
CONJUGATES AND LEGENDRE TRANSFORMS 
OF CONVEX FUNCTIONS 

R. T. ROCKAFELLAR 

1. Introduction. Fenchel's conjugate correspondence for convex functions 
may be viewed as a generalization of the classical Legendre correspondence, as 
indicated briefly in (6). Here the relationship between the two correspondences 
will be described in detail. Essentially, the conjugate reduces to the Legendre 
transform if and only if the subdinferential of the convex function is a one-to-
one mapping. The one-to-oneness is equivalent to differentiability and strict 
convexity, plus a condition that the function become infinitely steep near 
boundary points of its effective domain. These conditions are shown to be the 
very ones under which the Legendre correspondence is well-defined and 
symmetric among convex functions. Facts about Legendre transforms may 
thus be deduced using the elegant, geometrically motivated methods of 
Fenchel. This has definite advantages over the more restrictive classical 
treatment of the Legendre transformation in terms of implicit functions, 
determinants, and the like. 

2. Statement of results. Let h be a differentiable real-valued function 
given on a non-empty open set U in Rn. Let £/* be the image of U under the 
gradient map S7h: x —> S7h{x). If VA is one-to-one, the function 

(2.1) **(**) = <**, (VA)"1^*)) - A((Vft)_1(**)) 

is well-defined on U* (where (•, •) denotes the ordinary inner product in Rn). 
The pair (£/*, h*) is called the Legendre transform of (U, h). 

Legendre transforms, of course, have had a long history in the calculus of 
variations; see for example (3, pp. 231-242; 4, pp. 32-39; 8, p. 27). More 
recently, they have been employed by Dennis (5) in the study of convex 
programs. Dennis assumes that U is convex, h is strictly convex, and Vh is 
continuous. Unfortunately, these properties are not necessarily inherited by 
(U*,h*). In fact U* might not be convex (see the example in §4 below). The 
continuity assumption on Ah is actually redundant; it is known that, if h is 
convex and each of its partial derivatives exists throughout U, then h is 
differentiable and VA is continuous on U (see 7, p. 86). 

We shall say that (C7, h) is a convex function of Legendre type on Rn if U is a 
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non-empty open convex set in Rn, h is strictly convex and differentiable on U, 
and 

(2.2) lim 4r h(\a + (1 - X)x) 
xlo ah 

whenever a Ç U and x is a boundary point of £/. The virtue of condition (2.2), 
which is automatically satisfied when U = Rn, is that it leads to a symmetric 
correspondence. We shall prove the following theorem in §3. 

THEOREM 1. Let (U, h) be a convex function of Legendre type on Rn. The 
Legendre transform ([/*, h*) is then well-defined. It is another convex function of 
Legendre type on Rn, and \7h* = (V/z) -1 on U*. The Legendre transform of 
(£/*, h*) is (U, h) again. 

We shall now explain the parallel "conjugate" correspondence, introduced 
by Fenchel in (6). L e t / be a proper convex function on Rn, i.e. an everywhere-
defined function with values in (— oo, +oo], not identically + °°, such that 

/(Ax + (1 - \)y) < X/(x) + (1 - \)f(y) when 0 < X < 1. 

Suppose also that / is lower semi-continuous (l.s.c), in other words that 
{x\f(x) < M} is closed in Rn for every /x £ R. The function/* on Rn defined by 

(2.3) /*(**) = s u p , { ( x , x * ) - / ( x ) J 

is called the conjugate of / . Fenchel proved (in somewhat different notation) 
t ha t /* is again a l.s.c. proper convex function on Rn, and that the conjugate 
of/* is in tu rn / . 

A vector x* is said to be a subgradient of / at x if 

(2.4) f(y) > /(x) + (y - x, x*> for all y £ Rn. 

The set of these subgradients x* is denoted by c/(x). The (multiple-valued) 
mapping df: x —» c/(x) is the subdifferential of/. By (2.3) and (2.4), 

(2.5) /*(**) = <x, x*) - / (x) if and only if x* 6 6/(x). 

Since the condition on the left in (2.5) can be expressed symmetrically, we have 

(2.6) x* G a/(x) if and only if x G df*(x*). 

Formula (2.5) can be viewed as a generalization of (2.1). We shall see below 
that the two formulas are equivalent when df is one-to-one (from its domain to 
its range), i.e. when x±* 6 c/(xi) and x2* G d/(x2) imply either that Xi ^ %2 
and Xi* T^ x2*, or that Xi = x2 and xx* = x2*. 

