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Abstract
Gene methylation is one means of controlling tissue gene expression, but it is unknown what pathways
influencing Alzheimer’s disease (AD) are controlled this way. We compared normal and AD brain tissue
data for gene expression (mRNAs) and gene methylation profiling. We identified methylated differentially
expressed genes (MDEGs). Protein-protein interaction (PPI) of the MDEGs showed 18 hypermethylated
low-expressed genes (Hyper-LGs) involved in cell signaling andmetabolism; also 10 hypomethylated highly
expressed (Hypo-HGs) were involved in regulation of transcription and development. Molecular pathways
enriched inHyper-LGs included neuroactive ligand-receptor interaction pathways. Hypo-HGswere notably
enriched in pathways including hippo signaling. PPI analysis also identified both Hyper-LGs and Hypo-
HGs, as hub proteins. Our analysis of AD datasets identified Hyper-LGs, Hypo-HGs, and transcription
factors linked to these genes. These pathways, which may participate in Alzheimer’s disease development,
may be affected by treatments that influence gene methylation patterns.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid
plaques and neurofibrillary tangles in neuron cells and which is manifested by the gradual development
of dementia symptoms, including profound impairment of cognitive abilities (Rahman et al., 2020). The
pathobiology of the AD is complex with genetic and epigenetic events are involved in the disease
pathogenesis (Stoccoro & Coppede, 2018). While the hallmarks of the disease include the accumulation
of amyloid plaques and neurofibrillary tangles in the brain (Dunckley et al., 2006), how these are related
to AD development and, indeed, what are the key underlying mechanisms of AD is uncertain. A number
of gene expression profiling studies have been performed comparing neuronal tissues of AD and control
patients, including microarray gene expression analysis and array or sequencing-based analyses of
bisulfite converted DNA to detect differences in gene methylation levels (Chouliaras et al., 2013;
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Coppieters et al., 2014). The latter identifies and quantifies a key (though not the sole) epigenetic control
of gene expression since a methylated gene promoter generally has blocked transcription. However, a
combined approach to integrate gene expression and gene methylation data could uncover epigenetic
signatures in AD.

Epigenetic mechanisms, including DNA methylation and histone modifications, play a crucial role in
the development of the AD (Sanchez-Mut & Graff, 2015). Therefore, identification of methylated-
differentially expressed genes (MDEGs) and discovering pathways may be useful for the clarification of
how these and othermechanisms associatedwithADmaybe controlled. Earlier studies have identified gene
signatures in AD (Rahman et al., 2020; Semick et al., 2019). These studies provided gene signatures focused
on either gene expression ormethylation profiling. To provide an in-depth understanding of the biological
mechanisms of AD, a conjoint analysis of gene expression and gene methylation analysis is considered.

1.1 Objective

In this study, we performed bioinformatic analysis of gene expression (mRNAs) and DNA methylation
data from AD-affected neural tissues to identify differentially expressed genes (DEGs) and differentially
methylated genes (DMGs), respectively. We aimed to identify overlapping methylated differentially
expressed genes (MDEGs) to provide novel insights in AD pathogenesis. Our workflow of the analysis is
summarized in Fig. 1.

Figure 1. Flowchart describing the data analysis processes in this work. The gene expression data for neurons from post-
mortem brain tissue from Alzheimer’s disease (AD) patients and matched controls were used to identify differentially
expressed genes (DEGs). Similarly, genome-wide DNA methylation data of AD compared matched controls were subjected
to identify differentiallymethylated genes (DMGs). Comparing highly expressed geneswith hypomethylation genes (i.e., genes
that have high expression levels because of a lack of suppression bymethylation) identified the genes termed here Hypo-HGs.
Similarly, low-expression genes with hypermethylation (suggesting low expression levels due to suppression methylation)
identified the genes termed here Hyper-LGs. Then, we annotated Hypo-HGs and Hyper-LGs using Gene Ontology (GO) and
KEGG pathway to identify GO and pathway. The protein-protein interaction (PPI) networks of the Hypo-HGs and Hyper-LGs
were also investigated to identify hub genes for these networks. Gene-transcription (TF) factor analysis was also performed to
detect potential key regulators of the activities of these genes.
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2. Methods
2.1 Acquisition of transcriptomic and DNA methylation datasets

We utilized mRNA gene expression profiling data (GSE4757) and DNA methylation profiling data
(GSE45775) from studies of AD and control samples of brain tissue. These datasets were obtained from
the NCBI-GEO database. The GSE4757 mRNA profiling datasets contained 20 samples that consisted of
10 AD tissue samples and 10 non-AD control tissue samples. Samples were obtained from the same patient
and the same brain region. Selected neurons containing neurofibrillary tangles and normal neurons from the
entorhinal cortex of 10 mid-stage AD cases via laser capture microdissection were used for gene expression
dataset. Themethylationmicroarray data fromGSE45775 dataset contained 20 samples that included 15 AD
tissues and 5 control samples which consisted of DNA methylation profiling of normal hippocampus and
different Alzheimer Braak stages hippocampus samples. The entorhinal cortex is an area of the brain located
in the medial temporal lobe which has a central role in neuronal networks that underlie memory functions.
Similarly, the hippocampus also plays a key role in memory and knowledge acquisition. It was recently
determined that the entorhinal cortex could be a new player for memory formation that works in parallel to
the hippocampus (O’Neill et al., 2017). Although data obtained from the two different brain regions were
integrated in the present study, both of these brain regions are thought to participate in memory functions.

