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Abstract
The systematic investigation of individual glacier surges across a large statistical sample is key to
a better understanding of surge mechanisms. This study introduces a consistent framework for
identifying glacier surges from diverse remotely sensed datasets: NASA ITS_LIVE velocity fields,
glacier thickness changes digital elevation models and surface roughness from SAR backscat-
ter. We combined these diverse datasets using Gaussian process modelling and signal processing
approaches to generate the first worldwide inventory of glaciers with active surges between 2000
and 2024, identifying 261 surge events on 246 glaciers. We performed validation against reference
data and conducted a quantitative analysis of key surge metrics - surge duration and peak surface
velocity. Our results confirm 12 surge-type glaciers in the Randolph Glacier Inventory (v7). We
further evaluated climatological influences on the distribution of surge-type glaciers and assessed
the predictive capabilities of existing theories for surges, including hydrological and thermal con-
trols as well as the enthalpy balance theory. In addition, we present the first global analysis of
velocity time series from individual surge events and discuss terminus-type dependent dynam-
ics. Our findings strongly support the unified enthalpy balance theory in explaining the breadth
of observed surge behaviours. Finally, we report new surge onsets in glaciers quiescent since the
19th century.

1. Introduction

Glacier surges are quasi-periodic oscillations of ice flow behaviour affecting polythermal or
temperate glaciers. During a surge event, a glacier flows at rates significantly higher than its
baseline velocity (Jiskoot, 2011; Benn and Evans, 2014). The increase in flow velocity leads
to the transfer of a substantial amount of mass from a reservoir zone to the receiving zone
down the glacier (Meier and Post, 1969), which may result in a marked advance of the glacier
terminus (Sund and others, 2014; Truffer and others, 2021). Surges last for a few months to
years and are generally decoupled from climate trends, since many glaciers continue to surge
in the current context of global glacier recession (Guillet and others, 2022; Kääb and others,
2023; Lovell and Fleming, 2023; Lovell and others, 2023), thus complicating the investiga-
tion of the glacier response to climate variability (Yde and Paasche, 2010; Benn, 2021). In
this regard, the recent work of Hugonnet and others (2021) and Guillet and Bolch (2023)
highlighted the need for a more comprehensive inventory of glaciers with known surge-
type behaviour, as well as better constraints on the timing of surges when processing and
analysing digital elevation model (DEM) time series. Surges represent transient behaviour
that cannot be captured by standard space-time statistical models used to compute world-
wide glacier mass loss, and thus hinder the interpretation of glacier/climate relationships. In
addition, cyclical and climate-independent advances of surge-type glaciers have been docu-
mented as a significant source of repeated and widespread glacier hazards, such as glacier
lake outburst floods (Round and others, 2017; Muhammad and others, 2021; Bazai and oth-
ers, 2022) and complete glacier collapses (Gilbert and others, 2018; Kääb and others, 2018).
The hazards associated with surge-type glaciers have far-reaching impacts, with direct implica-
tions for the local environment (Humphrey and others, 1986; Humphrey and Raymond, 1994;
Merrand andHallet, 1996; Lei and others, 2021), aswell as communities downstream (Heinrichs
and others, 1995; Ding and others, 2018; Gao and others, 2021; Truffer and others, 2021).
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A broad variety of mechanisms have been proposed to bet-
ter understand and capture surging behaviour. Seminal works by
Clarke (1976) and subsequent studies (Fowler, 1987; Murray and
Porter, 2001) relate surging behaviour to transitions from frozen
to temperate basal conditions while Kamb and others (1985);
Kamb and Engelhardt (1987) presented surges as resulting from
rapid changes in the subglacial drainage system. Other hydro-
logical mechanisms, such as pulsed englacial water storage were
described by Fatland and Lingle (2002) and further examined by
Lingle and Fatland (2003). In addition, hydro-mechanical feed-
backs such as interactions between till deformation and drainage
efficiency (Clarke and others, 1984) or propagating waves of till
failure (Nolan, 2003) have been described at various glaciers in
Alaska.

A binary classification of ‘Svalbard-type’ and ‘Alaska-type’
surges has gained significant traction in the literature (e.g. Murray
and others, 2003; Cuffey and Paterson, 2010; Bhambri and others,
2017; Paul and others, 2017; Solgaard and others, 2020; Guan and
others, 2022). According to this classification, surges are driven by
two distinct mechanisms at opposite ends of the glacier thermo-
dynamic behaviour spectrum: a switch in the thermal properties
of the glacier bed, versus a switch in bed hydrology. The ther-
mal switch hypothesis suggests that surges are triggered by a rapid
transition from cold to warm conditions at the bed of the glacier
(Fowler and others, 2001), a process limited to the surge of poly-
thermal glaciers. During the quiescent phase, a surge-type glacier
may be in a cold-based state, characterised by low basal water pres-
sure and slow ice movement. However, as external factors such as
increased meltwater input or changes in thermal gradients warm
the glacier bed, the glacier may transition to a temperate-based
state. This transition leads to enhanced basal sliding, reduced fric-
tion and increased ice flow, which triggers a surge. The surge ends
when the glacier reverts to a cold-based state due to decreased
meltwater input or cooling of the glacier bed. The hydrological
switch hypothesis states that quiescence results from a distributed
subglacial drainage system that efficiently evacuates meltwater. If
the drainage system becomes inefficient, water accumulates at the
glacier-bed interface, leading to an increase in subglacial water
pressure, which results in acceleration of glacier flow, effectively
triggering the surge. The surge ends when the drainage system
switches back to a more efficient state (Kamb and others, 1985).

More recently, Sevestre and Benn (2015); Benn and others
(2019a) and Benn and others (2023) proposed a unifying hypoth-
esis based on the enthalpy balance theory. The enthalpy balance
framework formulates surging as an imbalance between potential
energy, thermal energy and basal water content as a trigger for pri-
mary flow acceleration. As flow accelerates, frictional heating at
the base of the glacier leads to enhanced meltwater production,
supported by the influx of additional meltwater through surface-
to-bed drainage, resulting in positive sliding/heating feedback.The
surge ends once the subglacial drainage system has evacuated the
surplus enthalpy from the bed (Benn and others, 2019a). The
enthalpy balance hypothesis was supported by the global statistical
analysis of glacier surges conducted by Sevestre and Benn (2015),
although the underlying data set was prepared through the compi-
lation of surging observations in publications spanning the period
1861 to 2013 and relied on inconsistent qualitative criteria and
variable methodologies. In contrast, the Svalbard vs. Alaska-type
classification, including its predictions of a bimodal distribution
in both peak velocity and surge duration, with differences between
modes on an order ofmagnitude, has yet to be tested against a com-
prehensive global dataset. It is therefore necessary to compare both

hypotheses with observational evidence obtained from a consis-
tent quantitative methodology applied to a statistically significant
number of surge events.

Lately, surge-type glaciers have received increasing attention,
leading to the creation of various new global and regional inven-
tories (Sevestre and Benn, 2015; Guillet and others, 2022; Guo
and others, 2023; Kääb and others, 2023; Lovell and others, 2023).
These efforts have provided a more accurate understanding of the
prevalence of dynamic glacier instability on regional and global
scales. However, different inventories were compiled using incon-
sistent diagnostic criteria and identification methods and a major-
ity focused on the sole classification of glaciers as surge-type or
non-surge-type, rather than identification and characterisation of
individual surge events (e.g. as in Herreid and Truffer (2016) and
Guillet and others (2022)). In addition, a common limitation of
recent studies proposing surge-type glacier inventories has been
the reliance on manual identification of surges from datasets with
coarse temporal resolution, preventing the precise investigation of
individual surge events.These limitations emphasise the clear need
for a systematic and global inventory of individual surge events,
derived from a consistent methodology.