The two function correspondences can be tied together by Fenchel's closure 
operation. Given a finite convex function h on an open convex set U in Rn and 
any a Ç U, the function/ on Rn defined by 

(2.7) f(x) = \ 
h(x) if x G U, 
lim h(\a + (1 - X)x) if x 6 (cl U)\U, 
xlo 

l + o o if x £ Cl [/, 
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will be called the closed extension of (U,h). I t is a l.s.c. proper convex function. 
I t does not depend on the particular a chosen; see (6 and 7, pp. 74-79). The 
conjugate of/can be compared with the Legendre transform of (U, h) when the 
latter is defined. In this connection we have the following result. 

THEOREM 2. Letf be any l.s.c. proper convex function on Rn. Then df is one-to-
one if and only if f is the closed extension of a convex function of Legendre type 
(U,h). In that case df = Vh, i.e. x* G df(x) if and only if x G U and 
x* = Vh(x). Furthermore, the conjugate function f* is then likewise the closed 
extension of the Legendre transform (£/*, h*). 

Finally, we have a characterization of the case where the Legendre transform 
is everywhere-defined. 

THEOREM 3. Let h be a (real-valued) differentiable convex function defined on 
all ofRn. Then \/h is a continuous one-to-one mapping ofRn onto itself, if and only 
if h is strictly convex and 

(2.8) limx^oo h(\x)/\ = + oo for every x ^ O , 

The conjugate of h is then the same as its Legendre transform. 

3. Proofs. If / is a l.s.c. proper convex function on Rn whose subdifferential 
df is one-to-one, the same is true of the conjugate function/* by (2.5). The 
conjugate of/* i s / . Thus Theorem 1 is a corollary of Theorem 2. 

We shall now prove Theorem 2. L e t / b e any l.s.c. proper convex function on 
Rn. Obviously df(x) is empty when f(x) is not finite, i.e., when x does not 
belong to the effective domain of/, which is the convex set 

d o m / = {x\f(x) < + ° ° } . 

On the other hand, if x G d o m / the directional derivative 

(3.1) / ' ( * ; z) = lim[/(x + As) - /(*)]/X 
xlo 

exists for every z G Rn. The following facts about the directional derivative 
function were proved essentially by Fenchel in (7, pp. 79-88 and 102-104). 
If df(x) is empty, f'(x;z) = — oo for every z in the relative interior of the 
convex cone generated by (dom/) — x. If df(x) is not empty, f(x; •) is a 
proper convex function on Rn such that 

(3.2) lim inf/ '(a; y) = sup{(s, x*)|x* G df(x)} 
V-)Z 

for every z G Rn. Therefore df(x) contains exactly one vector if and only if the 
left side of (3.2) is a linear function of z. Trivially / ' (x ; z) = + oo when z does 
not belong to the convex cone generated by (dom/) — x. Hence the left side 
of (3.2) is + oo when z lies outside the closure of this cone. Of course, the only 
convex cone dense in Rn is Rn itself. Thus the left side of (3.2) cannot be linear 
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in z unless the convex cone generated by (domf) — x is all of Rn. Since domf 
is a convex set, this can happen only if x is an interior point of domf, as can 
easily be shown using standard separation theorems. Now, when x is an interior 
point of domf, it is a classical fact (see 2) tha t / ' ( x ; z)) is finite for every z, 
and t ha t / ' ( x ; •) is linear if and only if/ is differentiable at x. In that event 

(3.3) / ' ( * ; z) = (z, V/(x)) for all z. 

It is well known that a convex function finite on all of Rn is automatically 
continuous. The "Km inf" is therefore unnecessary in (3.2) when x is an 
interior point of domf. We are thus led to the following conclusion: 

df(x) contains exactly one vector x*, if and only if x is an interior point of domf 
and f is differentiable at x; then x* = V/(x). 

Next we show that, when xi and X2 are interior points of domf, 

d/(*i) r\ df(x2) 7* 0 
if and only if 

(3.4) f(\Xl + (1 - X)x2) = X/(*i) + (1 - X)/(x2) 

holds for some X with 0 < X < 1. Suppose first that x* is common to both 
df(xi) and df(x2), so that 

(3.5) f(y) >f(Xl) + (y - xx, x*) and f(y) > f(x2) + (y - x2j x*) 

for every y Ç Rn. This implies that 

(3.6) f(xi) - f(x2) = (xi - x2} x*). 

If 0 < X < 1, we have by (3.5) and (3.6) 

/(Xxi + (1 - X)x2) >f(x2) + X<X! - x*, x*) = X/(xi) + (1 - X)/(x2). 

The opposite inequality is true because/ is convex, so (3.4) holds. Conversely, 
suppose (3.4) holds for some X with 0 < X < 1. Then x = Xxi + (1 — A)x2 is 
another interior point of domf. Hence f(x;z) is finite for all z, so that 
df(x) 7^ 0, as in the preceding paragraph. Let x* be any element of df(x). 
For every y Ç Rn, 

(3.7) / (y) >/(Xx! + (1 - X)x2) + (y - Xxx - (1 - X)x2, x*) 
= X[/(x0 + (3̂  - xi, x*)] + (1 - X)[f(x2) + {y - x2, x*)]. 

