FORM RINGS AND REGULAR SEQUENCES⁽¹⁾

PAOLO VALABREGA AND GIUSEPPE VALLA

Introduction

Hironaka, in his paper $[H_1]$ on desingularization of algebraic varieties over a field of characteristic 0, to deal with singular points develops the algebraic apparatus of the associated graded ring, introducing standard bases of ideals, numerical characters ν^* and τ^* etc. Such a point of view involves a deep investigation of the ideal b^* generated by the initial forms of the elements of an ideal b of a local ring, with respect to a certain ideal a.

The present paper has its origin in the effort of extending to a general situation the following result (due to Hironaka: [H₂]):

Let (A, m) be a local ring and $z \in m - m^2$; then the initial form z^* of z in the associated graded ring G(m) is a regular element if and only if z is regular in A and $(z) \cap m^{n+1} = (z) \cdot m^n$, for every integer n.

Really our paper investigates in a general way the relations between an ideal $b = (f_1, \dots, f_r)$ and the associated graded ideal b^* generated by the initial forms of the elements of b in $G_A(a) = \text{graded ring}$ with respect to the ideal a of the ring A.

We prove the following main results:

- 1-a necessary and sufficient condition for b^* to be generated by the initial forms of the f_i 's, valid for an arbitrary noetherian ring A;
- **2**-a necessary and sufficient condition for b^* to be generated by a regular sequence, valid for an arbitrary noetherian ring A;
- **3**-a condition like in **2**, valid for a local ring A, and generalizing in a natural way Hironaka's result.

The paper contains also some other properties of the associated graded ideal (concerning height and minimal generating sets) and of $G_A(a)$ (conditions to be Cohen-Macaulay: see also [S]).

Received September 16, 1977.

⁽¹⁾ The present paper has been written while both authors were members of CNR, section 3 of GNSAGA.

1. Form rings and ideals

If A is a noetherian ring with a unit element 1 and a any ideal in A, we denote by $G_A(a)$ the graded A/a-algebra $\bigoplus_{n=0}^{\infty} a^n/a^{n+1}$ and call it the form ring of A relative to a (other term: associated graded ring).

Sometimes we will have to deal also with negative powers of the ideal a; once for all $a^n = A$ if $n \le 0$.

Given an element $a \in A$, we denote by v(a) the largest integer n such that $a \in a^n$; if $a \in \bigcap_{n=1}^{\infty} a^n$ we set: $v(a) = \infty$. When $v(a) \neq \infty$ the residue class of a in $a^{v(a)}/a^{v(a)+1}$ is called the initial form of a and denoted by a^* . If $v(a) = \infty$, then we set: $a^* = 0$.

The definition of multiplication in $G_A(a)$ shows that the two relations: $a^*b^* = (ab)^*$ and $a^*b^* \neq 0$ are equivalent, provided that a^* and $b^* \neq 0$.

Let now **b** be any ideal of A; we shall denote by b^* the homogeneous ideal of $G_A(a)$ generated by all the initial forms of the elements in **b**; b^* is called the form ideal of **b** relative to **a** (or the associated graded ideal). For every integer n we have: $b_n^* = \sec$ of homogeneous elements in b^* of degree $n = (b \cap a^n + a^{n+1})/a^{n+1}$; furthermore b^* is the kernel of a natural epimorphism of graded rings

$$\varphi: G_A(a) \to G_{A/b}(b + a/b)$$
,

which is homogeneous of degree 0.

The ideal b^* can be defined with respect to any other ideal a; but, if b and a are comaximal (i.e. a + b = A) then $b^* = G_A(a)$ and conversely (as one may easily check). Therefore we assume, once for all, that a and b are not comaximal. Of course both a and b are assumed to be proper.

Since A is noetherian, then $G_A(a)$ is noetherian. In particular b^* is generated by the initial forms of a finite number of elements of b. However it is not generally true that, if $b = (f_1, \dots, f_r)$, then $b^* = (f_1^*, \dots, f_r^*)$.

The following theorem is just a necessary and sufficient condition for the equality:

THEOREM 1.1. If a and $b = (f_1, \dots, f_r)$ are ideals of A, then $b^* = (f_1^*, \dots, f_r^*)$ in $G_A(a)$ if and only if for all $n \ge 1$ the following equality holds:

$$a^n \cap b = \sum_{i=1}^r a^{n-p_i} f_i$$

where $p_i = v(f_i)$, $i = 1, \dots, r$.

