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Apolar Schemes of Algebraic Forms

Jaydeep Chipalkatti

Abstract. This is a note on the classical Waring’s problem for algebraic forms. Fix integers (n, d, r, s),

and let Λ be a general r-dimensional subspace of degree d homogeneous polynomials in n+1 variables.

Let A denote the variety of s-sided polar polyhedra of Λ. We carry out a case-by-case study of the

structure of A for several specific values of (n, d, r, s). In the first batch of examples, A is shown to be

a rational variety. In the second batch, A is a finite set of which we calculate the cardinality.

1 Introduction

We begin with a classical example to illustrate the theme of this paper. Let F1, F2

be general quadratic forms in variables x0, . . . , xn, with coefficients in C. It is then
possible to diagonalize the Fi simultaneously (see [16, Chapter 22]), i.e., one can find

linear forms L1, . . . , Ln+1 such that

Fi = ci1L2
1 + · · · + ci(n+1)L

2
n+1

for i = 1, 2 and some constants ci j ∈ C. Moreover, up to rescaling there is a unique
choice for the set {L1, . . . , Ln+1}. This result naturally leads to similar questions

about forms of higher degree, where much less is known in general.
Now assume that F1, . . . , Fr are forms of degree d in x0, . . . , xn. Let Z =

{L1, . . . , Ls} be a collection of linear forms in the xi , such that it is possible to write

Fi = ci1Ld
1 + · · · + cisL

d
s , 1 ≤ i ≤ r,

for some constants ci j ∈ C. In nineteenth century terminology (introduced by Reye),
Z is then called a polar s-hedron (polar s-seit) of the {Fi}. It corresponds to a collec-
tion of hyperplanes in P

n which stands in some geometric relation to the system of
hypersurfaces defined by the Fi . The precise nature of this relation is very sensitive to

the values (n, d, r, s), but in any event it is invariant under the automorphisms of P
n.

For instance, in the example above, let Πi be the hyperplane defined by Li = 0.
Then the n + 1 points

Pk = Π1 ∩ · · · ∩ Π̂k ∩ · · · ∩ Πn+1, (k = 1, . . . , n + 1)

are exactly the vertices of the singular quadrics belonging to the pencil

{F1 + λF2 = 0}λ∈P1 .
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1.1 Summary of Results

Fix degree d forms {F1, . . . , Fr} as above. Then the polar s-hedra of this collection
move in an algebraic family, denoted by A. (See Definition 2.5 et seq. for the precise
statement.) In this note we deduce results about the birational structure of A for

several specific quadruples (n, d, r, s), in each case assuming that the Fi are chosen
generally. A parameter count shows that the dimension of the variety A is “expected”
to be s(n + r) − r

(

n+d
d

)

(more on this in Section 2 below). For the quadruples

(2, 4, 2, 8), (2, 3, 4, 7), (3, 2, 6, 7) (2, 3, 7, 8),

we show that A is a rational variety of expected dimension. For the quadruples

(2, 3, 8, 8), (3, 2, 7, 7), (2, 4, 3, 9), (3, 3, 2, 8), (2, 3, 3, 6),

the variety A is expected to be (and is) a finite set of points; in each case we deter-
mine its cardinality. The calculation for (2, 3, 3, 6) was done by Franz London over a

century ago; we have given a more rigorous and modern version of his proof.
Along the way, we deduce some miscellaneous results for the quadruples

(2, 3, 2, 6), (2, 4, 2, 8), (3, 2, 3, 9).

For instance, the result for (2, 3, 2, 6) says the following: let F1, F2 be two general

ternary cubics and E a smooth planar cubic curve apolar to F1, F2 (in the sense ex-
plained below). Then E passes through exactly three sextuples in A.

In each of the cases above, there is a specific feature of the free resolution of s

general points in P
n which is exploited to deduce the answer. Hence we require a

technical condition on the polar s-hedra, namely that they be “resolution-general”
(in the sense of Definition 2.4). Although the specific technique used depends on the
case at hand, two general themes are identifiable: the geometry of associated points

and intersection theory on symmetric products of elliptic curves. I do not know of
any technique which would apply uniformly to all (n, d, r, s).

This subject is broadly referred to as “reduction to canonical form” or “Waring’s
problem for algebraic forms”—see [2, 14, 19] for an introduction and further refer-

ences. The paper [22] is an excellent compendium of known results about the struc-
ture of A when r = 1. For a discussion of ternary cubics (the case n = 2, d = 3), see
[21, 23].

2 Preliminaries

In this section we establish notation and describe the basic set-up of apolarity. The
proofs may be found in [19], also see [6, 7, 14, 18].

The base field is C. Let V be an (n + 1)-dimensional C-vector space and consider
the symmetric algebras

R =

⊕

i≥0

Symi V ∗, S =

⊕

j≥0

Sym j V.
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If u = {u0, . . . , un} and x = {x0, . . . , xn} are dual bases of V ∗ and V respectively,
then

R = C[u0, . . . , un], S = C[x0, . . . , xn].

