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Primitive recursive algebraic theories

and program schemes

W. K'uhnel, J. Meseguer, M. Pfender, and I. Sols

We introduce primitive recursion as a generation process for

arrows of algebraic theories in the sense of Lawvere and carry

over important results on algebraic theories and functorial

semantics to the enriched setting of "primitive recursive

algebra": existence of free primitive recursive theories and of

theories presented by operations and equations on primitive

recursive functions; existence of free models presented by

generators and equations. Finally semantical correctness of

translations is reduced to correctness for the basic operations.

There is a connection to the theory of program schemes: program

schemes involving primitive recursion correspond to arrows of a

primitive recursive theory freely generated over a graph of basic

operations. This theory T can be viewed as a programming

language with "arithmetics" given by the basic operations and with

DO-loops. A machine loaded with a compiler for T can be

interpreted as a T-model in Lawvere's sense, preserving primitive

recursion.

The simplest type of program schemes are calculation trees. These can

be formalized as the arrows of a free algebraic theory in the sense of

Lawvere [74] (see also [6]). Arrows of such a theory are obtained by

substitution out of a generating set of (basic) operations. We introduce

primitive recursion as a new generation-process for arrows of algebraic

theories and carry over important results on algebraic theories and
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functorial semantics in the enriched setting of "primitive recursive

algebra"; existence of free primitive recursive theories and theories

presented by operations, and equations possibly involving primitive

recursion (Theorem 2.5), existence of free models of primitive recursive

theories and of models presented by generators and equations (Theorem 3.8).

In the last section (semantical) correctness of translations is reduced to

correctness for the basic operations (Theorem it.2).

Our work is to be seen in the context of other categorical approaches

to the semantics of program schemes, in particular [/], [£], [70]. We try

here to follow as closely as possible Lawvere's functorial semantics,

because this approach seems to us to describe very well the program schemes

and their interpretations: program schemes correspond to arrows of a

primitive recursive theory T freely generated over a graph T. of basic

operations. T can be seen as a programming language with "arithmetic"

given by £ and with DO-loops. A machine loaded with a compiler for T

is then a 7-model in the Lawvere sense which preserves primitive

recursion. The paper is based on general material on monadic and

"algebraic" functors; see [27].

0. Many-sorted algebras

For reference in later sections we state here a generalization of two

principal results of [74]: "algebraic theories are algebras" and "models

of such theories in cartesian closed categories have algebraic forgetful

functors of finite rank". Proofs are given in [72]. The case of one-

sorted algebras in closed monoidal categories has been treated in [27]. As

is usual, I* denotes the free monoid on I .

T*x.T
DEFINITION 0.1. For a set I , Z € Se-fo is called an I-sorted

algebraic type or scheme of operators.

E may be seen as a directed graph with node set I* : Z € Gfux.phTA ,

which has only arrows with codomain in I (coarity 1 ).

A Z-model in a category B with 1 and given binary product x is

a graph-morphism M : £ •*• B which preserves products:

J* 3 A = i., . .. i *—>• MA = ffi, x ... x Mi =
x n 1 n

= (... {Mi1 x Mi2) x ...)
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EXAMPLE .

I' 1 .

I :={R, A} ,

E :

?•

• RxR

• AxA

(where we have written R x A instead of RA € J* ) is the scheme of le

modules (over varying rings). Modules are £-models satisfying the usua

equations.

A Z-homomorphism f : M •*• M' is a family

f = W m e SeX4J((M), (M'i))

compatible with the operations: for each A = i ... i -^* i in I ,

(1)

M'i

This defines a category Mod(E, B) with forgetful functor

U : ModiZ, B) ->• B1 , AfH-

DEFINITION 0.2. A functor V : K •*• 8 is algebraic, if

(i) £/ has a left adjoint F ,

(ii) U creates (inverse) limits,

(iii) U creates coequalizers of (/-kernel pairs (K-pairs mapped

by U into kernel pairs), that is to say, quotients by
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congruences can be calculated downstairs.

U is of finite rank if

(iv) U creates filtered colimits.