Proof. It is clear that
$$(f_1^*, \dots, f_r^*)_n = \left(\sum_{i=1}^r a^{n-p_i} f_i + a^{n+1}\right) / a^{n+1}$$

Hence, if $\boldsymbol{b} \cap \boldsymbol{a}^n = \sum_{i=1}^r \boldsymbol{a}^{n-p_i} f_i$ for all $n \geqslant 1$, we have: $\boldsymbol{b}^* = (f_1^*, \dots, f_r^*)$.

Conversely, if b^* is generated by the f_i^{**} 's, then we have: $a^n \cap b \subseteq \sum_{i=1}^r a^{n-p_i} f_i + a^{n+1}$ for all $n \geqslant 1$; it follows that $a^n \cap b = \bigcap_{i=1}^n \left(\sum_{i=1}^r a^{n-p_i} f_i + a^{n+t} \cap b\right)$. By the Artin-Rees lemma there exists an integer $q \geqslant 0$ such that $a^{n+t} \cap b = a^{n+t-q}(a^q \cap b)$ for all $n+t \geqslant q$. Hence, if d is an integer such that $d \geqslant n-p_i$ for $i=1,\dots,r$, we get the following equality:

$$a^n \cap b = \bigcap_{t \geqslant q-n+d} \left(\sum_{i=1}^r a^{n-p_i} f_i + a^{n+t-q} (a^q \cap b) \right) = \sum_{i=1}^r a^{n-p_i} f_i$$

since, if $t \geqslant q - n + d$, then $a^{n+t-q}(a^q \cap b) \subseteq a^d b \subseteq \sum_{i=1}^r a^{n-p_i} f_i$.

Remark 1.2. Using [R, Rem. (3.7)] one can easily see (cf. [V]) that, if a and b are ideals of A such that $a + b \neq A$, then $h(b^*) \geqslant h(b)$ at least when A is local, and certainly equality holds whenever $a \subseteq b$; moreover there are examples with strict inequality. Therefore the following result may have some interest:

PROPOSITION 1.3. If **a** and **b** = (f_1, \dots, f_r) are ideals of A such that $a + b \neq A$, then $h(b^*) \leq r$.

Proof. Let m be a maximal ideal containing both a and b; then we have: $h(m) - r \le h(m/b) = h((m/b)^*) = h(m^*/b^*) \le h(m^*) - h(b^*) = h(m) - h(b^*)$ (in the preceding chain of inequalities we use the fact that, in the isomorphism $G_A(a)/b^* \cong G_{A/b}(a+b/b)$, m^*/b^* and $(m/b)^*$ are corresponding ideals).

Remark 1.4. If $h(f_1^*, \dots, f_r^*) = r$, then also $h(b^*) = r$. However the following example shows that the condition $h(f_1^*, \dots, f_r^*) = r$ does not imply the equality $b^* = (f_1^*, \dots, f_r^*)$.

EXAMPLE 1.5. Let A be the ring $k[[t^4, t^5, t^{11}]] = k[[X, Y, Z]]/(XZ - Y^3, YZ - X^4, Z^2 - X^3Y^2) = k[[x, y, z]], \quad \boldsymbol{a} = (x, y, z), \quad \boldsymbol{b} = (x); \quad \text{we have:} G_A(\boldsymbol{a}) = k[T_1, T_2, T_3]/(T_1T_3, T_2T_3, T_3^2, T_2^4) = k[t_1, t_2, t_3]; \quad \text{hence } h(\boldsymbol{b}^*) = h(t_1) = 1, \quad \text{but } y^3 \in \boldsymbol{a}^3 \cap \boldsymbol{b} \text{ and } y^3 \notin \boldsymbol{a}^2x \text{ and so, by Theorem 1.1, } \boldsymbol{b}^* \neq (x^*).$

2. Regular sequences in $G_A(a)$

In this section we consider a noetherian ring A and an ideal a in A; if $f_1, \dots, f_r \in A$ we shall state some necessary and sufficient conditions for f_1^*, \dots, f_r^* to be a regular sequence in $G_A(a)$ (always provided that a and (f_1, \dots, f_r) be not comaximal).

In the following we shall write $p_i = v(f_i)$ and $b_i = (f_1, \dots, f_i)$, for $i = 1, \dots, r$ $(b_0 = (0))$.