There are internal product maps Ri ⊗ S j

fi j

→ S j−i (see e.g. [13, p. 476]), so S acquires

the structure of a graded R-module. With the identification uℓ =
∂
∂xℓ

, the internal
product can be seen as partial differentiation: if ϕ ∈ Ri and F ∈ S j , then fi j (ϕ ⊗ F)
is obtained by applying the differential operator ϕ( ∂

∂x0
, . . . , ∂

∂xn
) to F(x0, . . . , xn). We

will write ϕ ◦ F for fi j(ϕ⊗ F).

Let Λ ⊆ Sd be an r-dimensional subspace of degree d forms in the x, defining a
point in the Grassmannian G(r, Sd). Let

(1) Λ
⊥

= {ϕ ∈ R : ϕ ◦ F = 0 for every F in Λ}.

Then Λ
⊥

=
⊕

i Λ
⊥
i is a graded ideal in R, with Λ

⊥
i = Ri for i > d. (It follows that

the quotient R/Λ⊥ is an artin level algebra of socle degree d and type r, but we will
not use this explicitly.)

For i ≤ d, the codimension of Λ
⊥
i in Ri equals the dimension of the image of the

internal product map
Rd−i ⊗ Λ → Si

Hence

(2) dim Λ
⊥
i ≥ max{0, dim Ri − r · dim Rd−i}.

Equality always holds for i = d, and it holds for all i < d if Λ is a general point in

G(r, Sd).
We will commonly use geometric language in the sequel, e.g., if n = 3, then a

point in G(2, S4) will be called a pencil of planar quartics.

Remark 2.1 If ϕ ◦ F = 0, then ϕ, F were classically said to be apolar to each other;

and sometimes the entire set-up is called apolarity. Of course, all of the above is
subsumed in the statement that R, S are dual Hopf algebras such that all structure
maps are SL(V )-equivariant.

Henceforth we set P
n

= PS1 = Proj R. Usually Z ⊆ P
n will denote a closed

subscheme with (saturated) ideal IZ ⊆ R.

Definition 2.2 (cf. [19, Definition 5.1]) The scheme Z is said to be apolar to Λ, if

IZ ⊆ Λ
⊥.

The point of the definition is the following:

Theorem 2.3 (Reye) If Z consists of s distinct points {L1, . . . , Ls} ⊆ P
n, then Z is

apolar to Λ if and only if Λ ⊆ span {Ld
1 , . . . , L

d
s }.

We would like to consider the family of such Z, but for technical reasons, we single
out those schemes whose ideals are well-behaved.
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Definition 2.4 A (zero-dimensional) length s scheme Z ⊆ P
n will be called resolu-

tion-general, if the graded Betti numbers in the minimal resolution of IZ are the same

as those in the resolution of s general points.

For instance, a length 7 subscheme Z ⊆ P
2 is resolution-general iff its minimal

resolution looks like

0 → R(−5) ⊕ R(−4) → R(−3)3 → R → R/IZ → 0.

In particular, Z does not lie on a conic.

Definition 2.5 A zero-dimensional scheme Z ⊆ P
n will be called a polar polyhedron

of Λ, if it is apolar to Λ and resolution-general.

Let Hilb(s,P
n) be the Hilbert scheme parametrising length s subschemes of P

n.
Let A(s,Λ) denote the set of polar s-hedra of Λ, it is then a constructible subset of
Hilb(s,P

n). We will write A for A(s,Λ) if no confusion is likely.

Remark 2.6 In the literature there is no unanimity on the definition of a “polar
polyhedron”. In particular the approaches in [6] and [22] are different from ours and
from each other. It is understood that if Z = {L1, . . . , Ls} are s general points, then
morally Z should count as a polar s-hedron of any Λ ⊆ span {Ld

i }. However, it is

not obvious which degenerations of Z should be allowed, and it seems that (within
reason) we should tailor our definition to the specific problem at hand. Many of our
results depend on a free resolution of IZ , and hence “resolution-general” seems to be
the most suitable notion. This issue never arises in [21], because there it is tacitly

assumed that all geometric configurations are nondegenerate.

If A(s,Λ) is nonempty, so is A(t,Λ) for any t > s. It is the case that every Λ

in G(r, Sd) admits a polar
(

n+d
d

)

-hedron. An elementary parameter count (see [2])

shows that a general Λ in G(r, Sd) will admit a polar s-hedron only if

(3) s ≥
r
(

n+d
d

)

n + r
.

Definition 2.7 A quadruple (n, d, r, s) which satisfies (3) is said to be nondegenerate,

if a general Λ admits a polar s-hedron.

A quadruple satisfying (3) is degenerate if the set {Λ : A(s,Λ) 6= ∅} fails to be
dense in G(r, Sd). Very few such examples are known (see [2] for the list), but none

of them is without its geometric peculiarity. In general it is not trivial to prove that a
particular quadruple is nondegenerate.

For r = 1, we have the following classification theorem by Alexander and Hirscho-
witz.

