep was
caused by an increase in cooler shelf waters and westerly
winds. The climate conditions of this period are
associated with more intense sea ice, cooler open water
conditions, a decline in biological productivity and a
glacial advance (Domack & McClennen 1996, Totten
et al. 2015). Recent mapping (Carrivick et al. 2012),
modelling (Davies et al. 2014) and cosmogenic dating of
terrestrial moraines has constrained glacial advances to
this time period as well (Kaplan et al. 2020, Palacios
et al. 2020).
The Neoglacial period is in some places interrupted by

the Mediaeval Warm Period, which is thought to have
lasted from 1200 to 600 ka and is well documented in
the Northern Hemisphere. However, evidence for a
Mediaeval Warm Period in Antarctica is fragmentary,
with only a few records clearly showing it, and those
that do are from the western AP. This evidence includes
a few marine core records (Bentley et al. 2009) and a
period of more restricted glacial ice around Palmer
Station (Hall et al. 2010a, Yu et al. 2016, Charman
et al. 2018). Evidence for a LIA is growing across the
AP. Evidence for the LIA includes glacial advances
(Hall 2007, Guglielmin et al. 2016, Kaplan et al. 2020,
Simms et al. 2021), increased sea-ice conditions and
colder sea-surface temperatures (Domack et al. 1995,
Bentley et al. 2009, Hall 2009, Shevenell & Kennett
2002). Recent work is beginning to suggest that the
timing of the glacial advances within the AP are coeval
with the LIA in the Northern Hemisphere (Hall 2009,
Simms et al. 2021).
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The recent rapid regional warming period, following the
LIA, is marked by the ongoing pronounced warming
trend across Antarctica, most likely due to increased
greenhouse gases in the atmosphere (Houghton 2001).
The recent rapid regional warming event is associated
with increased sediment accumulation rates in a variety
of proxy records such as lake and marine cores (Bentley
et al. 2009), ice retreat, paraglacial changes and reduced
sea-ice durations and snow cover (Vaughan et al. 2003,

Ruiz-Fernandez et al. 2019, Turner et al. 2022, Siegert
et al. 2023).

Regional sea-level reconstructions

Compared to other coastlines, relatively few studies of
relative sea-level (RSL) changes are available for much
of Antarctica due to limited ice-free locations. The few
RSL records that do exist across the AP are found within

Fig. 2. Google Earth image of Tay Head on Joinville Island and the locations of the beaches, moraines (translucent grey) and
ground-penetrating radar (GPR) profiles discussed in the text. Beaches 22 and 23 are not displayed because GPS data could not be
processed. Inset map shows the location of Tay Head (red dot) on Joinville Island as well as the location of D'Urville Island (1) and
Dundee Island (2).
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Fig. 3. Photographs of the field site including a. fabric of beach 5 deposits with well-bedded gravels and sands, b. fabric of beach 28
deposits lacking bedding and sands, c. snow cover and 1 m2 'pits' in which out-of-place pebbleswere counted and d. sandstone outcrop
on the hill.
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the South Shetland Islands (Bentley et al. 2005, Hall 2010,
Watcham et al. 2011, Simms et al. 2012), Marguerite Bay
(Simkins et al. 2013), Torgersen Island (Simms et al.
2018), Alexander Island (Roberts et al. 2009), Beak
Island (Roberts et al. 2011), James Ross Island (Hjort
et al. 1997) and locally on Joinville Island (Fig. 1;
Zurbuchen & Simms 2019). On Joinville Island,
Zurbuchen & Simms (2019) reconstructed a record of
RSL based on the topographically lower 21 of the 36
beaches on the island. Radiocarbon ages from those
lower 18 beach ridges reveal that RSL has fallen
4.9 ± 0.58 m since 3.1 ka, with an abrupt, short-lived
increase in the rate of RSL fall from 1.5 to 1.3 ka and a
potential RSL rise from 0.7 to 0.2 ka (Zurbuchen &
Simms 2019). The beaches continue to an elevation of
12.2 m, which, when corrected for the 1.3 m elevation of
the modern beach ridge crest, suggests a marine limit of
no less than 10.9 m, which currently remains undated.

Tay Head peninsula

Joinville Island is located at the north-eastern tip of the AP
between D'Urville Island and Dundee Island (Figs 1 & 2).
These islands are a geological continuation of the Trinity
Peninsula (Elliot 1967). However, due to a combination
of snow cover and sparse outcrops, little detailed
mapping has been conducted on Joinville Island. Studies
of correlative rocks on the AP itself suggest that the
Trinity Peninsula consists predominantly of folded clastic
Carboniferous through Cenozoic sedimentary rocks such
as siltstones, sandstones and conglomerates, with their
metamorphosed counterparts associated with later
volcanic intrusions (Barbeau et al. 2010, Bradshaw et al.
2012, Zak et al. 2012).
The 36 discrete raised beach ridges (separated from one

another by troughs) observed on Joinville Island are
∼0.4 km long (shore parallel) and located on the east side
of Tay Head, an ∼2.0 km× 2.5 km peninsula positioned
on the south side of Joinville Island (Fig. 2). A similar,
more weakly developed series of beach ridges is found on
the south-facing portions of Tay Head but were not
surveyed. The field site is adjacent to the Firth of Tay,
15 km from the location of a SHALDRIL core from
which Michalchuk et al. (2009) obtained a high-resolution
record of Holocene deglacial and climate history.

