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MATRIX D.G. NEAR-RINGS
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Matrix near-rings had been defined by Meldrum and Van der Walt in 1986 and although a fair amount of
results on the structure of these near-rings have been obtained since then, a satisfactory structure theory has
yet to be developed for matrix d.g. near-rings. In this paper we give an alternate definition (in fact the dual
definition) for matrix d.g. near-rings and develop a satisfactory structure theory for such d.g. near-rings.

1991 Mathematics subject classification: 16 'Y 30.

1. Introduction

In the study of near-rings one would like to have the analogue of matrix rings. A
natural choice would be the system M,(R) of all matrices having entries from a near-
ring R together with the normal operations of matrix addition and multiplication. But
unfortunately the multiplication is not necessarily associative and thus, in general,
M _,(R) is not a near-ring.

Beidleman [4] has shown that if R is a near-ring with identity and for some integer
n(>1) we have M,(R) to be a near-ring, then R is a ring. Ligh [10]} has shown that when
n> 1, M,(R) is a near-ring if and only if R is n-distributive. Thus M,(R) as defined
above fails to be the near-ring (or d.g. near-ring) analogue of matrix rings.

Meldrum and Van der Walt {14] defined the matrix near-ring over a near-ring R as
the sub near-ring of Map(R", R") generated by the set {f);: R" — R"\re R,1 <i, j<n}
of maps, which in the ring case correspond to the matrices with r in the (i, j)th position
and zero elsewhere. A fair amount of results on the structure of these near-rings had
been obtained in {1, 2, 3, 12, 13, 14, 15, 22 and 23]. However, in our view, a
satisfactory structure theory has yet to be developed for matrix d.g. near-rings and we
present in this paper an alternate definition (in fact the dual definition) for matrix
d.g. near-rings and develop a satisfactory structure theory for such d.g. near-rings.

Meldrum and Van der Walt [14] took the view that an n x n matrix over a ring R may
also be considered as an endomorphism of the abelian group R" (where R" denotes the
direct sum of n copies of (R, +)) and their matrices over a near-ring R are maps from R" to
R". We start with the characterisation of an n x n matrix over a ring R as an R-
endomorphism of a free R-module of rank n and we characterise an n x n matrix over a
d.g. near-ring R, distributively generated by a semigroup S, as an R-endomorphism of a
u(R, 4)- free left (R, S)-group Q on a base with n elements; here v(R, +) denotes the variety
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of left (R, S)-groups generated by the left (R, S)-group (R, +). We have shown in [18]
that the set of all such R-endomorphisms forms a d.g. near-ring and our matrices have
been defined in such a manner as to ensure that our matrix d.g. near-ring is near-ring
isomorphic to the above endomorphism d.g. near-ring. Further our non-singular
matrices correspond to the R-automorphisms of Q in this isomorphism.

Thus our matrix d.g. near-rings are Neumann d.g. near-rings (named after Hanna
Neumann for her work in [16]) but not conversely. It may be observed that Hanna
Neumann in [16] had, in fact, commented on the similarity of her near-rings to
ordinary matrix rings.

We define an m x n matrix over a d.g. near-ring R as a column vector having m rows
with an R-word in n variables in each row; an R-word w(x,, ..., x,) is defined to be
zero if w(r,,...,r,)=0 for all r,,...,r, in R and matrix multiplication is by
substitution of the variables. Historically, matrices originated from systems of linear
equations and matrix multiplication from substitution of the variables. Thus our
definition is a very natural generalisation and in the case when R is a ring we get the
usual m x n matrix over R.

In Section 3 we give our definition of matrices over a d.g. near-ring and in Section
4 we obtain, in particular, generalisations of the Wedderburn-Artin Theorem for rings
and the Morita criterion for equivalence of the rings R and M,(R).

In Section 5 we develop the theory of dual (R, S)-groups and prove that the R”
utilised by Meldrum and Van der Walt in their definition of matrix near-rings is the
dual left (R, S)-group of our v(R, +)-free left (R, S)-group Q and that our matrix d.g.
near-ring is near-ring isomorphic to the matrix d.g. near-ring defined by Meldrum and
Van der Walt.