DEFINITION 0.3. An I-sorted algebraic theory is a category T with

object set |T| = I* (free monoid over / ), given products

r pi i

and 1 € I* terminal. A morphism t : T -*• T' of such theories is a

functor which is the identity on objects and preserves the given

projections. This defines a category Th- with obvious forgetful functor

V : Thj. -*• GAaphj* • F o r 8 with given finite product, a T-model in B

is a functor M : T •*• B which preserves the given finite products. A T-

homomorphism / : M -*• M' is a transformation compatible with x , that is

a family / = (fi)j € E?{(Mi), (M'i)) satisfying (l) in Definition 0.1,

for all A - ^ i in T . This defines the category TuncX^iT, B) of T-

models in 8 with forgetful functor V : FuncJy.iT, B) •+ o .

THEOREM 0.4. The forgetful functor V : Th]. •* GA.apdJJt ^ SaU

is algebraic of finite rank [cf. Definition 0.2). Moreover Thj is

complete and cocomplete.

0.5 Extension of models and presentation of theories, ( i ) Each

M € ModiT., B) extends uniquely to M € Funct^iFl, B) , Fl £ Th being

the free theory generated by I f G-MLpkjt . This defines an isomorphism

, B) ^ Func-^CFE, B) of categories compatible with the forgetful

functors.

I*xl*
( i i ) Each species ( E , G) , E, G € Giaph^ ^ Szt& , G c Fl x FT,

presents the theory T = FZ/G , and FuncJ^iT, B) is isomorphic to

Uod[{Z, G), B) : the full subcategory of Mod(Z, 8) consisting of those
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p r i
FZ

- p r l
M : E •+ B satisfying G ; t h a t i s , M : FZ •+ 8 equal izes ff

( i i i ) Each T € 2% .̂ has an algebraic p r e sen ta t ion (E, G) ; t h a t i s

E, G £ SetA . (Presentation is by arrows of coarity 1 .)

THEOREM 0.6. For an I-sorted algebraic theory T € Th (finitely

presented) and ("8 an elementary topos with a natural numbers object or) 8

a well-powered cartesian alosed category with coequalizer-mono

factorization and coequalizers closed under composition, the category

Funct^iT, B) of T-models in 8 has an algebraic forgetful functor

V : Fanctx(T, B) -> S1 of finite-rank.

By the triangle-theorem, see [4] and [27], we get immediately:

COROLLARY 0.7. For 8 as above and a morphism t : T' •+ T in Th ,

the "algebraic" functor Functx(t, 8) : Fu.nct^(T, 8) + Funct (T' , 8) is

algebraic of finite rank.

1 . Natural numbers ob ject and p r i m i t i v e recurs ion

This section gives a diagrammatic description of primitive recursive

functions. I t i s based on work by Lawvere, Freyd, and Joyal .

DEFINITION 1.1 ([7 5 ] ) . A natural numbers object in a (car tes ian

closed) category C is an object N together with a "zero"-map 1 • N

and a "successor"-map N — • N sat isfying the following universal property

of "simple recursion": for any diagram 1 — • A -*->• A there i s a unique

"sequence"-map N * > A such tha t

f'(a)

In Set6, f (a) i s defined by IN 3 n t—*• j{a) , and the universal property
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of IN is equivalent to Peano's axioms for the natural numbers; see [ / 5]

and [J&] for a proof.

In cartesian closed categories this property of N guarantees the

existence of functions defined by primitive recursion. Freyd's proof ([9],

5.22) uses the fact that - by cartesian closure (!) - the universal

property of N is equivalent to the following one (Proposition 5-21).

For any A

satisfying

(pr)

B B in C there exists a unique a . : A*N -*• B
vt

(A, 0)

Axs
AxN

where A N := A •*• 1 N

The remainder of Freyd's construction of primitive recursive functions

does not use cartesian closure. So, in order to make things independent of

this additional structure, we use the latter universal property (pr) of

"primitive recursion" for definition of the natural numbers object

isomorphism.

N It clearly determines the natural numbers object up to

REMARKS 1.2. (i) Specialization r = id gives"Joyal's definition

of natural numbers objects as "free monoid relative to actions".

(ii) Uniqueness of the a , implies the following naturality

condition. If

a = b =

then
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A'xN
r ' t '

( i i i ) For many (concrete) categories a natural numbers object i s

avai lable . If the countable coproduct of the terminal object 1 ex is t s

and i s preserved by A x - for a l l A , then

1
'0 ill

is a natural numbers object . This implies, by uniqueness of the natural

0 s
numbers object, that for a natural numbers object 1 • N >• N ,

is a coproduct preserved by A x - .

