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Abstract
Existence of piecewise optimal control is proved when the cost function
includes one or both of (a) a cost of sudden switching (discontinuity) of
control variables, and (b) a cost associated with the maximum rate of
variation of the control over segments of the path for which the control is
continuous.

1. Introduction

Consider a system characterized by the equation

x(t)=f(t,x(.t),u(t)l x(0) = x0, (1)
together with the associated cost functional

/(«) = J(x, u, <D) = f 7 o C *('), "(0) dt+<P(«),
Jo

(2)

where Te(0, oo) is prespecified. The vectors x and/will be n-dimensional. An
admissible control u will be a piecewise-continuous r-vector-valued function on
[0, T] which may have values at time t in a non-empty compact set M{t), with the
set-valued function M piecewise-continuous in the Hausdorff topology [1]. We
will assume the vector function / is continuous in all argument, is continuously
duTerentiable with respect to x, and that the inner product inequality

(x,f(t,x,u))^C[\+\xf\ (3)

holds for some constant C and all t e [0, T], x, and u e M(t), where (.,.) and |. | are
the usual inner product and norm in En, respectively. This condition prevents finite
escape time of trajectories and could be replaced by any condition which allows us
to restrict attention to a compact set of the (t, x) space. Using condition (3) we can
assume that

|x(O|<(l+|xo|2exp(2CT) = C1 (4)

for any trajectory x of the system (1). The function fo(t, x, u) is assumed to be
non-negative and continuous in all arguments for / e [0, T], \ x\ < Cl5 weM(t). The
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functional Q>(u) is denned by
(«), (5)

where yr ^ 0, y2 > 0, N(u) is the number of discontinuities of u on [0, T], and S(u) is
given by

S(u) = s u p j ^ " " ^ : t * t' and w is continuous on [/, *']}. (6)

We shall d^not** b v O tbe cc^ of admissible controls with S^ti^ <cco.
An important problem in optimal control theory is that of determining whether

or not there exists a control function u* e Q such that I(u*) equals the infimum of
/(«) as w(.) varies over all admissible control functions. In the special case
y1 = 0 = y2 we have the Pontryagin Policy for which existence proofs are available
only under restrictive convexity assumptions imposed on the functions / , f0. A
sample of these results can be found in [2], [3]. Indeed, it is easy to construct quite
simple examples for which one can prove by explicit calculations that no optimal
control exists in Q, [3].

In [5, pp. 276-281, Theorem 7] E. B. Lee and L. Markus have considered the case
when the set of admissible controls consists of functions u of bounded variations
such that || .DM11 = |«(0) — u(0-)\+varu^E for a prescribed uniform bound
E^O. Moreover, the cost functional contains a non-integral cost term of the form
y(sup | X(t) |, || Du\\), where y is a continuous monotone nonincreasing in each of its
two arguments. In this paper no uniform bound is prescribed on ||i*«|| and the
functional O(M) has been chosen to satisfy two requirements:
(1) It should be possible to prove an existence theorem, to the effect that at least one

piecewise continuous optimal control path exists; and
(2) It should be possible to find usable necessary conditions for the control path.
This paper is devoted to point 1. Point 2 is covered in a joint paper by the author
and J. M. Blatt [4].

2. Main results
LEMMA 1. Let {MJ5?=1 be a sequence in D. such that ^(un)^K, n = 1,2,.... Then a

subsequence {uni} and a function ueQ can be chosen with the following properties:
(1) <f>(un) converges and $(M) ^ l im^w ®(uni).
(2) If titi = 1,2, ...,N(u), 0<t1<t2...<tmu), are the points of discontinuities of u

in (0, T), then for any sufficiently small e > 0 the sequence {«„,} converges uniformly
to u on the intervals [ 0 , ^ - e ] , [t1 + e,t2 — e],...,[tmu) + e,T].

PROOF. By choosing a subsequence if necessary and using the hypothesis
<$>(un)^K, n = 1,2,..., we can assume that $(wn) converges as «-»oo and
N(un) = NK for some constant NK independent of n. For simplicity of notations
we shall make the following assumptions:
(1) The functions un,n = 1,2,..., are scalar valued.
(2)NK=l.
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Both these assumptions will impose no loss of generality as will be seen from the
nature of the proof. Let 0<tn<T denote the point of discontinuity of «„. By
selecting a subsequence if necessary we can assume that tn converges to t with
0 ̂  f < T. Assume 0 < t < T.