2. Preliminaries and definitions

Throughout this paper we will assume (i) the term near-ring refers to a right near-
ring with identity, (ii) R is an abstract d.g. near-ring with identity e, D(R) is the set of
distributive elements in R, S is a distributive semigroup generating (R, +) and that 0
and e are in S, (iii) (R, +) denotes the variety of left (R, S)-groups generated by (R, +),
(iv) the basic definitions in [S], [17] and {18], (v) n is an arbitrary natural number,
(vi) Capital Roman letters signify near-rings and their subsets or matrices and rows of
matrices and small Roman letters signify the elements or near-rings, (vii) Capital
Greek letters stand for groups or their subsets and small Greek letters for elements of
groups or maps.

Definition 2.1. A right R-group is an additive group Q together with a
map (w, x) = owx of Q x R — Q such that

(i) (@, + wy)x = wyx + w,x for all w,,w, € Q and x € R;
(i) w(xy) = (wx)y for all w € Q and x,y € R;
(iii) we = o for all w € Q.
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Definition 2.2. An element 4 € Q is said to be distributive if A(x + y) = Ax + Ay for
all x, y € R.

The set D(Q) of all distributive elements in Q is non-empty as 0q € D(2) and by
Proposition 1.2 of [18] we have D(Q)D(R) € D(Q).

Definition 2.3. A d.g. right (R, S)-group is a group Q such that (i) Q is a right
R-group; (ii) there exists a subset A of D(Q) such that AS C A and A generates Q.

If we wish to specify the distributive subset A we shall speak of the d.g. right
(R1 S)-group (Qv A)
Definition 2.4. A d.g. near-ring R is said to be a division d.g. near-ring if
{1) R has no non-trivial right ideals;
(ii) §* = S\{0} forms a multiplicative group for some distributive semigroup S
generating (R, +).
Definition 2.5. A d.g. near-ring R is said to be a regular d.g. near-ring if there exists
a distributive semigroup S generating (R, +) and such that
(i) every right ideal of R is a d.g. right (R, S)-module;
(i1) for each t € S there exists s € S such that tst = t.
Definition 2.6. The centre C(R) of (R, +) is called the additive centre of the d.g.
near-ring R. Let Z; = {s € S: st = ts for all t € S} and Z (R) be the subgroup of (R, +)

generated by Z;. Zg and Z (R) are called the centre of S and the S-centre of R
respectively.

Proposition 2.7. The S-centre of R is a d.g. near-ring and tz = zt for all z € Z(R)
andteS.

Proof. By Proposition 2.5 of [17] we have Z (R) is a d.g. near-ring. Since
z€Z(R) we have z=)Y ¢s; with ¢ ==1,5,€ Z; for all i and consequently

tz=1ty €5,=2 €ts; = 2 €5t = (3 es)t = zt.

3. Matrices

Definition 3.1. An R-word w(x,,...,x,) in the n variables x,,...,x, is a formal
expression of the form ) a;x; with a; € R and x| € {x,,..., x,} and w(x,, ..., x,) is said
to be a reduced word if the a; are non-zero and x; # x;,, for all i.

Clearly any word has a unique reduced form and we define the sum of two words
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by juxtaposition and reduction. Further if w=) ax; and se€ S we define
sw = ) _(sa;)x;. Thus the set I, of all reduced R-words in the n variables x;, ..., x, forms
an S-group and hence a left (R, S)-group.

Now let Q,Q and Q’ be v(R, +)-free left (R, S)-groups on A ={4,,...,4,},A' =
{Ay, ..., and A" ={A],..., A} respectively and let ¢:Q—> Q' ¢y:Q—> Q and
n:Q — Q" be R-homomorphisms. We define the sum ¢+ ¢ of ¢ and ¥ to be the
unique R-homomorphism from Q to © which maps 4 onto A¢ + 2y for all 2 € A and
the product ¢n as the composition of maps. Thus we have A(¢p + ) = A¢ + LY and
A(pn) = (Ad)n for all 1 € A.