For A -Z-* B • B a , : AxN •*• B is then the morphism induced by

\A -£-+ B >• 5] . - , out of the coproduct \A

Using the (pr)-definition of natural numbers objects above, Freyd's

Proposition 5.22 can be stated not only for topoi, but as follows.

LEMMA 1 . 3 . A category C with finite products and natural numbers

objects (primitive recursive, see above) has primitive recursion, that is:

given g : A •* B , h : A*N*B •* B , there exists a unique f : Ax-N •*• B

such that

U.o)

that is in Szti : f(a, 0) = ga and
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Ax&
AxN

•that is in Sc*S : / ( a , en) = h[a, n, f(a, n)) .

Abbreviation: f = j>r(g, h) .

The proof i s exactly Freyd's / := TT k , k given by

REMARK 1.4. The (pr)-definition of natural numbers objects i s just a

special instance of the schema for primitive recursion in the lemma

apt = prfd -£+ B, AxmB —^* B -^-* B) .

In the later sections we will use the following notation:

DEFINITION 1.5. A category C with f in i te products (hence also with

1 ) and with natural numbers objects (here and la te r on always in the (pr)-

sense) i s called category with primitive recursion or -pr-oategory . A

functor between such categories which preserves both is called a primitive

recursive or pr-functor.

REMARK I .6 . By uniqueness of the a . and of pr(^, h) such a

functor F preserves the recursion-schema:

Fart = aFr,Ft '

2. Primitive recursive algebraic theories

This section t rea ts the construction of free primitive recursive

theories and the presentation of such theories by (formal) operations and

(recursive) equations.

DEFINITION 2 .1 . A primitive recursive J-sorted (algebraic) theory
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Primitive recursive theories 215

is an I := I 0 {tf}-sorted (Lawvere-) theory T (see Definition 0.3) with

0 s
given arrows 1 —»• N — • N making N into a natural numbers object of

the category T .

These theories form a category PRTh , morphisms being theory-

morphisms preserving the natural numbers object; that is to say, which are

primitive recursive functors.

PRThj. may alternatively be described as a full subcategory of the

comma category N + Thj . Some formal precision seems to be necessary:

N -I- Th— stands for the category whose objects are graph-morphisms M —̂ -* T

with i(N) = N , i(l) = 1 ( I * . , and whose morphisms are the Th^-

morphisms compatible with the i's . We shall always write 0, s instead

of i(0), i(s) . Now PRTh is the full subcategory of N + Thj

consisting of those M •> T for which N is a natural numbers object in

T .

PROBLEMS A. Given a graph Z (. G^uiphj^ of formal operations (with

domains and codomains out of the free monoid J* over I = I 0 {tl} ),

construct the free pr-theory over I , that is construct a left adjoint for

the forgetful functor

PRTh <=—* M + Thj -»• N + Gmphjt •*• GHapkj^ .

Z above already contains a prototype N of a natural numbers object and

may pontain "start"-arrows g : A -*• B and "induction-step"-arrows

h : AxNx-B -*• B for primitive recursion.

Part of Problem A is the following, and we will later reduce Problem A

to it.

B. Given T € M + Thj , construct the pr-closure RT of T , that is

to say, construct a reflector R for the full inclusion

PRTh].
 <~* N + Thj .

C. Presentation of pr-theories by operations and equations, that is

roblem A is solved: divide out a j

of equations (pairs of arrows in T ).

if Problem A is solved: divide out a given T € PRTh^ by a given set G
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So let us first attack Problem B.

2.2. pr-closure of theories. Given: an I-sorted theory

r = N + 5 " f H Thj with distinguished "natural numbers object"

1 — • til -£+ N ; wanted: the pr-closure RT € PRTh of T .

First Step • For each A —•>• B —>• B in T , add formally an arrow

AxN —£—*• B to the underlying graph UT of T . This gives a graph

G € GKa.phjA and an inclusion i : UT c-* G . Form the free theory

FG £ Thj over G and divide i t out by the relations holding for T and

by the "natural numbers object equations" (primitive recursive) for the

apt ; formally: l e t r J FG be the congruence (kernel pair) generated

by KP(zT) j FUT -^-+ FG (e being the counit of the adjunction F -i V ) ,

and by the set of pairs

{{r, apt(A, 0)) , [tart, a^U x s)} : A - ^ B -K B in T} .

r exists - as an intersection of kernel pairs - and so does

R'T := FG\- € Thy , by completeness and cocompleteness of Thj ; of.

