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MATRIX D.G. NEAR-RINGS
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Matrix near-rings had been defined by Meldrum and Van der Walt in 1986 and although a fair amount of
results on the structure of these near-rings have been obtained since then, a satisfactory structure theory has
yet to be developed for matrix d.g. near-rings. In this paper we give an alternate definition (in fact the dual
definition) for matrix d.g. near-rings and develop a satisfactory structure theory for such d.g. near-rings.

1991 Mathematics subject classification: 16Y30.

1. Introduction

In the study of near-rings one would like to have the analogue of matrix rings. A
natural choice would be the system Mn(R) of all matrices having entries from a near-
ring R together with the normal operations of matrix addition and multiplication. But
unfortunately the multiplication is not necessarily associative and thus, in general,
Mn(R) is not a near-ring.

Beidleman [4] has shown that if R is a near-ring with identity and for some integer
n(> 1) we have Mn(R) to be a near-ring, then R is a ring. Ligh [10] has shown that when
n > l,Mn(R) is a near-ring if and only if R is M-distributive. Thus Mn(R) as defined
above fails to be the near-ring (or d.g. near-ring) analogue of matrix rings.

Meldrum and Van der Walt [14] defined the matrix near-ring over a near-ring R as
the sub near-ring of Map(Rn, R") generated by the set {jjs: R" - • R"\r e R , l < i, j < n]
of maps, which in the ring case correspond to the matrices with r in the (i, j)th position
and zero elsewhere. A fair amount of results on the structure of these near-rings had
been obtained in [1, 2, 3, 12, 13, 14, 15, 22 and 23]. However, in our view, a
satisfactory structure theory has yet to be developed for matrix d.g. near-rings and we
present in this paper an alternate definition (in fact the dual definition) for matrix
d.g. near-rings and develop a satisfactory structure theory for such d.g. near-rings.

Meldrum and Van der Walt [14] took the view that a n n x n matrix over a ring R may
also be considered as an endomorphism of the abelian group Rn (where R" denotes the
direct sum of n copies of (R, +)) and their matrices over a near-ring R are maps from R" to
R". We start with the characterisation of an n x n matrix over a ring R as an R-
endomorphism of a free R-module of rank n and we characterise a n n x n matrix over a
d.g. near:ring R, distributively generated by a semigroup S, as an R-endomorphism of a
u(R, +)- free left (R, S)-group Q on a base with n elements; here u(R, +) denotes the variety
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of left (/?, S)-groups generated by the left (/?, S)-group (R, +). We have shown in [18]
that the set of all such i?-endomorphisms forms a d.g. near-ring and our matrices have
been defined in such a manner as to ensure that our matrix d.g. near-ring is near-ring
isomorphic to the above endomorphism d.g. near-ring. Further our non-singular
matrices correspond to the /^-automorphisms of ft in this isomorphism.

Thus our matrix d.g. near-rings are Neumann d.g. near-rings (named after Hanna
Neumann for her work in [16]) but not conversely. It may be observed that Hanna
Neumann in [16] had, in fact, commented on the similarity of her near-rings to
ordinary matrix rings.

We define an m x n matrix over a d.g. near-ring R as a column vector having m rows
with an R-word in n variables in each row; an R-word w(x,,..., xn) is defined to be
zero if w(r{,..., rB) = 0 for all r , , . . . , rn in R and matrix multiplication is by
substitution of the variables. Historically, matrices originated from systems of linear
equations and matrix multiplication from substitution of the variables. Thus our
definition is a very natural generalisation and in the case when R is a ring we get the
usual m x n matrix over R.

In Section 3 we give our definition of matrices over a d.g. near-ring and in Section
4 we obtain, in particular, generalisations of the Wedderburn-Artin Theorem for rings
and the Morita criterion for equivalence of the rings R and Mn(R).

In Section 5 we develop the theory of dual (R, S)-groups and prove that the R"
utilised by Meldrum and Van der Walt in their definition of matrix near-rings is the
dual left (/?, S)-group of our v(R, +)-free left (R, S)-group ft and that our matrix d.g.
near-ring is near-ring isomorphic to the matrix d.g. near-ring defined by Meldrum and
Van der Walt.