Now the elements of the above groups are expressible, though not uniquely, as
R-words on their sets of generators and thus we have *

A=A . L), AW =B, A, An=C ...,
Mo+y)=D(4,....4), Alén)=E(%,.... 4)

where the 4;, B, C, D; and E; are R-words on the respective generators. Now
DA, ..., A) =2l +¥) = A4, ..., A)+ B, ..., 4) and E(4],...,4) =A(¢n) =
(Aidn =AM, . A=A, ..., am) = A(C,(A], ..., A), ..., C(4], ..., 4)), and as
the R-homomorphisms are uniquely determined by these components, we may
represent them by these components. For instance, we may represent ¢ by a column

matrix having m rows with A,(4], ..., 4,) as the element in the ith row. We will use this
representation to introduce our matrices over the d.g. near-ring R.
In [, we define w,(x,,..., x,) = wy(x,,..., x,) if w,(r) = w,(r) for all r € R". Clearly

this is an equivalence relation and the equivalence class of the empty word forms a
normal (R, S)-subgroup A, of T, and the other equivalence classes are the cosets of this
normal subgroup. Further the difference group I', — A, is a left (R, S)-group.

Definition 3.2. A m x n matrix is a column vector having m rows with an R-word
in n variables in each of the rows.

For typographical reasons we shall write them in the transposed form with square
brackets; for example

A=[A(x), ... %) oy An(Xyy -y %))

Two matrices 4 and B are said to be equal if they are of the same order and their
corresponding rows are equivalent.
Let
Apn = [A1Xys oo %)y ey A0, oo, XD
B =[Bi(X1, .o X ) evey Bty ..o x0)]
Cop =[Ci(xy, ..., %), ..., Cixys ... X))
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and r € R. We define
A+B=[A,(x;,....x)+Bi(xy, .- s %), ..oy An(Xy, - s %) + B(xy, ..., x)T,
rA=[rA,(x;,.... %), ..., A (X}, ..., x)I
and
AC=D=[D(x,,...,x,),.... D (x), ..., x,)
where
Di(xy,...,x,) = A(C\(xy, ..., %), ..., Co(xy, ..., X))

Letl,,=[x,,...,x,J and O,,, =10, ...,0). We then have

Proposition 3.3. (i) I,..nAmxn = Amxns
(i) Apxndnxn = Amcns
(i#1) OpxnAnxp = Ouxps
(iv) ApunOnxp = Opps
(V) Apunt+ Onsn = Apxn = Oxn + A

IL,., will be called the n x n identity matrix and O,,,, the zero m x n matrix.

Definition 3.4. A matrix A is said to be

(i) a scalar matrix if it is of the form rI with r € R;

(ii) a diagonal matrix if the coefficients of x; in A(x,, ..., x,) are zero for all j # i;
(iii) upper triangular if the coefficients of x; in Ai(x,, ..., x,) are zero for all j < i,

(iv) strictly upper triangular if the coefficients of x; in A(x,, ..., x,) are zero for all
J=i

(v) lower triangular if the coefficients of x; in 4,(x,, ..., x,) are zero for all j > i

(vi) strictly lower triangular if the coefficients of x; in A(x,, ..., x,) are zero for all
jzi

If A is an m x n matrix and T;;, T;,,; and T;; are the elementary row matrices obtained
from the m x m identity matrix I by interchanging the ith and jth rows, adding r times
the jth row to the ith row of I and multiplying the jth row of I by r respectively (where
r is an element of R), then it can be easily verified that T;4, T, ;4 and T;A are the
matrices obtained from A by performing the corresponding row operations on A.
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4. Matrix d.g. near-ring

We will denote by M,(R) the set of all n x n matrices over the d.g. near-ring R and
define M, (S)={4 € M,(R): A/(x,,...,x,) =sx; with 5, € § and x; € {x,,..., x,} for all
1 <i<n}

Then it can be easily verified that

(i) M,(R) forms a right near-ring with identity I,
(ii) M,(S) forms a distributive semigroup in M,(R);
(i) M,(S) generates (M,(R), +);

and consequently M,(R) is a d.g. near-ring.