Taking first y = xi and then ^ = x2 in (3.7), we see that (3.6) holds. When 
this fact is substituted into (3.7), we get (3.5). Thus x* belongs to d/(xi) and 
df(x2). 

Of course, (3.4) holds for some X with 0 < X < 1 and two different interior 
points Xi and x2 of dom / , if and only if/ fails to be strictly convex on the interior 
of domf. 
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Our arguments have shown so far that df is one-to-one if and only if / is 
differentiable and strictly convex on the interior of dom/ , with df(x) = 0 for 
non-interior points of domf. We have also seen that then df coincides with the 
ordinary gradient mapping of/ defined on the interior of domf. I t is known 
(10) that df determines/ up to an additive constant. Hence df(x) certainly 
cannot be empty for every x. Consequently, if df is one-to-one, the 
interior U of dom / is a non-empty open convex set, and the restriction h of/ to U 
is differentiable and strictly convex. Moreover, / is then the closed extension of 
(U, h), because 

f(x) = lim/(Xa + (1 - \)x) 
xlo 

for all x when a is any point of dom / . (This follows from the fact that 

(3.8) g(0) = limg(X) 
xlo 

when g is a l.s.c. proper convex function on R such that g(X) < + co for some 
X > 0 ; c f . (7, p. 78).) 

Suppose now t h a t / is the closed extension of ([/, h), where U is a non-empty 
open convex set and h is a differentiable strictly convex function on U. Let 
a Ç U and let x be a boundary point of U. We shall prove that df(x) is empty 
if and only if (2.2) holds. This will establish all but the last assertion of 
Theorem 2. Since a is an interior point of dom/ , the vector a — x belongs to 
the interior of the convex cone generated by (dom/) — x. Thus, according to 
the facts about directional derivatives reviewed at the beginning of the proof 
of Theorem 2, df(x) is empty if and only if either/(x) = + » , or / (x) < + oo 
bu t / ' (x ; a — x) = — oo. Setting 

g(\) = /(Xa + (1 - X)*), 

we can pass to a one-dimensional context. Here g is finite, differentiable, and 
strictly convex on an open interval including {X | 0 < X < 1}, and (3.8) holds. 
The derivative function gf is then increasing and continuous on the same open 
interval. The problem is to show that 

limg'(X) = -oo 
xlo 

if and only if either g(0) = + °°, or g(0) is finite but 

lip[g(X) - £ ( 0 ) ] / X = - o o . 
xlo 

This is an elementary exercise in the calculus. 
The last assertion of Theorem 2 will now be verified. Assume t h a t / is the 

closed extension of a convex function of Legendre type (U, h). By (2.6) and 
the part of the theorem already proved,/* must also be the closed extension of 
some convex function of Legendre type (V, k) with V& = (VA) - 1 . The latter 
implies V = If*. For each x* G U*, we have 

k(x*) =f*(x*) = <*,**) - h(x) ifx* = Vh(x), 
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by (2.5). Thus k is the function h* defined in (2.1). This completes the proof of 
Theorem 2. 

Theorem 3 is immediate from Theorem 2 and (9, 5B and 5C), which says 
that (2.8) holds if and only if the conjugate of / = h is everywhere finite. 
(Continuity is automatic, as pointed out in §2.) 

4. Counterexample. Let U be the open upper half-plane in R2, and let 

MÉbfc) = [(ÉiVfc) + fi* + fa2]/4 

on U. This differentiate function has a positive definite Hessian matrix 
throughout U. Hence it is strictly convex; see (1). But (2.2) fails for a = (0, 1) 
and x = (0, 0). The closed extension/ of h coincides with h on U, is 0 at the 
origin, and is +°° elsewhere. The conjugate/* is finite everywhere; it actually 
gives the square of the distance of each point in R2 from the parabolic convex 
set 

C= {(fi*. &*) I fc* < -fe*)2}. 

But the Legendre transform h* is not everywhere defined. In fact U* is the 
complement of C, and therefore is not even convex. Incidentally, /* is con
tinuously differentiable on all of Rn, too. The range of its gradient mapping is 
the union of U with the origin, which is convex but not open. 

Note that the non-convexity of If* did not result here because the given 
function was arbitrarily restricted to a smaller domain so that some of its 
gradient mapping was lost. Since h approaches +co as one nears the £i-axis, 
except at the origin, it is clear that h is not the restriction of any finite convex 
function defined on an open set larger than U. This example also shows that 
condition (2.2) is generally not "constructive." A pair (£/, h) satisfying all 
the requirements for being a convex function of Legendre type except (2.2) 
cannot always be extended to a convex function of Legendre type. 
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