Theorem O.U. Now force uniqueness of the a , adjoined so far: let

S •*• R'T be the congruence generated by those pairs h, h' : AxN -*• B in

R'T which both satisfy the natural numbers object equations for

appropriate common A -^- B -£+ B in R'T . Define RT := RT\~ € Th=

and the "unit" yT : T -*• RT as the composition in

KP(eT) c-+ T^ 5

FUT -1±+ FG
 n a t r > FG/Y = R'T "a^-» fi'T/5 = RT

UT - ^ G \eT

y'T b e i n g t h e u n i q u e morphism o u t of t h e c o e q u a l i z e r .

" - s t e p . D e f i n e RT := l i n [T ^ + RT - ^ 2 + R2T - * . . . - < • JT'T -*•...)

yT t
and the un i t T —'—>• OT as the zero- th c o l i m i t - i n j e c t i o n . RT ^as a l l the

https://doi.org/10.1017/S0004972700010431 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010431


P r i m i t i v e r e c u r s i v e t h e o r i e s 2 1 7

W'T ) t r i v i a l l y becomes an W -I- Thj-dbject, and yT an N 4- 2%-=--morphism

by W -»• RT := M -+ T - ^ RT .

REMARK 2.3. Within the above construction, there are two different

degrees of "construetiveness". R'T can be recursively described, provided

that such a description exists for T (for example if T is presented by

finitely many operations and equations). This is not the case for S ,

because for given h, h' we would have to decide whether they come from a

common A >• B —>• B . So it would make sense to consider instead of RT

the theory RT := lim R' T , which has a weak natural numbers object

(uniqueness of a fails in general) and which is universal over T in

this regard.

The above construction provides the desired universal extension.

THEOREM 2.4. The category PRThj of primitive recursive I-sorted

theories is a full reflective subcategory of the category N \ Thj of

I u {N}-sorted theories with distinguished successor-algebra N . The

reflection-morphism of T into PRThT is yT : T -*• RT above.

Proof. First we have to show RT € PRThj. . We use the fact that

U : Thrz-*• GtoLphjt = SeM, creates filtered colimits by Theorem O.k.

So lim RnT is constructed separately in Stti for each RT(A, B) .

Therefore, given A -^-* B *-'B in RT , r is represented by some

A -£—+ B in RnT , t by some B -£—>• B in WT , hence both by

A r > B > B in R?T [p = max(n, m)) . By definition of 8 , there is

a unique induced a „ „ : A*N -* B in F T . So the equivalence class

a of a „ „ in RT satisfies the natural numbers equations for r, t .
rt r t

a is hereby uniquely determined, because for other representants r'", t"

one can find an R^T containing all the data, hence a „, „, a ,„.„, have

the same image in R" T , hence in RT .
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Let us now prove the un ive r sa l proper ty of T ' > RT . For

T' € PRThj. , M : T •* T' a theory-morphism in W + Thy , M i s extended

stepwise in to M : RT •*• T' as fol lows.

F i r s t s t e p . Consider the following diagram (of. 2 . 2 ) :

UM

For A B

+ URT .

B in T , there is a unique T-arrow a „ : MA*N ->• MB

induced by MA -^-*- MB - ^ + MB . Hence, for M' : FG -»• T' extending M ,

M1\Q is necessarily the graph-morphism extending M and mapping a , into

a,. ... • So there exists a unique M' : FG -*• T' extending M (and
Mr ,Mt

therefore preserving W ), namely the unique extension of that graph-

morphism into a morphism of theories. Next we show that M' factors

uniquely through nat V . By definition-of M on the a , and "by

T' € VRThj , M' identifies the components of the pairs (r, a .{A, 0))

and (tu , a ,(A x s)) . On the other hand, M' ° Fi is the unique

extension of M to FVT , and is therefore, by a general property of

adjoint situations, equal to eT' ° FUM = M ° cT , so M' equalizes

KP(ET) followed by Fi . Hence, by definition of V , there is a unique

M" : R'T •* T' with tf o nat T = M' .