For the rest of this paper we will assume that Q is a v(R, +)-free left (R, S)-group
on A={4,..., 4} and R denotes the endomorphism d.g. near-ring of Q (cf.
Proposition 2.2 of [18]). Also let S = {X € R : AX C SA}.

Theorem 4.1.  (M,(R), M,(S)) is d.g. near-ring isomorphic to (R, S).

Proof. Let ¢ : M (R) > R be defined by A,¢(4) = A(4,,...,4,). Since Q is a
v(R, +)-free left (R, S)-group, we have A4,(x,,..., x,) =0 if and only if 4,(4,,...,4,) =0
and consequently ¢ is well defined, as an R-endomorphism of Q is uniquely determined
by its action on A. It can be easily verified that ¢ is a near-ring epimorphism. Now
suppose ¢(A) =0. Then A(4,,...,4,)=0fori=1,...,n and since Q is v(R, +)-free we
have A,(r) =0 for all r € R". Consequently A(x,,...,x,)=0fori=1,...,n and thus
¢ is a near-ring isomorphism. Clearly ¢(M,(S)) = S.

Proposition 4.2. If R is a ring with identity and S = R, then Q is a free R-module on
A={4, ..., 4}

Proof. Since Q is v(R, +)-free and (R, +) is abelian we have Q to be abelian and
consequently Q is an R-module. Thus any element of Q can be represented in the form
> r,a/ and as Q is a v(R, +)-free left (R, S)-group we have Y, a;4; = 0 if and only
if >, ,ar,=0forallr,...,r,in R.

Hence Y ., a4, =0 if and only if a, =0 for all i and consequently Q is a free R-
module on A.

Thus our matrix d.g. near-rings reduce to ordinary matrix rings when R is a ring.

Now let ¢,: R — R be defined by A¢y(x) = x4 for all 1€ A and x € R. Then, as
R € v(R, +), by Proposition 2.5 of [18] we have, by identifying R with ¢y(R),

Proposition 4.3. (i) R is a sub near-ring of R;
(ii) R is a sub near-ring of M,(R).
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Now let E;; denote the n x n matrix having x; as the element in the ith row and zero
elsewhere and let g, be the element of R which maps /; onto /; and 2 onto 0 for all
A(# 4;) in A. We will denote g;, by g, .

Theorem 4.4. (i) R is a v(R, +)-left (R, S)-group on (€150, j<n}

(i) M,(R) is a v(R, +)-left (R, S)-groupon (E;;: 1 <, j < n}.

Proof. (i) If XxeR,Ae A and AX=) a4 with g,€ R and i € A, we have
g,X =3 a@,, and consequently {g;, : 1 <1, j<n} generates R as x=)[ ¢X By

Theorem 3, Corollary 4 of {18] we have v(R,+) = v(R, +) and so R is a v(R, +)-left
(R, S)-group.

(i) This follows from (i) and Theorem 4.1.

Proposition 4.5. (i) {E;: 1 <i < n}is an orthogonal set of idempotents in M,(R);

(i) The set of all diagonal matrices in M,(R) is a sub near-ring which is near-ring
isomorphic to R";

(iii) The set of all upper triangular (lower triangular, strictly upper triangular, strictly
lower triangular) matrices in M,(R) is a sub d.g. near-ring;

(iv) The set of all strictly upper triangular (lower triangular) matrices in M,(R) is an
ideal in the d.g. near-ring of upper triangular (lower triangular) matrices.

The proof of this Proposition is straightforward and will be omitted.