PROPOSITION 2.1. If **a** and **b** = (f_1, \dots, f_r) are ideals of A such that f_1^*, \dots, f_r^* is a $G_A(\mathbf{a})$ -sequence, then $\mathbf{b}^* = (f_1^*, \dots, f_r^*)$.

Proof. We use induction on r. The case r=1 is easy: if f^* is a non zero-divisor, then, for every $g,(fg)^*=f^*g^*$, which shows our claim. Assume now the theorem true for r-1 and prove it for r.

If $a \in a^n \cap b$ let t be the greatest integer (if it exists, ∞ if it does not exist) such that $a \in b_{r-1} + f_r a^t$. So we can write $a = x + f_r y$, with v(y) = t, $x \in b_{r-1}$; if $t + p_r \le n$ we have: $f_r y \in (a^n + b_{r-1}) \cap a^{t+p_r} \subseteq a^{t+p_r+1} + b_{r-1} \cap a^{t+p_r}$.

It follows that $f_r^*y^* \in b_{r-1}^*$; by our inductive hypothesis b_{r-1}^* is generated by the initial forms of the f_i 's, $i=1,\cdots,r-1$, hence $y^* \in b_{r-1}^*$. Then $y \in a^{t+1} + b_{r-1} \cap a^t$, so that $a \in b_{r-1} + f_r a^{t+1}$, which is absurd. Therefore $t+p_r \geqslant n$, hence $a \in a^n \cap b_{r-1} + f_r a^{n-p_r}$. The conclusion follows immediately from the inductive assumption together with our Theorem 1.1.

Remark 2.2. The converse of Proposition 2.1 is false even if A is local. In fact, let A = k[[X,Y]]/(XY) = k[[x,y]], b = (x), a = (x,y); then we have: $a^n \cap b = (x^n, y^n) \cap (x) = (x^n) + (y^n) \cap (x) = (x^n) = a^{n-1}b$. Hence by Theorem 1.1 $b^* = (x^*)$, but $G_A(a) = k[T_1, T_2]/(T_1T_2) = k[t_1, t_2]$ and $x^* = t_1$ is a zero divisor in $G_A(a)$.

In the following we shall denote by \overline{I} the topological closure of an ideal I with respect to the a-adic topology.

THEOREM 2.3. Let **a** and $b = (f_1, \dots, f_r)$ be ideals of the noetherian ring A. Then the following facts are equivalent:

- (i) (f_1^*, \dots, f_r^*) is a $G_A(a)$ -sequence;
- (ii) for each $i=1,\cdots,r, \pmb{b}_{i-1}\colon f_i\subseteq \bar{\pmb{b}}_{i-1}$ and $\pmb{b}_i\cap \pmb{a}^n=\sum\limits_{j=1}^i\pmb{a}^{n-p_j}f_j,$ for all $n\geqslant 1.$

Proof. (i) \Rightarrow (ii). For Proposition 2.1 it is enough to show that $\boldsymbol{b}_{i-1}: f_i \subseteq \bar{\boldsymbol{b}}_{i-1}$. Let $a \in \boldsymbol{b}_{i-1}: f_i$ with v(a) = n; then $a^*f_i^* \in \boldsymbol{b}_{i-1}^* = (f_1^*, \dots, f_{i-1}^*)$, hence $a^* \in \boldsymbol{b}_{i-1}^*$. It follows that $a \in \boldsymbol{b}_{i-1} + \boldsymbol{a}^{n+1} \cap (\boldsymbol{b}_{i-1}: f_i)$; repeating the argument we see that $a \in \bar{\boldsymbol{b}}_{i-1}$.

(ii) \Rightarrow (i). Conversely, since $a+b \neq A$ and b_{i-1} : $f_i \subseteq \bar{b}_{i-1}$ for each $i=1,\cdots,r$, we have $p_i < \infty$ for each $i=1,\cdots,r$. In fact, assume that $p_i = \infty$ for some i; then there exists $a \in a$ such that $(1-a)f_i = 0$. Thus $1-a \in \bar{b}_{i-1}$ and then $(1-a)(1-a') \in b_{i-1}$, with $a' \in a$; but since $a+b \neq A$, this is a contradiction.