2. Preliminaries and definitions

Throughout this paper we will assume (i) the term near-ring refers to a right near-
ring with identity, (ii) R is an abstract d.g. near-ring with identity e, D(R) is the set of
distributive elements in R, S is a distributive semigroup generating (R, +) and that 0
and e are in S, (iii) v{R, +) denotes the variety of left (R, S)-groups generated by (R, +),
(iv) the basic definitions in [5], [17] and [18], (v) n is an arbitrary natural number,
(vi) Capital Roman letters signify near-rings and their subsets or matrices and rows of
matrices and small Roman letters signify the elements or near-rings, (vii) Capital
Greek letters stand for groups or their subsets and small Greek letters for elements of
groups or maps.

Definition 2.1. A right R-group is an additive group ft together with a
map (co, x) -*• cox of ft x R ->• ft such that

(i) (cot + eo2)x = coxx 4- co2x for all OJ,, CO2 G ft and x e R;

(ii) co(xy) = {a)x)y for all co G ft and x,y e R;

(iii) coe = a for all co e ft.
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Definition 2.2. An element A e Q is said to be distributive if A(x + y) = Ax + Xy for
all x j e R .

The set D(Q) of all distributive elements in Q is non-empty as 0o e D(£l) and by
Proposition 1.2 of [18] we have D(ft)D(R) C D(Q).

Definition 2.3. A d.g. right (R, S)-group is a group fi such that (i) Q is a right
R-group; (ii) there exists a subset A of D(Q) such that AS c A and A generates Q.

If we wish to specify the distributive subset A we shall speak of the d.g. right
(R, S)-group (fi, A).

Definition 2.4. A d.g. near-ring R is said to be a division d.g. near-ring if

(i) R has no non-trivial right ideals;

(ii) S* = S\{0} forms a multiplicative group for some distributive semigroup S
generating (R, +).

Definition 2.5. A d.g. near-ring R is said to be a regular d.g. near-ring if there exists
a distributive semigroup S generating (R, +) and such that

(i) every right ideal of R is a d.g. right (R, S)-module;

(ii) for each t e S there exists s e S such that tst — t.

Definition 2.6. The centre C(R) of (R, +) is called the additive centre of the d.g.
near-ring R. Let Zs — {s e S : st — ts for all t e S] and ZS(R) be the subgroup of (R, +)
generated by Zs. Zs and ZS(R) are called the centre of S and the S-centre of R
respectively.

Proposition 2.7. 77ie S-centre of R is a d.g. near-ring and tz = zt for all z e ZS{R)
and t e S.

Proof. By Proposition 2.5 of [17] we have ZS(R) is a d.g. near-ring. Since
z e ZS(R) we have z = '^€isi with e, = ± l , s , e Z s for all i and consequently
tz = tJ2 £(si = E *A = E «iV = (E «iSi)t = z'-

3. Matrices

Definition 3.1. An R-word w(x, , . . . ,xn) in the n variables x , , . . . , x n is a formal
expression of the form E f l i x i with a. 6 •R an<* x| e ( x , , . . . , xn} and w(x, , . . . , xn) is said
to be a reduced word if the a, are non-zero and xj ^ x-+, for all i.

Clearly any word has a unique reduced form and we define the sum of two words
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by juxtaposition and reduction. Further if w = £ a,x- and s e S
sw = XXSfli)xf' Thus the set Tn of all reduced R-words in the n variables x,,..
an S-group and hence a left (R, S)-group.

Now let fi,Q' and Q" be u(R, +)-free left (R, S)-groups on A = {A,
{A',,... ,A;j and A" = {A;,..., X'm) respectively and let <j> : Q -> fi\ \p : Q
7/ : Q' - • Q" be R-homomorphisms. We define the sum $ + ij/ of 0 and if/
unique J?-homomorphism from Q to J2' which maps A onto A0 + /.ip for all A e A and
the product <ptj as the composition of maps. Thus we have A(# + ip) = A# + Ai/' and
X(<f>rj) = (A(̂ )f/ for all A e A.