Definition 4.6. An m x n matrix A is said to be
(i) a kth column matrix if A(x,,...,x,) = a;x, for all i;
(i1) a kth row matrix if A(x,,...,x,) =0 for all i # k.
Clearly we have (i) any matrix is a sum of column matrices; (ii) any matrix is a
sum of row matrices; and (iii) the matrices E;; are column as well as row matrices.
It can be easily verified that the set of all kth column matrices in M,(R) is a left

M,(R) submodule and the set of all kth row matrices is a right ideal in M,(R).
Now by Propositions 5.3 and 5.4 of [18] and Theorem 4.1 we have

Theorem 4.7. (i) R is left primitive if and only if M,(R) is left primitive;
(ii) R is simple if and only if M,(R) is simple.

By Theorem 6 of [20] and Theorem 4.1 we have the following generalisation of the
Wedderburn—-Artin theorem.

Theorem 4.8. If R is a discrete d.g. near-ring satisfying the descending chain condition
for right ideals then the following three conditions are equivalent:
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(i) R is simple and has an irreducible d.g. right (R, S§)-module for some S;
(ii) R is right primitive;
(iii) R is near-ring isomorphic to M, (R,) for some division d.g. near-ring R, and some

positive integer n.

By Theorems 6 and 7 of [21] and Theorem 4.1 we have

Theorem 4.9. (i) If (R, S) is a division d.g. near-ring then (M,(R), M,(S)) is a regular
d.g. near-ring;

(ii) If (R, D(R)) is a division d.g. near-ring then (M,(R), D(M,(R))) is a regular d.g.
near-ring.

Proposition 4.10. R is near-ring isomorphic to ,Re,.

Proof. Define ¢ : R — &,Re, by A¢(x) = x4 and A'¢(x) = 0 if A’ # A. It can be easily
verified that ¢ is a near-ring homomorphism. Now given €,Xe, € ¢€,Re; we have
Ae,¥e, = xA for some x € R and A'¢;Xe, =0 for all 2" # A. Thus ¢(x) = €,Xe; and so ¢ is
onto. Now suppose ¢(x) =0. Then xA =0 and as Q is a v(R, +)-free group we have
xy =0 for all y € R and in particular x = xe = 0. Thus ¢ is an isomorphism.

Proposition 4.11. R.2,.R = R where R2, R = {)_X£,y,: %, ¥, € R}.

Proof. Clearly we have R&.RCR and let X R. Then Ax= Z,’-i] ;=
A @y, =4 L a8y, and thus if  §, =31 42,82, We have
y.€ Re,.R,A(X—y)=0and iy, =0if A# 4, Define y=)_,7,. Then y € Re,.R and

(X —y) =0 for all i. Hence X = j € R.g,.R and the result follows.

Combining Propositions 4.10 and 4.11 we have

Theorem 4.12. There exists an idempotent E in M,(R) such that EM,(R)E = R and
M, (R).E.M,(R) = M,(R).

We note that two rings R and S are Morita equivalent if and only if there exists an
idempotent e in S such that

eSe~R and SeS=S

and thus Theorem 4.12 is a generalisation of the result that R and M,(R) are Morita
equivalent when R is a ring.

Theorem 4.13. Z3(R) = {X € R : X = re with r € Z(R)} where € is the identity of R.
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Proof. Let X € Z5(R). Then Xe,, =¢,,% for all i, j and so AXe,, = A% for all i, j.
Consequently we have 4 X = r4; for all i and thus X = re with r € R. Thus if 7 € Z5 we
have T=te with te S and, using 1(se) = (se)f with s€ S, we get te Z;. Hence
X=Y ¢t =) €(te)=) (¢t)e=re with re Z(R) and ¢ =+1. Conversely let
re Zg(R). Then r = Y ¢t; with t; € Z; and so (1) = i(t;e) for all € S. Thus tg € Zs
and consequently 7z € Z5(R).

Corollary 4.14. Z35(R) = Z,(R).

This corollary is a generalisation of the result that the centre of a matrix ring is ring
isomorphic to the centre of the base ring.