This paper has two primary objectives. The first objective is to
enhance existing methods for identifying glacier surges by intro-
ducing a comprehensive, consistent and semi-automated frame-
work for glacier surge detection that takes advantage of a variety
of widely accessible remotely sensed datasets, including glacier
surface velocity, radar backscatter and surface elevation time
series. Motivated by the desire to create a transparent and explicit
approach, we employ statistical modelling of glacier surface veloc-
ity, surface elevation and synthetic aperture radar (SAR) time series
to compile the first consistent global inventory of surge events,
providing detailed insights into the dynamic behaviour of indi-
vidual tributaries within larger glacier complexes for the period
between 2000 and 2024.The second objective is to leverage the sys-
tematic inventory of surge events to evaluate existing hypotheses
for surge dynamics. Specifically, we test the predictive capabili-
ties of the enthalpy balance theory in relation to the existence of
an optimal climate envelope for surge-type glaciers, as well as its
unifying character with respect to the Svalbard vs. Alaska-type
classification.Wefirst investigate the role of climate as a fundamen-
tal control on the propensity for surging, resulting from climatic
influences on mass and enthalpy budget components, before test-
ing for the predicted existence of a continuum in peak velocity and
surge duration. We further test the prediction of the Svalbard vs.
Alaska-type classification, stipulating the existence of a bimodal
distribution for both peak velocity and surge durations, with an
identifiable order-of-magnitude difference between modes.

Beyond the identification of glaciers that experienced surges
since the beginning of the 21st century, this work aims to prepare
the first homogeneous catalogue of surge events. Here, we incorpo-
rate crucial quantitative information about each event and provide
an important step towards a standardised community approach to
studying glacier surges, similar to what has been done for earth-
quakes and volcanic eruptions in the past. We finally stress that the
current surge event catalogue need not be static and that future or
unreported surge events should be recorded and incorporated into
this database.

2. Terminology and criteria for surge identification

Automating the detection of surge events requires defining a limit
betweenwhat is deemed unstable (surge-type) behaviour, andwhat
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is regarded as baseline (stable) glacier behaviour. However, because
of the wide spectrum of observed surge-type behaviour, surge
events are often described and defined using variable terminology,
and thus deriving a clear threshold between what can be consid-
ered surge-type and stable glacier behaviour is not straightforward.
As a basis for defining clear thresholds between surging and stable
behaviour, we first start by reviewing existing qualitative and quan-
titative definitions of what is considered to be surge-type behaviour
and then discuss the criteria we used to automatically identify
surges from the available data.

Benn and Evans (2014, pp. 186–187) describe glacier surges as
‘cyclic phenomena that are not directly triggered by external events,
but instead result from internally driven oscillations in conditions
at the bed of the glacier’. Benn and Evans (2014, pp. 186–187) fur-
ther mention that ‘maximum velocities during the active phase are
typically one or two orders of magnitude higher than the veloc-
ity during the quiescent phase’. In the Glossary of Glacier Mass
Balance and Related Terms, Cogley and others (2010, p. 89) define
a surge as ‘the abnormally fast flow of a glacier over a few months
to years, during which the glacier margin may advance’, before fur-
ther emphasising that ‘velocities during the surge are often greater
by an order of magnitude than those during the quiescent phase’.
Jiskoot (2011, p. 415) describes surges as quasi-periodic oscilla-
tions between long periods (tens to hundreds of years) of slow
glacier flow and shorter periods of abrupt velocity increase in
velocity (typically 10 to 1000 times faster than baseline) main-
tained over some time (1–15 years); Jiskoot (2011, p. 415) further
adds that during a surge, ‘a large volume of ice is transported from
the reservoir zone (upper part) to the receiving zone (lower part)
of the glacier, sometimes resulting in a marked frontal advance’.
Similarly, the National Snow and Ice Data Center Cryosphere
Glossary defines a surge as ‘a dramatic increase in flow rate, 10 to
100 times faster than [a glacier’s] normal rate; usually surge events
last less than one year and occur periodically between 15 and 100
years’.

Based on these definitions, we attempt to define objective and
tractable criteria for evidence of active glacier surging:

Abrupt and sustained increase in glacier surface velocity

Abrupt and large increases in glacier flow velocity, sustained for at
least several months, are assumed to indicate surging (see Section
3.2.2 for more information), which we typically identify here as
accelerations in the flow regime of a glacier. Although many exist-
ing definitions involve a surface velocity of at least ten times that
observed during the quiescent phase, here we follow the reasoning
of Guillet and others (2022) and use a lower criterion of two times.
In addition, we define a speed-up event as a surge candidate if the
velocity is maintained above the threshold for at least four consec-
utive months (120 days), as it prevents the false identification of
seasonal speed-ups as surge events. In the next section, we pro-
vide more information on how this and the subsequent proposed
thresholds are used to detect surges.

Substantial and spatially concentrated thickening near the
glacier terminus

We generally consider a glacier to be a candidate for surging if it
presents substantial and spatially concentrated changes in surface
elevation (over 1-10 years) at lower elevations (near the glacier ter-
minus; see Section 3.2.3 for more details), as this deviates from
recent trends in global glacier thinning and retreat (Hugonnet and

others, 2021). Thus, our objective is to identify glaciers that exhib-
ited a substantial andwidespread surface elevation gain (dynamical
thickening) over the receiving zone. We consider clear statistical
breakpoints (defined by a unitless changepoint score) and positive
trends in surface elevation time series over glaciers to be the result
of surge-induced dynamical thickening.

Abrupt changes in glacier surface crevassing

Surges typically result in intense andwidespread surface crevassing
and changes in the crevasse patterns at the glacier surface (Truffer
and others, 2021; Guillet and others, 2022; Kääb and others, 2023).
Such changes are identifiable via proxy as abrupt changepoints in
glacier SAR backscatter trend time series (Leclercq and others,
2021; Kääb and others, 2023). Again, we consider clear statistical
breakpoints (defined by a unitless changepoint score) and positive
changes in trend of SAR backscatter time series over glaciers to be
indicative of intense surface crevassing associated with a surge.

In the present surge identification scheme, we require at least
two of the aforementioned criteria to be met in order to verify a
detected event as a surge. As an example, an event flagged as a
surge candidate through extended positive surface elevation but for
which no signal is detected in either surface velocity or crevassing
changes will not be classified as a surge. Adopting a multi-criteria
approach makes the framework conservative, but this is necessary
as it reduces the occurrence of false positives, such as significant
accelerations in ice flow resulting from dynamic adjustment of
tidewater glaciers to major calving events or frontal collapses (De
Angelis and Skvarca, 2003; Benn and others, 2007; Benn andEvans,
2014). Although surges often result in an advance of the glacier ter-
minus, not all surge-type glaciers show a terminal advance during
the active phase (Murray and others, 1998; Benn and Evans, 2014;
Guillet and others, 2022), and thus we do not use glacier advance
as a criterion for surge identification.

3. Methods and data

Building upon the methodology developed by Guillet and oth-
ers (2022), we propose a surge identification scheme that detects
surge-type behaviour from abrupt variations in glacier surface
velocity, positive changes in thickness and SAR backscatter.

3.1. Data

3.1.1. Surface velocity
Guillet and others (2022) relied on changes in annual NASA
MEaSUREs ITS_LIVE surface velocity composite products
(Gardner and others, 2024) to identify surges. Although this
approach offered an efficient first step in automated surge identifi-
cation, the annual resolution precluded the accurate identification
of the timing of surge onset and termination. Here, we have used
the entire archive of 120-m resolution ITS_LIVE feature-tracking
velocity magnitude products prepared from individual pairs of
Landsat, Sentinel-1 and Sentinel-2 images (Gardner and others,
2024), which has allowed the precise identification of the onset
date, termination date and duration of each surge.

3.1.2. Surface elevation changes
To detect positive thickness change anomalies (see Section
3.2.3), we used surface elevation time series prepared from
Digital Elevation Models (DEMs) generated using stereo images
acquired by the ASTER (Hugonnet and others, 2021) and
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Maxar WorldView-1/2/3 and GeoEye-1 satellite instruments
(ArcticDEM, Porter and others (2018)). In their study, Hugonnet
and others (2021) rely on a multistep outlier filtering approach to
iteratively improve DEM quality by 1) removing elevation outliers
using a reference elevation (TanDEM-X) and 2) filtering eleva-
tions that would lead to glacier thinning rates beyond the maxima
defined by the authors. Although they subsequently used Gaussian
process (GP) regression alongside iterative sigma-clipping to com-
pute glacier surface elevation time series, recent efforts have dis-
cussed how this step likely results in filtering out the dynamic
thickening signal for certain surge events (Guillet andBolch, 2023).
In the present study, we thus only rely on the TanDEM-X filtered
surface elevation time series, omitting any of the Gaussian pro-
cess filtering performed byHugonnet and others (2021), and rather
use a custom Gaussian process providing a more robust kernel to
transient changes; see Section 3.2.3.

