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1. Introduction. In this paper we study several generalizations of the concept of
unique factorization domain. An integral domain is called a ir-domain if every principal
ideal is a product of prime ideals. Theorem 1 shows that the class of ir-domains forms a
rather natural subclass of the class of Krull domains. In Section 3 we consider overrings of
Tr-domains. In Section 4 generalized GCD-domains are introduced: these form an
interesting class of domains containing all Priifer domains and all ir-domains.

In this paper all rings are commutative with identity. We use the letter D to represent
an integral domain with quotient field K. If A is a (fractional) ideal of D, we denote
(A"1)"1 by Av. We call A divisorial if A = Av. The group of invertible ideals of D modulo
the subgroup of principal ideals is called the class group of D and will be denoted by
C(D). If D is completely integrally closed, the divisorial ideals form a group. The group
of divisorial ideals modulo the subgroup of principal ideals is called the divisor class group
of D and will be denoted by C1(D). Notice that C(D) is a subgroup of C1(D).

Our general references are Gilmer [6] and Kaplansky [7]. For the theory of Krull
domains, the reader is referred to Bourbaki [2] and Fossum [5].

2. Characterizations of ir-domains. Theorem 1 shows that the class of Tr-domains
forms a rather natural subclass of the class of Krull domains.

THEOREM 1. The following statements are equivalent for an integral domain D:
(1) D is a Tr-domain,
(2) D is a Krull domain that is locally a UFD,
(3) D is a Krull domain and the prime ideals of rank one are invertible,
(4) D is a Krull domain and every divisorial ideal of D is invertible,
(5) D is a Krull domain and C(D) = C1(D),
(6) D is a Krull domain and each product of divisorial ideals of D is divisorial,
(7) D is a Krull domain and the intersection of any two non-zero principal ideals of D

is invertible,
(8) D is a Krull domain and the intersection of any two invertible ideals of D is

invertible.

Proof. The equivalence of (1) and (3) follows from [9, Theorem 1.2].
The implication (4) ^ (2) follows from [5, Proposition 9.2].
We show (2)<=>(1). Let x be a non-zero non-unit of D. We must show that xD is a

product of prime ideals. Since D is a Krull domain, xD = P'/1'' D . . . n P*"-', where
Pu..., Ps are the prime ideals of rank one containing x. We show that xD = P " 1 . . . P"-.
Let M be a fixed maximal ideal of D. If P,£ M, then PjJ, = DM = Pfi$ If Pt s M, then PiM

is a prime ideal of rank one in the UFD D M and hence is principal. Thus P"M is primary
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and hence P^ = P[^. Moreover, since the prime ideals PiM are principal, xDM =
pffl n . . . n p&> = PrM n . . . n p ^ = pfa... P& = ( p j . . . . p^)M. Thus xD and p ;« . . . pn

s-
are equal locally and hence globally.

To prove the equivalence of (3) and (4), we note that every divisorial ideal of a Krull
domain has the form Pi"1 'n. . . n P<n>), where PU...,PS are minimal non-zero prime
ideals. If every divisorial ideal is invertible, then every prime ideal of rank one is
invertible. If P is an invertible prime ideal, then P" is P-primary, and hence P(n) = P".
Moreover, P^1' D . . . n P*/1-* = P?> n . . . n P"- = P? 1 . . . P"- is invertible.

It is immediate that (4) and (5) are equivalent and that (4) implies (6).
We next prove that (6) implies (1). Suppose that D is a Krull domain with the

property that every product of divisorial ideals is divisorial. Let x be a non-zero non-unit
of D. Then (x) = P[ni) C\.. .nP^B<), where PU...,PS are minimal prime ideals of D and
hence are divisorial ideals. But (x) = P ^ n . . . n P*/1-' = (P?1. . . P^)v = PJ>... P?- because
P"1... P"- is a product of divisorial ideals and hence is divisorial. Thus (x) is a product of
prime ideals.