Methods

Granulometry

The size and roundness of the largest 100 surface clasts
within 1 m2 were observed, recorded and photographed,
similar to the approaches of Simkins et al. (2015) and
Bentley et al. (2005). This process was repeated three
times along each crest of the 36 raised beaches. Clasts

from the field and in photographs were classified into six
categories: well rounded, rounded, sub-rounded,
subangular, angular and very angular (Powers 1953).
Grain size was measured according to the two visible
axes observed in photographs. Standard deviation was
used to quantify sorting.

Out-of-place pebbles

The density of out-of-place pebbles (OPPs), identified as
rock types not represented in the local bedrock or till
outcrops, within a 15m3 area on the crest of each beach
(Fig. 3c) was measured along every other beach to aid in
the reconstruction of glacial activity and provenance.
These OPPs were generally interpreted as IRD; however,
we cannot conclusively rule out their original
transportation by an earlier (Last Glacial Maximum?) ice
sheet that covered the whole region and later reworking
into the beach deposits. In addition to what appeared to
be exotic OPP clasts, we also counted the number of
clasts of a distinctive rhyolite found in dikes within the
local bedrock and sandstone (quartzite) clasts that
appeared to be sourced from a local hill to the north-west
of the beaches ('Sandstone Hill'; Figs 2 & 3d). However,
we are less confident in our counting of the sandstone
clasts compared to the rhyolite clasts due to the similarity
of the sandstone and other local finer-grained
metasedimentary bedrock. The difficulty of counting was
exacerbated by snow cover at the time (Fig. 3c).

GPS and tide gauge

Joinville Island GPS and tide data are reported in
Zurbuchen & Simms (2019). Elevation and coordinate
data were obtained using a UNAVCO Trimble Net R9
receiver global navigation satellite system (GNSS) base
station and Trimble 5700 GPS/GNSS receiver. Upon
failure of the local base station, the O'Higgins permanent
GPS station (www.sonel.org, last accessed 10 February
2023), located ∼115 km away from Joinville Island, was
used instead. Beach-ridge profiles were obtained from
kinematic-mode GPS surveys across the crest of each
beach ridge, except for beach ridges 2 and 3, which each
have three static elevation points due to the presence of
wildlife. GPS data were processed in Trimble Business
Center with horizontal and vertical precisions of ∼0.25 m.
Elevations were converted to mean sea level using 2 days
of data from a locally deployed Valeport 740 Portable
Water Level Recorder (tide gauge) matched to the tide
gauge at Bahia Esperanza ∼50 km away.

Ground-penetrating radar

Approximately 2.5 km of GPR profiles were collected
across the beaches of Tay Head using a Sensors and
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Software pulseEkko Pro with a 200 MHz antenna (Fig. 2;
Zurbuchen & Simms 2019). Lines were predominantly
collected shore-normal, with four additional
shore-parallel profiles collected to help tie the other
profiles together. The unshielded antenna was mounted
on a custom-built cart and manually pulled across the
beaches. Processing of the GPR profiles included a
topographic correction, DeWow (a proprietary
processing algorithm) and a depth-varying gain, all
conducted using EkkoDeluxe and Kingdom Suite
software. A velocity of 0.190 m/ns was used based on a
common midpoint survey conducted at the site.

Beach age

Beach-ridge ages on Joinville Island were estimated using
previously published radiocarbon ages in addition to 18
new optically stimulated luminescence (OSL) age
determination attempts. Zurbuchen & Simms (2019)
obtained radiocarbon ages for 18 of the lower 21 beach
deposits (labelled 0–18, including 7a, 7b, 15a, 15b) on
Joinville Island. With the exception of the ages from

beaches 1 and 2, which calibrate to < 448 years, these
ages were recalibrated using Calib 8.2 (Heaton et al.
2020), with an updated marine radiocarbon reservoir
offset (Delta R) of 695 ± 140 (Hall et al. 2010b;
Calib.org/marine/regionalcalc.php, last accessed 16
August 2023). For the ages of beaches 1 and 2, we
retained the ages originally used by Zurbuchen & Simms
(2019), which were derived using a Bayesian
progradation model for the beach-ridge age assignments.
All ages in this study are given in calibrated years or
thousands of years before present (the present being
1950). We use the notation 'cal. yr BP' to denote specific
calibrated radiocarbon ages and 'ka' to represent time
periods in the past and 'OSL ages' or 'kyr' for a span of
time.
In order to supplement the previously reported

radiocarbon ages by Zurbuchen & Simms (2019; https://
doi.org/10.1130/2019370, last accessed 15 December
2022), cobbles and sands were sampled under lightproof
conditions for OSL dating. We focused our efforts on the
upper non-organic-bearing beaches. Sample preparation
and OSL dating methods followed Simkins et al. (2016).

Fig. 4. Elevation transects across the crest of the most prominent beach ridges on Joinville Island. The 95% confidence intervals are
shown by grey boxes. Not shown are beach ridges 2 and 3 due to limitations from local wildlife and beach ridges 21–23, whose
GPS-processing error bars were so large as to obscure any meaningful results.
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The top, light-exposed portions were crushed for dose rate
estimates. From the lower, light-shielded part of the
cobble, the outer 1 mm surface was removed following
Simms et al. (2011), who demonstrated that this layer
was reset completely after 1 h of daylight exposure. The
target slices were crushed by hand using a mortar and
pestle in order to avoid pressures that could erase the
luminescence signal. The carefully ground cobble grains
and sediment from additional sandy deposits were
prepared according to the following procedures: the
material was sieved for grain sizes 63–250 μm. The
grains were then washed in 10% HCl and 27% H2O2 to
remove carbonate and organic material contaminates.
The remaining sediment from sand and cobble samples
was density separated with lithium polytungstate liquid
(LST) at specific gravities of 2.75, 2.62, 2.58 and 2.54 to

isolate quartz, potassium and sodium feldspars and
heavy and light grains. The heavy and light grains were
saved and stored away, whereas the remaining quartz
and feldspar grains were etched using hydrofluoric acid
(48% HF for 40 min for quartz and 10% HF for 15 min
for feldspars). Some samples had only little material in
the feldspar fraction. For those samples, it was not
possible to separate sodium and potassium feldspars.
These samples were treated as 'mixed' feldspars.
Measurements were conducted using a Risø TL/