Now the elements of the above groups are expressible, though not uniquely, as
R-words on their sets of generators and thus we have '

M = A t ( x \ , . . . , x M ) , w - B ( ( A ; , . . . , A D , A > = Cji?:;,....A;>,

= £,(A'; A;)

where the A,, f?,, C,, D, and £, are R-words on the respective generators. Now
D,W, . . . , AD = Af(0 + ^) = /(.(A',,..., A'J + B,.(A', A'J and M , . . . , k"p) - A,(</.̂ ) =
(A )̂fj = A,(Xlt..., XJr, - A^r, A^) = ^ ( C . ^ , . . . , AJ),..., C .W. . . . . A^), and as
the R-homomorphisms are uniquely determined by these components, we may
represent them by these components. For instance, we may represent <p by a column
matrix having m rows with At{?\,..., AJ as the element in the ith row. We will use this
representation to introduce our matrices over the d.g. near-ring R.

In Fn we define w,(x,, . . . , x j — w2(x , xJ if w,(r) = w2(r) for all r e R". Clearly
this is an equivalence relation and the equivalence class of the empty word forms a
normal (R, S)-subgroup An of Fn and the other equivalence classes are the cosets of this
normal subgroup. Further the difference group Fn — An is a left (R, 5)-group.

Definition 3.2. A m x n matrix is a column vector having m rows with an R-v/ord
in n variables in each of the rows.

For typographical reasons we shall write them in the transposed form with square
brackets; for example

A = [y4,(x,,..., x j AJxu ..., xj]'.

Two matrices A and B are said to be equal if they are of the same order and their
corresponding rows are equivalent.

Let

4 x . = [4,(x,,. • • - xn),..., Am{x , xj]',

Bmxn = [B,(*. *J, • • •. Bm(x, xj]',

C,,, = [C,(x x,) C.(x x;)f
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and r e R. We define

A + B = [Ax(xx, . . . , x j + B,(x,,..., xB),.. . , AJx , x j + Bm(xx xj]',

rA = [M,(x,,..., x j , . . . , rAm(x xj] '

and

AC=D = [D,(x, xp) , . . . . Dm(x,,..., xp)]'

where

n (•*• Y- \ — A (C (Y v 1 C Cv Y Yl

Let /„„,, = [x , xj and Omxn = [0, . . . , 0]'. We then have

Proposition 3.3. (i) /m x m/4m x n = Amxn;

(Hi) OmxnAnxp = Omxp;

(iv) AmxnOnxp = Omxp;

(v) Amxn + Omxn = Amxn = Omxn + Amxn.

Inxn will be called the n x n identity matrix and Omxn the zero m x n matrix.

Definition 3.4. A matrix A is said to be

(i) a scalar matrix if it is of the form rl with r e R;

(ii) a diagonal matrix if the coefficients of xt in /4,(x,,..., xn) are zero for all; / i;

(iii) upper triangular if the coefficients of x; in i4j(x,,..., x j are zero for all j < i;

(iv) strictly upper triangular if the coefficients of Xj in /l,(x,,..., xn) are zero for all

(v) lower triangular if the coefficients of xy in Aj(x,,..., xn) are zero for all j > i;

(vi) strictly lower triangular if the coefficients of x; in A,(xx,..., xn) are zero for all

If 4̂ is an m x n matrix and 7]7, 7J+rj and T^ are the elementary row matrices obtained
from the mxm identity matrix / by interchanging the ith and jth rows, adding r times
the jth row to the ith row of / and multiplying the jth row of / by r respectively (where
r is an element of R), then it can be easily verified that T^A, Ti+rjA and TrjA are the
matrices obtained from A by performing the corresponding row operations on A.
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4. Matrix d.g. near-ring

We will denote by Mn(R) the set of all n x n matrices over the d.g. near-ring R and
define Mn(S) = {A e Mn(R): /4,(x,,..., xn) = s,x- with s, e S and x\ e {x, xn} for all
1 < i < n).

Then it can be easily verified that

(i) Mn(R) forms a right near-ring with identity /;

(ii) Mn(S) forms a distributive semigroup in Mn(R);

(iii) Mn(S) generates (Mn(R), +);

and consequently Mn(R) is a d.g. near-ring.
For the rest of this paper we will assume that fi is a v(R, +)-free left (R, S)-group

on A = {A,,..., kn) and R denotes the endomorphism d.g. near-ring of fi (cf.
Proposition 2.2 of [18]). Also let S = {x g R : Ax c SA}.