(4)^>(8). Let I and J be invertible ideals. Then IHJ is divisorial and hence
invertible.

Since it is obvious that (8) implies (7), it only remains to prove that (7) implies (2).
Let M be a maximal ideal of D. Then DM is a Krull domain in which the intersection of
any two principal ideals is principal. Thus DM is a GCD domain. But DM, being a Krull
domain, satisfies the ascending chain condition on principal ideals. By [6, Proposition
16.4], DM is a UFD.

The equivalence of (2) and (4) in a weaker form appears in Bourbaki [2, p. 503],
Fossum [5, p. 40] and Gilmer [6, p. 558]. Condition (6) is considered by Krull [8].

We end this section by giving some examples of 7r-domains. A UFD is a Tr-domain.
For a domain D and set of indeterminates {Xa}, D[{Xa}] is a Tr-domain if and only if D is
a Tr-domain. Indeed, suppose that D is a 7r-domain. Then D and D[{Xa}] are Krull
domains. Let M be a maximal ideal of D[{XJ] and let P = MOD. Then D[{Xa}]M =
(DP[{Xo}])MDil{Xj:i. Now DP is a UFD and hence D[{XJ]M is also. Thus DKXJ] is a
Krull domain and is locally a UFD, so by Theorem 1, D[{XO}] is a Tr-domain. Conversely,
if D[{Xa}] is a Tr-domain, it is easily verified that D is a ir-domain. In the next section we
show that if D is a ir-domain and S is a multiplicatively closed set of ideals, then Ds is a
ir-domain. A Dedekind domain is a Tr-domain; more generally, a regular domain is
locally a UFD, and hence a Tr-domain. See Claborn [4] for some remarks concerning
Noetherian Tr-domains—that is, Noetherian domains that are locally unique factorization
domains.

Let G be an abelian group and n an "integer" with l<n^<». Then there exists a
Tr-domain of Krull dimension n with divisor class group G. Claborn [3] has shown that
there exists a Dedekind domain D with Cl(D)sG. If n = l, then D is the desired
example. For 1< n <°°, both D[XU . . . , Xn_,] and D[[XU . . . , Xn_j]] have the required
properties. If n = °°, we may take D[XU X 2 , . . . ] as the desired example.
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3. Overlings and generalized quotient rings. Let D be a domain with quotient field
K and let S be a multiplicatively closed collection of ideals of D. Then Ds =
{x e K\xA £ D for some A e S} is an overring of D which is called the S-transform of D or
the generalized quotient ring of D with respect to S. For an account of generalized
quotient rings, the reader is referred to Arnold and Brewer [1]. If every ideal of S is
invertible, then Ds is called an invertible generalized quotient ring of D. It follows from [1,
Theorem 1.3] that an invertible generalized quotient ring is a flat overring. If D is a Krull
domain with defining family {DP}, where P ranges over X = X(D), the set of prime ideals
of D of rank one, then D'= |~| DQ> where VcX, is called a subintersection of D. Any

OeY

quotient ring of a Krull domain is a subintersection; more generally, any flat overring is a
subintersection [5, Corollary 6.6]. Fossum has shown that a subintersection need not be a
flat overring [5, p. 32].

Claborn [3] showed that a Krull domain has a torsion divisor class group if and only if
every subintersection is a quotient ring. This result also appears in Storch [11], where such
rings are said to be almost factorial. Storch gives several equivalent characterizations of
almost factorial domains. We generalize these results in Theorem 4.

Arnold and Brewer [1] showed that for a Krull domain D and S a multiplicatively
closed collection of ideals, Ds is again a Krull domain. It is implicit in their result that for
Krull domains, subintersections and generalized quotient rings are one and the same
object. This is stated as our Theorem 2. They further showed that if D is a UFD and S is
a multiplicatively closed set of ideals, then Ds is a UFD; in fact, Ds is a quotient overring
of D.