Theorem 2.8 (see [18]) Assuming r = 1 and d > 2, the only degenerate cases are

(n, d, s) = (2, 4, 5), (3, 4, 9), (4, 4, 14) and (4, 3, 7).
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For r > 1 we have the following results by Dionisi and Fontanari.

Theorem 2.9 Assume r > 1. Then

(i) for n = 2, the only degenerate quadruple is (2, 3, 2, 5);

(ii) there are no degenerate quadruples with r ≥ n + 1.

The proofs may be found in [4, 11] respectively. Part (i) was claimed by Terracini
[26], but his proof is obscure.

If (n, d, r, s) is nondegenerate, then with a slight abuse of notation we will write A

for A(s,Λ), where Λ is understood to be a general point of G(r, Sd). It has dimension
s(n + r) − r

(

n+d
d

)

.

3 Associated Systems of Points

Recall ([9, p. 313]) that if Γ is a zero-dimensional Gorenstein scheme, then any closed
subscheme Γ

′ ⊆ Γ has a residual scheme Γ
′′ ⊆ Γ, such that

deg Γ
′ + deg Γ

′′
= deg Γ.

In particular this applies if Γ is a (global) complete intersection in P
n, which is the

only case we will need.
Now let Λ denote a general pencil of planar quartics. Then A = A(8,Λ) is

2-dimensional; we will show that it is rational. Every Z ∈ A has a Hilbert–Burch
resolution

0 → R(−5)2 µ
→ R(−4) ⊕ R(−3)2 → R → R/IZ → 0.

(See [3] for the basic theory behind the Hilbert–Burch theorem.) In particular
dim(IZ)3 = 2, so Z has an associated point α(Z), defined to be the residual inter-
section of cubics passing through Z. The matrix of the map µ has the form

(4) M =

[

2 2 1
2 2 1

]

,

with the convention that j stands for a degree j form.

Theorem 3.1 Let Λ be a general pencil of planar quartics. Then the morphism

α : A → P
2 admits a rational inverse, hence A is a rational surface.

Proof Fix a general point in the image of α, by change of coordinates we assume it
to be P = [0, 0, 1]. We would like to show that there is a unique resolution general
length 8 scheme Z with associated point P.

Now P is defined by the vanishing of the rightmost column in (4), hence, after

row-operations, M can be brought into the form

M =

[

q1 q2 u0

q3 q4 u1

]

, qi ∈ R2.
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We start with the 24-dimensional vector space of 2 × 2 matrices

V1 =

{

N =

[

q1 q2

q3 q4

]

: qi ∈ R2

}

.

For N ∈ V1, write

(5) θN = u1q1 − u0q3, θ
′
N = u1q2 − u0q4, ωN = q1q4 − q2q3,

and let JN be the ideal generated by θN , θ
′
N , ωN . Thus V1 is a parameter space for all

Hilbert–Burch matrices as above. For a dense open set of elements N in V1, the ideal
JN defines a planar length 8 scheme.

We let GL2(C) act on V1 by right multiplication, i.e., for g =

[

α β
γ δ

]

∈ GL2, and

N as above,

(6) Ng =

[

q1α + q2γ q1β + q2δ
q3α + q4γ q3β + q4δ

]

Define V2 = {N ∈ V1 : θN , θ
′
N ∈ Λ

⊥
3 }, which is a 12-dimensional subspace of V1.

(If F ∈ Λ, then θN ◦F = θ ′N ◦F = 0 is a set of six linear equations. In all, V2 is defined
by 12 linear equations which are independent for a general Λ, hence dim V2 = 12.)
Inside V2, there is a 6-dimensional subspace

V3 =

{[

au0 bu0

au1 bu1

]

: a, b ∈ R1

}

.

(Since θN , θ
′
N = 0 for N ∈ V3, the containment V3 ⊆ V2 is clear.) Form the 6-

dimensional space W = V2/V3. For N ∈ V2, write [N] for the corresponding point

in the projective space PW ≃ P
5. Since V3 ⊆ V2 ⊆ V1 are inclusions of GL2-

modules, W is also a (right) GL2-module; in particular PGL2 acts on PW . The point
of this construction lies in the following lemma:

Lemma 3.2

(i) If N, Ñ ∈ V2 are such that [N], [Ñ] lie in the same PGL2-orbit of PW , then

JN = JÑ .

(ii) Let Z ∈ α−1(P). Consider two minimal resolutions of IZ with corresponding

Hilbert–Burch matrices M, M̃, and let N, Ñ denote their leftmost 2 × 2 subma-

trices. Then [N], [Ñ] lie in the same PGL2-orbit in PW .

