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SOME DISTRIBUTIONAL RESULTS FOR
POISSON–VORONOI TESSELLATIONS
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Abstract

We consider the Voronoi tessellation based on a stationary Poisson process N in Rd . We
provide a complete and explicit description of the Palm distribution describing N as seen
from a randomly chosen (typical) point on a k-face of the tessellation. In particular, we
compute the joint distribution of the d − k + 1 neighbours of the k-face containing the
typical point. Using this result as well as a fundamental general relationship between
Palm probabilities, we then derive some properties of the typical k-face and its neighbours.
Generalizing recent results of Muche (2005), we finally provide the joint distribution of
the typical edge (typical 1-face) and its neighbours.
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1. Introduction

Let N be a stationary Poisson process on Rd with finite intensity λ > 0. The Voronoi cell,
C(x), of x ∈ N is the set of all points y ∈ Rd whose distances from x are smaller than or
equal to their distances from all other points of N . The subject of this paper is the Poisson–
Voronoi tessellation {C(x) : x ∈ N}. Voronoi tessellations can be defined for more general
point processes than N . They are fundamental models in stochastic geometry and constitute
arguably one of the most popular types of mathematical model in applications; see [7], [10],
[11], and the references therein. We will present a complete and explicit description of the
Palm probability measure P0

k, k ∈ {0, . . . , d}, which describes the statistical behaviour of N as
seen from a typical point chosen ‘uniformly’ on the k-faces of the tessellation. In particular, we
obtain the joint distribution of the d−k+1 neighbours of the k-dimensional face containing this
typical point. For k = 0, our result essentially boils down to the distribution of the typical cell
of the Poisson Delaunay tessellation, established in [5] and [6]. In fact, our present approach
owes much to these seminal papers.

To formulate our main result we introduce some notation. We are working in Rd with
Euclidean norm | · |, scalar product 〈·, ·〉, and unit sphere Sd−1 := {z ∈ Rd : |z| = 1}. The
i-dimensional Hausdorff measure is denoted by H i . The closed ball with centre a ∈ Rd and
radius r ≥ 0 is denoted by B(a, r), while B0(a, r) denotes the corresponding open ball. The
volume Hd(B(0, 1)) of the unit ball in Rd is denoted by κd . For k ∈ {0, . . . , d}, let Sk be the
system of all k-faces of the Voronoi cells C(x), x ∈ N (see Subsection 2.2 for related notation).
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We define the following stationary random measure on Rd :

Mk :=
∑
F∈Sk

Hk(F ∩ ·). (1.1)

It is well known [5], [6], [10] that the intensity, µk := E[Mk([0, 1]d)], of Mk is given by

µk = λ(d−k)/d 2d−k+1π(d−k)/2

d(d − k + 1)!
× �(d − k + k/d)

�((k + 1)/2)

�((d2 − dk + k + 1)/2)�(1 + d/2)d−k+k/d

�((d2 − dk + k)/2)�((d + 1)/2)d−k
. (1.2)

Consider the Palm probability measure, P0
k ≡ P0

Mk
, of Mk (defined in Subsection 2.1). In

the (rather trivial) case in which k = d , P0
k equals the underlying (stationary) probability

measure. Under P0
k the origin 0 ∈ Rd can be interpreted as a typical point of Mk . Almost surely

with respect to P0
k , there are exactly d − k + 1 different points, Xk,0, . . . , Xk,d−k ∈ N , such

that
Rk := |Xk,0| = · · · = |Xk,d−k|

and
N ∩ B0(0, Rk) = ∅.

These are the neighbours of the k-face containing 0. We may assume that Xk,0, . . . , Xk,d−k

are in general position, i.e. not contained in some affine space of dimension d − k − 1. Hence,
there exists a unique (d − k)-dimensional ball in the affine hull of these points containing the
points on its boundary. We let Zk denote the centre of this ball. The case in which d = 3 and
k = 1 is illustrated in Figure 1. For k ≤ d − 1, the random variable

R′
k := |Xk,0 − Zk|

is P0
k-almost surely positive and we define

Uk,0 := Xk,0 − Zk

R′
k

, . . . , Uk,d−k := Xk,d−k − Zk

R′
k

.

0

1,0X 1,2X

1Z

1R

1,1X

1R′

1R′′

Figure 1: The situation under P0
1, for d = 3.
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For k = d, we P0
k-almost surely have Xk,0 = Zk and we define R′

k := 0 and Uk,0 := 0.
Furthermore, for k ≥ 1 the random variable

R′′
k := |Zk|

is P0
k-almost surely positive and we define

Uk := Zk

R′′
k

.

For k = 0, we have Zk = 0 and we define R′′
k := 0 and Uk := 0. From |Xk,0| = · · · = |Xk,d−k|

it easily follows that Uk is orthogonal to the affine hull of Uk,0, . . . , Uk,d−k . In particular,

R2
k = R′2

k + R′′2
k .

Under the Palm probability measure P0
k , the random variables R′

k, R
′′
k , Uk,0, . . . , Uk,d−k , and

Uk provide a natural description of the neighbours of the k-face containing 0:

N ∩ B(0, Rk) = {R′′
k Uk + R′

kUk,i : i = 0, . . . , d − k} P0
k-almost surely.

It is convenient to write
�k := {Uk,0, . . . , Uk,d−k}.