Now let $a^*f_i^* \in (f_1^*, \dots, f_{i-1}^*)$ with v(a) = n; then $af_i \in b_{i-1} + a^{n+p_{i+1}}$, hence $b = af_i + \sum_{i=1}^{i-1} a_j f_j \in b_i \cap a^{n+p_{i+1}}$.

We can write $b = \sum_{j=1}^{i} b_j f_j$ with $b_j \in \boldsymbol{a}^{n+p_i+1-p_j}$, whence we deduce that $a - b_i \in \boldsymbol{b}_{i-1}$: f_i and from this it follows that $a \in \boldsymbol{a}^{n+1} + \bar{\boldsymbol{b}}_{i-1}$.

Finally $a \in \mathbf{a}^{n+1} + \mathbf{b}_{i-1} \cap \mathbf{a}^n$ and this proves that $a^* \in \mathbf{b}_{i-1}^* = (f_1^*, \dots, f_{i-1}^*)$.

COROLLARY 2.4. Let A be a local ring and I, a ideals of A, such that I^* is generated by a $G_A(a)$ -sequence. Then I is generated by an A-sequence.

Proof. Let I^* be generated by g_1, \dots, g_r , where the g_i 's form a regular sequence. Since all the minimal generating sets of I^* have the same number of elements, we can write $I^* = (f_1^*, \dots, f_r^*)$ with $f_i \in I$. Now $gr(I^*) = r$, hence using the homology of Koszul complex we get $H_1(f_1^*, \dots, f_r^*; G_A(a)) = 0$. From this it follows that f_1^*, \dots, f_r^* is a $G_A(a)$ -sequence (see [A-B], Prop. 2.8); hence, by Theorem 2.3, f_1, \dots, f_r is an A-sequence. Furthermore, since $I^* = (f_1^*, \dots, f_r^*)$, we get: $(f_1, \dots, f_r) \subseteq I \subseteq (\overline{f_1, \dots, f_r}) = (f_1, \dots, f_r)$.

Remark 2.5. If f_1^*, \dots, f_r^* form a regular sequence, it is not necessarily true that f_1, \dots, f_r form also an A-sequence, unless $I = \bar{I}$ for

every ideal I contained in b. In fact let A = k[x, y, z] = k[X, Y, Z]/(XZ, X - XY), a = (y), f = yz; then, since y is not a 0-divisor in A, we have: $G_A(a) = (A/a)[T] = k[Z, T]$ which is a domain. Therefore $\bar{f} \in a/a^2$ is not a 0-divisor in $G_A(a)$, but xf = 0.

PROPOSITION 2.6. Let \mathbf{a} and $\mathbf{b} = (f_1, \dots, f_r)$ be two ideals of A such that f_1, \dots, f_r is an A-sequence and $\mathbf{a}^n \cap \mathbf{b} = \sum_{j=1}^r \mathbf{a}^{n-p_i} f_i$ for all $n \ge 1$. Suppose either $\mathbf{b} \subseteq \mathbf{a}$ or A is local.

Then $a^n \cap b_i = \sum_{j=1}^i a^{n-p_j} f_j$, for each $i = 1, \dots, r$ and for all $n \ge 1$; thus f_1^*, \dots, f_r^* is a $G_A(a)$ -sequence.

Proof. It is enough to show that $a^n \cap b_{r-1} = \sum_{j=1}^{r-1} a^{n-p_j} f_j$, for all $n \geqslant 1$. Let $a = \sum_{i=1}^{r-1} a_i f_i$ be an element of a^n ; then $a = \sum_{i=1}^r b_i f_i$, where $b_i \in a^{n-p_i}$ and we get: $b_r \in a^{n-p_r} \cap b_{r-1}$. Thus we have: $a^n \cap b_{r-1} \subseteq \sum_{j=1}^{r-1} a^{n-p_j} f_j + f_r(a^{n-p_r} \cap b_{r-1})$. Let m be an integer such that $m \le p_i$ for each $i = 1, \dots, r-1$. If $n \le m+p_r$, we have that $b_{r-1} \subseteq a^{n-p_r}$ and $f_r \in a^{n-p_i}$ for each $i = 1, \dots, r-1$; hence $a^n \cap b_{r-1}$ is contained in $\sum_{j=1}^{r-1} a^{n-p_j} f_j + f_r b_{r-1} \subseteq \sum_{j=1}^{r-1} a^{n-p_j} f_j$. Therefore we may assume that n is greater than $m+p_r$ and also that $a^i \cap b_{r-1} = \sum_{j=1}^{r-1} a^{i-p_j} f_j$, for all $t \le n-1$. If $b \subseteq a$, then $p_r > 0$; if A is local and $p_r = 0$, then we have $a^n \cap b_{r-1} \subseteq \sum_{j=1}^{r-1} a^{n-p_j} f_j + f_r(a^n \cap b_{r-1})$, hence $a^n \cap b_{r-1} = \sum_{j=1}^{r-1} a^{n-p_j} f_j$. If $p_r \geqslant 1$, since $n - p_r \le n-1$, we have $a^n \cap b_{r-1} \subseteq \sum_{j=1}^{r-1} a^{n-p_j} f_j + f_r(\sum_{j=1}^{r-1} a^{n-p_r-p_j} f_j) = \sum_{j=1}^{r-1} a^{n-p_j} f_j$, and this completes the proof.