OSL-DA-20 reader, Risø National Laboratory, with a
bialkali photomultiplier tube (Thorn EMI 9635QB).
The built-in 90Sr/90Y beta source gives a dose rate of
∼100 mGy/s. The exact dose rate value was calculated
for the specific day on which each sample was measured.
For quartz, optical stimulation was carried out with a

Fig. 5.Ground-penetrating radar (GPR) profiles and their interpretations for GPR lines 3 (upper two panels) and 24 (lower two panels).
See Fig. 2 for GPR line locations.
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blue LED array at 470 nm with 74 mW/cm2 (90%) power
at the sample and a 7.5 mm Hoya U-340 detection filter
(290–370 nm). Feldspars were stimulated with an
infrared LED array at 870 nm with 121 mW/cm2 (90%)
power at the sample and a blue or yellow filter
combination for detection. The heating rate used was
5°C/s. Quartz grains did not have any significant
luminescence signals. The measurement procedure for
feldspar was based on the single-aliquot regenerative-
dose (SAR) procedure described by Murray & Wintle
(2000) and Wintle & Murray (2006). The procedure was
modified such that the same temperature and 60 s
duration were used for cutheat and preheat steps
(compare Blair et al. 2007). The preheat temperatures
were determined for each sample with plateau and dose
recovery tests. The equivalent dose De was determined
with the central age model (Galbraith 1999).
Calculation of the dose rate followed the procedure

described in detail by Simms et al. (2011).
Concentrations of natural uranium, 232Th and potassium
were measured with high-resolution
gamma-spectrometry for both rocks and surrounding
material. All samples were in radioactive equilibrium.
The water content for rocks was assumed to be 0. The
water content for the surrounding materials was

measured and has an uncertainty of 3%. Alpha, beta and
gamma dose rates were calculated using the conversion
factors published by Guérin et al. (2011). The internal K
concentrations in the feldspar samples (for single grains
as well as average values) were measured with an electron

Fig. 7. a. Median long-axis grain size and b. the sum of the
percentage of very angular, angular and subangular cobbles of
the raised beaches at Tay Head, Joinville Island.

Fig. 6. a. Photograph looking east across TayHead showing the relationship between themoraines and beaches aswell as the characterof
M2. b. Photograph looking south-east into moraine M3 and the possible palaeo-lagoon formed within it as it was reworked by swash
processes.
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Table I. Granulometric characteristics of the raised beaches of Joinville Island.

Grain size Roundness Clast type

Beach number Average (cm) Median (cm) Standard deviation (cm) Very angular Angular Subangular Sub-rounded Rounded Well-rounded Total OPP Rhyolite Sandstonea

Modern 3.52 3.35 1.17 0 0 0 3 39 61 103
1 2.94 2.80 0.98 0 0 4 19 72 82 177 26 180 4
2 3.71 3.58 1.45 0 0 2 13 51 48 114 26 582 8
3 3.51 3.38 1.10 0 0 3 11 45 54 113 14 164 0
4 3.13 2.97 1.11 0 0 1 12 40 66 119
5 4.03 3.97 1.01 0 0 11 35 38 19 103 41 448 2
6 3.53 3.28 1.13 0 0 1 21 50 47 119
7a 2.72 2.59 0.95 0 0 1 19 41 46 107 23 220 2
7b 3.19 3.01 1.07 0 0 4 24 45 35 108
8 2.97 2.78 1.22 0 0 6 23 34 38 101
9 2.70 2.35 1.17 0 0 6 26 40 35 107 7 158 1
10 2.51 2.28 1.03 0 0 12 25 43 22 102
11 2.53 2.27 1.11 0 0 5 19 48 29 101 24 350 3
12 2.60 2.44 1.02 0 0 11 32 30 18 91
13 3.07 2.82 1.30 0 0 20 32 39 17 108 24 162 2
14 2.14 1.92 0.94 0 0 6 49 36 26 117
15a 3.32 3.14 1.02 0 0 2 13 58 40 113 22 444 4
15b 2.57 2.53 0.91 0 0 3 33 61 29 126
16 2.65 2.48 0.83 0 0 4 10 44 51 109
17 3.16 2.99 1.06 0 0 6 13 56 44 119 25 513 1
18 3.18 2.99 1.20 0 0 3 24 52 47 126
19 3.81 3.60 1.30 0 0 3 21 50 33 107 23 1048 2
20a 3.15 2.92 1.07 0 0 8 22 51 18 99
21 3.34 3.22 1.11 0 0 5 26 46 46 123 23 36 3
22 3.39 3.30 0.98 0 1 5 16 50 27 99
23 3.06 2.89 0.85 0 0 9 29 42 29 109 25 46 15
24 4.02 3.79 1.33 0 0 9 23 48 17 97
25 2.83 2.61 1.12 0 0 13 32 55 25 125 15 96 35
26 3.48 3.30 0.96 0 0 5 34 61 11 111
27 2.91 2.57 1.21 0 0 16 22 33 41 112 10 50 121
28a 2.85 2.70 0.95 0 0 4 10 46 40 100
28b 3.78 3.59 1.04 0 3 18 30 47 14 112
29 3.62 3.52 1.18 0 3 18 23 25 26 95 12 13 24
30a 2.03 1.88 0.92 0 1 22 37 44 9 113
30b 2.11 1.91 0.84 0 6 22 19 50 10 107
31 4.29 4.00 2.20 0 14 39 32 29 19 133 10 18 362
Moraine 3 - - - 0 16 24 22 36 27 125