Because of the uniqueness of the a . . , M" equalizes S , so it

MI* tMt

uniquely factors through nat 5 : R'T -*• RT , say by a theory-morphism

M, : RT •* T' . M is the wanted extension of M , because the whole
diagram above commutes and U i s fai thful . M is unique with that
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1 "property because of the uniqueness of each of the extensions M' , M" , M.

n+l-st step. By the first step, the (already constructed) theory-

morphism M : RnT •* T' uniquely extends to an M : Rn+1T •* 2"

satisfying M , o y~RnT = M .J ** n+1 ' n

°°-step. So M defines a unique cone \M ] ,™ with M = M out of

the linear diagram T —L-+ RT —I >• i? T -»-... into 2" , which in turn

induces a unique W : RT -*• T' out of the colimit, satisfying M ° yT = M

(W trivially preserves W , because Af does and

U ->• RT := W -»• T -X—+ RT ) . M is'hereby clearly uniquely determined, hence

also by M . So T -^—* RT is a reflection of T into the full

subcategory PRThj , hence PRTh^ is a reflective subcategory of

W 4- Thy . This completes the proof.

Problems A and C (of. corollary below) are solved by the following

main theorem of this section.

THEOREM 2.5. The inclusion PRTh <—* N 4- Tkj and the forgetful

functor PRTh- •* GfULphj^ into the category of graphs with node-set

I* = (I u {N})* are algebraic (that is they are monadic and they create

quotients of kernel pairs) of finite rank (that is they create filtered

oolimits).

Proof. PRThj is in H \ Th— closed under limits (construct the

a componentwise) , under quotients by kernel pairs (construct the a .

for representants) and under filtered colimits (take a in a component

where you can map both r and t , see the proof of Theorem 2.U).

Combined with full reflexivity this is to say that the inclusion is algebraic

of finite rank, see Definition 0.2.

The forgetful functor Thj •* Gnxiphj^ is algebraic of finite rank by

Theorem 0.4. This implies trivially that W 4- Th— -*• W 4̂  Ghaphj^, is

algebraic as well. An easy verification shows that W 4-
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has the same property (left adjoint; adjoin formally 0 and s ). Hence,

by the composition theorem,

is algebraic of finite rank (see [27], p. 3; for a proof see [72], 1.6).

REMARK. The Birkhoff Inclusion Theorem ([27], p. 3) does not apply

for proving reflexivity, since PRTh is not closed under subobjects in

N + Thj .

COROLLARY 2.6. For any T € PRThj {especially for RFl freely

generated over "operations" Z £ Gfiapk^^ ) and "equations" G on T ,

that is an equivalence relation G ^ JJT on UT in Gfiapkz:^ , there is a

"realization", namely the coequalizer T/G of T by G relative U ;

see [77]. This aoequalizer is the coeqvalizer of the intersection G of

those kernel pairs on T which contain G and is therefore created by

PRThj •+ GAaphjt algebraic. This solves Problem C.

REMARK 2.7. By the theorem, two more problems are solved: free

adjunction of primitive recursively defined operations to T f ThT > that is

construction of a left adjoint to PRTh- •*• ThT , and construction of a free

pr-theory over Z (i Gfiaph-^ . Consider the commutative diagram

PRThj

truncation

~-i

fr-p, •*• Gtwuphj,. clearly has a left adjoint: adjoin formally new nodes;

hence also the composition PRThj -*• GKaph A (second problem), and

therefore PRThj -*• Thj has a left adjoint, by Dubuc's triangle theorem in

[4]. We shall discuss the latter truncation in more detail at the end of

the next section.
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3. Models o f p r i m i t i v e r e c u r s i v e a l g e b r a i c t h e o r i e s

As expected in this Lawvere-type framework, semantics of our theories

will be defined functorially. This section extends principal results of

functorial semantics to the case of pr-theories and their functorial

models.

DEFINITION 3.1. A model of a primitive recursive theory T (. PRTh

in a pr-category 8 is a pr-functor (see Definition 1.5) M : T •* 8 , that

is to say, M preserves the given products and the natural numbers object

1 —• N —• N . A homomopphism f : M •+ M' is just a natural transform-

ation. This gives us the category Mod(T, 8) = Fanat^ AT, 8) of

T-models in 8 and the forgetful functor

U : ModiT, 8) -+ 8 J ,

We want to show that the pr-closure RT of T € M + Thr-r«-i
 is a

conservative extension of T , that is to say, it gives rise to an

isomorphism of the corresponding model-categories. To this end we make

models into morphisms of theories by means of the following construction.