Theorem 4.1. (Mn(R), Mn(S)) is d.g. near-ring isomorphic to (R, S).

Proof. Let <f> : Mn(R) ->• R be defined by A,-0(/l) = ^(A,, . . . , AJ. Since fi is a
, +)-free left (/?, S)-group, we have A,(x]t..., xn) = 0 if and only if /1,(A,,..., AB) = 0

and consequently 0 is well defined, as an R-endomorphism of fi is uniquely determined
by its action on A. It can be easily verified that <f) is a near-ring epimorphism. Now
suppose <I>(.A) = 0. Then /4,(A|,..., An) = 0 for i — 1, . . . , n and since fi is v(R, +)-free we
have /4,(r) — 0 for all r e R". Consequently /4,(x,,..., xn) — 0 for i — 1, . . . , n and thus
4> is a near-ring isomorphism. Clearly (j>{Mn{S)) = S.

Proposition 4.2. If R is a ring with identity and S = R, then fi £y a free R-module on

Proof. Since fi is v(R, +)-free and (R, +) is abelian we have fi to be abelian and
consequently fi is an i?-module. Thus any element of fi can be represented in the form
£"=1 a{)H and as fi is a v(R, +)-free left (R, S)-group we have £"=1 a,A, = 0 if and only
if YH=t a<ri = 0 for all r , , . . . , rn in R.

Hence £"=1 a^ — 0 if and only if a, = 0 for all i and consequently fi is a free R-
module on A.

Thus our matrix d.g. near-rings reduce to ordinary matrix rings when R is a ring.

Now let <f>0: R -» R be defined by A<£0(x) = xA for all A e A and x e R. Then, as
Rev(R, +), by Proposition 2.5 of [18] we have, by identifying R with cj>0(R),

Proposition 4.3. (i) R is a sub near-ring of R;

(ii) R is a sub near-ring of Mn(R).
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Now let E/j denote the n x n matrix having x; as the element in the ith row and zero
elsewhere and let e;.;. be the element of R which maps A, onto ks and /. onto 0 for all
A(^ A,) in A. We will denote eXA by e;..

Theorem 4.4. (i) R is a v{R, +)-left {R, S)-group on {ex.k. : I < i, j < n);

(ii) Mn(R) is a v{R, +)-left (R, S)-group on {£,y : 1 < i, ; < n).

Proof, (i) If x e R,). e A and Ax = £ aj.] with a, e R and A- e A, we have
e;x = £ a,-C;u; a n ^ consequently {eXi). : 1 < i, j < n) generates R as x — $3"=1 e;.x. By
Theorem 3, Corollary 4 of [18] we have v{R, +) = v{R, +) and so R is a v{R, +)-left
{R, S)-group.

(ii) This follows from (i) and Theorem 4.1.

Proposition 4.5. (i) {£,, : 1 < i < n] is an orthogonal set of idempotents in Mn{R);

{ii) The set of all diagonal matrices in Mn{R) is a sub near-ring which is near-ring
isomorphic to R";

(Hi) The set of all upper triangular (lower triangular, strictly upper triangular, strictly
lower triangular) matrices in Mn(K) is a sub d.g. near-ring;

(iv) The set of all strictly upper triangular (lower triangular) matrices in Mn(R) is an
ideal in the d.g. near-ring of upper triangular (lower triangular) matrices.

The proof of this Proposition is straightforward and will be omitted.

Definition 4.6. An m x n matrix A is said to be

(i) a kth column matrix if /4,(x, xn) = atxk for all i;

(ii) a kth row matrix if A,(xu ..., xn) = 0 for all i / k.

Clearly we have (i) any matrix is a sum of column matrices; (ii) any matrix is a
sum of row matrices; and (iii) the matrices £i; are column as well as row matrices.

It can be easily verified that the set of all kth column matrices in Mn(R) is a left
Mn(R) submodule and the set of all kth row matrices is a right ideal in Mn(R).