5. Dual (R, S)-groups

Let Q" = Homy(Q, R) be the set of all left R-homomorphisms from Q into R. If
x € Rand «', 8* € Q°, denote by «* + B and a"x the unique R-homomorphisms from Q
to R defined respectively by A(a” + ") = o™ + A" and A(a"x) = (Ax")x for all A € A.
For each 4 € A let 1° denote the element of Q" defined by 24* = e and 2'A* = 0 for all
AFEADinA Alsolet A ={a"e Q" :la* e Sforall Ae A}and A* ={A": 1 e A}

Proposition 5.1. (Q°, A}) isa d.g. right (R, S)-group.

Proof. Let x,ye R and seS. We have A((a"+ B)x) = (Aa" + Af")x = (Aa’)x+
(AB7)x = Mo'x) + A(B'x), Aa*(xy)) = (Aa")(xy) = (2a")x)y = (A(«"x))y = A(a"x)y) and
Aa’e) = (Aa*)e = Aa* for all 4 € A and thus Q" is a right R-group. Also if «* € A5 we have
Aat(x+y) = (A")(x + y) = (Aa")x + (Aa”)y = A(e®x) + A(a"y) and A(x"s) = (Lo*)s € S for
alll e A.

Thus Ag is a set of distributive elements in Q" such that A;S € A;. Now given
o' € Q let Lo = ;‘;, €;5;; With ¢;; = £1 and s;; € S. Let y}; be the element of Q" defined
by Ay;;=s; and Ay;; =0 for all A(#4) in A. Then y;; € Aj and a" =3, paul ) €Y
Thus A§ generates Q" and the result follows.

Proposition 5.2. w(w'x) = (ww')x for all w € Q, 0" € Q" and x € R.

Proof. If w =3 +s54; with 5;€ S and 4, € A we have w(w'x) = (3_ £s:4)(w"x) =
2 E(siA) @ x) = Es5(A(w X)) = Y £s(Liw)x =L 54w ))x =((Lts4)w")x = (vw")x.

Now by Proposition 3.2 of [18] and Proposition 4.3 we have

Proposition 5.3. (i) Q" is a left (R,S)-group with X« being defined by
AXa") = (AX)a” for all 1 € A;

(ii) Q" is a left (R, S)-group.
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By the Corollary 3 of Theorem 3 of {18] we have
Proposition 54. Q" € (R, +).

Now given x€ R,X € R and '€ Q*, we have i((Xax")x)= (A(Fa"))x = ((UX)a")x =
(4X)(2"x) = A(X(x"x)) for all A € A and consequently we have

Proposition 5.5. (Xo*)x = X(a*x) forall x e R,x € Rand o* € Q".

Theorem 5.6. (i) (Q°, A) is right R-isomorphic to (R", S");

n

(ii) An element of QO has a unique representation in the form 3 . A x; with x; € R;

i=1

(iii) A* generates Q" as a right R-group and A* C As.

Proof. (i) Define ¢ : Q" — R" by (¢p(a”)), = L¢* for i=1,...,n. Then from the
proofs of Theorems 2 and 3 of [18] we have ¢ is a left R-isomorphism. Now
(P(a'x)), = A(x"x) = (La")x = (¢p(¢*)),x for i=1,...,n and so ¢ is a right R-
homomorphism. Also clearly we have ¢(A5) = S".

(i) Since Q" is right R-isomorphic to R" and (¢(4)), =e if j=1i and is zero if
j # i, any element of Q" has a unique representation in the form ), , A/ x;.

(iii) This follows from (ii) and the definition of Aj.

Definition 5.7. The d.g. right (R, S)-group Q" is called the dual of the left (R, S)-
group Q and A* the dual basis to A.

Now let homz(Q*, R) be the set of all right R-homomorphisms from Q" to R and let
Q™ = Homg(Q", R) where Homg(Q', R) is the subgroup of Map(Q*, R) generated by
homyp(Q*, R).

Given x € R and 0" € Q" define xw* by (xo™)w" = x(w™ w*) for all " € ".

Proposition 5.8. (i) S.homx(Q2*, R) C homi(Q¥", R),
(ii)y Q" is a left (R, S)-group.