3.2 Full-image-factorization. Let M -. T •* 8 be an N-preserving

model of T € W + Thj (I = I 0 {N}) in a pr-category B . Then M

M M0 MQ
admits, a unique full-image-factorization T >• T,. • 8 with T • T..

M M

in M + Thj , T a pr-theory and M a pr-functor which is identity on

mor-sets.

Proof. Tu is defined by \fA = 12*| = I* , TjA, B) = B(MA, MB) ,
M M M

these sets made disjoint . T € Thj and M f Thj{T', Tj for the obvious

Mn is t r i v i a l . 1 - ^ N - ^ N of 8 makes T.. into T.. € W + ThT and
0 M M 1

M € W + Th^T, I1 ) . Clearly 1 -2* N -^+ N i s a natural numbers object

0 f f
for T,. , and M defined by . A -J-»- B >—+ MA -J-*- MB p reserves i t .

M
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EXTENSION-THEOREM 3 . 3 . (i) The pr-closure T - ^ RT for

T € H + Thj is universal with respect to arbitrary product- and

-preserving functors M : T •*• 8 into arbitrary pr-categories.

(ii) yT induces an isomorphism Mod{yT, B) : Uod(RT, 8) + Mod(T, 8]

compatible with the forgetful functors to 8 and natural in T and 8 .

(Hi) For £ € GfULph—^ there is such an isomorphism

Mod(RFL> 8) ^ Mod(E, 8) , Mod(Z, 8) consisting of the product- (on

objects) and M-preserving graph-morphisms into 8 .

Proof. (i) Consider

T

the upper t r iangle being the full-image factorization of M with

Mn : T •* T.. in W + Th— , yT being the reflection of Theorem 2.k. M

extends uniquely to AT in PRTh- . So M := M °W is primitive

recursive and makes the outer t r iangle commute. I t is thereby uniquely

determined, because i t necessarily has M as second factor of i t s ful l -

image factorization.

(ii) follows from (i) .

(Hi) by composition of the isomorphism in (ii) and

ModiFZ, 8) + Mod(E, 8) induced by the universal embedding T}Z : T. + FZ ;

see 0.5.

Again by full-image factorization we now show that "dividing out a

theory by equations" is universal not only with respect to other theories,

but also with respect to models.

DEFINITION 3.4. For T € N + Thj , G a subgraph of T x T
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(projections p^ p 2 : G •* T ) , a model M : T •* 8 satisfies G if

Mu = Mv for all (M, V) 6 G , that is if Mp = Â j . These models define

a full subcategory Uod[{T, G), 8) of Mod(T, B) .

THEOREM 3.5. (i) For M € Mod((T, (?), B) tTiere is a unique T/~G-

model M : T/G •* B satisfying M nat-j = M , where G denotes the

congruence on T generated by G .

(ii) nafc defines an isomorphism

Mod(nat-, 8} : Mod(T/G, B) ̂  Mod{{T, G), B)

compatible with the forgetful functors and natural in B .

Proof. Use full-image factorization of M and the fact that T -*• T/G

is the coequalizer of p , p relative to the forgetful functor

N + Thj •* Gfija.ph.jt ; s e e [ 7 7 ] .

The most important special case of this theorem is the following:

take a (finite) graph 2 € Ĝ iapfi—̂  of operators (for example names in

programming language for standard algebraic operations, as addition,

multiplication, and so on). Then take G to be a (finite) set of

equations (for example commutativity of addition, but also, that an

operation can be defined recursively by others, equations between primitive

recursively defined operations, for instance matrix-operations) which

intuitively hold for any "reasonable" model (computer equipped with a

compiler) of the pr-theory F'£ = RFI freely generated by £

(programming-language with DO-loops generated by £ ). Then the theorem

says that any common property of all the "reasonable" models can be found

in a purely syntactic construction, namely in G c EFT, x RFI, (but take

into account Remark 2.3).

Let us now discuss the general properties of the model-categories for

primitive recursive theories. Bearing in mind the above motivation, the

following restriction for our theories does not exclude the important

cases. It is necessary in order to obtain the main results of this

section.

DEFINITION 3.6. T € PRTh is generated by N-actions, if it is
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generated by a graph Z €

A •* i with i € I .

containing only arrows of the form

This includes (basic) operations not involving N and operations of

the form AxNx-B •*• B (basic datum for a function defined by primitive

recursion). Excluded are operations like "integer part" int : F •* N ,

F f J stands for the type of r ea l s .