For any given N let IN denote the set IN = [0, f- (1/JV)] u [f + (1/iV), T]. Choose
£>0 large enough so that ?-(l/£)>0 and i+(l/0<T. We choose first a sub-
sequence {«£} of {un} and a function ifi which is defined and continuous on Ig.

Since lim^,,, tn = i, we can select a subsequence {w5} of {un} such that
/se(f—(l/£), i+(l/i)) for all n. By the hypotheses on the set O, the sequence
{«a} <= C(/j) = the set of continuous functions on Ig and un(t)eM(t) a compact
subset of R. Furthermore, by the hypotheses <!>(«„)<K, n = 1,2,..., we have that
\un(t)-un(t')\^K\t-t'\ for all t,t' in Ig. Using Ascoli Arzella's Theorem we can
select a subsequence {«£} of {«JJ} which converges uniformly to a continuous
function «£ on Ig.

We now proceed by induction to select subsequences {u$+i} of {«£} and continuous
functions i£+i on 7j+^, j = 1,2,..., as follows. Suppose {w^} and î +^ has been
chosen. To construct {u^+1} we choose first a subsequence {M|+J} of {u^} such
that 4+/£(?-(£+./+1)"1, ?+(£+./+1)"1) for all n where $* is the point of dis-
continuity of «|+^. Applying Ascoli Arzella's Theorem as before, we can select a
subsequence {u£+i+1} c: {u^}} c {t4+^} which converges to a continuous function
«£«+•! on 7 W + 1 = J W .

From the above construction we notice that
(1) The subsequences {rff*}, j = 0,1,2 are subsequences of {«„}, and

(2) «f+^(0 = ^ ( 0 for
Define «(*)=» «W(/) if teIg+}, j = 0,1,2 Since U j i i ^ = [0,0u(f , r] , the
function M(0 is defined and continuous on [0,T]—{t}. Let {»„,} denote the sub-
sequence defined by

u n , = t4+i> / = 1 , 2
We show now that the sequence {i/^} and the function u defined above satisfy the
required properties (1) and (2) of Lemma 1.

First notice that i is the only possible point of discontinuity of u. Hence
N(u)^NK. For any given «>0 there is rj = i)(e) such that J$+7

:3 [0,f—e]u[?+
e,T] and {unf:j>rj} converges uniformly to u on 7f+r This proves property (2).

We notice that lim^_«(0 and lim^+M(0 both exist. This follows from the
inequality

for t, t' e [0, i) or t,t'e (f , T\. If t is a point of continuity of u then {«/„,(*)} converges
to u(t). Hence u(t)eM(t).
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To prove property (1) we notice first that <!>(«) = yx N(u)+y2 S(u) < yx NK+yzS(u)
and limj.,00 ®(uni) = yxNK-\-y^mS{un). Hence it is enough to show that

i-»oo

To prove (*) we consider the following two cases:
(I) i is a point of discontinuity of u(t): Let t # r' and /, /' belong to either [0, i) or

(LTl Then

(n<)|f-^|. (7)

(II) «(/) is continuous on [0,T]: Assume t<l<t' and t,t'e[0,T].
Let e>0 and choose 8>0 such that

\u(i-8)-u(l+8)\<e. (8)

Using (7) and (8) we obtain

(9)

for any e > 0. Hence

l«(0-K(OKs*(r-f). (10)

Using (7) and (10) we obtain (*). This completes the proof of Lemma 1.

DEFINITION. Let

(11)

LEMMA 2. Z^/ {Mn)£Li ^e a sequence in QK. Then there exists a subsequence
{uni} <= {un} and a function ueD.K such that O(«n() converges as i->co, and

hm/(Mnj)= I*fo(t,x(t),u(t))dt+hm<S}(un). (12)
<-»oo .10 i-»oo

PROOF. By Lemma 1 we can choose a subsequence {«nj} and an element
satisfying properties (1) and (2) of Lemma 1.