2.2 Data processing and identification of differentially expressed genes

We employed GEO2R web-utility to identify DEGs and differentially methylated genes (DMGs) by
comparing AD samples compared to control. Themicroarray datasets were processed and normalized in
GEO2R. A p-value < 0.05 and |t| > 2 was considered as the cut-off criteria to identify the DEGs and
DMGs. We identified overlapping MDEGs between the GSE4757 and GSE45775 datasets. The mutually
common genes between down-regulated and hypermethylation genes were termed as hypermethylated-
lowly expressed genes (Hyper-LGs). Similarly, the common genes between upregulated and hypomethy-
lation genes were regarded as hypomethylated-highly expressed genes (Hypo-HGs).

2.3 Functional and pathway enrichment analysis

We performed functional annotation of the identified MDEGs via Enrichr (Kuleshov et al., 2016) to
detect Gene ontology (GO) terms and KEGG pathways. p-value < 0.05 was considered as statistically
significant for enrichment analysis.

2.4 Protein interactome analysis

We utilized the STRING database (Szklarczyk et al., 2017) to study the protein-protein interaction (PPI)
network forHyper-LGs andHypo-HGs the via NetworkAnalyst (Xia et al., 2015). The hubs were selected
based on degree >20 to identify a high number of interacting hub proteins in the PPI networks.

2.4.1 Transcription factor analysis
We have analyzed and identified the regulatory transcription factors (TFs) that interact with MDEGs,
suggesting these TFs may regulate the identified MDEGs utilizing the TRNASFAC and JASPAR
databases via Enrichr (Kuleshov et al., 2016). A p-value < 0.05 was considered to designate the statistically
significant TFs.

3. Results
3.1 Methylated differentially expressed genes in AD

We analyzed the gene expression and methylation data to identify DEGs or DMGs. We identified
overlapping genes, termed here 18 Hyper-LGs, by matching down-regulated DEGs with the
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hypermethylated DMGs; 10 Hypo-HGs were identified by comparing and up-regulated DEGs and
hypomethylated DMGs.

To clarify the biological significance of the identifiedMDEGs, GO enrichment analysis was performed
(Table S1). With regard to Hyper-LGs, enriched biological processes (BP) included notably positive
regulation of potassium ion transport, and regulation of glucose metabolic process. The enriched GO
terms for Hypo-HGs were enriched in BP included positive regulation of transcription.

3.2 Molecular pathways from epigenetic perspective

The Hyper-LGs demonstrated enrichment in pathways of nitrogen metabolism, nicotine addiction,
neuroactive ligand-receptor interaction, amyotrophic lateral sclerosis (ALS). Hypo-HGs were signifi-
cantly involved in hippo signaling pathway, cGMP-PKG signaling pathway, alcoholism, TGF-beta
signaling pathway (Table 1:).

3.3 Protein-protein Interaction to identify hub proteins

We analyzed the PPI of MDEGs. The Hyper-LGs PPI network had 208 nodes and 209 edges (Fig. 2),
while the Hypo-HGs network consisted of 542 nodes and 574 edges (Fig. 3). Thetopological analysis
showed hub genes for both the Hyper-LGs and Hypo-HGs networks. Hub proteins (TOMM22, TBX5,
ANK2, GRIA2, COPS7B, RORA) were detected as Hyper-LGs, while hub proteins (BMP2, GATA4,
HDAC11, GGA2, CREB3, RASSF1) were identified for Hypo-HGs.

3.3.1 Transcription factors of methylated-differentially expressed genes
The generation of gene products can be regulated at both transcriptional and post-transcriptional levels.
The TFs directly regulate the expression (i.e., transcription) of DEGs, thus we sought to detect the TFs
that may regulate the MDEGs. Table 2: showed the TFs that regulate the MDEGs.