Proof By straightforward calculation,

(7) θNg = αθN + γθ ′N , θ
′
Ng = βθN + δθ ′N , ωNg = det(g)ωN ,

so JN = JNg . Let Q =

[

au0 bu0

au1 bu1

]

∈ V3. Then

(8) θN+Q = θN , θ
′
N+Q = θ ′N , ωN+Q = ωN − aθ ′N + bθN ,
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so JN+Q = JN . This proves (i).
Any two minimal resolutions of IZ are isomorphic (see [8, Section 20.1]), which

translates into the statement that N and some GL2-translate of Ñ must differ by an
element of V3. This says that [N], [Ñ] must be in the same orbit, which is (ii).

Now define a subvariety Y = {[N] ∈ PW : ωN ◦ Λ = 0} ⊆ PW . Formulae (8)

imply that ωN+Q ◦ Λ = 0 ⇔ ωN ◦ Λ = 0 (since θN ◦ Λ = θ ′N ◦ Λ = 0), hence this
definition is meaningful. The inclusion Y ⊆ PW is a PGL2-stable by formulae (7). By
the previous lemma, each Z ∈ α−1(P) defines an orbit ΩZ ⊆ Y . The PGL2-stabilizer
of a point in ΩZ is trivial, hence dim ΩZ = 3. The union of {ΩZ}Z∈α−1(P) fills a

dense open subset in Y . Hence it is enough to show that Y contains only one three-
dimensional component, this will imply that α−1(P) is singleton. Define

Γ=

{

[N] ∈ PW : N =

[

q1 0
q3 0

]

for some qi and θN ◦ Λ = 0

}

,

Γ2 =

{

[N] ∈ PW : N =

[

0 q2

0 q4

]

for some qi and θ ′N ◦ Λ = 0

}

,

each of which is a copy of P
2 in Y . Define a birational map h : Γ1 → Γ2 as follows. Let

[N] ∈ Γ1, then there is a 4-dimensional family of solutions (q2, q4) to the equations

θ ′N ◦ Λ = ωN ◦ Λ = 0.

(This is so because q2, q4 together depend upon 12 parameters and there are 8 equa-
tions.) However, if (q2, q4) is one such solution, then (q2 + au0, q4 + au1) is also one
for any a ∈ R1, and this accounts for all the solutions. Hence the class in PW of

the matrix
[

0 q2

0 q4

]

is uniquely determined. We define h([N]) to be this class. (The
reader should verify that this definition is independent of the choice of coset repre-
sentative for [N].) Now a general element in Y can be written as a sum [N] + [h(N)]
for [N] ∈ Γ1, i.e., the ruled join of Γ1, Γ2 along h contains a dense open subset of Y .

Since this join is irreducible (it is the image of the Segre imbedding P
2 × P

1 ⊆ P
5),

we are done.

The argument for the following proposition is similar. As before, (2, 3, 4, 7) is

nondegenerate by Theorem 2.9.

Proposition 3.3 Let Λ be a general web of planar cubics. Then A(7,Λ) is a rational

surface.

Proof The Hilbert–Burch matrix for Z ∈ A is
[

1 1 1

2 2 2

]

.

For a general Z, the linear forms in the top row are independent, hence after column
operations we can assume the matrix to be

[

u0 u1 u2

q0 q1 q2

]

, qi ∈ R2.
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Let V1 denote the 18-dimensional vector space {[q0, q1, q2] : qi ∈ R2} and V2 the
3-dimensional subspace {[au0, au1, au2] : a ∈ R1}. Let W = V1/V2. Then the 12

equations {(uiq j − u jqi) ◦ Λ = 0} cut out a 2-plane in PW which is birational to A.

Now let (n, d, r, s) = (3, 2, 6, 7); we will show that A is birational to the projective
3-space. The ideal of every Z ∈ A is generated by three quadrics and and a cu-
bic. The associated point α(Z) is defined to the residual intersection of the quadrics

through Z.

Proposition 3.4 Let Λ be a general point of G(6, S2). Then the map α : A → P
3 is

birational.

Proof Let Z be a resolution-general scheme of length 7. It is apolar to Λ iff the three

generating quadrics lie in Λ
⊥
2 .

Let P be a general point of P
3, and let W ⊆ Λ

⊥
2 be the 3-dimensional subspace of

forms vanishing at P. Then W defines a length 8 scheme Y . Now the residual scheme
of P in Y is the only point of A mapping to P.

Remark 3.5 The case (2, 3, 7, 8) has a similar geometry, where A is birational to P
2.

For (2, 3, 8, 8) (resp. (3, 2, 7, 7)), A is a finite set consisting of 9 (resp. 8) points.

4 Symmetric Products of Elliptic Curves

For the examples in this section, the determination of A reduces to an intersection-
theoretic calculation on the symmetric product of an elliptic curve. If E is a smooth
projective curve, then E(m) will denote its m-th symmetric product. This is a smooth
projective variety whose points are naturally seen as effective degree m divisors on E.

Let Λ be a general net of planar quartics. Since (2, 4, 3, 9) is nondegenerate, A is a
finite set. In the next theorem we calculate its cardinality.

Theorem 4.1 Let Λ be a general net of planar quartics. Then Λ admits 4 polar ennea-

hedra.