a Probably an underestimate (see text).
OPP = out-of-place pebble.
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probe micro-analyser (EPMA) at the University of
California, Santa Barbara. To calculate the resulting
internal dose rates, the grain sizes of the feldspars in the
rock samples were measured. The cosmic dose rate was
calculated as described by Barbouti & Rastin (1983),
Prescott & Stephan (1982) and Prescott & Hutton
(1994). The effective thickness was assumed to be half
the burial depth. The uncertainty was 5%. Feldspar ages
were fading corrected as described by Auclair et al.
(2003) and Wallinga et al. (2007) for the linear and
non-linear dose ranges, respectively.

Results

Beach-ridge architecture

Beach ridges appear to naturally clump into beach-ridge
sets based on similar elevations, with what appear to be
natural breaks between groups of three to seven beach
ridges (Fig. 4). The lower beach-ridge sets include
beaches 1–7 (GPR profiles reveal another break between
beaches 2 and 3), 8–11b, 12–15b and 16–18. Above
beach ridge ∼20, the beach ridges became less
continuous and more difficult to correlate across the
beach plain. Nevertheless, natural breaks appeared to
continue into the upper beach ridges, with more weakly
developed breaks between beach-ridge sets defined by
beach ridges 19–23, 24–27 and 28–31 (Fig. 2). The slope
in the beach-ridge plain also changes at beach ∼15b
(Fig. 5). Along the profile of GPR line 3, orientated
perpendicular to the beach ridges, above beach ridge 15b
the slope is ∼0.056, whereas below that it is ∼0.033. The
decrease is greater along GPR line 24, for which above
beach ridge 15b the slope is ∼0.033, whereas below that
it is ∼0.015.

Relationship between beaches and moraines

To the north of the raised beaches on Tay Head lie two to
three moraines (Fig. 2; Simms et al. 2021). The oldest,M1,
is located at the top (north-west) of the flight of raised
beaches. M1 appears to be onlapped or at least coeval
with the highest beach ridges. Its well-rounded cobbles
and smooth outer margin suggest reworking by marine
processes, possibly into a palaeo-spit. Its interior may
have been occupied by a palaeo-lagoon, which today
occasionally fills with an ephemeral pond, complete with
a palaeo-tidal inlet (Fig. 6). However, the palaeo-lagoon
only contains coarse, angular cobbles with little to no
mud.
To the north-east of M1 lies another moraine or till

sheet (M2). It appears younger than M1, as M2's
southern margin overrides some of the younger raised
beaches (beaches 21–24; Fig. 6). The surface of M2 is
also hummocky (Fig. 6). Due to snow cover, the

boundary between M1 and M2 was not clearly defined in
the field, but it appears M2 overlies M1. To the east of
M2 lies a third, younger moraine (M3) described by
Simms et al. (2021). M3 appears to be younger than M2,
as beaches 19 and 17 are cross-cut by M3 but not clearly
by M2. In addition, the cobbles within M2 are much
more angular compared to the more rounded cobbles of
M3, which probably reworked older beach deposits
(Simms et al. 2021).

Beach sedimentary characteristics

Based on 9092 grain-size measurements, the pebbles
within Joinville Island's 36 beaches average between 2
and 4 cm in maximum length, with an overall standard

Fig. 8. a. Number of out-of-place pebbles (OPPs), interpreted as
representing ice-rafted debris, per 1 m2 of the beach for
selected beaches on Tay Head, Joinville Island. Pebble counts
were collected within 15 m2 along the central portion of every
other beach. b. Number of low-silica rhyolite (red) and
sandstone (blue) pebbles per 1 m2 of beach counted in the
same manner as the OPP. *Pebbles were only counted on 9 m2

of beach 3, thus the numbers presented have been normalized
to 15 m2. Note the frequency of sandstone pebbles is probably
an underestimate (see text).
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deviation of 1.11 cm (Fig. 7 & Table I). Fine grains
(e.g. diameters < 2 mm) were almost absent within the
upper 15 cm of the beach deposits (Fig. 3). The mean
grain size and sorting of pebbles on Joinville Island
beaches did not change by > 1 cm across all of the
beaches (Fig. 7). The oldest (19–31) and the youngest
(modern-6) beaches contain some of the coarsest
material and also vary considerably from the beaches

adjacent to them. The middle beaches (7–18) are slightly
finer-grained, with less intra-beach variability. In
addition, the sedimentary characteristics differed
between the upper and lower beach deposits. The
deposits of the lower 21 beaches (beach numbers 1–18,
including 7b, 11b and the modern beach) were stratified
with mats of seaweed within their matrix, whereas the
deposits of the upper 15 beaches (beach numbers 19+)
were not stratified and lacked seaweed (Fig. 3). Large,
out-of-place (ice-rafted?) boulders also only occurred
above beach ridge 20.
Roundness measurements performed on 4025 pebbles

indicate the lower Joinville Island beaches are more
rounded than the upper beaches (Fig. 7). Coarser grains
are more easily rounded than finer grain sizes (cf. Boggs
2006), which could bias the roundness trends. However,
after performing a permutation test on the data, the
results failed to reject the null hypothesis of no correlation
(Fig. S1), indicating grain size does not have an effect on
the grain roundness of the Joinville Island beach deposits.
Of the 36 beach deposits, nine modes are well rounded,
24 modes are rounded, two modes are sub-rounded and
one mode is subangular (Table I). The general increase in
pebble roundness through time is interrupted at beaches

Fig. 9. Examples, descriptions and interpretations of
ground-penetrating radar (GPR) facies #1 and #2.