4. Discussion

The development and progression of AD is the result of complex interplay of epigenetics and genetics
mechanisms at multistage. Epigenetic perturbation, especially of DNA methylation, contributes
immensely to the pathobiology of AD (Stoccoro & Coppede, 2018; Kawalia et al., 2017). The identifi-
cation of potential biomarkers for AD will not only improve the understanding of how the pathogenesis
of AD is controlled but may also open new avenues of treatment strategies. We identified 18 Hyper-LGs
and 10 Hypo-HGs as key gene signature in AD. The enrichment and PPI analysis provided significant
pathways and methylated hub genes which may provide novel insights into the pathogenesis of AD. The
pathway analysis of Hyper LGs showed enriched ALS pathways (Rusina et al., 2007) in ALS patients may
be accompanied by cognitive impairment and existence of neurofibrillary tangles and plaques affecting
neurons, (Rusina et al., 2007) suggesting the importance of the identified pathways in AD pathogenesis
(Ravetti et al., 2010). Our analysis also showed pathways enriched by Hypo-HGs. Among the pathways,
the pre-activation of hippo signaling pathway is associated with neurodegenerative diseases including
AD (Mueller et al., 2018). We obtained “alcoholism pathway” enriched by the MDEGs, which probably
plays roles in AD pathogenesis because the alcohol has been found to be involved in neuroinflammation
in dementia, suggesting an additional mechanism in neurodegenerative disease. Our analysis identified
“TGF-beta signaling pathway” as involved in AD. Increasing evidence suggests that dysregulation of
TGF-beta signaling pathway play critical roles in AD (von Bernhardi et al., 2015). In brief, in order to
identify new therapeutic targets, exploration of signaling pathways and biomarkers involved in MDEGs
will provide new understanding about AD pathogenesis.

We studied the PPI based on the proteins encoded by the MDEGs. Among the hubs, TOMM22 serve
as the main receptor for accumulation of amyloid β (Aβ) peptides in AD (Hu et al., 2018). Previous
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studies showed that the gene ANK2 is involved in AD (Higham et al., 2018). Our analysis also detected
RORA as a hub which is distinctively overexpressed in the hippocampus of AD brain (Acquaah-Mensah
et al., 2015). With regard to Hypo-HGs, we detected seven hub proteins, including BMP3, GATA4,
HDAC11 and CREB, which have been previously described in brain functions and neurodegenerative
diseases. Among these hubs we noted BMP2, the nuclear form of BMP2 has previously been shown to
play a role in hippocampus memory formation (Cordner et al., 2017). Transcription factor GATA4 has
been shown to be significantly differentially expressed in AD compared to controls (Garranzo-Asensio
et al., 2018). It should also be noted that HDAC inhibitors are known to be a potential drug target in AD

Table 1. Pathway analysis of methylated-differentially expressed genes related to Alzheimer's disease patient samples.

Category Term Adj. p-value Genes

Hyper-LGs KEGG Nitrogen metabolism 0.015 CA12

Circadian rhythm 0.027 RORA

Pentose and glucuronate interconversions 0.030 KL

Nicotine addiction 0.035 GRIA2

Neuroactive ligand-receptor interaction 0.036 GRIA2;ADRA2A

Endocrine and other factor-regulated calcium reabsorption 0.042 KL

Cocaine addiction 0.043 GRIA2

Amyotrophic lateral sclerosis (ALS) 0.044 GRIA2

Hypo-HGs KEGG Hippo signaling pathway 0.002 BMP2;RASSF1

cGMP-PKG signaling pathway 0.002 CREB3;GATA4

Alcoholism 0.003 CREB3;HDAC11

Viral carcinogenesis 0.004 CREB3;HDAC11

RNA polymerase 0.015 POLR3E

Bladder cancer 0.020 RASSF1

Vasopressin-regulated water reabsorption 0.021 CREB3

Cocaine addiction 0.024 CREB3

Pathways in cancer 0.027 BMP2;RASSF1

Basal cell carcinoma 0.031 BMP2

Cytosolic DNA-sensing pathway 0.031 POLR3E

Cortisol synthesis and secretion 0.032 CREB3

Non-small cell lung cancer 0.032 RASSF1

Amphetamine addiction 0.033 CREB3

Thyroid hormone synthesis 0.036 CREB3

Leishmaniasis 0.036 CYBA

Insulin secretion 0.042 CREB3

TGF-beta signaling pathway 0.044 BMP2

Prostate cancer 0.047 CREB3

Aldosterone synthesis and secretion 0.047 CREB3

Melanogenesis 0.049 CREB3

Longevity regulating pathway 0.049 CREB3
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(Yang et al., 2017) so HDAC11 could be a novel drug target for AD. CREB signaling has been a known
link to neurodegenerative disorders and plays many important roles in brain cell functions (Saura &
Valero, 2011).

Figure 2. Protein-protein interaction analysis of the Hyper-LGs in Alzheimer’s disease. The proteins are represented in nodes
(blue and red). Red nodes are marked as hub nodes. The larger node size indicates their degree in topological analysis. Edges
in gray show the interactions among interacting proteins in the network.