Proof The ideal of Z ∈ A is generated by one cubic and 3 quartics. The space Λ
⊥
3 is

one-dimensional, i.e., Λ is apolar to a unique cubic curve E ⊆ P
2. Since Λ is general,

we may (and will) assume that E is smooth. If H denotes the hyperplane divisor on
E, then we have an identification H0(E, 4H) = R4/(IE)4. This is a 12-dimensional

space, denoted U .

Let W = Λ
⊥
4 /(IE)4, which is a 9-dimensional space inside U . Every scheme Z ⊆

P
2 of length 9 which is apolar to Λ is contained in E, and thus defines an effective

divisor on E. Then the 3-dimensional space H0(E, 4H − Z), which is a priori inside
U , is in fact contained in W . The argument shows that the following diagram is a
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fibre square:
A −−−−→ G(3,W )




y

i1





y

E(9) i2−−−−→ G(3,U )

Here i1 is the natural inclusion and i2(Z) = H0(E, 4H −Z). Since the images of both
inclusions have complementary codimensions, it is enough to take the intersection
of their classes inside H∗

(

G(3,U ),Z
)

in order to calculate the degree of A as a zero-
cycle.

Conventions The notation for Schubert calculus follows [12, Section 14.7]. We refer
to [1] for some basic cohomological calculations on curves. If X1,X2 are varieties,
then denote projections by πi : X1 ×X2 → Xi . All cohomology is with Z-coefficients.

If α is a class in H∗(X1) (resp. H∗(X2)), then its pullback to H∗(X1 × X2) is denoted
α⊗ 1 (resp. 1 ⊗ α). Cup product is written as juxtaposition.

Firstly, we should find the rank 3 subbundle of U ⊗ OE(9) which defines the inclu-
sion i2. Let ∆ denote the universal divisor on E(9) × E (see [1, Chapter IV]), so that

∆|{Z}×E = Z × E. Define a line bundle M = π∗
2

(

OE(4H)
)

⊗ O(−∆) on E(9) × E.
Applying π1∗ to the inclusion

M ⊆ π∗
2

(

OE(4H)
)

,

we have

(G =)π1∗(M) ⊆ U ⊗ OE(9) .

A moment’s reflection will show that i2 is induced by the last inclusion.
The image of i2 has class {3, 3, 3}. Hence by the Jacobi–Trudi identity, the class of

A in H18(E(9)) is given by c3(G∗)3, which we now calculate.

The Cohomology Rings of E and E(9) Let δ1, δ2 ∈ H1(E) be a symplectic basis. It
will then generate H∗(E). The product η = δ1δ2 ∈ H2(E) is the class of a point.

Let L be a Poincaré line bundle ([1, Chapter IV]) on E × Pic9(E), then E =

π2∗(L) is a rank 9 bundle on Pic9(E). Fix an isomorphism Pic9(E) = E, then by the

calculation of [1, p. 336], c1(E) = −η. Now let ξ = c1

(

OPE(1)
)

∈ H2(PE). With

the identification PE = E(9), the ring H∗(E(9)) is generated by ξ and (the pullbacks
of) δ1, δ2, subject to the relation ξ9

= ξ8η.

The Chern Class of M and G-R-R Let

−γ = (δ1 ⊗ 1)(1 ⊗ δ2) − (δ2 ⊗ 1)(1 ⊗ δ1),

a class in H1,1(E(9) × E). By [1, p. 337-338],

c1

(

O(∆)
)

= ξ ⊗ 1 + γ + 9(1 ⊗ η),

hence
c1(M) = −ξ ⊗ 1 − γ + 3(1 ⊗ η).
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Now we apply Grothendieck–Riemann–Roch to M along the projection E(9) × E
π1→

E(9). Thus

ch(π1!M) td(E(9)) = π1∗

(

ch(M) td(E(9) × E)
)

.

Since Riπ1∗M = 0 for i > 0 and td(E) = 1, this simplifies to

ch(G) = π1∗(ec1(M)).

Let ni denote the i-th Newton class of G (i.e., the sum of i-th powers of the Chern
roots of G), then ch(G) =

∑

i≥0 ni/i!. Now we expand the exponential series, and
apply π1∗ term by term, to get

n0 = 3, n1 =
1

2
(−6ξ − 2η),

n2 =
1

3
(9ξ2 + 6ξη), n3 =

1

4
(−12ξ3 − 12ξ2η).

Then

c3(G) =
1

6
n3

1 −
1

2
n1n2 +

1

3
n3 = −(ξ3 + ξ2η).

Hence finally
c3(G∗)3

= (ξ3 + ξ2η)3
= 4ξ8η.

Since ξ8η is the class of a point on E(9), we deduce that A has degree 4.
In order to show that A is reduced and hence consists of 4 geometric points, we

use Kleiman’s transversality result (see [17, Theorem 10.8]). We can reformulate
the entire construction in the following way: start with a smooth E and hence U ,

then specifying a codimension 3 subspace W ⊆ U is tantamount to specifying Λ.
Since G(3,U ) is a homogeneous space for GL(U ), the intersection is transversal for
a general W , so A is reduced.