3.1.3. SAR backscatter
To infer changes in surface crevassing, we used ESASentinel-1 SAR
backscatter time series back to its earliest usable data in 2015. The
Sentinel-1 mission is set to acquire backscatter data in preset illu-
mination angles in recurring orbits, defined by relative orbit num-
bers, at one of two polarisations (vertical, VV; horizontal, HH; and
optionally cross-polarisations HV/VH), with the choice of polar-
isation varying around the globe depending on the predominant
use-case.The acquisition strategy per location, i.e. angle and polar-
isation, has been relatively consistent since 2018, but underwent
several revisions between 2015 and 2018. Consequently, establish-
ing the longest consistent time series for every considered glacier
requires care.

For each glacier flowline point, we examined all Ground
Range Detected (GRD) Sentinel-1 SAR products available through
Google Earth Engine to obtain the longest consistent time series.
Consistency is only retained through assessing the same illumi-
nation angle (relative orbit number) and polarisation, so each
combination of these was split up, and the longest combination
was chosen per glacier. The GRD products in Google Earth Engine
are not radiometrically corrected, meaning the reflective power is
not normalised by distance and local incidence angle to the satel-
lite. This is a problem when assessing absolute backscatter changes
or comparing different relative orbits, but it should not introduce
problems here because we only measure relative changes through
time for a set angle. As the SAR data are inherently noisy due to
instrument noise and quasi-random speckle, we used time series
sampled from medians in a 10 pixel (100 m) radius of each point.

3.1.4. ERA5-Land climate reanalysis data
ERA5 is a high-resolution, global climate reanalysis data set
produced by the European Centre for Medium-Range Weather
Forecasts (ECMWF) from 1950 to present (Muñoz-Sabater and
others, 2021). ERA5-Land improves the spatial resolution of ERA5
reanalysis using a 9 km Gaussian grid (TCo1279) for the land
surface level. The ERA5-Land data available through the Climate
Data Store (Sabater, 2019) were re-gridded to a regular lat-lon grid
of 0.1x0.1 degrees. The key atmospheric parameters used to run
ERA5-Land are adjusted to compensate for the altitude discrep-
ancies between the forcing grid and the higher resolution grid
of ERA5-Land using lapse-rate correction (Muñoz-Sabater and
others, 2021).

We analysed the 2-m air temperature and total precipitation
variables from the monthly average ERA5-Land products between
January 2000 to December 2023. We sampled the ERA5-Land

products at the centroid of each RGI glacier polygon using bi-cubic
interpolation.

3.1.5. Glacier outlines and flowlines
We used glacier outlines provided by the Randolph Glacier
Inventory version 7.0 (RGI v7) (RGI 7.0 Consortium, 2023) and
the released flowlines product available at https://nsidc.org/data/
nsidc-0770/versions/7.

3.2. Detection of surge events

3.2.1. Data sampling strategy
Based on the spatial resolution of the ITS_LIVE and DEM prod-
ucts (≈120m), we limited our analysis to RGI glacier polygons with
flowlines long enough to be sampled at ten equally spaced ver-
tices, i.e longer than 20 pixels and 2.4 km. This results in a total
of 32133 glaciers with 54178 flowlines, and thus 541780 points to
automatically evaluate for surging (Figure 1).

3.2.2. Surface velocity
Automating the detection of glacier surge events within a time
series of glacier surface velocity data faces challenges when relying
solely on conventional signal processing techniques and time series
analysis methodologies. Multiple sensors are used to prepare the
ITS_LIVE velocity time series, which improves spatio-temporal
sampling for all glaciers, but data quality issues arise due to the
limitations of individual sensors, including cloud cover and illu-
mination conditions for optical instruments. Such constraints lead
to velocity data that have data gaps in time and space, with variable
uncertainty, which presents difficulties for conventional time series
analysis methods meant for regularly sampled data. In addition,
glacier surges demonstrate intricate dynamics, showing different
velocity patterns with diverse durations, magnitudes and tempo-
ral changes. Therefore, we chose a statistical modelling approach
to automatically detect surges in the irregular surface velocity time
series.

We apply the following framework independently to each point
s(x, y, z) along the flowline at which the velocity time series is sam-
pled. We only consider surface velocity estimates computed with
a temporal baseline of 6 to 110 days. We then normalise the sur-
face velocity time series Us(t) using the mode of surface velocity
magnitude for the full 2000–24 time period. We assume that the
observed surface velocityUs(t) is the result of two distinct sources:
the baseline surface velocity of the glacier Ub(t) and an ‘excess’
surface velocity termUe(t) which potentially includes dynamic ice
flow instabilities:

Us(s, t) = Ub(s, t) + Ue(s, t) (1)
Our surge identification scheme relies on estimating the excess
velocity Ue(t) at a given time t by modelling Ub(t).

Several approaches tomodel time-varying glacier surface veloc-
ity have been proposed. However, these efforts rely on a periodic
structure of the velocity signal (sine or cosine), often use higher-
order polynomials to interpolate missing values and/or require
continuous temporal data coverage (e.g. Vijay and others, 2019;
Greene and others, 2020; Charrier and others, 2022). Here, we
model Ub(s, t) for each point s of the flowline as a Gaussian
process:

Ub(t) ∼ 𝒢𝒫(𝜇U(t), k(t, t′)) (2)
where 𝜇U(t) is the time-dependent mean and k(t, t′) is the ker-
nel function that captures the temporal covariance between data
points.
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Figure 1. Example of the data sampling strategy applied to Khurdopin glacier, Karakoram. (a) The map shows the RGI7.0 outline of the glacier (blue area) as well as the
different flowlines (greyed lines), with the main flowline highlighted in red. Black squares are vertices at which each dataset is sampled. (b) ITS_LIVE surface velocity estimates.
(c, d) surface elevation change, and (e, f) SAR backscatter. The scatterpoints in c and e represent the pre-Gaussian process regression time series. The mean of each Gaussian
process regression is presented a solid blue line, while the shaded blue area is the 95% credible interval. (d, f) Changepoint detection scores for the surface elevation change
detection (d) and SAR backscatter (f) frameworks, see section 3.2.3. Note the variable x-axis ranges as the datasets span different periods. The synchronously detected surge
in all three datasets is shaded in yellow.

Gaussian process mean The Gaussian process proposed here acts
as a surrogate model, or emulator, for what can be considered the
baseline surface velocity of each glacier. Thus, its mean represents
the most likely baseline velocity value at any given time t and is
derived directly from the data. Since the distributions of glacier
surface velocity values are non-symmetric and present heavy pos-
itive tails, the median value for the full 2000–24 period is not a
robust estimate of the most probable baseline velocity value. Here
we use the mode of the distribution of the surface velocity val-
ues as the mean for the Gaussian process. To calculate the mode
of the distribution, we first used a Gaussian kernel to estimate the
probability density function of the whole sample of glacier surface
velocities. The mode was then estimated as the minimum of the
negative probability density function. It is thus assumed that surges
are represented by a relatively small proportion of the distribution
and hence that the glacier is, more often than not, in quiescence
during the 2000–24 period.

Gaussian process covariance In practice, wemodel the changes in
glacier velocity at a given point s(x, y, z) and time t as a stochasti-
cally driven damped simple harmonic oscillator (SHO).This allows
us to more intuitively capture potential variations in the frequency
of baseline glacier surface velocity from one year to another.
We use the celerite2 (Foreman-Mackey and others, 2017)
Python implementation of Gaussian process models with SHO
kernel terms defined by the authors through the power spectral
density (ω):

S(𝜔) = √ 2
𝜋

S0𝜔4
0

(𝜔2 − 𝜔2
0)

2 + 𝜔2
0𝜔2/Q2

(3)

with ω0 being the undamped angular frequency and Q the qual-
ity factor describing the resonance of the harmonic oscillator.
celerite2 proposes an alternative parametrisation of the SHO
term and further allows the user to define more intuitive kernel
hyperparameters of the form:

𝜌 = 2𝜋/𝜔0, the undamped period of the oscillator (in days) (4)

𝜏 = 2Q/𝜔0, the damping timescale of the process (in days) (5)

𝜎 = √S0𝜔0Q, the standard deviation of the process (normalised)
(6)

We thus define the covariance function as a sum of two SHO terms
capturing velocity variations through an additive model as annual
and sub-annual (typically 4 months) periodic deviations:

k(t, t′) = SHO(𝜌 = 365, 𝜏 = 365 * 2, 𝜎 = IPR(Us))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Annual variations term

+ (7)

SHO(𝜌 = 365/4, 𝜏 = 365, 𝜎 = IPR(Us))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Sub−annual variations term

where IPR represents the interpercentile range (between the 5th
and 95th percentiles) of the entire available sample of glacier
surface velocity measurements, Us.