LEMMA 3.7. I f T € PRTh is generated by N-aetions, then eaah

AxlJ1 -£-+ ifi' in T (Ail*) admits a factorization Axrf1 - ^ / -^-* /

with f out of the free (0-sorted) pr-theory generated, by N .

Proof. Let T be generated by a graph Z € GhaphY* of ^-actions.

Then t r i v i a l l y each arrow in Z u W sat isf ies the assertion of the lemma.

T being the "induced into product"-, composition-, and pr-closure of

Z u M (see Section 2), i t is sufficient to show:

(i) the assertion is stable under forming induced morphisms

into products and under composition;

( i i ) i t i s stable under primitive recursion, that is to say,

i f i t holds for r : A -»• B and t : B -> B , then also for

a . : AxN -*• B .

( i ) is proved straightforwardly; see also the more general Lemma 3.2

in [72] .

( i i ) Consider the following diagram:
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By hypothesis, r and t give r i se to factorizations through r, t in

the free pr-theory generated by W .

Now pr o a . = a~± ° pr , since a l l the other faces of the diagram

commute and hence both sides of the equation equal a~ ± . So again,
r pr ,£

the #-part pr o a of a admits a factorization through the

projection on the ff-part and a~y in the free pr-theory generated by W .

This completes the proof.

MAIN THEOREM 3.8 (primitive recursive algebras are algebras). For

8 = Se.tb or 8 an elementary topos with natural numbers objects or 8 any

complete, cocomplete, well-powered cartesian closed primitive recursive

category with regular epi-mono factorization and with regular epimorphisms

closed under composition and T an I-sorted primitive recursive theory

generated by N-aations, the model-category of T has an algebraic

forgetful functor U : mod(T, 8) •* B of finite rank (see Definition 0.2).

Proof. The theorem follows by specialization to the case J = {N}

from Theorem 3.3 in [72], and on the other hand from Theorem 3.9 below.

By the Lawvere Characterization Theorem (see [76]) monadic functors

(of f ini te rank) into Se-t6 come from algebraic theories. What is this

theory in our case?

THEOREM 3.9. For 8, T as above, let ¥ £ Thj. be the full

subcategory of T with object set |f | = I* (cut out the N ) . Then

f c—* T defines, by restriction, an isomorphism

J : Mod(T, 8) + Vunctx{T, 8) , trivially compatible with the forgetful

functors to a .

Proof. By hypothesis, T i s presented by (E, G) , Z a graph of

^-actions. We have only to show that J is bi ject ive on objects, fu l l ,

and faithful. Let M € Mod{T, 8) be an extension of a given $ : f •+ 8 .

For Ax-lfi - ^ i in I and n = [n , . . . , n,) € fll* , MA^ -^-* Mi i s a

morphism induced out of the coproduct by the family
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[MA
[M,n ,... ,n

Mu>Mi)

and therefore uniquely determined by M . (Here n := s ° 0 : 1 -»• ff .)

For proving surjectivity, take this as a definition of U on I . Then Af

extends freely into M € mod(.ffFE, B) . We have to show that M equalizes

G •+ RFZ , so gives rise to M : T •*• B and that the latter restricts to M

on f . Consider the diagram

(1)

RFl/G=T *

For proving the above assertions, we describe M completely in terms of

PROPOSITION 3.10. For arbitrary Axifi -£+ B^ in RF1,

A, B e I* (up to isos each arroa in RFZ is of this form) we have:

(i) f = [A^ -£*• B, Axpft - ^ + / -£*• ifi ) with f out of the

free pr-theory generated by M ;

(ii) Mf is the induced morphism WA ^A'n' > AxfT -^+ s ) ] , ,

[MA MAxtr] . , being a aoproduct in B by Remark
nQC

1.6 and B cartesian closed.

Hence Mf = (Mf, Mf o pr) = \[M{A
 (i4'n)' 4x/ - X s)] / o pr .

We prove this by induction on the (depth of) expressions in RFl .
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For / : Ax-N -*• i in I , (i) is t r iv i a l , (ii) is true by definition of

M . For f = 0 : "l •+ N or / = s : N ->• N , f is t r iv ia l and therefore

the assertion hclcl.a.

Now, given a finite family
k.