Let xni(t), x(t~) denote the trajectories of the initial value problem (1) correspond-
ing to un(, u, respectively. Since M(t) is continuous in the Hausdorff topology for
te[0,T] there is a constant L such that |unt(t)|«SL, \u(t)\^L, te[0,T]. Also,/is
assumed continuously differentiable with respect to x. Let C be the maximum of the
absolute value of all partial derivatives (d/dxj) (fi(t,x,u)) for te[0,T], I I
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| M | < L . Then

I *»,(0 - *(01 < f W«,(0, unt(t), 0 -/WO, u(i),01 dt
jo

< fl/(*»,(0,«»,(0,0-/W0,«n,(0,01 *
Jo

+ f * I/WO, "«,(0,0-/W0, «(0.01 *
Jo

Jo
where

An application of Gronwall inequality [1] to (13) gives

I *n,(0 - *(01 < «i eaT. (14)

Let gi(t) = |/('>*(0>"n,(0)-/(',*(0,K(0)|- Since uni(i) converges to u(i) for each
t ^ tit i= 1,2, ...N(u), and f(t,x,u) is assumed continuous in all arguments for
te[0,T], Ix l^Q, |«|<L, gt(t) converges to 0 for / ^ tt, i= 1,2 N(ti). Also,
gi(t) < 2L. Hence the Dominated Convergence Theorem implies that l imj^ ô  = 0.
We then conclude from (14) that xn/ converges uniformly to x on [0, T]. We obtain
by a similar application of the Dominated Convergence Theorem that

lim (Tf0(t,xn((t),uni(t))dt= (Tf0(t,x(t),u(t))dt
i-*co JO JO

and the desired conclusion (12) follows.

THEOREM 3 (Existence of an optimal control): There exists a function «*eQ such
that 7(«*) = inf{7(«): ueQ}.

PROOF: Let K = 7(0). Then we claim that

inf{7(«): usQ) = inf{7(«): ueCl,<f>(u)^K). (15)

To prove (15) it is enough to show that

inf {7(«): u e Q} > inf {7(u): u e Q, O(M) < K}. (16)

So assume to the contrary that there is ueQ, with 0>(u)>K such that

7(M) < inf {7(«): u e Q, O(«) ^ K) (17)

But 7(«)>O(M)> K. From (17) we then obtain

which is a contradiction. This proves (15).
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Let <xK = inf{/(M) : u e Q, <D(w) ^ K). Choose {uJ <= Q with O ( M J J$ A" such that

<xK~ Km I(uJ. (18)
n-»oo

By choosing a subsequence if necessary we can assume that $(»„) converges. Let

O ^ = lim <!>(«„). (19)
n-»oo

By Lemma 1 we can select a subsequence {un£
c{ut£ and a function u*c£l

satisfying properties (1) and (2) of Lemma 1. By Lemma 2 we have

hm/(«n()= f 7 o M O , «*«) dt+lim <&(«„,). (20)
<-»OO J 0 i-MO

By (18), (19) and (20) we have

aK = lim I(un)= \ Mt,x(t),u*(t))dt+<D|-. (21)
i-»oo ' J o

But from Lemma 1 we have
«(«•)<«£. (22)

Using (21) and (22) we obtain

=
Jo

(23)
Jo

Using (15), (18), (22) and (23) we obtain

/(«*) = inf {I(u):ueQ.}.
This proves Theorem 3.

REMARK 1. The hypotheses on the function/can be relaxed. Instead of requiring
continuous differentiability of / with respect to x, it is enough to require the
existence of a non-negative, measurable and locally Lebesgue integrable function!,
defined on [0,T] so that

\f(t,x,u)-f(t,y,u)\ <,Ut)\x-y\ almost everywhere on [O.T] for all weQ

REMARK 2. Other control problems [Lagrange problems, free problems (m = u,
f= u)] can be considered. These will appear elsewhere.

REMARK 3. Other choices of the term <S>(u), representing the cost of "variation"
in the control u, are possible and lead to interesting problems. Let us write Q.^ to
denote the class of admissible controls associated with the cost functional (2).
Then the following problems admit existence of optimal controls:

I. Q> = yxN(u), yi>0, Qo = {ueCl: S(u)^K^, where KQ is some prescribed
constant. In this case it is clear that Theorem 3 still holds. An optimal control
will depend on KQ.
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II. <X> = y2S(u), QQ = {ueC[0,T]: u(t)eM(t)}. In this case one can easily prove
that an optimal control exists by a simple application of Ascoli Arzella's
Theorem.

III. <D = yT[u], where T[u] is the total variation of u on [0,T].
QD = {": "(0 is of bounded variation on [0, T] and u(t)eM a compact subset
ofEJ.

Obviously there are several other choices of <I> and Qo. However, one has to
make sure that £1$ is not too restrictive to allow for usable necessary conditions.
Necessary conditions for the control path and a discussion of problems I and II are
given in [4].

The author wishes to thank Professor J. M. Blatt for valuable discussions.
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