Using our fully-specified Gaussian process model
(Equations 2 and 7), we can now derive an estimate of Ub(s, t)
through Gaussian Process regression for each sampling point s,
and hence rewrite Equation 1 to estimate the excess velocity at a
given time t (Figure 2):

Ue(s, t) = Us(s, t) − Ub(s, t) (8)
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Figure 2. Time series of ITS_LIVE glacier surface velocity estimates (black dots) for a vertex along the main flowline of selected glaciers. For each glacier the top plot presents
ITS_LIVE glacier surface velocity estimate (black dots) and the computed baseline velocity (solid coloured curves, mean of the Gaussian process prediction), the shaded area
is the 90% confidence interval. The bottom one presents the excess velocity estimates, i.e. the residuals from the Gaussian process regression (black dots), and automatically
identified surge events (shaded regions). Columbia Glacier is not a surging glacier and is presently used to demonstrate the proficiency of the Gaussian process in emulating
glacier surface velocities.
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3.2.3. Surface elevation changes and SAR backscatter
We aim to identify glaciers that exhibited a substantial and
widespread reorganisation of their surface as clear identifiers of a
surge.This entails drastic increases in surface elevation gain (thick-
ening) in their receiving zone in contrast to the expected glacier
thinning trends (Hugonnet and others, 2021), or drastic changes
in surface crevassing, as visible on backscatter time series (Leclercq
and others, 2021; Kääb and others, 2023).

In practice, we are specifically aiming at detecting sharp tran-
sitions in trends in surface elevation change rates, as well as
backscatter, as shown on Figure 1. Surface elevation change and
SAR backscatter time series present similar structures in that they
can be modelled as a trend term and one, or several, periodic
terms (shown for elevation change in Hugonnet and others, 2021).
However, they both present individual challenges which prevent
the sole use of standard signal processing methodologies. Surface
elevation change time series are plagued by their overall sparsity
and irregular sampling, and SAR backscatter time series contain
seasonal variations (largely due to precipitation and melt) with
greater amplitudes than the typical change in trend from a surge
that we wish to detect. Both existing data gaps, and high-amplitude
periodic oscillations hamper the use of conventional trend change
detection methods. We therefore set up a multistep framework to
detect positive break points fromboth datasets. Similarly to section
3.2.2, the following framework is identical for each vertex s(x, y, z)
along the flowline at which the surface elevation and backscatter
time series are sampled.

Gaussian process regression and signal resampling We begin
by modelling each time series y(t) as a realisation of a Gaussian
process:

y(t) ∼ 𝒢𝒫 (𝜇y(t), k(t, t′)) (9)
We again rely on celerite2’s SHOTerm (Eq. 3) to capture both
the periodic structure of the signal, as well as longer-term (typically
close to 5 years) trend:

k(t, t′) = SHO(𝜌 = 365, 𝜏 = 365 * 𝜃1, 𝜎 = IPR(y))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Annual variations term

+ (10)

SHO(𝜌 = 365 * 𝜃2, 𝜏 = 365, 𝜎 = IPR(y))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Long−term trend term

where IPR represents the interpercentile range (between the 5th
and 95th percentiles) of the entire available sample of either glacier
surface elevation or backscatter measurements, y. θ1 and θ2 are
parameters used to capture the wide diversity of surface elevation
and backscatter patterns observed globally. They are fitted to each
individual time series (from each flowline vertex) through max-
imum likelihood estimation using an L-BFGS scheme. Examples
of realisations of individual Gaussian processes used for regression
and interpolation of surface elevation and backscatter time series
are given in panels b and d of Figure 1.

After fitting the Gaussian process model, each signal is resam-
pled uniformly to ensure consistent spacing for subsequent anal-
yses. This step minimises the risk of aliasing and ensures that our
changepoint detection operates on an evenly sampled input signal.

Wavelet decomposition In order to identify changes in signal
trend, each resampled GP estimate needs to be decomposed into
multiple time scales, accounting for trend and seasonality. In prac-
tice, we here want to isolate the trend in either measurement by
filtering out any high-amplitude seasonal signal. Since the resam-
pled GP signal is not purely periodic, we perform signal decom-
position using discrete wavelet transform with Daubechies 4 (db4)

wavelets. We choose Daubechies wavelets as they are effective for
capturing both transient features and structural changes in sig-
nals. The wavelet transform represents the signal y(t) as a sum of
approximations and details (Mallat, 1999):

y(t) = ∑
j,k

cj,k𝜓j,k(t), (11)

where 𝜓j,k(t) are wavelet basis functions indexed by scale j and
position k, and cj,k are the corresponding wavelet coefficients. An
example of wavelet deseasonalisation is given in panels b and d
of Figure 1.

Penalised changepoint detection We consider y(t = k) to be a
changepoint if at time k ∈ 𝒯 = {t1, … , tK}K≤T , there is a change
in the mean value of the wavelet-decomposed GP estimate. We
note𝒯 a partition of the input signal y(t) withK + 1 subsequences,
whereK is the number of changepoints. In our case,K is unknown
but is assumed to be in the range [0, 1] and is found through a
changepoint detection procedure.

A changepoint detection procedure aims to find the opti-
mal segmentation ̂𝒯 by minimising the quantitative criterion
V(𝒯, y) = ∑K

k=0 c (ytk…tk+1
), with c (⋅) a cost function measuring,

for each point y(t = k) a changepoint partitioning precision; i.e.
howwell the signal is divided into segments such that each segment
exhibits consistent statistical properties, with changepoints mark-
ing significant shifts in data characteristics. Finding ̂𝒯 is a discrete
optimisation problem, with, in our case, an unknown number of K
changepoints and written as follows:

min
𝒯

V(𝒯, y) + pen(𝒯) = min
𝒯

̃V(𝒯, y) (12)

with pen(𝒯) constraining the number of detected changepoints
by effectively penalising models with a higher number of change-
points. The proposed changepoint detection procedure is imple-
mented using ruptures (Truong and others, 2020) and made up
of 3 main parts:

• (i) A search method or detection algorithm, to estimate ̂𝒯: we
use the window search detection method, consisting of comput-
ing the discrepancy between two adjacent sliding windows along
y(t) (Truong and others, 2020).

• (ii) A constraint on the number of changepoints. In practice, we
find that a penalisation parameter of 70 ensures the detection of
a minimal number of changepoints in most cases.

• (iii) A cost function c (⋅). We use an ensemble of three different
cost functions: a rank-based cost function (Lung-Yut-Fong and
others, 2011), a Mahalanobis-type metric (Truong and others,
2019), and a kernelised mean change (Arlot and others, 2019).

Similarly to Katser and others (2021) we then rely on the aggre-
gation of allmodels, combining different cost functions, to produce
an aggregated cost; a method also known as ‘mixture of experts’ by
the machine learning community. For each model and cost func-
tion, a score quantifies how well a particular segmentation fits the
data. Scores are then scaled between 0 and 1 aggregated by taking
the pointwise minimum. Since we are only interested in increases
in the trend of the surface elevation change and SAR backscatter
signals, we set the score of changepoints detected with a negative
trend gradient to 0. Finally, vertices with a combined changepoint
score greater than 0.6 are considered candidates for surging.
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Figure 3. Dataflow diagram overview of the surge event detection scheme, showing the flow of information between input and outputs (blue blocks), internally used data
(white blocks), and processing steps (rounded blocks). Green blocks represent the data-specific surge detection thresholds described in Section 2. Blue and red arrows
represent the dataflow of surface elevation and SAR backscatter measurements respectively. The blocks defined as AND and OR are logical gates, stipulating that surges have
to be detected by either i) the surface elevation change and velocities detection schemes or ii) the surface elevation change and backscatter detection schemes.

3.2.4. Combination of criteria and derivation of a surge
inventory
Each of the aforementioned detection steps and data types leads to
a different subset of candidate surge events (Figure 3). The subsets
of potential surge-type glaciers are then compared based on their
RGI v7.0 identification number. Sub-inventories are then com-
bined as follows: glaciers detected by both our surface elevation
change and surface velocity frameworks, or both the surface eleva-
tion change and SAR backscatter frameworks are considered to be
surging (Figure 3). Since surge-induced changes in SAR backscat-
ter are the result of changes in surface velocity, we do not consider
the combination between our surface velocity and SAR backscatter
frameworks to be indicative of surging, as other phenomena could
be falsely identified as surges.