B .x,V % : i €

/ . = U x / —K- B., Axpft -££*• / —^+ ff i j by Lemma 3.7 (or by the

: friinduction hypothesis), f. in the free pr-theory generated by A/ , Mf.

induced by MU

(up to iso) f = [f\] =

and

\M\A (A->nK AxlT — ^ B . \ (induction hypothesis), then'.

,n))). =*(f.o(M4,n)). = *((?J"(i4,n))
It Is Is Is

so the induced / "splits" again into "J*-part" and "ff-part", and Aff

is induced by i ts M[f o (A, n)) , n € Hk .

Next, let / : 4 x / + A ' x / and ^ : 4'xi\r •+ Bx/ satisfy the

proposition. For the composition consider
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Then again g ° f = (gf, Q'/pr) . The left upper rectangle commutes,

because both ways equal [$fn* ?
n) '•> hence the J*-part M(gf) of the

composition is again induced by
n

Up to now, we have proved the proposition to be stable under the

generating procedures for algebraic theories.

Now let us prove that i t is stable under primitive recursion: given

a . = fa . , a~i o pr , } : AxlfxN •<•

theory over W (Lemma 3 . 7 , p roof ) .

Now consider

with a^~ in the free pr-

MA

{MA,n,n)

{m,n)

~* MB*

MAxh -> MB

Ma. ,rt

Ma i s induced by the M[tn ° r) by Remark 1.2 ( i i i ) . By the hypothesis

on r and t and by the composition s t ep above,

M[tn o p) = w(pr o tn o r) i s induced by [w(pr ° t n o r o (M4, W ) ) ] , ,

hence Mx . i s induced by [Mpr o tn o r o (AM, n)) l j , . This

proves the proposition.

Now take simply k = k' = 0 in the proposition to show that

M\^fr. = M ; that is conmutativity of ? in (l).
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We need the proposition in an (apparently) deeper way in order to show

k wi
that M satisfies G : for Ax-IT > B in G (all pairs in G are of

this form by hypothesis on T ) , the pairs A ——*—-* A*-lf~ x> B are in

G , hence in G , therefore equalized by *k : RFZ -*• 8 . The proposition

then implies Mu = Mj . This shows M to be a T-model, since, by

definition, it preserves W . Commutativity of (l) shows M\-c, =M as

required. This proves J in the theorem to be bijective on objects. As

first factor of a faithful functor J is faithful. It follows from the

proposition that J is full.

REMARK 3.11 . The theorem shows that algebras with primitive

recursion can be described by a suitable theory T with no additional sort

N . But it is horribly complicated to give a direct description of T

realizing given operations and equations. Furthermore, T , as a Lawvere

theory, is no longer of finite presentation, even if T is, as a pr-theory.

This last point is very important for applications in computer science,

because in that theory one of the fundamental principles is construction of

"things" out of a finite number of basic "things" by means of a finite

number of finitely describable generation procedures.

4. Correctness of translations

DEFINITION 4.1 . For "languages" T (. PRThT , T' 6 PBThT,- a

syntactical translation is a pr-functor F : T •* T' . For M : T •+ B ,

M' : T' •+ 8 models ("compilers") a family /\ : Mi -* M'Fi {i € I)

(translation of the basic data) makes F into a semantical translation

(F, f) : (T, M) •+ (T', M') . (F, f) is correct, if it defines (by

fuv := 4 % ' fN = ldll ) a f u n c t o r transformation
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This means that executing a program by M (on input-data appropriate for

M ) and then translating the result by / (transforming i t into another

code) is the same as translating the input data by / and then executing

the F-translated program.

THEOREM 4.2. Let (£, G) be a presentation of T {?, t G^uxpk^ ,

see Corollary 2.6). Then -the correctness of a translation

{F, f) : (T, M) -*• (2", M') reduces to the correctness for the (generating)

arrows in £ .

Proof. Correctness is clearly closed under composition of arrows and

- by the universal property of the product - under forming induced

morphisms into products. So correctness extends to the algebraic theory

generated by E within T . It remains to show that the schema of

primitive recursion preserves correctness, that is to say, for / correct

on A • B — • B , f is correct on a , , that is

• M'FA*N

MB 3 >• M 'FB
TB

This follows immediately from Remark 1.2 (ii).

The most important case of theories are the finitely presented ones

(only these are considered in programming). The theorem reduces

correctness checks to a finite number of basic operations.
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