Fig. 10. Ground-penetrating radar (GPR) profile 8 and its interpretation. See Fig. 2 for the GPR line location.
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5, 15, 16 and 28a (Fig. 7). Beach 5 exhibits less and beach
28a exhibits more rounding than the general trend
(Fig. 7). Beach 5 is also one of the more coarse-grained
beaches. The transition from beaches 15 to 14 indicates a
decrease in pebble roundness over time, in opposition to
the overall roundness trend.
The less-rounded deposits of beach 5 also have the most

OPPs of any Joinville Island beach, whereas beach 9 has
fewer OPPs than the surrounding beaches, and no
changes in OPPs are seen through the transition from
beaches 15 to 13 (Fig. 8). Unfortunately, OPP data were
not directly counted for beach 28. In addition, the
prevalence of more locally sourced rocks appears to
change through time. Two of the most readily
identifiable locally derived rock types observed while
counting OPPs on Joinville Island were a low-silica
rhyolite and sandstone/quartzite. Beaches 1–19
contained more low-silica rhyolite clasts, whereas
beaches 21–31 contained less rhyolite and beaches 23–31
contained more sandstone clasts (Fig. 8).

Ground-penetrating radar survey results

The GPR profiles generally illustrate two dominant facies
in the dip profiles. GPR facies #1 is composed of
seaward-dipping, relatively continuous and parallel
reflections (Fig. 9). In strike profiles, these regions are
marked by flat-lying reflections (Fig. 10). GPR facies #2
is composed of chaotic, non-continuous, non-parallel
reflections. Although hyperbolas are frequent throughout
the data, they are most common at the interface between
the two GPR facies and within GPR facies #2 (Fig. 10).
Onlap is common within reflections of GPR facies #1

and is most common along the boundary between sets
of beach ridges (e.g. between beaches 2 and 3, 5 and 6, 7
and 8, 11b and 12, around 22, between 27 and 28, and

29 and 30). One of the most prominent areas of onlap
corresponds with an overall change in the slope of the
overall beach-ridge plain between beach ridges 15b and
18 (red reflection tracings in Fig. 5). At this location, the
slope of the beach-ridge plain increases updip (Fig. 5).

Beach ages

Radiocarbon ages for the lower Joinville Island beaches
were produced from shell and seaweed materials
interbedded within the beach deposits, and the
recalibrated ages range from 105 ± 160 (beach 1) to
3190 ± 375 cal. yr BP (beach 18), varying by < 100 years
from their original calibration reported in Zurbuchen &
Simms (2019; Fig. 11; https://doi.org/10.1130/2019370,
last accessed 15 December 2022). OSL ages range from
modern to ∼68.3 ± 17 ka (see the 'Discussion' section
below). A summary of the samples and OSL ages is
listed in Table II. Detailed results can be found in the
Supplemental Materials (Tables S1 & S2). Out of 13
sediment samples, only seven had grain sizes in the
range suited for OSL dating, whereas the others were too
coarse. While 22 cobble surface samples were prepared,
eight samples had no luminescence signal at all, even
after irradiation with 100 Gy. Sand samples had
generally brighter signals than cobble samples.
Exceptions were the K-feldspar fractions of JV-26 and
JV-32 (∼106 cps after 10 Gy irradiation). Dose recovery
tests ranged from very good (> 5%) to medium (> 10%).
The large overdispersion values (Table S2) are probably
caused by the necessary crushing of the slices. Large
grains with dose gradients inside the grain are broken
into multiple pieces. Breakage inside grains instead of at
grain boundaries leads to grains that consist of mineral
mixtures. This is evidenced by the fact that grains in the
Na-feldspar fraction were found to have comparatively
high internal K concentrations (compare, for example,
JV-27; Table S1). Fading rates had large measurement
uncertainties due to the low signals and large differences
between different aliquots of the same sample.

Discussion

Optically stimulated luminescence ages vs radiocarbon ages

Even when considering the challenging properties of the
OSL samples, it is not fully clear why such a large
discrepancy exists between the radiocarbon and OSL
ages. We favour the radiocarbon ages over the OSL ages
given their self-consistency (e.g. higher beach ridges
return older ages and multiple ages from the same beach
ridge are within error of one another) and agreement
with regional records of RSL (e.g. Roberts et al. 2011).
Some of the OSL samples (including JV17, JV27, JV32,
SOSL JV-09 and SOSL-106) showed very good

Fig. 11. Graph illustrating the height and age of beaches dated
using optically stimulated luminescence (OSL) and
radiocarbon dating.
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luminescence properties: very good dose recovery, low
overdispersion values and small uncertainties for the
fading rates. For some of the samples (JV17, JV27,
SOSL JV-09), ages were measured with both K-Feldspar
and Na-feldspar fractions, and the two independent
results agree in each case within 1-sigma error limits. Yet
the OSL ages show little to no agreement with the

radiocarbon ages. Four beaches (beaches 12 and 16–18)
were sampled by both OSL and radiocarbon dating. Of
those, only OSL ages from beach ridge 12 fall within
error of the radiocarbon ages (Fig. 11). All ages except
one from beaches 16–18 returned anomalously young
ages, possibly reflecting exposure after ridge formation.
The other age is much older than expected (Table II).