Proof. (i) Lets e S and w™ € homkx(2*, R). Then (sw**)(w] + w};) = s(w™(w} + w3)) =
s(@™w] + 0" w}) = s(w”w)) + (0™ w;) = (sw™)w] + (s0™)w; for all ), w; e, and
(™) (@"x) = s(w™ (@ x)) = s. (0" w")x) = (s.(@"W"))x = ((sw*™)w*)x for all w* € Q" and

x € R. Thus sw™ € homx(Q)*, R).

(ii) By (i) we have xw™ € Q™ for all xe€ R and 0™ € Q. Clearly ew"” = ™.

Now given s€ § and w)", 0" € Q" we have (s(w]" + 0} ))(w") = s(w}" + w3)w") =
s(wi’w’ + 0y w") = s(]w*) + s(wyw") = (o' + (sw))w" = (sw)" + sw3)w® and
(sHoMw* = (st)(w)"w*) = s(t(w}*w")) = s((tw; )w") = (s(tw;))w” for all @* € . Hence
Q" is a left S-group and consequently is a left (R, S)-group.
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Now as, by Theorem 5.6, every element of Q" has a unique representation in the
form Y ", Ax;, we will for each ie{l,...,n} define a map A" from Q" to R by
AT Ax)=x;and let A™ = {A]",..., A}

Proposition 5.9. (i) A*™ € homx(Q°, R);
(ii) A™ generates O** as a left (R, S)-group.
Proof. (i) A" Ax+ 2 Ay) =4 "G A+ y)=x+y =4, Ax)+

AL Ay and AT A x)x) = AT, A(xx) = xix = (A (3,, A x;))x. Hence
A" is a right R-homomorphism.

(i) If 0™ € homyx(Q", R) and 0" € ' then 0™ (") = 0" (T, 4/x) = 3 (0" A)x; =

Y@L A x)) = L (@A) ) @) for all w®eQ" and consequently
o™ =3 (0™ A)A". But homz(Q, R) generates Q™ and thus A™ generates Q™ as a left
(R, S)-group.

Theorem 5.10. (i) Q" € v(R, +);
(ii) Q" is left R-isomorphic to Q.

Proof. (i) Let w(x,,...,x,) be an R-word in the m variables x|, ..., x,, such that

wry,...,r,)=0 for all r,...,r, in R. Then given wi",...,w, € Q™ we have
w(wi", ..., oo ") = wwi'w', ..., o o) =0 for all o* € Q" and so w(w}’, ..., o, ) =0.

Thus Q" € v(R, +).

(ii) Since Q is a u(R,+)-free left (R, S)-group on A and Q™ e v(R,+) let
¢ :Q— Q" be the left R-homomorphism defined by ¢(4) = A" for i=1,...,n Now
¢ is surjective as A™ generates Q™. Suppose ¢(w) =0 and w = w(/,, ..., 4,) where w is
an R-word. Then ¢(wW)=w(4]", ..., A2} and so w(l]"w", ..., A 0 =w(i], ..., 4" N w")=0
forallw® € Q.

Now given r,...,r, in R, choosing w"=3" Ar; we have w(r,...,r)=
w(A'w", ..., )’w") = 0 and consequently we have w = 0. Thus Q is left R-isomorphic
to Q.

Definition 5.11. The left (R, S)-group Q is called the dual of the d.g. right (R, S)-
group Q" and the double dual of the left (R, S)-group Q and A*" is called the dual basis
to A* and the double dual basis to A.

Definition 5.12. (i) For w € Q and o' € Q° we denote by w*w the R-endomorphism
of Q defined by A(w'w) = (Aw”)w for all 2 € A.