The next example is that of a pencil of cubic surfaces. We need to show that
(3, 3, 2, 8) is nondegenerate, the proof is given in Section 6.

Proposition 4.2 Let Λ be a general pencil of cubic surfaces. Then Λ admits 3 polar

octahedra.

Proof The calculation is very similar to Theorem 4.1. The ideal of 8 general points
in P

3 is generated by 2 quadrics and 4 cubics. Now Λ
⊥
2 is 2-dimensional, hence

generates the ideal of a smooth normal elliptic quartic E ⊆ P
3 apolar to Λ, and every

Z ∈ A is in fact contained in E. Let

U = R3/(IE)3, W = Λ
⊥
3 /(IE)3,

which are spaces of dimension 12, 10 respectively. Define i1, i2 as before, then the
following diagram is a fibre square

A −−−−→ G(4,W )




y

i1





y

E(8) i2−−−−→ G(4,U )
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Now i2 is induced by a rank 4 bundle G on E(8). The class of A in E(8) equals

c4(G∗)2
= (ξ4 + ξ3η)2

= 3ξ7η.

The argument for transversality is the same as before.

Using similar calculations, we can give alternate proofs of the following results by

Schlesinger [25, p. 212]). The original argument used ϑ-functions.

Proposition 4.3 (Schlesinger)

(1) Let Λ be a general pencil of planar cubics. Fix a general elliptic curve E ⊆ P
2 apolar

to Λ. Then there are 3 polar hexahedra of Λ which are contained in E.

(2) Let Λ be a general pencil of planar quartics. Fix a general elliptic curve E ⊆ P
2

apolar to Λ. Then there are 3 polar octahedra of Λ which are contained in E.

Proof We will only prove (1), the argument for (2) is identical in essence. Recall
that the ideal of 6 general planar points is generated by 4 cubics. Since (2, 3, 2, 6) is
nondegenerate1, A(6,Λ) is 4-dimensional. Consider the incidence correspondence

Φ ⊆ A × PΛ
⊥
3 , Φ = {(Z, E) : Z ⊆ E}.

The projection π1 : Φ → A is generically a P
3-bundle, so dim Φ = 7. Fix a general

elliptic curve E apolar to Λ, and consider the diagram

G
(

3,Λ⊥
3 /(IE)3

)

i1





y

E(6) i2−−−−→ G
(

3,R3/(IE)3

)

As usual, i1 is the inclusion and i2(Z) = H0(E, 3H −Z). Then i2(Z) lies in the image

of i1, iff Z is apolar to Λ. Calculating as before, the product [image i1] · [image i2]
equals thrice the class of a point. Hence π−1

2 (E) must be nonempty. This implies
that π2 : Φ → PΛ

⊥
3 (≃ P

7) is dominant. But then it is generically finite, hence for a

general E, the fibre π−1
2 (E) consists of 3 points.

It is shown in [2] (using a machine calculation) that (5, 2, 3, 9) is nondegenerate.
Now there is a (unique) elliptic sextic curve passing through 9 general points of P

5.

(The classical reference is [24], also see [5] for a proof using Gale duality.) Hence if
Λ is a general net of quadrics in P

5 and Z a set of 9 general points apolar to Λ, then
the elliptic sextic passing through Z is apolar to Λ.

Proposition 4.4 Let Λ be a general net of quadrics in P
5. Fix a general elliptic sextic

curve E ⊆ P
5 apolar to Λ. Then there are 4 polar enneahedra of Λ which are contained

in E.

Proof Similar to above. Use the fact that the ideal of 9 general points (resp. an elliptic

sextic curve) is generated by 12 (resp. 9) quadrics.
1This is the smallest s possible, because (2, 3, 2, 5) is degenerate by [2].
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5 The (2, 3, 3, 6) Case

Now we come to London’s beautiful calculation in [21], where he determines the
number of polar hexahedra of a general net of cubic curves. I have rewritten the proof
so as to make it more transparent, but all the key ideas are already in the original.

Let Λ be such a net. By Theorem 2.9(i), Λ has a finite number of polar hexahedra.
We will count them by setting up a correspondence on a certain elliptic curve.

5.1 We begin by motivating the constructions which are to follow. Say {F1, F2, F3} is a
basis of Λ and Z = {L1, . . . , L6} one of its polar hexahedra. We have expressions

F j = c1 jL
3
1 + · · · + c6 jL

3
6, j = 1, 2, 3.

Let ψ ∈ R2 be the form which defines the conic passing through {L2, . . . , L6} ⊆ PS1.
Since ψ annihilates L3

2, . . . , L
3
6, we have ψ ◦ F j = constant ×L1 for every j, so ψ ◦ Λ

is only a 1-dimensional vector space. It will be seen below (Section 5.2) that all ψ
with this property lie on a curve. Similarly if l1, l

′
1 ∈ R1 annihilate L1, then the six

derivatives {l1 ◦ F j , l
′
1 ◦ F j : j = 1, 2, 3} span only a 5-dimensional space. It will be

seen below (Section 5.3) that all 2-dimensional spaces span {l1, l
′
1} ⊆ R1 with this

property lie on a curve, isomorphic to the previous one.