Table II. Optically stimulated luminescence ages and sample properties.

Sample Rock type Mineral Filter
combi

Grain size
(μm)

Dose (Gy) DR total
(Gy/year)

Age (ka) Beach
height (m)

Beach
number

JV-10 Fractured hornblende,
granodiorite

Mixed
feldspar

Blue 63–250 11.22 ± 3.06 4.63 ± 1.04 3.3 ± 1.3 4.3 12

JV-13 Biotite-hornblende, tonalite Mixed
feldspar

Blue 63–500 8.83 ± 0.75 3.96 ± 0.65 2.77 ± 0.55 10.7 28

JV-14 Biotite, hornblende, tonalite Mixed
feldspar

Blue 63–500 0.85 ± 0.067 4.40 ± 0.72 0.257 ± 0.56 12.2 31

JV-15 Biotite, hornblende, granite K-feldspar Blue 63–500 1.52 ± 0.13 5.49 ± 0.53 0.277 ± 0.036 11.6 30
JV-16 Hornblende, tonalite K-feldspar Blue 63–212 6.35 ± 0.26 7.91 ± 0.83 0.92 ± 0.12 7.7 20

JV-17
Hornblende, quartz,
monzonite

K-feldspar Yellow 63–250 3.00 ± 0.15 4.54 ± 0.45 0.661 ± 0.074
7.3 19

Na-feldspar Yellow 63–250 4.18 ± 0.18 4.76 ± 0.46 0.878 ± 0.093
JV-20 Hornblende, tonalite Mixed

feldspar
Blue 63–250 0.195 ± 0.022 2.22 ± 0.37 0.141 ± 0.035 5.3 16

JV-22 Hornblende, granite
K-feldspar Blue 63–250 0.083 ± 0.004 6.80 ± 0.76 0.012 ± 0.001

6.2 18
Na-feldspar Yellow 63–250 0.059 ± 0.004 3.71 ± 0.39 0.016 ± 0.002

JV-23 Biotite, hornblende, tonalite
K-feldspar IR/

blue
63–500 3.95 ± 0.16 5.53 ± 0.60 0.831 ± 0.12

6.1 17
Na-feldspar Yellow 63–500 1.04 ± 0.068 4.49 ± 0.49 0.413 ± 0.061

JV-26 Biotite, hornblende, tonalite
K-feldspar Blue 63–500 0.295 ± 0.023 5.34 ± 0.65 0.068 ± 0.036

11.6 30
Na-feldspar Blue 63–212 0.156 ± 0.019 3.77 ± 0.43 0.087 ± 0.02

JV-27 Hornblende, granite
K-feldspar Blue 63–250 21.04 ± 0.84 7.63 ± 0.68 3.21 ± 0.36

7.7 20
Na-feldspar Yellow 63–250 11.04 ± 0.42 5.37 ± 0.60 2.65 ± 0.42

JV-30 Tonalite Mixed
feldspar

Blue 63–500 245 ± 16 7.58 ± 0.74 27.2 ± 3.2 6.1 17

JV-32 Hornblende, granite K-feldspar Blue 63–500 32.2 ± 1.6 7.26 ± 0.70 5.11 ± 0.61 7.7 20
JV-34 Sandstone? Mixed

feldspar
Blue 63–500 171 ± 24 3.38 ± 0.28 68 ± 17 10.7 28

SOSL
JV-07

Mixed
feldspar

Blue 90–212 9.57 ± 0.65 3.09 ± 0.15 5.38 ± 0.78 4.3 12

SOSL
JV-09

K-feldspar Blue 63–212 8.00 ± 0.34 3.47 ± 0.31 3.09 ± 0.38

4.3 12
K-feldspar Yellow 63–212 8.17 ± 0.38 3.47 ± 0.31 2.69 ± 0.47
Na-feldspar Blue 63–212 6.84 ± 0.55 3.16 ± 0.16 3.21 ± 0.62
Na-feldspar Yellow 63–212 6.76 ± 0.35 3.16 ± 0.16 2.61 ± 0.3

SOSL-101 Mixed
feldspar

Blue 90–212 22.7 ± 1.5 3.40 ± 0.15 12.8 ± 2.5 12.2 31

SOSL-102 Mixed
feldspar

Blue 90–212 31.2 ± 2.2 3.53 ± 0.19 12.4 ± 1.4 12.2 31

SOSL-104 Mixed
feldspar

Blue 90–212 57.3 ± 3.6 3.46 ± 0.17 25.6 ± 4.3 11.5 29

SOSL-106 K-feldspar Blue 90–212 51.2 ± 3.1 3.69 ± 0.20 23.1 ± 3.4 11.5 29
SOSL-107 Mixed