(i) Q.Q" and Qo Q" denote respectively the subgroup and normal subgroup of
(R, +) generated by the set {ww":weQ w €O’} and Q".Q and Q"o Q denote
respectively the subgroup and normal subgroup of (R,+) generated by the set
{o'w: ' e wed}
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Proposition 5.13. (i) o' (xw) = (w*'x)w forall x e R,w € Qand 0" € Q°;
(i) (0] + 0w = v + Wo for all w € Q and v}, w; € Q°;
@iii) a*(w, + w,) = «’w; + «*w, for all " € As and w,, w, € Q;

(iv) (wo*)w, = w(w w,) for all w, w, € Qand w* € Q"

Proof. (i), (ii) and (iii). Forall A € A we have (i) A((w’x)w) = (H{w*x))w = ((lo*)x)w =
(Ao")(xw) = A" (xw));

(ii) A(o] + 0))w) = (Mo + v))w = Yo+ ‘o)o = (Ao))o + (oo = A(ojw + wiw)
and

(i) Ala*(w,+ w,)) = ().a‘)(&), + w,) = (Aa")w, + (A" )w, = A(d" W)+ A" w,) = A(a*w,) +
Ao w,) = Mo*w, + «"w,) and the results follow.

(iv) Suppose w = Y +s;4; with 5; € S and A; € A. Then (ww")w, = ((}_ £s:4)w")w, =
X Esi(dioMw, = 3 Es(Ao)w, = 3 (Ao’ o)) = (3 £5:4)(0°w) = o(o’o,).

Proposition 5.14. IfX € R,w € Q and v* € Q" we have
(i) X(w'w) = Fw")w;
(i) (0* W)X = w*(wX);
(iii) w(Fw*) = (wX)w".
Proof. (i) For A€ A let AX=) _a; with a,€ R and 4 € A. Then A(X(w'w)) =
(R w)=( ad)(w w) =3 a(i(w' w) =} a((lw")w) =3 (a(lo))w = (3 a(lo’)w

and A((Xw")w) = (AFo")o = (AX)w")o = (3 al)o)o = (3 a(lo*)w and so (i) is
proved.

(i) A((w'w)X) = (Mo"w))X = (A" )w)X = (A" )(wX) = (w*(wX)) as X is an R-
homomorphism of Q and the result follows.

(iii) By definition of Xw" we have A(Xw") = (AX)w’ for all A € A and consequently
if w=Yal we have o(Fo")=(Tal)Fe") =Y a(lF") =Y a(((Dw")=
(X a(x)w’ = (L ail)x)w’ = (@X)o".

Theorem 5.15. (i) Q.Q" =R,

(i) Q*.Q=R.

Proof. (i) Trivial.

(ii) From the definition we have Q*.Q C R. Now let X € R,A € A and iX = }_ a4
with q; € R and ;€ A. Define w; in Q" by Aw; =a; and Y@ =0 if /' # 2. Then
gx =) wie.Qforall 1€ A and by the Corollary of Theorem 2 of [18] we have
xeQ.Q
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Let Q,,Q, and Q,; be u(R,+)-free left (R, S)-groups, X,7 € Homg(Q,,Q,) and
Z € Homg(€),, ;).

Definition 5.16. The dual map X" : Q; — Q] of X is defined by w,(X*(®3)) = (0, F)w;
for all w, € Q, and w; € Q5.

It is easﬂy verified that (X + )" =X+ 7" and (xz)' =X"7".

Let R denote the matrix d.g. near-ring over R defined by Meldrum and Van der
Walt. Since by Theorem 5.6 we have Q° =R’ as d.g. right (R, S)-groups, we may
consider the elements of R as elements of Map(Q*, Q") f; as the element of
Map(Q", Q") such that £i(3";_, Air,) = Ajrr; and I" as Q" 1.

Theorem 5.17. R is near-ring isomorphic to R .

Proof. Define ¥ : R > Map(Q*, Q") by y¥(x) =%". Then ¢ is clearly a near-ring
monomorphism. Further (re“) = j7 for all reR Now by definition we have
{fj:reR1<ij<n} gencrates R and by Theorem 4.4 we have R is generated by
the set {re;, :r€ R,1<1i, j<n}. Consequently we have Y(R) =R’ and the result
follows.
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