COROLLARY 2.7. If **a** and **b** = (f_1, \dots, f_r) are ideals of a local ring A, then f_1^*, \dots, f_r^* form a $G_A(\mathbf{a})$ -sequence if and only if f_1, \dots, f_r form an A-sequence and moreover $\mathbf{a}^n \cap \mathbf{b} = \sum_{i=1}^r \mathbf{a}^{n-p_i} f_i$ for all $n \ge 1$.

Remark 2.8. The following example justifies the hypotheses of the above proposition. Let A be the ring $k[X, Y, Z, T]/(XT - Y^2, T - Y - TZ)$ = k[x, y, z, t], a = (x, y), $f_1 = x$ and $f_2 = z$; then it is easy to see that

 f_1, f_2 form a regular sequence and $p_1 = 1$, $p_2 = 0$. We have: $xt \in a^2 \cap (x)$, but $xt \notin ax$; on the other hand $a \cap (x, z) = (x) + a \cap (z) = (x) + az$ and, if $n \ge 2$, then $a^n \cap (x, z) = a^n = a^{n-1}x + (y^n) = a^{n-1}x + a^nz$ since $y^n = xy^{n-1} + y^nz$.

Remark 2.9. The results of the present section extend to a quite general situation the theorem proved by Hironaka ($[H_2]$, Prop. 6) for a local ring (A, m), when a = m and b = (f) = principal ideal, generated by an element in $m - m^2$.

3. Applications

In this section we discuss some applications of the preceding results.

PROPOSITION 3.1. Let a and $b = (f_1, \dots, f_r)$ be ideals of A such that $b \subseteq a$, f_1, \dots, f_r is an A-sequence and $ab = a^2$. Then the initial forms of the f_i 's form a $G_A(a)$ -sequence.

Proof. If $f_i \in a^2 = ab$ then we would get a relation of the form

$$a_1f_1 + \cdots + (1+a_i)f_i + \cdots + a_rf_r = 0$$
, $a_j \in a(\forall j)$.

But since f_1, \dots, f_r is an A-sequence, in any relation $\sum x_j f_j = 0$ all the coefficients x_j must lie in the ideal (f_1, \dots, f_r) . This is well known and easy to prove by induction on r. Thus $f_i \notin a^2$ and we have $p_1 = \dots = p_r = 1$. Therefore it is enough to prove, by Proposition 2.6, that $a^n \cap b = a^{n-1}b$. This is true for n = 1; if $n \ge 2$ we have $a^n = a^{n-1}b$, hence $a^n \cap b = a^{n-1}b \cap b = a^{n-1}b$.

Remark 3.2. An interesting situation in which we can apply the above proposition is the following: let (A, m) be a local ring of dimension r which is Cohen-Macaulay, with embedding dimension m and multiplicity e; then one can show ([S], Theorem 1) that $m \le e + r - 1$ and the equality holds if and only if there is an A-sequence f_1, \dots, f_r in m such that $m^2 = m$ (f_1, \dots, f_r) . The latter equality is exactly our condition on the ideals a = m and $b = (f_1, \dots, f_r)$.

Remark 3.3. The results of the present paper can be used to give a new and simplified proof of ([V], Theorem 3.2), i.e. of the following claim:

Let A be a Cohen-Macaulay ring and let a_1, \dots, a_s be a regular

sequence, $I = (a_1, \dots, a_s)$, t an integer $\geqslant 1$. Then $G_A(a)$ is Cohen-Macaulay if $a = I^t$.