feldspar
Blue 90–212 19.1 ± 1.1 3.39 ± 0.17 7.66 ± 0.88 11.5 29

All samples labelled 'JV-x' are rock samples. Samples labelled SOSL-x are sediment samples.
Minerals: for samples with sufficient materials, feldspars were separated into K-feldspar (< 2.58 SG) and Na-feldspar (> 2.58 SG). For all other samples,
the fraction < 2.62 SG was labelled as 'mixed' feldspars.
Filter combi: in general, the brightest signal was used for dating. For most mixed feldspars and K-feldspars this was the blue signal, whereas Na-feldspars
were brighter in yellow. There are some exceptions, as listed.
Grain size: the grain size was obtained after sifting of sediments or after crushing and sifting of rock slices.
Age: the final age, after fading correction where applicable.
Beach height: the height of the beach in metres where the sample was collected.
DR= dose rate; IR = infrared.
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The ages from the higher beach ridges appear to suffer
from similar uncertainties, with seven of the 17 ages
dating to < 500 years old despite probably being older
than 3 ka based on the radiocarbon ages. Similarly, three
others are younger than ∼3 ka, despite being higher
than the 3 ka-old beaches based on the radiocarbon
ages. Three more OSL ages are anomalously old at ∼68,
27 and 25 ka and may reflect incomplete resetting
during their last exposure. Two separate ages obtained
from the same beach ridge date to an apparently
anomalously old age of 12 ka, but they appear correct
based on their OSL characteristics. Their age is
intriguing but probably too old based on the glacial
history of the region (Michalchuk et al. 2009). That
leaves two ages that fit the general RSL trend of the
younger radiocarbon-based chronology: JV-32, with an
age of 5.1 ± 0.6 ka from beach 20 at an elevation of
7.7 m, and SOSL-107, with an age of 7.7 ± 0.9 ka from
beach 29 at an elevation of 11.5 m. Assuming an average
rate of beach formation of 175 years, based on the
frequency of the lower 14C-dated beaches, the age of
beach 31 is expected to be older than 5.8 ka, and
accounting for hiatuses would probably make the section
older.

Neoglacial and beach architecture

Several shifts in beach characteristics are observed in the
beaches of Tay Head, but the largest and most
pronounced change occurs around beaches 15a and 15b.
At this point, the slope of the larger beach plain
decreases (Fig. 5), and it is near the onset of seaweed
preservation and the development of well-defined
stratification within the beaches (beach 18), although we
cannot rule out the possibility that the change in fabric
is due to post-depositional changes (e.g. frost processes)
to the upper beach ridges. Adjacent beach ridge 15a also
marks a significant interruption in the general increase
in pebble roundness through time (Fig. 7). The age of
beaches 15a and 15b (∼2.7 ka) corresponds to the onset
of the well-documented Neoglacial time period between
∼2.1 and ∼2.5 ka (Bentley et al. 2009, Cejka et al.
2020). Pronounced cooling on James Ross Island
supports the onset of the Neoglacial period at 2.5 ka
(Mulvaney et al. 2012, Totten et al. 2015, Kaplan et al.
2020), although some proxies, such as those from a
SHALDRIL core taken in the Firth of Tay (Michalchuk
et al. 2009) and the Palmer Deep Site 1098 on the
western AP (Domack 2002, Shevenell & Kennett 2002,
Shevenell et al. 2011), suggest that the Neoglacial period
initiated earlier, at closer to 3.5 ka, whereas others along
the EAP suggest the Neoglacial period to be younger
(Cejka et al. 2020). Along Tay Head, prolonged cooling
associated with the Neoglacial time period could have
increased sea-ice conditions and hindered clast rounding,

leading to a decrease in pebble roundness, but this did
not close the sea off enough to prevent icebergs from
landing on the shore. Additionally, cooling may have
driven localized glacier readvance (see below) and
potentially increased sediment supply to the coast. An
increased sediment supply could have led to the
introduction of more angular beach clasts and a change
in shoreline trajectory, leading to the lower slopes of the
beach plain.

Other changes in Joinville Island beaches and their pebble
roundness

In addition to the major change centred around beach
ridge 15b at 2.7 ka, beach sets on Tay Head show breaks
within the last ∼0.7 kyr (the break between beaches 2
and 3), ∼1.4 ka (beaches 7 and 8), ∼2.1 ka (beaches 11b
and 12) and sometime after ∼3.2 ka with the age of the
older breaks above beach 18, with the exception of the
break between beaches 27 and 28 at ∼7.5 ka, being
poorly constrained. The younger events appear to
coincide with glacial advances on the western AP
documented by overridden mosses at ∼0.2, ∼0.8 and
∼1.2 ka (Groff et al. 2023). Zurbuchen & Simms (2019)
suggest that the breaks at ∼1.4 and ∼2.1 ka were the
result of increases in the rate of RSL fall due to glacial
isostatic adjustment-driven uplift. The others may be
driven by a similar process. Interestingly, the events at
∼1.4 and ∼2.7 ka correspond to Bond events #1 and #2
(Bond et al. 1992).
In addition to the large interruption in beach pebble

roundness as a potential result of the Neoglacial, the
overall increase in beach pebble roundness through time
on Joinville Island was interrupted at beaches 5 and
28a (Fig. 7). These interruptions do not correlate with
inferred RSL changes described by Zurbuchen &
Simms (2019), which suggests that these differences
were caused by factors other than changes in the rate of
RSL. Beach 5 contains less rounded materials and
formed 1005 ± 310 cal. yr BP. The formation of beach 5
corresponds in timing with a negative Southern
Hemisphere Annular Mode (SAM) event, which marks
cooler climate conditions as the southern westerlies
probably shifted towards the equator (Kwok & Comiso
2002, Moreno et al. 2018, Kaplan et al. 2020). The
temperature anomaly record from the James Ross Island
ice core (Mulvaney et al. 2012) supports this suggestion,
as temperatures were low at the time and continued to
decrease thereafter. Additionally, anomalously low
pebble roundness values are also found in Marguerite
Bay (Simkins et al. 2015) at the same time as the
formation of Joinville Island beach 5. Thus, the reduced
rounding of sediments within beach 5 could be the result
of a widespread period of less open water conditions,
with an increase in sea ice observed in the relative
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abundance of diatom assemblages in other marine records
(Barbara et al. 2016), indicative of cooler temperatures.
Additionally, beach 5 has the highest OPP count,
interpreted as representing IRD, which further supports
the importance of cooler temperatures during the
formation of beach 5. Cooler temperatures might have
led to a glacial advance on Joinville Island and/or
surrounding regions and supplied more icebergs carrying
IRD (Bond et al. 1992). According to Mulvaney et al.
(2012), a permanent ice shelf formed after ∼1.5 ka within
the Prince Gustav Channel, which offers a potential
source of IRD for beach 5. Additionally, ice advances on
James Ross Island (Björck et al. 1996, Kaplan et al.
2020) and nearby islands (Balco & Schaefer 2013)
occurred at or after 1.4 ka.
Finally, beach 28a had more rounded beach materials