3.2.5. Validation and quality control
Validating the semi-automated detection of glacier surges is not
straightforward due to existing inventories being derived from
inconsistent methods and data sets. The most comprehensive
inventory of surge-type glaciers is the one presented by Sevestre
and Benn (2015). However, we argue that, due to the mismatch in
the 2000–24 period of our inventory and the 1861–2013 period of
the Sevestre and Benn (2015) inventory, as well as the conceptual
differences in the identification of surges, a detailed comparison
between the two inventories would be inconclusive. The most
recent global inventory of glacier surges was presented byKääb and
others (2023) and relied on the visual interpretation of Sentinel-1
backscatter signals, following the methods described in Leclercq
and others (2021).

We rely on the inventory of Kääb and others (2023) as a valida-
tion data set and assess the capability of our detection framework
quantitatively through the use of the Jaccard index, also known as
the Intersection over Union, a similarity measure commonly used
in object detection and expressed as follows:

J(A,B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A| + |B| − |A ∩ B| (13)

where A and B represent two different sets of glaciers: A, a vali-
dation set of surge-type glaciers identified and B, the glaciers with
semi-automatically detected surge events identified in this study.
|A ∩ B| thus represents the total surface area (in km2) covered
by the glaciers identified in both A and B, while |A ∪ B| is the
surface area covered by the sum of A and B. The Jaccard index is
thus bounded between 0 and 1, with a value of 0 when the sets are
completely dissimilar and 1 if the sets are identical.

In addition to the proposed validation experiment, each identi-
fied glacier has been manually checked following the criteria pro-
posed in Section 2. In the final product, potentialmisidentifications
have been culled.

4. Results and discussion

4.1. Global distribution of glaciers with active surges between
2000 and 2024

Of the ≈ 32000 glaciers analysed, we detected 246 glaciers with
active surges over the 2000–24 period (Figure 4). Most glaciers
surged only once, while five glaciers surged two or more times
between 2000 and 2024, and one glacier surged four times
(Sit’Kusa/Turner glacier, Alaska). Compared to version 7 of the
RGI, in Alaska and the Yukon, we identify one surge on a glacier
that was previously classified as ‘No evidence’ (Nadina Glacier),
as well as 4 previously classified as ‘Probable’ surge-type (Martin
River, Marvine, Valerie and Ferris glaciers). In Svalbard, we note
a surge of Lilliehöökbreen, previously classified as having no
evidence of surge-type behaviour. We further identified nascent
surges at Nordsysselbreen, Aavatsmarkbreen and Doktorbreen, all
classified as ‘Probable’ surge type. Similarly, we identify a surge on
Borebreen, classified as ‘Possible’ surge-type. We finally report the
onset of surges at Deltabreen and Seftrombreen which, according
to Sevestre and Benn (2015), have not surged in the 20th century,
effectively displaying quiescence for the past 165 and 128 years,
respectively. All other identified surges in our global sample affect
previously identified surge-type glaciers.

Glaciers with active surges during the 2000–24 period represent
around 1% of all glaciers studied and 0.1% of all glaciers in RGI
V7.0. However, the total surface area of these glaciers with active
surges is approximately 38000 km2, which corresponds to approx-
imately 5.5% of the worldwide glacierised area outside of the polar
ice sheets.

The spatial distribution of surge events is consistent with previ-
ous assessments. Approximately 167 (68%) glaciers with identified
surges are located in High Mountain Asia, with 78 (32%) in the
circum-Arctic region (the Arctic Ring). Within the Arctic Ring,
Alaska-Yukon and Svalbard-Russian Arctic had the highest num-
ber of glaciers with active surges, with estimates of 28 and 24,
respectively. Our method identified 16 active surge-type glaciers
in Greenland, 12 in the Canadian Arctic and one in the Andes. No
surge events were detected during the 2000–24 period in Iceland.
A near or total absence of surges in Iceland is expected (Kääb and
others, 2023), as most known surge-type glaciers in Iceland surged
during the 1990s (Hannesdóttir and others, 2020) and are therefore
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Figure 4. Global distribution of 246 glaciers with active surges between 2000 and 2024 identified with our methodology. Prominent but well-known clusters of surge-type
glaciers are evident in High Mountain Asia and the Arctic Ring. N refers to the number of surge-type glaciers detected.

likely to be quiescent (Björnsson and others, 2003) or senescent
(Benn and others, 2023).

4.2. Climatic controls on the distribution of surge-type glaciers

Surge-type glaciers are found within a specific climatic envelope
where they are accompanied by non-surge-type glaciers; beyond
this envelope, only non-surge-type glaciers are typically observed.
Figure 5 shows the distribution of non-surge-type and surge-type
glaciers in relation to themedian temperature and themedian total
annual precipitation from ERA5-Land data for the period between
1990 and 2024. The surge-type glacier climatic envelope typically
encompasses a median annual temperature of -1 to −20∘ C and
a median total precipitation of 100 to 1200 mm a−1 (Figure 5,
panel a).

Seasonal climate data reveal additional insights on surge-
type glacier distributions (Figure 5, panels b and c). Surge-type
glaciers typically occur over a broad range of median total winter
(October–April for theNorthernHemisphere, June–September for

the Southern Hemisphere) precipitation (20 to 1000 mm a−1) and
median winter temperature (-10 to −30∘ C), while they are still
absent from either end of the ranges for the larger population
of global glaciers. The occurrence of surge-type glaciers is firmly
bound by median summer temperature, as surge-type glaciers are
almost non-existent in regions where the median summer tem-
perature exceeds 3∘ C. Similarly, 90% of the surge-type glacier
population lies within a median total summer precipitation range
of 100-1000 mm a−1.

The clearest climatic relationship used to distinguish surge-
type glaciers is between the median summer temperature and the
median total winter precipitation (Figure 6). Surge-type glaciers
are absent beyond median summer temperatures higher than 3∘ C
and less than −10∘ C. Similarly, they are seldom present in regions
where the median total winter precipitation exceeds 1000 mm a−1.

The characteristics of the climatic envelope established by our
analyses are similar to those of Sevestre and Benn (2015) and
in very strong agreement with the envelope described by Lovell
and others (2023) using ERA5-Land. Using the glaciers identified
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Figure 5. Median temperature and total precipitation for surge-type (orange) and non-surge-type glaciers (blue). (a, b, c) Due to the disparity in sample size between surge-
type (246) and non-surge-type glaciers (more than 270000), the median temperature/median total precipitation relationship is represented using a kernel density estimate, all
levels represent lines of probability, or density of the 2D distributions: 20%, 40%, 60%, 90% and 99%. (a) Median total annual precipitation versus median annual temperature.
(b) Median total winter precipitation versus median winter temperature. (c) Median total summer precipitation versus median summer temperature. Distribution of surge-type
glaciers from this study (red scatter plots) and using the glaciers identified bySevestre and Benn (2015); Falaschi and others (2018); Guillet and others (2022); Lovell and others
(2023) and Kääb and others (2023) (orange kernel density estimate).

by Sevestre and Benn (2015); Falaschi and others (2018); Guillet
and others (2022); Lovell and others (2023) and Kääb and others
(2023), we calculated an updated climate envelope using the more
modern ERA5-Land products, which very strongly concurs with
our results (Figures 6 and 5).

We finally focus on further validating the proposed climatic
envelope. We here aim at avoiding sampling bias in climatic distri-
butions, resulting from sample size differences between non-surge-
type (around 270000 glaciers) and surge-type glaciers. For the lat-
ter, we use both the 246 surge-type glaciers from this study, as well
as the composite inventory formed from the datasets of Sevestre
and Benn (2015); Falaschi and others (2018); Guillet and others
(2022); Lovell and others (2023) and Kääb and others (2023), con-
taining close to 2200 glaciers. From each sample of glaciers, we
obtain continuous estimate probability density functions (PDFs)
on the number of glaciers in a given temperature/precipitation
range by kernel density estimation, using a Gaussian kernel. Figure
7 represents 200000 samples drawn from each PDF and high-
lights the clustering of surge-type glaciers within the defined cli-
matic envelope. The samples derived from the proposed inventory
(Figure 7, panel a) show a greater variance compared to those from
the composite inventory (Figure 7, panel b), which results from
initial sample size disparity.