Figure 3. Protein-protein interaction analysis of the Hypo-HGs in Alzheimer’s disease. The proteins are represented in nodes
(blue and red). Red nodes are marked as hub nodes. The larger node size indicates their degree in topological analysis. Edges
in gray show the interactions among interacting proteins in the network.
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With regard to the Hyper-LGs that we detected, one study detected identified loci in EIF4EBP1 as
associated with late onset AD (Nalls et al., 2009). A study has suggested that XBP1 was a risk factor for
developing AD (Duran-Aniotz et al., 2017). In addition, XBP1 dysregulation has a profound impact on
immune systems, inflammatory response and implicated in complexes diseases including AD (Cisse
et al., 2017). A polymorphism inMEF2A could be involved in AD pathogenesis (González et al., 2007).
Variation in RELB impacts upon hippocampal function in late onset AD (Xiao et al., 2017). With regard
to Hypo-HGs, increased expression of SP3 observed in brains of AD patients (Boutillier et al., 2007). The
overexpression of SP1 in AD subjects was reported and suggested as a therapeutic target to help prevent
AD (Citron et al., 2008). However, it should be noted that our study has some limitations in that it does
not include data on gene expression or themethylation profiles of the genes in the same brain region. This
is due to the lack of any available datasets to investigate these aspects. Thus, althoughwe have uncovered a
number of potentially important hub genes and pathways, they require further experimental verifications
to establish them as having a definite role AD pathobiology.

5. Conclusions

In the present study, we have analyzed gene expression and DNA methylation profiling in AD. We
identified 28 MDEGs and pathway analysis revealed significant enrichment of pathways related to AD
pathogenesis. The PPI analysis revealed hub Hyper-LGs of AD included TOMM22, TBX5, ANK2,
GRIA2, COPS7B, RORA; such genes for Hypo-HGs included BMP2, GATA4, HDAC11, GGA2, CREB3,
RASSF1. Regulatory TFs (EIF4EBP1, XBP1, NKX2-8, MEF2A, BCL6, HNF4A, GATA6, RELB) were
identified among the hyper-LGs; similarly we identified TFs (TFAP2C, HINFP, SP1, SP3, NR5A1)
influencing Hypo-HGs. Since these are robust candidate genes based on dysregulated methylation, it is
possible that these or some significant downstream gene transcription targets of these TFs may be useful
for diagnostics (in the case of secreted TFs detectable in the blood) and possibly as treatment targets for
AD. The present study improves our understanding of the epigenetic in the pathobiology of AD and
identified a number of potential AD biomarkers for further investigation in experimental studies.

Acknowledgements. Authors would like to thank Mr Humayan Kabir Rana for critical reading of the manuscript.

Author contributions. MRR conceived and designed the study; MRR and TI analyzed data; MRR wrote the draft manuscript;
EG, JMWQ, and MAM reviewed and edited the manuscript; MAM supervised the project.

Table 2. Transcription factors of methylated-differentially expressed genes related to Alzheimer's disease patient samples.

Category Term Adj. p-value Genes

Hyper-LGs EIF4EBP1 0.015 ANK2;TOMM22

XBP1 0.016 ANK2;R3HDM1;TBX5

NKX2-8 0.021 DGKQ;SLC6A15

MEF2A 0.030 GRIA2;CMTM4;SLC6A15;GPR22;ANK2;RORA

BCL6 0.033 GRIA2;TMEM67;SLC6A15;GPR22

HNF4A 0.035 NTNG1;TMEM67;SLC6A15;ANK2;RORA

GATA6 0.036 NTNG1;CA12;ANK2;RORA

RELB 0.038 KL;DGKQ;SLC6A15;COPS7B

Hypo-HGs TFAP2C 0.004 BMP2;RASSF1;CYHR1;GATA4

HINFP 0.010 CREB3;HDAC11;CYHR1;COPS7B;CYBA

SP3 0.024 HDAC11;CYHR1;CYBA

NR5A1 0.027 CREB3;RASSF1;POLR3E

SP1 0.028 HDAC11;CYHR1;CYBA

Experimental Results 7

https://doi.org/10.1017/exp.2020.65 Published online by Cambridge University Press

https://doi.org/10.1017/exp.2020.65


Funding information. This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Conflict of interest. The authors declare that there is no conflict of interest.

Data availability. Gene expression profiling data with accession GSE4757 and DNAmethylation profiling data with accession
GSE45775 are publicly available at the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/).

SupplementaryMaterials. To view supplementarymaterial for this article, please visit http://dx.doi.org/10.1017/exp.2020.65.

References
Acquaah-Mensah, G. K., Agu, N., Khan, T., & Gardner, A. (2015). A regulatory role for the insulin- and BDNF-linked RORA

in the hippocampus: Implications for Alzheimer’s disease. Journal of Alzheimer’s. Disease, 44, 827–838. https://doi.
org/10.3233/JAD-141731.

Boutillier, S., Lannes, B., Buee, L., Delacourte, A., Rouaux, C., Mohr, M., Bellocq, J.-P., Sellal, F., Larmet, Y., Boutillier, A.-
L., & Loeffler, J.-P. (2007). Sp3 and sp4 transcription factor levels are increased in brains of patients with Alzheimer’s disease.
Neurodegenerative Diseases, 4, 413–423. https://doi.org/10.1159/000107701.