compared to the overall roundness trend (Fig. 7).
Increased pebble roundness could reflect higher wave
exposure, suggestive of less sea-ice coverage. The second
beach above beach 28a, beach 29, has an OSL age of
7.7 ± 0.9 ka. If the average rate of beach formation is
∼175 years, then that would suggest an age of ∼7.4 ka
for beach 28. Marine records from the neighbouring
Firth of Tay (Majewski & Anderson 2009, Michalchuk
et al. 2009) suggest the onset of warmer and more open
water conditions at about this time. At ∼7.8 ka,
Michalchuk et al. (2009) observed a distinct change in
the marine sediments of the Firth of Tay, with an
increase in diatoms, organic carbon, nitrogen and
biogenic silica and a decrease in IRD. However, similar
signals are not ubiquitous throughout the region (e.g.
Shevenell et al. 2011, Mulvaney et al. 2012, Barbara
et al. 2016).

Joinville Island glacial advance

The increase in low-silica rhyolite and the decrease in
sandstone clasts with time on the beaches of Tay Head
could be manifestations of a change in beach sediment
provenance. Outcrops of the sandstone are located west
of the three moraines or till sheets, whereas the
low-silica rhyolite was present as dikes within low-grade,
metamorphosed, fine-grained sedimentary rocks in the
sea stacks and outcrops on the eastern side of Tay Head
(Fig. 2). The rocks within the westernmost M1 moraine
behind beach 31 were dominantly sandstone. Therefore,
the sediment sources for the upper beaches (21–31) were
most probably the moraine and sandstone outcrops to
the east, and, as beaches became preserved, eventually the
sandstone sources were abandoned or swamped by
materials from other parts of the peninsula. Subsequently,
the dominant sediment source transitioned to the
low-grade, metamorphosed, fine-grained sedimentary
rocks with the low-silica rhyolite dykes for the lower
beaches. However, this transition does not align with

changes in pebble roundness, indicating that processes
other than just a source change caused the changes in
pebble roundness. Although the age of the westernmost
moraine M3 is unknown, beach 31 cuts into the moraine,
suggesting that it is older than 7.7 ka.
Two other moraines or till sheets are present north of

the beaches on Tay Head (M2 and M3; Fig. 2). The
sandstone would have been transported east by glacial
ice to form the upper moraine (M1) and hence sourced
the upper beaches (21–31). The low-silica rhyolite and
its affiliated low-grade, metamorphosed, fine-grained
sedimentary rocks are present in the area. The
easternmost two moraines appeared to be composed of
these rocks. The middle of the two moraines, M2, cuts
across beaches 21–24, which we estimate to be 175–525
years older than beach 20, which has an OSL age of
5.1 ± 0.6 ka; whereas the lower moraine, M3, cuts across
beaches 12 and possibly beach 8, thus post-dating ∼1.5 ka
BP as reported by Simms et al. (2021). However, we
cannot rule out the possibility that M2 and M3 represent
the same advance but with a very irregular margin.

Conclusion

Changes in the sediment characteristics as revealed in
GPR profiles, grain size, grain roundness and IRD
within Holocene raised beaches on Joinville Island along
the EAP were used to determine how the environmental
history of the region is reflected within their deposits.
A particularly well-developed set of 36 raised beaches is
found on Tay Head on the southern side of Joinville
Island. The lower 21 beaches are well stratified and
better developed than the upper 15 beaches, which are
unstratified and less contiguous. Furthermore, most
beaches are found in sets of three to seven beach ridges
separated from other beach-ridge sets by natural breaks
in elevation without beach ridges. Grains on the raised
beaches of Joinville Island show an overall increase in
beach pebble roundness through time, whereas grain size
shows no obvious pattern. However, the pebble
roundness trend is interrupted at beaches 5, 15a and 28a.
Beach 5 exhibits less and beach 28a exhibits more
rounding than the general trend. The transition between
beaches 15 and 14 indicates a sharp decrease in pebble
roundness through time, in opposition to the overall
pebble roundness trend. The change in roundness trend
is also nearly concurrent with an inflection point in the
overall slope of the beach plain and observable
onlapping in GPR profiles. The lower 21 beaches
contain prevalent seaweed mats and limpet shells,
providing an excellent radiocarbon chronology. An
attempt to date four of the lower radiocarbon-dated
beaches and five of the upper beaches with 21 OSL ages
from cobble surfaces as well as more traditional sand
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grainswas met with mixed success. The age of beaches 15a
and 15b (∼2.7 ka), which marked a transition in pebble
roundness of the beaches as well as a lowering of the
overall beach plain slope, coincides with the onset of the
Neoglacial time period of ∼2.5–3.0 ka. Less rounding of
sediments within the ∼1.0 ka beach 5, which also had
the most OPPs (interpreted as representing IRD) of any
beach on Joinville Island, could be explained by a period
marked by shorter open water seasons and an increase in
sea ice, whereas the opposite could hold true for beach
28a of ∼7.4 ka. This study suggests Holocene
environmental changes left a measurable impact on the
coastal zones of Antarctica.
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