5.2 Now we come to the actual constructions. The symbol (") will appear frequently, it

is explained in Remark 5.2. Consider the vector bundle morphism on PR2 (= P
5)

f23 : OP5 (−1) ⊗ Λ → S1

coming from the internal product map of Section 2. Define the degeneracy locus
Ψ = {rank f23 ≤ 1}. For a general Λ, it is a degree 6 normal elliptic curve in P

5 (").

Note that Λ
⊥
2 = 0 by the generality of Λ, so rank f23 is exactly 1 at each ψ ∈ Ψ.

5.3 Now identify PS1 with the Grassmannian G(2,R1). The latter is equipped with a rank
two tautological bundle B ⊆ R1 ⊗ OG. The internal product f13 gives a morphism

f13 : B ⊗ Λ → S2

The locus E = {rank f13 ≤ 5} = {det f13 = 0} is given by a section of OPS1
(3),

hence it is a smooth (") degree 3 curve in PS1. By the generality of Λ, the rank of
f13 is exactly 5 at every L ∈ E (").

5.4 We have an isomorphism
α : E → Ψ

defined as follows: let L ∈ E, and U = L⊥. By hypothesis, the space f13(U ⊗ Λ) is
5-dimensional, so it is annihilated by a unique form in PR2, we declare α(L) to be

this form. It is clear that f23

(

α(L) ⊗ Λ
)

is only 1-dimensional (since U annihilates
it), so α(L) ∈ Ψ.

If Z is as in Section 5.1 above, then α(L1) is the conic envelope containing the lines
defined by L2, . . . , L6.
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5.5 Define a correspondence T on E as follows: (L,M) ∈ T iff M lies on the conic defined
by α(L). For a fixed L, there are 6 positions of M such that (L,M) ∈ T. For a fixed

M, the elements of Ψ which vanish at M lie on a hyperplane section of Ψ. Via α−1,
the points of this hyperplane section correspond to 6 positions of L. This shows that
T has degree (6, 6) and valence zero.

5.6 By the general theory of correspondences (see [15, Section 2.5]), there are 12 ele-

ments in T of the form (L, L), they are called the united points of T. Moreover T,T
−1

have 72 common points, i.e., pairs (L,M) such that (L,M), (M, L) ∈ T. Hence there
are 72 − 12 = 60 such pairs where (L,M) are distinct.

It is clear that starting from Z, the pairs (L1, L2) etc. are common to T, T
−1. The

next lemma says that the implication is reversible.

Lemma 5.1 Assume (L,M), (M, L) ∈ T, and L 6= M. Let the conics α(L), α(M)
intersect in {P1, P2, P3, P4}. Then Z = {L,M, P1, . . . , P4} is a polar hexahedron of Λ.

Proof Recall that the ideal of 6 general points is generated by 4 cubics. Let l, l ′ ∈ R1

be generators of L⊥, and m,m ′ of M⊥. Consider the four cubic forms

{lα(L), l ′α(L),mα(M),m ′α(M)}.

They are linearly independent and each of them vanishes at all points of Z. Hence
together they generate (IZ)3. Moreover, the definition of α implies that each of them
annihilates Λ. Hence IZ ⊆ Λ

⊥.

Now a polar hexahedron of Λ gives 2
(

6

2

)

= 30 pairs (Li , L j) common to T,T
−1.

Alternately, starting from a common point we can reconstruct a polar hexahedron as
shown above. Hence, following London, we conclude that Λ has 60 ÷ 30 = 2 polar

hexahedra.

Remark 5.2 At several points in the proof we need to argue that our construction
satisfies a certain “good” property, for instance Ψ has codimension 4 as expected and

is smooth. This follows from the generality of Λ, as soon as we verify that it holds
for a specific Λ. Such points are marked by ("), and I have verified the property in
question by a direct computer calculation for a general net in the span of

x3
0, x

3
1, x

3
2, (x0 + x1 + x2)3, (x0 − x1 + x2)3, (x0 − 2x1 + 3x2)3.

This was carried out in Macaulay-2. For instance, to verify the last point in Sec-

tion 5.3, we choose two basis elements with indeterminate entries for an element of
G(2,R1), represent f13 by a matrix and check that the ideal defined by all 5×5 minors
defines the empty scheme.
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6 Nondegeneracy of (3, 3, 2, 8)

To prove this result, we will use the notion of a grove, which was introduced in [2].
The general definition is meaningful for any (n, d, r, s), but we will formulate it only
for the case at hand.

Let p = {p1, . . . , p8} (resp. Q = {Q1, . . . ,Q8}) be points in P
1 (resp. in P

3).