Chouliaras, L., Mastroeni, D., Delvaux, E., Grover, A., Kenis, G., Hof, P. R., Steinbusch, H.W.M., Coleman, P. D., Rutten,
B. P. F., & van den Hove, D. L. A. (2013). Consistent decrease in global DNA methylation and hydroxymethylation in the
hippocampus of Alzheimer’s disease patients. Neurobiology of Aging, 34, 2091–2099. https://doi.org/10.1016/j.neurobiola-
ging.2013.02.021.

Cisse, M., Duplan, E., & Checler, F. (2017). The transcription factor XBP1 in memory and cognition: Implications in
Alzheimer’s disease. Molecular Medicine, 22, 905–917. https://doi.org/10.2119/molmed.2016.00229.

Citron, B. A., Dennis, J. S., Zeitlin, R. S., & Echeverria, V. (2008). Transcription factor Sp1 dysregulation in Alzheimer’s
disease. Journal of Neuroscience Research, 86, 2499–2504. https://doi.org/10.1002/jnr.21695.

Coppieters, N., Dieriks, B. V., Lill, C., Faull, R. L. M., Curtis, M. A., & Dragunow, M. (2014). Global changes in DNA
methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiology Aging, 35, 1334–1344. https://doi.
org/10.1016/j.neurobiolaging.2013.11.031.

Cordner, R. D., Friend, L. N., Mayo, J. L., Badgley, C., Wallmann, A., Stallings, C. N., Young, P. L., Miles, D. R., Edwards,
J. G., & Bridgewater, L. C. (2017). The BMP2 nuclear variant, nBMP2, is expressed in mouse hippocampus and impacts
memory. Scientific Reports, 7, 46464. https://doi.org/10.1038/srep46464.

Dunckley, T., Beach, T. G., Ramsey, K. E., Grover, A., Mastroeni, D., Walker, D. G., LaFleur, B. J., Coon, K. D., Brown,
K.M., Caselli, R., Kukull,W.,Higdon, R.,McKeel, D.,Morris, J. C.,Hulette, C., Schmechel, D., Reiman, E.M., Rogers, J.,
& Stephan,D.A. (2006). Gene expression correlates of neurofibrillary tangles inAlzheimer’s disease.Neurobiology Aging, 27,
1359–1371. https://doi.org/10.1016/j.neurobiolaging.2005.08.013.

Duran-Aniotz, C., Cornejo, V. H., Espinoza, S., Ardiles, A. O., Medinas, D. B., Salazar, C., Foley, A., Gajardo, I., Thielen,
P., Iwawaki, T., Scheper, W., Soto, C., Palacios, A. G., Hoozemans, J. J. M., & Hetz, C. (2017). IRE1 signaling exacerbates
Alzheimer’s disease pathogenesis. Acta Neuropathologica, 134, 489–506. https://doi.org/10.1007/s00401-017-1694-x.

Garranzo-Asensio, M., San Segundo-Acosta, P., Martinez-Useros, J., Montero-Calle, A., Fernandez-Acenero, M. J.,
Haggmark-Manberg, A., Pelaez-Garcia, A., Villalba, M., Rabano, A., Nilsson, P., & Barderas, R. (2018). Identification
of prefrontal cortex protein alterations in Alzheimer’s disease. Oncotarget, 9, 10847–10867. https://doi.org/10.18632/
oncotarget.24303.

Gomez Ravetti, M., Rosso, O. A., Berretta, R., & Moscato, P. (2010). Uncovering molecular biomarkers that correlate
cognitive decline with the changes of hippocampus’ gene expression profiles in Alzheimer’s disease. PLoS One, 5, e10153.
https://doi.org/10.1371/journal.pone.0010153.

González, P., Alvarez, V.,Menéndez,M., Lahoz, C. H.,Martínez, C., Corao, A. I., Calatayud,M. T., Peña, J., García-Castro,
M., & Coto, E. (2007). Myocyte enhancing factor-2A in Alzheimer’s disease: Genetic analysis and association with MEF2A-
polymorphisms. Neuroscience Letters, 411, 47–51. https://doi.org/10.1016/j.neulet.2006.09.055.

Higham, J. P., Malik, B. R., Buhl, E., Dawson, J., Ogier, A. S., Lunnon, K., & Hodge, J. J. L. (2018). Mis-expression of the
Alzheimer’s disease associated gene Ankyrin causes memory loss and shortened lifespan in Drosophila. bioRxiv 423129.
https://doi.org/10.1101/423129

Hu,W., Wang, Z., & Zheng, H. (2018). Mitochondrial accumulation of amyloid beta (Abeta) peptides requires TOMM22 as a
main Abeta receptor in yeast. Journal of Biological Chemistry, 293, 12681–12689. https://doi.org/10.1074/jbc.RA118.002713.