4.3. Surge event statistics

The following section describes surge events statistics that are
solely derived from velocity time series. Due to the data qual-
ity issues described in Section 4.6.1, velocity time series for
glaciers in the polar regions lack the temporal resolution nec-
essary to clearly identify surge onset and termination dates.
Consequently, we do not consider the surges identified in the
CanadianArctic and the periphery ofGreenlandwithin the present
section.

The peak surface velocity is defined here as themaximumveloc-
ity measured over all sampled ITS_LIVE time series. Similarly,
the surge duration is taken as the longest time interval for which

Figure 6. Median summer temperature and median total winter precipitation for
surging and non-surge-type glaciers. Distribution of surge-type glaciers from this
study (red scatter plots) and using the glaciers identified by Sevestre and Benn (2015);
Falaschi and others (2018); Guillet and others (2022); Lovell and others (2023) and
Kääb and others (2023) (orange kernel density estimate). Lines represent different
density levels: 30%, 50%, 70%, 90% and 99%. Also note the difference in median
summer temperature between surge-type and non-surge type glaciers.

the glacier is detected to be actively surging, for all individual
surges and across all flowline vertices.The distributions of the peak
surge velocity and duration for 193 surge events are presented in
Figure 8.

4.3.1. Peak surface velocity during surges
The median peak surface velocity for the entire sample is 4.2
m day−1, with an interpercentile range of 2.1 m day−1 (Figure 8a).
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Figure 7. Median summer temperature and median total winter precipitation for (a) surge-type glaciers from this study, (b) the surge-type glaciers from by Sevestre and
Benn (2015); Falaschi and others (2018); Guillet and others (2022); Lovell and others (2023) and Kääb and others (2023) and (c) non-surge-type glaciers from the RGI v7.0.
Note the important clustering of surge-type glaciers within the defined climatic envelope in a and b. Non-surge type glaciers are more uniformly distributed over the
temperature/precipitation spectrum.

Theglacier displaying the highest peak surge surface velocity is that
of Sít’ Kusa in Alaska, where the peak velocity reached an estimate
of 28.8 ± 0.4 m day−1.

A closer analysis of regional samples shows a marked similarity
between Alaska-Yukon and Svalbard-Russian Arctic. The median
peak surface velocities are 6.8 and 6.5 m day−1, while interper-
centile ranges are 6.2 and 5.4 m day−1. Surges in High Mountain
Asia present significantly lower peak surface velocities, with a
median value of 3.3 m day−1 and an interpecentile range of 2.2
m day−1.

4.3.2. Duration
Across 193 surge events detected between 2000 and 2024, the
median surge duration was 2.6 years, with an interquartile range
(25th to 75th percentile) of 2.1 years.While themedian surge dura-
tion for Alaska-Yukon is 2.3 years, surges appear to last longer
in Svalbard-Russian Arctic and High Mountain Asia with median
durations of 3.3 and 2.8 years respectively. In addition, surge dura-
tions for the Alaska-Yukon sub-cluster present a slightly narrower
interpercentile range (1.7 years) compared to Svalbard-Russian
Arctic (2.6 years) and High Mountain Asia (2.1). The longest
detected surge event is the 9.1 year surge of West Kunlun Glacier
(RGI2000-v7.0-G-13-47689) inWesternKunlunbetween 2008 and
2019. In Alaska-Yukon, the longest surge is that of Klutlan Glacier
(St. Elias Mountains, Yukon) which lasted 6.8 years. In Svalbard-
Russian Arctic, the longest surge is the still-ongoing 12 year surge
of Austfonna Basin-3.

Further analyses showed no linear correlation between peak
surface velocity and the duration of individual surge events. In
addition, no linear correlation has been found between surge dura-
tion, peak surface velocity and glacier geometry (length, surface
area and surface slope), i.e. longer and/or steeper glaciers do not
appear to be more prone to faster or longer-lasting surges.

4.4. Regional differences in surge dynamics: on the Svalbard
vs Alaska-type classification

Thehydrological switch (Alaska-type surges) hypothesis posits rel-
atively short active phases, typically lasting between 1 and 3 years

and reaching a peak velocity of 10 to 100 metres per day (Murray
and others, 2003). Conversely, the thermal switch hypothesis sup-
poses longer durations than Alaska-type surges, typically lasting
up to more than 10 years and reaching peak velocity between 1
and 15 metres per day (Murray and others, 2003). We therefore
test for the existence of statistical differences between the distribu-
tions of peak surface velocity and surge duration between different
surge clusters, with a focus onAlaska-Yukon and Svalbard-Russian
Arctic.

The distribution of peak velocity during surge events appears
similar in both regions, with surge events reaching more than
20 m day−1 of peak velocity and both distributions displaying a
median close to 6 m day−1, with an average spread of 5 m day−1.
More quantitatively, a two-sample Kolmogorov-Smirnov test com-
paring the distributions of peak surface velocity for surges in
Alaska-Yukon and Svalbard-Russian Arctic return a statistic of
0.18 and a p-value of 0.81 indicating that the two distributions are
not significantly different. Our results therefore do not statistically
support a Svalbard-vs-Alaska-type classification. This finding cor-
roborates the idea of dynamical unity between what was previously
considered two ends of a behavioural spectrum resulting from dis-
tinct processes (Jiskoot, 2011; Sevestre and Benn, 2015; Herreid
and Truffer, 2016; Benn and others, 2019a).

A closer investigation of the differences between glaciers in
Alaska-Yukon, Svalbard-Russian Arctic and High Mountain Asia
further reveals the breadth of dynamical behaviours displayed by
surges.

First, it is worth noting that we expect the distributions
described in Section 4.3 to be updated by future work as, out
of the 31 surges detected in Svalbard-Russian Arctic, the onset
and termination date could only be estimated for 18 of them.
Most ongoing surges have already lasted longer than the estimated
median surge duration in the Svalbard-Russian Arctic and are
likely to further positively skew the distribution. As an example,
the surge of the Nathorstbreen Glacier system, the onset of which
is invisible on ITS_LIVE, is believed to have occurred around 2006
(Sund and others, 2014). Similarly, the surges of Austfonna Basin-3
and Scheelebreen, which started in 2012 and 2021, respectively, are
still ongoing.
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Figure 8. Empirical cumulative distributions of (a) peak surface velocity and (b) surge duration, for the full sample of detected surge events. Regional distributions of (c) peak
surface velocity and (d) surge duration for Alaska-Yukon, High Mountain Asia and Svalbard-Russian Arctic. Vertical dashed lines are the median of each distribution.

Second, to understand the regional differences in surge dynam-
ics, we find added value in investigating the velocity signals from
individual surges. Figure 9 shows the similarities between the
surface velocity signals forAlaska-Yukon andHighMountainAsia,
as well as how they differ from surges in the Svalbard-Russian
Arctic. The acceleration phases of all the surges presented in
Figure 9 first shows relatively low linear increase in surface flow
velocity, before a rapid switch to a quasi-exponential regime
roughly 500 days prior to reaching peak value (Figure 9 panels
13, 26, 39). All three clusters further seem to reach around 10% of
maximum velocity value. Individual differences are apparent in the
transition between slow linear flow acceleration and active surge
phase. In the selected surges fromAlaska-Yukon, few glaciers, apart
from Donjek and Lowell (Figure 9 3, 8), show notable increases in
surface flow earlier than 500 days prior to the peak. This dynamic
is similar in Svalbard-Russian Arctic, where only Monacobreen ice

cap (Figure 9, 18) shows a gradual increase in ice flow before a dra-
matic spike in velocity, marking the transition to an active surge
phase.

Notable differences between regions are further observable
in the deceleration phase of individual surges. Surges in the
Alaska-Yukon cluster show a median deceleration to 10% of the
maximum surface velocity within 180 days of their peak. In addi-
tion, most glaciers in the sample are back to quiescent velocity
500 days after peak. In the Svalbard-Russian Arctic cluster, surg-
ing velocities are maintained at 50% of the maximum surface
velocity for 180 days. Most deceleration phases last for more
than 1000 days, with Negribreen and Sonklarbreen still close to
20% of peak surface velocity 2000 days after (Figure 9 15, 21).
Surges in High Mountain Asia typically show a more symmet-
ric velocity profile, centred around the date of peak velocity. We
observe a median deceleration to around 30% of the maximum
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Figure 9. Example of ITS_LIVE surface velocity times for surge events in (1-12) Alaska-Yukon, (14-25) Svalbard-Russian Arctic and (27-38) High Mountain Asia. (13, 26, 39)
Regional stacks of surface velocity time series. Bold lines represent stack median and shaded areas cover the minimum to maximum range. Subtitles list the name/RGI
identification number of each glacier as well as the sampling location of each surface velocity time series. The x-axes are centred on the reference date when peak velocity
was reached for each event, and y-axes show the maximum-normalised surface velocity.