Now by Propositions 5.3 and 5.4 of [18] and Theorem 4.1 we have

Theorem 4.7. (i) R is left primitive if and only if Mn(R) is left primitive;

(ii) R is simple if and only if Mn(R) is simple.

By Theorem 6 of [20] and Theorem 4.1 we have the following generalisation of the
Wedderburn-Artin theorem.

Theorem 4.8. IfR is a discrete d.g. near-ring satisfying the descending chain condition
for right ideals then the following three conditions are equivalent:
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(0 R is simple and has an irreducible d.g. right (R, S)-module for some S;

(ii) R is right primitive;

(iii) R is near-ring isomorphic to Mn(R\) for some division d.g. near-ring Rt and some
positive integer n.

By Theorems 6 and 7 of [21] and Theorem 4.1 we have

Theorem 4.9. (i) If(R, S) is a division d.g. near-ring then (Mn(R), Mn(S>)) is a regular
d.g. near-ring;

(ii) If (R, D(R)) is a division d.g. near-ring then (Mn(R), D(Mn(R))) is a regular d.g.
near-ring.

Proposition 4.10. R is near-ring isomorphic to exRex.

Proof. Define <p : R -+ ex~Rex by k(j>(x) = xk and A'#(x) - 0 if X ^ A. It can be easily
verified that </> is a near-ring homomorphism. Now given ex~xex e exRex we have
Ae;xe; = xA for some x e R and Xepce, = 0 for all X ^ k. Thus $(x) = e;̂ ce; and so <f> is
onto. Now suppose $(x) = 0. Then xk - 0 and as Q is a v(R, +)-free group we have
xy = 0 for all y e R and in particular x = xe — 0. Thus (j> is an isomorphism.

Proposition 4.11. R.eA.R = R where R~.e} R~ = {£ x&J, : Xj, y, e R}.

Proof. Clearly we have R.e .̂R c 1 and let x e l . Then A,x = J^U "i/v =
*i TXi a,A;.;, = ;-. HjLi aije^e,^ and thus if y, = ^ t i O i A ^ c ^ _we ^have
y, € R.e,.R~, kt(x - yt) = 0 and Xy, = 0 if X ^ A,, Define y = X!"=i ?,- Then y e R.e;.R and
A,(x — y) = 0 for all i. Hence x = y € R.e,.R and the result follows.

Combining Propositions 4.10 and 4.11 we have

Theorem 4.12. There exists an idempotent E in Mn(R) such that EMn(R)E 3* R and
Mn(R).E.Mn(R) = Mm(R).

We note that two rings R and S are Morita equivalent if and only if there exists an
idempotent e in S such that

eSe ^ R and S.e.S = S

and thus Theorem 4.12 is a generalisation of the result that R and Mn(R) are Morita
equivalent when R is a ring.

Theorem 4.13. Zs(R) - {x e R : x = re with r e ZS(R)} where e is the identity o/R.
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Proof. Let x e Zg(R). Then xe,.,. = ex.).x for all i, j and so X^e,.-,. = A,x for all i, j .
Consequently we have A,x = r/f for all i and thus x = re with r e R. Thus if t G Z s we
have t = te with t e S and, using t(se) = (se)7 with s e S , we get t e Zs . Hence
x = 53e,tj = 53£i(t,-c) = 5Z(e,-O« = r« w ' l h f e Zs(i?) and e, = ± l . Conversely let
r e ZS(R). Then r = 53 £,t,_with t, e Zs and so (t,e)t = f(t,e) for all t e S . Thus f,e e Z-s

and consequently re e ZS(R).

Corollary 4.14. Z5(R) ^ ZS(R).

This corollary is a generalisation of the result that the centre of a matrix ring is ring
isomorphic to the centre of the base ring.

5. Dual (/?, 5>groups

Let Q* = HomR(Q, R) be the set of all left R-homomorphisms from fl into R. If
x e R and a*, /?* e Q*, denote by a* + /T and a'x the unique i?-homomorphisms from Q
to /? defined respectively by A(a* + /?*) = /a* + AjS' and A(a'x) = (Aa*)x for all A e A.
For each A 6 A let A* denote the element of fi* defined by XX* = e and A'A* = 0 for all
A'te A) in A. Also let A's = {a* 6 Q* : Aa* e S for all A e A} and A* = {A* : A e A}.