Kawalia, S. B., Raschka, T., Naz, M., de Matos Simoes, R., Senger, P., & Hofmann-Apitius, M. (2017). Analytical strategy to
prioritize Alzheimer’s disease candidate genes in gene regulatory networks using public expression data. Journal of
Alzheimer’s Diseases, 59, 1237–1254. https://doi.org/10.3233/JAD-170011.

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik,
K. M., & Lachmann, A. (2016). Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic
Acids Research, 44, W90–W97.

8 Md Rezanur Rahman et al.

https://doi.org/10.1017/exp.2020.65 Published online by Cambridge University Press

https://www.ncbi.nlm.nih.gov/geo/
http://dx.doi.org/10.1017/exp.2020.65
https://doi.org/10.3233/JAD-141731
https://doi.org/10.3233/JAD-141731
https://doi.org/10.1159/000107701
https://doi.org/10.1016/j.neurobiolaging.2013.02.021
https://doi.org/10.1016/j.neurobiolaging.2013.02.021
https://doi.org/10.2119/molmed.2016.00229
https://doi.org/10.1002/jnr.21695
https://doi.org/10.1016/j.neurobiolaging.2013.11.031
https://doi.org/10.1016/j.neurobiolaging.2013.11.031
https://doi.org/10.1038/srep46464
https://doi.org/10.1016/j.neurobiolaging.2005.08.013
https://doi.org/10.1007/s00401-017-1694-x
https://doi.org/10.18632/oncotarget.24303
https://doi.org/10.18632/oncotarget.24303
https://doi.org/10.1371/journal.pone.0010153
https://doi.org/10.1016/j.neulet.2006.09.055
https://doi.org/10.1101/423129
https://doi.org/10.1074/jbc.RA118.002713
https://doi.org/10.3233/JAD-170011
https://doi.org/10.1017/exp.2020.65


Mueller, K. A., Glajch, K. E., Huizenga, M. N., Wilson, R. A., Granucci, E. J., Dios, A. M., Tousley, A. R., Iuliano, M.,
Weisman, E., LaQuaglia, M. J., DiFiglia, M., Kegel-Gleason, K., Vakili, K., & Sadri-Vakili, G. (2018). Hippo signaling
pathway dysregulation in humanHuntington’s disease brain and neuronal stem cells. Scientific Reports, 8, 11355. https://doi.
org/10.1038/s41598-018-29319-4.

Nalls, M. A., Guerreiro, R. J., Simon-Sanchez, J., Bras, J. T., Traynor, B. J., Gibbs, J. R., Launer, L., Hardy, J., & Singleton,
A. B. (2009). Extended tracts of homozygosity identify novel candidate genes associated with late-onset Alzheimer’s disease.
Neurogenetics, 10, 183–190. https://doi.org/10.1007/s10048-009-0182-4.

O’Neill, J., Boccara, C. N., Stella, F., Schönenberger, P., & Csicsvari, J. (2017). Superficial layers of the medial entorhinal
cortex replay independently of the hippocampus. Science, 355, 184–188. https://doi.org/10.1126/science.aag2787.

Rahman,M. R., Islam, T., Zaman, T., Shahjaman,M., Karim,M. R., Huq, F., Quinn, J.M.W.,Holsinger, R.M.D., &Moni,
M. A. (2020). Identification of biomarkers and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights
from a systems biomedicine perspective. Genomics, 112, 1290–1299. https://doi.org/10.1016/j.ygeno.2019.07.018.

Rusina, R., Sheardova, K., Rektorova, I., Ridzon, P., Kulist’ak, P., & Matej, R. (2007). Amyotrophic lateral sclerosis and
Alzheimer’s disease--clinical and neuropathological considerations in two cases. European Journal of Neurology, 14,
815–818. https://doi.org/10.1111/j.1468-1331.2007.01759.x.

Sanchez-Mut, J. V., & Graff, J. (2015). Epigenetic alterations in Alzheimer’s disease. Frontiers in Behavioral Neuroscience, 9,
347. https://doi.org/10.3389/fnbeh.2015.00347.

Saura, C. A., &Valero, J. (2011). The role of CREB signaling inAlzheimer’s disease and other cognitive disorders.Reviews in the
Neurosciences, 22, 153–169. https://doi.org/10.1515/RNS.2011.018.

Semick, S. A., Bharadwaj, R. A., Collado-Torres, L., Tao, R., Shin, J. H., Deep-Soboslay, A.,Weiss, J. R.,Weinberger, D. R.,
Hyde, T.M., Kleinman, J. E., Jaffe, A. E., &Mattay, V. S. (2019). IntegratedDNAmethylation and gene expression profiling
across multiple brain regions implicate novel genes in Alzheimer’s disease.Acta Neuropathologica, 137, 557–569. https://doi.
org/10.1007/s00401-019-01966-5.

Stoccoro, A., & Coppede, F. (2018). Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegenerative Disease
Management, 8, 181–193. https://doi.org/10.2217/nmt-2018-0004.