Downloaded from https://www.cambridge.org/core. 12 Sep 2025 at 04:48:03, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 Gregoire Guillet et al.

surface velocity at 180 days after peak, with most surges termi-
nated by day 800. In addition, slowdown phases for surges in
Svalbard-Russian Arctic show very strong seasonal fluctuations,
that are mostly absent from in Alaska-Yukon and High Mountain
Asia.

We interpret the regional differences in surge duration as dif-
ferent sensitivities of individual glaciers to the propagation of
frictional instability at the glacier bed. Glaciers such as Kluane,
Arnesenbreen, or RGI2000-v7.0-G-13-05693 (Figure 9 panels 5,
14, 30) show a very clear spike in surface velocity, without grad-
ual flow acceleration before the transition point. This testifies to
the rapid onset of transient feedbacks between drainage and fric-
tion (Benn and others, 2019b; Thø gersen and others, 2024). For
surges with a more gradual onset such as Donjek, Osbornbreen
and Gulyia ice cap (Figure 9 panels 3, 16, 27), lower enthalpy pro-
duction likely first leads to the observable gradual increase in ice
flow. The glacier then transitions to a velocity weakening regime
(Thø gersen and others, 2024), as increased sliding velocity leads
to lower basal friction triggering a sliding/frictional heating feed-
back (Benn and others, 2023), further enhancing glacier motion
and propagating the surge.

We further infer longer deceleration phases in the Svalbard-
Russian Arctic, as well as the drastic seasonal speed-ups, to be
correlated to the large proportion of tidewater surge-type glaciers
in the region (Figure 10). Indeed, contrarily to High Mountain
Asia where all surge-type glaciers are land-terminating, or Alaska-
Yukon where only Sit’Kusa (Turner), Valerie and La Perouse
glaciers are marine-terminating, all but one of the identified surge-
type glaciers in Svalbard-Russian Arctic are tidewater glaciers.
The surge detected at Vallåkrabreen, the only land-terminating
glacier in our Svalbard-Russian Arctic sample, displays a veloc-
ity signal similar to surges affecting land-terminating glaciers in
Alaska-Yukon and High Mountain Asia. We however want to note
that 3 of the tidewater glaciers in our sample, Sit’Kusa (Alaska-
Yukon), Arnesenbreen (Svalbard-Russian Arctic) and Sortebræ
(East Greenland), present velocity signals closer to that of land-
terminating glaciers. While the surge Sortebræ still displays a
strong periodicity, Arnsenbreen and Sit’Kusa only multiple surges
over the studied time period. We did no find any correlation
between glacier geometry as given in version 7 of the RGI (mostly
length, area, altitude range and slope) and either the maximum
velocity or duration of surge events. We cannot control for differ-
ences in thermal regime between land-terminating and tidewater-
glaciers, or in our sample.We thus posit that ice-ocean interactions
at the front of surging tidewater glaciers lead to the observed longer
active phases in the Svalbard-Russian Arctic cluster. More specif-
ically, higher hydrostatic pressure at the glacier terminus likely
hampers frontal drainage of the water at the glacier bed resulting
in the inability of basal drainage systems to act as efficient enthalpy
sinks (e.g. Terleth and others, 2024). This ultimately leads to a
more gradual termination of surges (Benn and others, 2019b; 2023)
and higher sensitivity to seasonal meltwater input. The interpreta-
tion of our results therefore corroborates the hypothesis that surge
termination is controlled by how efficiently the drainage system
can evacuate the basal enthalpy (Benn and others, 2019a; Ravier
and others, 2023; Terleth and others, 2024; Thø gersen and others,
2024).

The presented differences in surge peak surface velocity and
duration distributions between Alaska-Yukon, Svalbard-Russian
Arctic and High Mountain Asia reflect variations in enthalpy bud-
gets. While individual variations might originate from different

enthalpy producers, such as changes in a glacier’s thermal regime or
mass balance, poor basal drainage or rapid influx ofmeltwater, they
do not represent any fundamental contrast in surge mechanism
and rather form a wide spectrum of dynamical behaviours.

4.5. Evaluation of inter-inventory consistency

Wenow attempt to quantify the similarity between our catalogue of
surge events and that of Kääb and others (2023) for global detection
as well as Koch and others (2023), solely for Svalbard. It is impor-
tant to note that we rely only on surges that Kääb and others (2023)
classify as certain.

For this experiment, we first focus on Svalbard, for which
ITS_LIVE surface velocity estimates are only reliably available
from 2013, effectively reducing the mismatch in the periods con-
sidered between the inventories from Kääb and others (2023) and
Koch and others (2023) and the one proposed here. Between the
proposed inventory and that of Kääb and others (2023), the Jaccard
index estimate for Svalbard gives an acceptable similarity between
the sets of glaciers with a result of 0.61. This is due to the pres-
ence of four relatively large glaciers in Kääb and others (2023),
which are not captured by either the surface velocity or the SAR
backscatter scheme. When comparing our results to the Svalbard
inventory of Koch and others (2023), the Jaccard index quanti-
fies a good similarity with a result of 0.71. The difference between
our inventory and that of Koch and others (2023) first lies in the
detection of a surge on Austfonna Basin-3, which, while surg-
ing, currently undergoes linear deceleration with marked seasonal
accelerations. Second, Koch and others (2023) describe a 2017
surge of Orsabreen, which is invisible in the three datasets we
analysed, and not reported in Kääb and others (2023).

In HighMountain Asia, we choose to study the regional Jaccard
index for the two main clusters of surge-type glaciers in High
Mountain Asia: Pamir range/Tibetan Plateau (RGI region 13) and
the Karakoram Range (region 14). In the Pamirs and Tibetan
Plateau, we obtain a Jaccard index of 0.58, similar to that of
Svalbard. The similarity is greater in the Karakoram, where the
Jaccard index is 0.81. Finally, in Alaska (region 01), the similarity
index is 0.67.

Upon further investigation, false-negatives originated from our
surface velocity identification scheme led to several points of dis-
cussion. First, in some rare cases, the quiescent behaviour of the
given glacier is obscured as the glacier is surging over the whole
considered period, preventing the computation of reliable base-
line behaviour. Second, the glacier is already decelerating at the
beginning of the time series, and hence, there are no positive
anomalies to be detected (Austfonna Basin-3 and Nathorstbreen
glacier system in Svalbard, for example). Data availability and
quality problems (RGI2000-v7.0-G-13-16640, RGI2000-v7.0-G-
14-08450, etc.) obscure potential surges; a point further discussed
in Section 4.6.1. Missed detections from the SAR backscatter and
surface elevation change scheme are a direct consequence of our
changepoint detection threshold, which is purposely conservative
to avoid false positives. Finally, in Alaska, the difference between
our inventory and Kääb and others (2023) is a result of their non-
detection of the surges of the three lobes forming the Sít’ Tlein
(Malaspina - RGI2000-v7.0-G-01-15261) glacier system. We how-
ever want to mention that Kääb and others (2023) identify the
propagation on an instability on the Seward lobe of Sít’ Tlein glacier
but classify it as uncertain.
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Figure 10. Stacks of surface velocity time series for glaciers from all clusters, by terminus type. Bold lines represent stack median and shaded areas cover the minimum to
maximum range. The x-axes are centred on the reference date when peak velocity was reached for each event, and y-axes show the maximum-normalised surface velocity.
N specifies the number of time series used to generate each subplot. Time series were sampled across clusters, only accounting for terminus type. Note the strong periodic
component of the velocity signal for tidewater glaciers, as well as the overall greater variance in surface flow velocities.