Proposition 5.1. (Q*, A*s) is a d.g. right (R, S)-group.

Proof. Let x, y e R and s e S. We have A((a* + 0')*) = (Aa* + A^*)^ = (Aa*)x+
W ) x = A(«'x) + A(/Tx), X(a*(xy)) = (Aa')(xy) = ( ( ; . a » y - (A(a*x))y = A((a'x)y) and
A(a*e) = (Aa*)e = Aa* for all A 6 A and thus Q* is a right R-group. Also if a* e AJ we have
A(a*(x + y)) = (Aa')(x + y) = (Aa*)x + (X<x*)y = A(a*x) + A(a*y) and A(a's) = (Aa*)s g S for
all A 6 A.

Thus Aj is a set of distributive elements in Q* such that A'SS c A*s. Now given
a* e ft* let A,a* = £*!, e,ys,v with £,y = ±1 and s,y € S. Let y*,. be the element of ft* defined
by A,y*. = s,j and Ay* = 0 for all X&X) in A. Then y*t e A's and a* = E L , Ej l i
Thus At; generates ft* and the result follows.

Proposition 5.2. co(co*x) = (coco')xfor all co e ft, co* e ft* and x e R.

Proof. If co = 53 ±Mi with s, e S and A, e A we have a>(a>*x) = (53 ±s,A|)(<o*x) =
(A;XOI*X)=53±5,(A;(CO*X))=53±S,.(A;W*)X=(53±S l(A,V))x=((53±S,A>*)X=(

Now by Proposition 3.2 of [18] and Proposition 4.3 we have

Proposition 5.3. (i) ft* w a /e/i (R, S)-group with xa* fee/'n^ defined by
A(xa*) = (Ax)a*/or a// A e A;

(ii) ft* is a left (R, S)-group.
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By the Corollary 3 of Theorem 3 of [18] we have

Proposition 5.4. ft* e v(R, +).

Now given x e R,x e R and a* e ft*, we have /((xa*)x) = (A(xa*))x = ((Ax)a*)x =
(Ax)(a*x) = A(x(a*x)) for all A e A and consequently we have

Proposition 5.5. (x<x*)x — x(<x*x)for all x e R, x € R a/jd a* e ft*.

Theorem 5.6. (i) (ft*, A's) is right R-isomorphic to (R", S"),

(ii) y4« element o/ft* /las a unique representation in the form 5Z"=, 2*xf with x, 6 R;

(i») A* generates ft* as a right R-group and A* c Aj.

Proof, (i) Define </> : ft* -> Rn by (</>(a*)), = A,a* for i = 1 n. Then from the
proofs of Theorems 2 and 3 of [18] we have ^ is a left R-isomorphism. Now
(0(a*x)),;= A,(a*x) = (/.,a*)x = (<£(a*)),.x for i=l,...,n and so (p is a right K-
homomorphism. Also clearly we have (j>(A*s) = S".

(ii) Since ft* is right R-isomorphic to R" and (</>(A;*)), = e if j = i and is zero if
j ^ i, any element of ft* has a unique representation in the form £"=1 A*Xj.

(iii) This follows from (ii) and the definition of A*s.

Definition 5.7. The d.g. right (R, S)-group ft* is called the dual of the left (R, S)-
group ft and A* the dual basis to A.

Now let homr
R(O*, R) be the set of all right R-homomorphisms from ft* to R and let

ft** - HomR(Q*, R) where HomR(Q*, R) is the subgroup of Map(Q.", R) generated by
homr

R(n',R).
Given x e R and co" e ft** define xa>" by (xo)")co' = x(co"co') for all w* e ft*.

Proposition 5.8. (i) S.homr
R(Q.\ R) c homr

R(n\ R);

(ii) ft" is a left (R, S)-group.