Proof. As in [V] we may assume that A is a r-dimensional local ring with maximal ideal m. Let $a_1, \dots, a_s, f_{s+1}, \dots, f_r$ be a maximal A-sequence in m and let $J = (f_{s+1}, \dots, f_r)$, $f_i = a_i^t$, for each $i = 1, \dots, s$ and $b = (f_1, \dots, f_r)$. Since f_1, \dots, f_s is a regular sequence modulo J we have, by [V], Lemma 2.1, that $a^n \cap b \subseteq a^{n-1}(f_1, \dots, f_s) + J$ for all $n \ge 1$; furthermore, since f_{s+1}, \dots, f_r is a regular sequence modulo I, hence modulo a^n for all $n \ge 1$, by [R-V], Lemma 1.1, we get: $a^n \cap J = a^n J$. From this it follows that $a^n \cap b \subseteq a^n \cap (a^{n-1}(f_1, \dots, f_s) + J) = a^{n-1}(f_1, \dots, f_s) + a^n \cap J = a^{n-1}(f_1, \dots, f_s) + a^n \cap J = a^{n-1}(f_1, \dots, f_s) + a^n J$; thus the f_i^* 's form a $G_A(a)$ -sequence by Proposition 2.6. Since dim $G_A(a) = r$, by [M-R] this is enough to prove that $G_A(a)$ is Cohen-Macaulay.

We conclude the paper trying to compare the initial forms of a set of elements with respect to two different ideals a and I,

First of all, it is easy to see that the initial form of the same element with respect to two different ideals may or may not be a 0-divisor; for instance, if $A = k[[x, y, z]] = k[[X, Y, Z]]/(XY - Z^2)$, a = (x, y, z), I = (x, z), then it is clear that the initial form of x relative to a is a non 0-divisor, while the initial form with respect to I is a 0-divisor. Therefore $(x)^* = (x^*)$ in $G_A(a)$ (Proposition 2.1); on the contrary $(x)^*$ in $G_A(I)$ is not generated by the initial form of x, because of Theorem 1.1.

In the following proposition we denote by f^* the initial form with respect to a and by f^0 the initial form with respect to I.

PROPOSITION 3.4. Let $I \subseteq a$ be ideals of A and let f_1, \dots, f_r be elements of I such that $v_I(f_i) = v_a(f_i)$ for each i. Assume that f_1^*, \dots, f_r^* form a $G_A(a)$ -sequence. Then f_1^0, \dots, f_r^0 form a minimal base of the ideal (f_1^0, \dots, f_r^0) of $G_A(I)$.

Proof. By [A-B], Corollary 2.9, f_1^* , \cdots , f_r^* is a $G_A(a)$ -sequence in any order. Now if $f_r^0 = \sum_{i=1}^{r-1} a_i^0 f_i^0$, let $a = \sum_{i=1}^{r-1} a_i f_i$ and $p = v_a(f_r) = v_I(f_r)$; then $f_r = a + b$, where $b \in I^{p+1}$. Hence $a \in a^p$ and $a \notin a^{p+1}$; it follows that $f_r^* = a^* \in (f_1, \cdots, f_{r-1})^* = (f_1^*, \cdots, f_{r-1}^*)$, which is absurd.

REFERENCES

- [A-B] M. Auslander and D. Buchsbaum, Codimension and multiplicity, Ann. of Math., **68** (1958), 625-657.
- [H₁] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic, 0. Ann. of Math., **79** (1964), 109-326.
- [H₂] H. Hironaka, Certain numerical characters of singularities, J. Math. Kyoto Univ., 10 (1970), 151-187.
- [M-R] J. Matijevich and P. Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings, J. Math. Kyoto Univ., 14 (1974), 125-128.
- [R] L. J. Ratiff, Jr., On quasi unmixed local domains, the altitude formula, and the chain condition for prime ideals (II), Amer. J. Math., 92 (1970), 99-144.
- [R-V] L. Robbiano and G. Valla, On normal flatness and normal torsion freeness, J. of Algebra, 43 (1976), 552-560.
- [S] J. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ., 17 (1977), 19-21.
- [V] G. Valla, Certain graded algebras are always Cohen-Macaulay, J. of Algebra, 42 (1976), 537-548.

Istituto matematico-Politecnico di Torino Istituto matematico-Università di Genova