4.6. Towards a fully automated detection of glacier surges:
uncertainties, challenges and perspectives

4.6.1. Uncertainties with the current inventory
Here, we reiterate that the suggested catalogue of surge events can-
not be expected to be exhaustive. Given our strict multi-criteria
identification framework, we believe the likelihood of false pos-
itives to be minimal. However, the likelihood of false negatives
is significantly higher, as shown by the comparably low number
of detected surges, compared to even regional inventories (e.g.
Guillet and others, 2022; Guo and others, 2023). The relatively
coarse spatial resolution of all the data products significantly hin-
ders the detection of surges on small valley glaciers. Limitations in
data availability and quality further hinder, for example, the recog-
nition of surges prior to the deployment of Landsat-8 (2013) in
Svalbard (e.g. the pre-2013 surge initiations of Comfortlessbreen
and Blomstrandbreen, Sund and Eiken, 2010) and some regions
of the Tibetan Plateau (glacier CN5Z514H0005 – RGI2000-v7.0-
G-13-60066, for example, Guillet and others, 2022), since the
ITS_LIVE archive only includes data after April 2013. Given that
most of the ITS_LIVEmeasurements have been derived from opti-
cal imagery (either Landsat or Sentinel-2), the polar night further
obstructs the detection of surge events in the Greenland periph-
ery and the high Arctic regions. Although the exact number is
unknown, ITS_LIVE data quality issues lead to the non-detection
of an important number surges on smaller valley glaciers in the
Pamirs, Karakoram and Tibetan Plateau (Guillet and others, 2022).
As a specific example, the ongoing surge of Nadina Glacier in
Alaska is invisible in both ITS_LIVE and SAR backscatter time-
series, while the dynamical thickening and advance of the glacier
terminus are clearly visible from very high-resolution imagery.
Similar problems arise forDEMs derived fromoptical instruments,
in addition to the general sparsity of DEM time series. In Svalbard,
the 2019 surge of Sonklarbreen is not visible in the elevation data
while it is detected through the excess velocity and SAR backscatter
schemes.

A final data-related source of false negatives lies in the vector
layers used to sample each time series.We indeed identified several
cases of surges from individual former tributaries of larger glacier
systems, where the surge-related terminus advance leads to the
reconnection of the tributary with the main glacier trunk. In these

cases, the surging tributary effectively advances past the boundary
of the RGI polygon and the dynamical thickening signal, if present,
can only be detected on the main trunk. Similarly, we identified
surges initiating close to the glacier terminus, where the dynami-
cal thickening signal is only identifiable outside of the considered
vector layers (polygon and/or flowline), effectively rendering the
detection impossible.

Finally, our method of identifying surges depends on empir-
ical thresholds in order to distinguish between the baseline and
surge-type behaviour of a given glacier. By expressing intuitive
thresholds, we aim to maintain transparency in our methodology
and advocate for a clear explanation of the reasoning behind our
threshold choice. The surface velocity threshold is intentionally set
to detect surges at the lower end of the surge magnitude spectrum,
while the changepoint detection threshold used for both surface
elevation and backscatter time series is purposely conservative.
Although relying solely on thresholding could result in extended
false identifications due to data quality, we have implemented addi-
tional spatio-temporal constraints (minimumduration of an event,
etc.) within the surge identification process beforemanually culling
any potential remaining misidentification. Consequently, we are
confident that our multi-criteria surge identification method is
robust and can reliably determine if a particular glacier is expe-
riencing a surge at a specific time, given the available data and
thresholds. We however want to state here that glaciers typically
affected by slow (e.g. Frappé and Clarke, 2007; Flowers and oth-
ers, 2011), or long-lasting (i.e. more than several decades long)
surges, such asAirdropGlacier in theCanadianArctic (Lauzon and
others, 2023), cannot be expected to be detected by the proposed
methodology.

4.6.2. Perspectives
We anticipate that the limitations of glacier velocity fields derived
from optical methods will become less significant in the future,
thanks to the expansion of archives from synthetic aperture radar
imaging satellite missions such as the European Space Agency
Sentinel-1 (Lemos and others, 2018; Zhu and others, 2021), and the
NASA-ISRO Synthetic Aperture Radar (NISAR) mission (Kellogg
and others, 2020). We also believe that there is untapped potential
in the addition of other diagnostic criteria in future efforts (Guillet
and others, 2022), such as the use of Landsat imagery to generate
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time series of glacier terminus position change (Vale and others,
2021), debris displacement (Herreid and Truffer, 2016), as well as
spatio-temporal changes in glacier surface characteristics through
direct mapping of crevasses (Herzfeld and Zahner, 2001; Bhardwaj
and others, 2016).

In this work, we showed that the complexity and diversity in
surge-type behaviour can be captured in part by straightforward
statistical models. In addition, we highlighted that our methods
cannot outperform human expertise in identifying surges, a point
similarly expressed by Kääb and others (2023). Simple statistical
models lack a holistic perspective of surges as a glacier-wide desta-
bilisation and the ability to detect subtle shifts in patterns that can
hardly be described by quantitative thresholds. An example of this
is the terminal advance of a significant number of glaciers dur-
ing their respective surges which, while clearly visible on the SAR
backscatter images (Leclercq and others, 2021; Kääb and others,
2023), would require adding an entirely new model to the exist-
ing framework to be captured adequately (Herreid and Truffer,
2016; Vale and others, 2021). Recent deep learning-based image
segmentation techniques (e.g. Xie and others, 2020; Maslov and
others, 2024), operating in higher-dimensional spaces and lever-
aging entire data archives, present an exciting prospect towards the
fully automated detection of surge events.

5. Conclusions

We have developed a semi-automated framework to identify surge
events using remote sensing observations from the 2000 to 2024
period. We demonstrated the potential for Gaussian processes to
act as a surrogate stastical model, or emulator, for baseline sur-
face glacier velocity. By extracting themodelled baseline behaviour
from point-wise glacier surface velocity time series, we were able
to detect dates of surge onset and termination, as well as important
quantitative information such as peak velocity for every identified
surge event. We finally used a changepoint detection procedure
to identify surge-related changes in glacier thickness and sur-
face characteristics from surface elevation and SAR backscatter
time series. By combining potential surges identified from sur-
face elevation changes with 1) candidate surges from ITS_LIVE
and 2) candidate surges from SAR backscatter time series, we
are confident in the robustness of the present inventory, up to
a level of uncertainty allowed by the relatively coarse resolu-
tion of the considered data products. The resulting surge event
inventory is thus conservative and not exhaustive, as there are
numerous false negatives that cannot effectively be captured by our
methodology.

In total, we identified 246 glaciers with active surges during the
2000–24 period.The vastmajority of surge-type glaciers are located
in two already well-known clusters: High Mountain Asia (167)
and the Arctic Ring (78, Alaska-Yukon, Arctic Canada, Greenland,
Svalbard-Russian Arctic).

We evaluated our inventory of glaciers with detected surge
events against existing inventories covering similar time periods
but different surge identification schemes. We found a broadly
good agreement between our results and the reference dataset in
all considered areas.

Using the generated surge event catalogue, we tested several
predictions of the enthalpy balance theory. Analysing the ERA-5
Land data, we first validated the presence of an optimal climatic
envelope, bounded both by temperature and precipitation, where
surges are most probable. Surge-type glaciers are absent above

a threshold median summer temperature higher than 3∘ C and
lower than −10∘ C. In addition, they are seldom found in regions
where the median total winter precipitation exceeds 1000 mm a−1.
Then, focusing on Svalbard-Russian Arctic and Alaska-Yukon, we
showed the limits of the predictive capabilities of the hypothe-
sis of surges being either hydrologically or thermally controlled,
fortifying the enthalpy balance theory as a unifying framework
with which to study surges. We thus suggest that the community
moves away from classifying surge events as being either ‘Alaska-
type’ or ‘Svalbard-type’ since it does not adequately capture the
range of observed behaviours, and instead consider their dynamic
unity. We explored why surges affecting Svalbard-Russian Arctic
glaciers typically last longer than those in Alaska-Yukon, empha-
sising the importance of glacier terminus type. Furthermore, we
proposed that, in these regions, surges impacting tidewater glaciers
endure longer than those that affect land-terminating glaciers due
to a reduced hydrostatic gradient, which limits efficient drainage
of the glacier bed. However, further research is needed to control
for other differences between these glaciers (e.g. glacier thermal
regime).

Finally, we here reiterate that our resulting inventory cannot be
expected to be exhaustive. However, this work does not need to be
static and we invite the community to build on the present efforts
by incorporating further past and future surges detected through
different, yet consistent, schemes relying on newer datasets and
additional identification criteria.

Data availability statement. All velocity, elevation, SAR backscatter, cli-
mate reanalysis and Randolph Glacier Inventory datasets used in this paper are
freely available from the respective data providers listed in Section 3.1Data.The
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events_catalogue.
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