THEOREM 2 (Arnold and Brewer [1, Theorem 2.2]). Let {DP} be the defining family for a
Krull domain D. If S is a multiplicatively closed set of ideals ofD, then Ds= C\ {DP \P£Afor
each AeS} and so Ds is a subintersection. IfD' = f| DQ, where Y c X(D), is a subintersection,

O e Y

then D' = Ds, where S is generated by the elements ofX(D) - Yand so every subintersection is a
generalized quotient ring.

Let D be a domain and S a multiplicatively closed set of ideals of D generated by a
set {Aa} of ideals of D. Let S* be the multiplicatively closed set generated by the set
{(AJ-),,}, where na is a positive integer depending upon Aa. It is not difficult to prove that
Ds = Ds*. Thus every S-transform is what we might call a divisorial generalized quotient
ring of D.

THEOREM 3. Let D be a ir-domain and Dt an overring of D. Then the following
statements are equivalent:

(1) D, is a flat overring,
(2) Dx is a generalized quotient ring of D,
(3) Dj is an invertible generalized quotient ring of D,
(4) Di is a subintersection.
If Di satisfies any of the above conditions, then Dx is a ir-domain.
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Proof. That (1) implies (2) is true for any ring [1, Theorem 1.3].
The equivalence of (2) and (4) follows from Theorem 2.
(2) ^ (3). Let Dj = Ds, where S is a multiplicatively closed set of ideals. Let S* be

the multiplicatively closed set of ideals generated by A,, for A e S. Since D is a 7r-domain,
each A,, is invertible, and hence Ds» is an invertible generalized quotient ring. But by the
remarks preceding Theorem 3 we have Ds = Ds».

The implication (3) => (1) holds for any ring.
It follows from [9, Theorem 1.3] that a flat overring of a 7r-domain is a 7r-domain.

That every flat overring of a 7r-domain need not be a quotient ring follows from the
existence of Dedekind domains whose class groups are not torsion [5, Proposition 6.8].

We generalize Storch's notion of an almost factorial ring. We call a Krull domain D
an almost ir-domain if C1(D)/C(D) is torsion. Note that C1(D)/C(D) is isomorphic to the
group of divisorial ideals modulo the subgroup of invertible ideals. We remark that
C1(D)/C(D) has functorial properties similar to those of C1(D).

The proof of the next theorem is similar to that of [5, Proposition 6.8] and will
therefore be omitted.

THEOREM 4. For a Krull domain D, the following statements are equivalent:
(1) D is an almost ir-domain,
(2) every subintersection is an invertible generalized quotient ring,
(3) for each prime ideal P of D of rank one, P(n) is invertible for some n>0,
(4) some power of every invertible ideal is a product of invertible primary ideals,
(5) if I and J are invertible ideals, then there exists an integer n > 0 such that /" n /"

is invertible.

4. Generalized GCD-domains. A domain D is called a GCD domain if each pair of
nonzero elements of D has a greatest common divisor. This is equivalent to the condition
that each pair of nonzero elements of D has a least common multiple or to the condition
that the intersection of any two principal ideals is principal. A GCD domain is a UFD if
and only if it satisfies the ascending chain condition on principal ideals. An invertible ideal
of a GCD domain is principal. For facts about GCD domains see Gilmer [6], Kaplansky
[7], and Sheldon [10].

We call a domain D a generalized GCD-domain if the intersection of any two
invertible ideals of D is invertible. It follows from Theorem 1 that a ir-domain is a
generalized GCD-domain. In fact, a generalized GCD-domain is a ir-domain if and only
if it satisfies the ascending chain condition on invertible ideals. This follows from the easily
proved fact that a product-irreducible invertible ideal in a generalized GCD-domain is
prime. Also a Priifer domain is a generalized GCD-domain [6, 25.4]. Thus generalized
GCD-domains provide a nice class of domains containing both Priifer domains and
IT-domains.
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