Szklarczyk,D.,Morris, J. H., Cook,H., Kuhn,M.,Wyder, S., Simonovic,M., Santos, A., Doncheva, N. T., Roth, A., Bork, P.,
Jensen, L. J., & Von Mering, C. (2017). The STRING database in 2017: Quality-controlled protein-protein association
networks, made broadly accessible. Nucleic Acids Research, 45, D362–D368. https://doi.org/10.1093/nar/gkw937.

von Bernhardi, R., Cornejo, F., Parada, G. E., & Eugenin, J. (2015). Role of TGFbeta signaling in the pathogenesis of
Alzheimer’s disease. Frontiers in Cellular Neuroscience, 9, 426. https://doi.org/10.3389/fncel.2015.00426.

Xia, J., Gill, E. E., & Hancock, R. E. W. (2015). NetworkAnalyst for statistical, visual and network-based meta-analysis of gene
expression data. Nature Protocols, 10, 823.

Xiao, E., Chen, Q., Goldman, A. L., Tan, H. Y., Healy, K., Zoltick, B., Das, S., Kolachana, B., Callicott, J. H., Dickinson, D.,
Berman, K. F., Weinberger, D. R., & Mattay, V. S. (2017). Late-onset Alzheimer’s disease polygenic risk profile score
predicts hippocampal function. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2, 673–679. https://doi.
org/10.1016/j.bpsc.2017.08.004.

Yang, S., Zhang, R., Wang, G., & Zhang, Y. (2017). The development prospection of HDAC inhibitors as a potential
therapeutic direction in Alzheimer’s disease. Translational Neurodegeneration, 6, 19. https://doi.org/10.1186/s40035-017-
0089-1.

Cite this article: Rahman MR, Islam T, Gov E, Quinn JMW, Moni MA (2021). Identifying the function of methylated genes
in Alzheimer’s disease to determine epigenetic signatures: a comprehensive bioinformatics analysis Experimental Results, 2,
e9, 1–13. https://doi.org/10.1017/exp.2020.65

Experimental Results 9

https://doi.org/10.1017/exp.2020.65 Published online by Cambridge University Press

https://doi.org/10.1038/s41598-018-29319-4
https://doi.org/10.1038/s41598-018-29319-4
https://doi.org/10.1007/s10048-009-0182-4
https://doi.org/10.1126/science.aag2787
https://doi.org/10.1016/j.ygeno.2019.07.018
https://doi.org/10.1111/j.1468-1331.2007.01759.x
https://doi.org/10.3389/fnbeh.2015.00347
https://doi.org/10.1515/RNS.2011.018
https://doi.org/10.1007/s00401-019-01966-5
https://doi.org/10.1007/s00401-019-01966-5
https://doi.org/10.2217/nmt-2018-0004
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.3389/fncel.2015.00426
https://doi.org/10.1016/j.bpsc.2017.08.004
https://doi.org/10.1016/j.bpsc.2017.08.004
https://doi.org/10.1186/s40035-017-0089-1
https://doi.org/10.1186/s40035-017-0089-1
https://doi.org/10.1017/exp.2020.65
https://doi.org/10.1017/exp.2020.65


Peer Reviews
Reviewing editor: Dr. Sourav Kolay
UT Southwestern, 5323 Harry Hines Blvd, Dallas, Texas, United States, 75390-9096

This article has been accepted because it is deemed to be scientifically sound, has the correct controls, has
appropriate methodology and is statistically valid, and has been sent for additional statistical evaluation and met
required revisions.

doi:10.1017/exp.2020.65.pr1

Review 1: Identifying the Function of Methylated Genes in Alzheimer’s Disease to Determine
Epigenetic Signatures: A Comprehensive Bioinformatics Analysis

Reviewer: Dr. Md. Ataur Rahman

Korea Institute of Science and Technology, Neuroscience Centre

Date of review: 08 November 2020

© The Author(s) 2021. Published by Cambridge University Press This is an Open Access article, distributed under the terms of
the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of interest statement. Reviewer declares none

Comments to the Author: Title: Identifying the Function of Methylated Genes in Alzheimer’s Disease to
Determine Epigenetic Signatures: A Comprehensive Bioinformatics Analysis

In the present manuscript the authors apply a variety of bioinformatics approaches to identify
differentially methylated genes and differentially expressed genes from available datasets on Alzheimer's
disease to understand their biological pathways and interconnections. Thismanuscript is very interesting
and advance epigenetics filed of Alzheimer's disease. Themanuscript is clearly written and the results are
well presented, but I suggest some minor revisions:

1) The manuscript should be improved in the level of detail and description of both materials and
method and results, including figure captions.

2) The significance of the hub genes should be stressed in the discussion section.
3) The discussion section should be concise
4) Please check for grammar and typos. (for example, interaction is misspelt in discussion).