Proof, (i) Let s e S and co" e homR(il*, R). Then (sco")(co' + co'2) = s(<o"(co* + «*.)) =
s(w"co] + (o"wl) = s(co"u>']) + s(a>''co'2)= (sco")co] + (sco")co'2 for all co], co*. e ft*, and
(SW**)(OJ*X) = s(V*(co*x)) = s.((co**w*)x) = (S.(OJ**QJ*))X = ((sco")co')x for all OJ* e ft* and
x e R. Thus sco" e /jom'R(ft*, R).

(ii) By (i) we have xco" e ft** for all x 6 R and co" e ft**. Clearly eco" = co".
N o w given seS and co", co" e ft" w e have (s(co]'+ co"))(co') - s((co" + co")co') =
s(co\'co' + co\'co*) = s(co',*co') + s(co'2'co') = (sco\')co' + (sco'2')co' = (so>r + sco'2')co' and
((sOajf)W = (st)K*a/) = sWopffl*)) = s((tco\')co') = (s(tco"))co' for all co* e ft*. Hence
ft" is a left S-group and consequently is a left (R, S)-group.

https://doi.org/10.1017/S0013091500019817 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019817


MATRIX D.G. NEAR-RINGS 443

Now as, by Theorem 5.6, every element of fi* has a unique representation in the
form £!=, A*xf,

 w e wu"l f ° r e a c r i i e { l , . . . , n } define a map A** from fi* to R by

t A- = ur,.... c i
Proposition 5.9. (i) A** c Jiomr

R(fi*, R);

(u) A" generates fi** as a left (R, S)-group.

proof, (i) ;.*-(E;, fa+E;, A>;) - /••(£;=, A;(X,+y;)) = x,.+y, = A-'CE;, ;•;*,)+
^•(E;= 1 A;y() and >" ( (E ; , fajM = V(£U W*,*)) = *.* = (^(E;=1 « ) X . Hence
A" is a right R-homomorphism.

(ii) If OJ" 6 homr
R(Cl', R) and co' e fi* then e»"(o>*) = O J " ( E J = 1 ^ ^ ) = EjLi(«»**^)x> =

E;=,K^;)(>;*(E"=I fa)) = (EU(<°~W•;')(«*) f o r a11 ^ ^ a n d consequently
oj" = YIUWWJ*- B u t 'I0WIR(fi*- R) generates Q" and thus A" generates Q" as a left
(R, S)-group.

Theorem 5.10. (i) fi" 6 v(R, +);

(ii) Q" is left R-isomorphic to Q.

Proof, (i) Let w(x , , . . . , xm) be an R-word in the m variables x , , . . . , xm such that
w(r, , . . . ,rm) = 0 for all r , , . . . , r m in R. Then given (o\*,... , O J " e Q" we have
wW,.... ©;•)(©•) = w(c»rcB*,..., W;*C<J*) = 0 for all a* e O* and so w(to;' O = 0.
Thus Q" e o(R, +).

(ii) Since Q is a v(R, +)-free left (R, S)-group on A and Q" e v(R, +) let
(f>: Q -> fi" be the left /t-homomorphism defined by </>(A,) = A" for i = 1,. . . ,«. Now
<j> is surjective as A" generates Q". Suppose $(co) = 0 and co = w(A,,.. . , Xn) where w is
an R-word. Then 0(w) = w(A;* O and so w()"co\ . . . . ;"o;*) = w(Af,... . /")(o>')=0
for all OJ* e n * .

Now given r , , . . . , r n in /?, choosing (u* = E"=i ^]rj w e have w(r , rn) =
W(A**OJ* A**OJ*) = 0 and consequently we have co = 0. Thus Q is left R-isomorphic
to Q " .

Definition 5.11. The left (R, S)-group fi** is called the dual of the d.g. right (R, S)-
group fi* and the double dual of the left (R, S)-group fi and A** is called the dual basis
to A* and the double dual basis to A.

Definition 5.12. (i) For at e fi and <u* e fi* we denote by co'co the R-endomorphism
of fi defined by ?.(co'co) = (Xco')w for all A e A.