Definition 6.1 A grove for the data p, Q is a linear system Γ ⊆ PH0
(

P
3,OP(3)

)

of
projective dimension (say) t , satisfying the following conditions:

(1) The base locus of Γ contains all the Qi ;

(2) t = 0 or 1;
(3) either t = 0 and the generator of Γ is singular at all Qi , or t = 1 and there is an

isomorphism γ : P
1 → Γ such that for every i, the hypersurface γ(pi) is singular

at Qi .

Now [2, Theorem 2.6] says the following: the quadruple (3, 3, 2, 8) is nondegen-
erate iff there does not exist a grove for general points p,Q as above. Existence of a
grove is an open property of p,Q (loc. cit.), so it is enough to exhibit some collection
of points which does not admit a grove. I concede that the definition of a grove is

awkward, in defence one can only say that it is a proof-generated concept in the sense
of Lakatos (see [20, Appendix 2]). We begin with a preliminary lemma.

Lemma 6.2 Let E be an elliptic curve and M a line bundle on E of degree 4. Let

Q1, . . . ,Q8 be distinct points on E. Then it is possible to find points p1, . . . , p8 on P
1,

such that there is no morphism f : E → P
1 satisfying the following conditions:

A. 2 ≤ deg f ≤ 4, and if deg f = 4 then f ∗
(

OP1 (1)
)

≃ M;

B. the equality f (Qi) = pi holds for at least 4 + deg f values of i.

Proof Since h0(M) = 4, there are ∞4 g1
4 ’s coming from M. However, modulo au-

tomorphisms of P
1 there are ∞5 octuples (p1, . . . , p8). Hence for a general octuple,

there is no such map of degree 4.
Similarly there are ∞3 (resp. ∞1) g1

3 ’s (resp. g1
2 ’s) on E. Since (B) imposes 4

(resp. 3) conditions in these cases, for a general choice of pi none of the possibilities
can hold. The lemma is proved.

Now w, x, y, z be the coordinates in P
3. Consider the normal elliptic quartic E ⊆

P
9 defined by the two quadrics

G1 = wx + xy + yz + zw, G2 = wy + xz.

Choose points

Q1 = [1, 0, 0, 0], Q3 = [0, 0, 1, 0], Q5 = [−1, 1, 1, 1], Q7 = [1, 1,−1, 1],

Q2 = [0, 1, 0, 0], Q4 = [0, 0, 0, 1], Q6 = [1,−1, 1, 1], Q8 = [1, 1, 1,−1],
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all lying on E, and the pi = [pi1, pi2] general in P
1.

Assume by way of contradiction that Γ is a grove for the data. If t = 0, then the

generator of Γ contains at least 16 points of E (counting each Qi as two), hence it
contains E by Bézout’s theorem.

Case 1 Assume that Γ contains E as a fixed component (with t possibly 0 or 1). Then

Γ is spanned by two cubics of the form

C1 = L1G1 + L2G2, C2 = L ′
1G1 + L ′

2G2,

where L1, L
′
1 etc. are linear forms and pi1C1 + pi2C2 is singular at Qi for i = 1, . . . , 8.

(The case C1 = (constant) ·C2 corresponds to t = 0.) An elementary linear algebra
computation on the Jacobian matrix shows that this is impossible for general pi .

Case 2 Assume that E is not contained in the base locus of Γ (hence necessarily
t = 1). Let λ be the linear series obtained by restricting Γ to E and removing the base
divisor

∑

Qi . Thus λ is a g1
4 . Let f : E → P

1 be the corresponding morphism (of
course, only well-defined up to automorphisms of P

1). Let H denote the hyperplane

divisor on E and M = OE(4H −
∑

Qi).

Case 2.1 If λ is base point free (i.e., if Γ has no additional base point on E away from
∑

Qi), then deg f = 4 and f ∗
(

OP1 (1)
)

≃ M. Since the quartic γ(pi) passes doubly

through Qi , we have f (Qi) = pi for all i.

Case 2.2 If λ has base points, then deg f ≤ 3. The base locus of λ can contain at
most 4−deg f points from the set {Qi}, hence f (Qi) = pi holds for at least 4 +deg f

values of i.
Now the previous lemma implies that either subcase is impossible for general

choice of pi , hence no such grove can exist. We have proved that (3, 3, 2, 8) is nonde-
generate.

7 Open Problems

Whenever A is a finite set, we have the obvious enumerative problem of counting its

cardinality. Beyond a handful of cases (see [22]) it is entirely open. In particular, I do
not know the cardinality of A for (2, 4, 4, 10) or (3, 3, 3, 10).

It is also of interest to consider the family of positive dimensional schemes (with
a fixed Hilbert polynomial) apolar to Λ. For instance, it is known that there are two

twisted cubics apolar to a general web of quadrics in P
3 (see [10, p. 32]).

It is known that a general net of quadrics in P
5 does not admit a polar octahedron

(see [2]), contrary to what one would expect by counting parameters. However it is
not known if such a net admits an apolar rational normal quintic curve. A solution

to this would help in elucidating the case (5, 2, 3, 8).
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