Score Card
Presentation

4.7
/5

Is the article written in clear and proper English? (30%) ●5/5
Is the data presented in the most useful manner? (40%) ●5/5
Does the paper cite relevant and related articles appropriately? (30%) ●4/5

https://doi.org/10.1017/exp.2020.65 Published online by Cambridge University Press

https://doi.org/10.1017/exp.2020.65.pr1
https://orcid.org/0000-0001-6649-3694
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/exp.2020.65


Context

5.0
/5

Does the title suitably represent the article? (25%) ●5/5
Does the abstract correctly embody the content of the article? (25%) ●5/5
Does the introduction give appropriate context? (25%) ●5/5
Is the objective of the experiment clearly defined? (25%) ●5/5

Analysis

3.6
/5

Does the discussion adequately interpret the results presented? (40%) ●5/5
Is the conclusion consistent with the results and discussion? (40%) ●3/5
Are the limitations of the experiment as well as the contributions of the
experiment clearly outlined? (20%) ●2/5

https://doi.org/10.1017/exp.2020.65 Published online by Cambridge University Press

https://doi.org/10.1017/exp.2020.65


doi:10.1017/exp.2020.65.pr2

Review 2: Identifying the Function of Methylated Genes in Alzheimer’s Disease to Determine
Epigenetic Signatures: A Comprehensive Bioinformatics Analysis

Reviewer: Dr. Kichang Kwak

Date of review: 14 November 2020

© The Author(s) 2021. Published by Cambridge University Press This is an Open Access article, distributed under the terms of
the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of interest statement. Reviewer declares none

Comments to the Author: The paper describes the application of gene expression data to identify
differentially expressed genes and DNA methylation data to identify differentially methylated genes to
identify overlappingmethylated differentially expressed genes to provide novel insights in ADpathology.
Overall, the paper is fairly organized. But before publication, the authors should address the following
points:

1. Add the reference for first sentence “Alzheimer’s disease (AD) is a neurodegenerative ~” in
introduction (page 3).

2. Rephrase the sentence “In this study, we analyzed gene expression ~” in objective (page 4).
3. Why did you use a threshold value for degree as 20? Clarify a threshold value for degree (page 6).
4. What is the regulatory TFs? Define “regulatory TFs” (page 6).
5. How did you get the adjusted p value? Clarify the statistical methods, for example multiple

comparison correction or covariates.
6. Make sure to discuss the limitations of this study.
7. Proof-read the entire text for minor grammatical errors, especially abbreviations.

Score Card
Presentation

4.0
/5

Is the article written in clear and proper English? (30%) ●4/5
Is the data presented in the most useful manner? (40%) ●4/5
Does the paper cite relevant and related articles appropriately? (30%) ●4/5

Context

3.8
/5

Does the title suitably represent the article? (25%) ●4/5
Does the abstract correctly embody the content of the article? (25%) ●4/5
Does the introduction give appropriate context? (25%) ●4/5
Is the objective of the experiment clearly defined? (25%) ●3/5

https://doi.org/10.1017/exp.2020.65 Published online by Cambridge University Press

https://doi.org/10.1017/exp.2020.65.pr2
https://orcid.org/0000-0003-4542-0001
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/exp.2020.65


Analysis

3.8
/5

Does the discussion adequately interpret the results presented? (40%) ●4/5
Is the conclusion consistent with the results and discussion? (40%) ●4/5
Are the limitations of the experiment as well as the contributions of the
experiment clearly outlined? (20%) ●3/5

https://doi.org/10.1017/exp.2020.65 Published online by Cambridge University Press

https://doi.org/10.1017/exp.2020.65

	Identifying the function of methylated genes in Alzheimer’s disease to determine epigenetic signatures: a comprehensive bioinformatics analysis
	1. Introduction
	1.1 Objective

	2. Methods
	2.1 Acquisition of transcriptomic and DNA methylation datasets
	2.2 Data processing and identification of differentially expressed genes
	2.3 Functional and pathway enrichment analysis
	2.4 Protein interactome analysis
	2.4.1 Transcription factor analysis


	3. Results
	3.1 Methylated differentially expressed genes in AD
	3.2 Molecular pathways from epigenetic perspective
	3.3 Protein-protein Interaction to identify hub proteins
	3.3.1 Transcription factors of methylated-differentially expressed genes


	4. Discussion
	5. Conclusions
	Acknowledgements
	Author contributions
	Funding information
	Conflict of interest
	Data availability
	Supplementary Materials
	References

	Review 1: Identifying the Function of Methylated Genes in Alzheimer’s Disease to Determine Epigenetic Signatures: A Comprehensive Bioinformatics Analysis
	Score Card
	Presentation
	Context
	Analysis


	Review 2: Identifying the Function of Methylated Genes in Alzheimer’s Disease to Determine Epigenetic Signatures: A Comprehensive Bioinformatics Analysis
	Score Card
	Presentation
	Context
	Analysis