(ii) fi.fi* and fi o fi* denote respectively the subgroup and normal subgroup of
( R , + ) generated by the set [coco' : co e fi.w* e fi*} and fi*.fi and fi'ofi denote
respectively the subgroup and normal subgroup of (R, + ) generated by the set
{w'w.co' ef i*,a>efi}.

https://doi.org/10.1017/S0013091500019817 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019817


444 V. THARMARATINAM

Proposition 5.13. (i) co*{xa>) = (co*x)a>for all x e R,co e Cl and co* e fi*/

(ii) (co* + (o*2)a) = co'co + co\oi for all co e O and co*, co* G fi*/

(iii) a*(co, + co2) = a*a>, + <x*co2for all a* G A*- anrf co,, co2 e fi;

(iu) (GXO*)CO| = co(co*co,)/or a// co, CO| e fi and to' e Q*.

Proof, (i), (ii) and (iii). For all ). e A we have (i) l((a)*x)co) = (A.(co*x))co = ((lco*)x)co =
(Xco*)(xco) = A(<B'(XO>));

(ii) X({co\+(o\)co) - (/l(cot + a>*2))eo = (la>'+ ?.co*2)co = (kw\)a> + (Zco*2)<o = X(co\co + co*2(o)
and

(iii) A(a*(co, + a>2)) = (Aa*)(co, + co2) = (;.a*)
= A(a*co, + a*cu2) and the results follow.

(iv) Suppose co = 5Z ±s,J.J with s, G S and AJ e A. Then (wcu*)^, = ( ( £ ±s,/J)cu*)cU| =

Proposition 5.14. / ^x e i J . w e Q and co* e fi* we Ziave

(0 x(co*co) = (xco*)cu;

(ii) (co*aj)x = co*(wx);

(iii)

Proof, (i) For A e A let A x = E M ! with a, e / ? and A| e A. Then A(x(a)*co)) =
(AxXw-co)=(E M;)(«*<») = E a,W(a)*a»))=E ^((W)©)=E(«, W«*))« = (E <*,(;>•))«
and A((XW*)OJ) = (A(xco*))co = ((Ax)co*)w = ( ( £ a,A;)o)*)ca = ( E fliWco*))© and so (i) is
proved.

(ii) A((co'o))x) = (A(co*co))x = ((Aco*)co)x = (AOJ*)(COX) = A(cu'(cox)) as x is an R-
homomorphism of Q and the result follows.

(iii) By definition of xco* we have AQcco*) = (Ax)a)' for all A G A and consequently
if (o = Y.aX we have ©(xoi*) = ( E fli^)(xco') = E a,W(^*)) = E « i (M*K) =

Theorem 5.15. (i) Q.Q* = R;

(a) rr.fi = R.

Proof, (i) Trivial.

(ii) From the definition we have fi'.Q c R. Now let x e R, A G A and Ax =
with a, G R and AJ G A. Define co* in Q* by Aco* = a, and A'co* = 0 if ?! ̂  A. Then
e;x = ECO*A; e ^ ' - ^ f o r a 1 1 ;- e A and by the Corollary of Theorem 2 of [18] we have
jc'e fi'.fi.
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Let n,,Q2 and Q3 be v(R, +)-free left (R, S)-groups, x, J e HomR(Q,,Q2) and
z e HomR(il2, fi3).

Deflnition 5.16. The dual map x* : fij -»• Q* of x is defined by ei)|(x*(cu2)) = (a^x)^
for all cox e Q, and cô  e Qj.

It is easily verified that (x + J)' = x* + y* and (xz)* = xV.
Let TV denote the matrix d.g. near-ring over R defined by Meldrum and Van der

Walt. Since by Theorem 5.6 we have Q* ̂  R" as d.g. right (R, S)-groups, we may
consider the elements of 7T as elements of Map(Q', Q*), f'xj as the element of
Map(Q', n*) such tha t^(ELi Krk) = ^ and /" as Q'.I.

Theorem 5.17. R is near-ring isomorphic to TC.

Proof. Define ij/ : R -*• Map(Q*, Q*) by ij/(x) = x". Then \j/ is clearly a near-ring
monomorphism. Further (re>iXj)* —f{j for all r e R. Now by definition we have
{JJj; : r e R, 1 < i,;' < n} generates 7T and by Theorem 4.4 we have R is generated by
the set {fekji. : r e R,l < i, j < n}. Consequently we have \]/(R) = R* and the result
follows.
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