For k ≤ d − 1, this is a finite point process on the unit sphere Sd−1.
The following theorem gives a complete and explicit description of the Palm probability

measure, P0
k , of Mk . We fix a (d − k)-dimensional linear subspace L ⊂ Rd and denote by SL

and SL⊥ the uniform distributions on the unit spheres in L and, respectively, in the orthogonal
complement, L⊥, of L. In the degenerate case, in which L = {0}, we let SL be the Dirac
measure at 0.

Theorem 1.1. Assume that N is a stationary Poisson process of intensity λ > 0 and let
k ∈ {0, . . . , d}. Then the following assertions hold under P0

k .

(i) The random variables ({x ∈ N : |x| > Rk}, Rk), R′2
k /R2

k , and (�k, Uk) are independent.

(ii) Rd
k is gamma distributed with shape parameter d − k + k/d and scale parameter λκd .

(iii) The conditional distribution of {x ∈ N : |x| > Rk} given Rk = r can be chosen to be the
distribution of a homogeneous Poisson process on the complement of the ball B(0, r),
with intensity λ.

(iv) For k ∈ {1, . . . , d − 1}, R′2
k /R2

k has a beta distribution with parameters d(d − k)/2 and
k/2.

(v) The random pair (�k, Uk) has distribution

Qk := c−1
k

∫
· · ·

∫
1{({ϑu0,...,ϑud−k},ϑu)∈ ·}�d−k(u0, . . . , ud−k)

k+1

× SL(du0) · · · SL(dud−k)SL⊥(du)ν(dϑ), (1.3)
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where cd := 1, cd−1 := 2d−1, and, for k < d − 1,

ck := 1

((d − k)!)k+1

[
�((d − k)/2)

�((d + 1)/2)

]d−k
�((d2 − kd + k + 1)/2)

�((d2 − kd)/2)

× �((k + 2)/2) · · · �(d/2)

�( 1
2 ) · · · �((d − k − 1)/2)

;

�d−k(u0, . . . , ud−k) is the (d − k)-dimensional volume of the simplex spanned by the
vectors u0, . . . , ud−k (and is identically equal to 1 for k = d); and ν is the uniform
distribution on the rotation group SOd .

The proof of this theorem is given in Section 3 and is a straightforward application of well-
established methods (see [5], [6], [7], and [10]). Despite the lack of a novel method, it is pleasing
that the whole proof is the result of just one calculation. In the special case in which k = 0
(mentioned above), the integration with respect to ν can be dropped. For k = d (i.e. P0

k = P),
the result is not only well known but also almost trivial.

Based on Theorem 1.1 and a general relationship between Palm probabilities (see Propo-
sition 2.1), in Section 4 we will discuss some distributional results for the typical k-face.
In particular, we derive the joint distribution of the directions to the neighbours of the typical
k-face. In Section 5 we will then provide complete and explicit formulae for the joint distribution
of the typical edge and its neighbours. In particular, we obtain the distributional results derived
and cited in [8] in a more transparent and rigorous way.

2. Poisson–Voronoi tessellations

2.1. Palm measures

Let N ′ denote the set of all locally finite simple counting measures on Rd , i.e. the set of all
measures ω on Rd that are integer valued on bounded sets and have ω({x}) ≤ 1 for all x ∈ Rd .
Any ω ∈ N ′ is identified with its support {x ∈ Rd : ω({x}) > 0}, a locally finite subset of Rd

(i.e. by a point of ω we will mean a point in the support of ω). Actually, ω is just the sum of
the Dirac measures δx over all x in the support of ω. We let N ′ denote the σ -field generated
by the mappings ω �→ ω(B), B ∈ Bd , where Bd denotes the Borel σ -field on Rd . Following
[7] we say that the points of ω ∈ N ′ are in general quadratic position if both no d + 2 points
of ω lie on the boundary of some ball and any k ∈ {2, . . . , d + 1} points x1, . . . , xk ∈ ω are in
general position, i.e. do not lie in a (k − 2)-dimensional affine subspace of Rd . We denote by
N the measurable set of all ω ∈ N ′ whose convex hull coincides with Rd and whose points are
in general quadratic position. Note that N is shift invariant, in the sense that ω ∈ N ′ belongs
to N if and only if ω + x := {y + x : y ∈ ω} ∈ N for all x ∈ Rd . We write N := N ′ ∩ N and
denote by N the identity on N .

We consider a probability measure P on (N , N ) such that N is a homogeneous Poisson
process of intensity λ > 0. This is justified by the well-known fact (see [7] and [10]) that
almost all realizations of a stationary Poisson process (with positive intensity) are in N . In this
paper all random elements will be defined on the probability space (N , N , P). Note that P is
stationary in the sense that P(N + x ∈ ·) = P for all x ∈ Rd .

A random measure M on Rd (see, e.g. [2]) is a random variable taking its values in the
space, M , of all locally bounded measures α on Rd equipped with the σ -field M generated
by the mappings α �→ α(B), B ∈ Bd . Note that N ′ is a measurable subset of M . A point
process on Rd is a random measure M satisfying P(M ∈ N ′) = 1. For a random measure M ,
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it is convenient to write M(ω, B) instead of M(ω)(B). A random measure M on Rd is said to
be stationary if

M(ω, B + x) = M(ω − x, B), ω ∈ N , x ∈ Rd , B ∈ Bd .

If M is a stationary random measure then the distribution of M(· + x) is the same for any
x ∈ Rd . The measure

PM(A) :=
∫∫

1{ω−x∈A : x∈[0,1]d }M(ω, dx) P(dω), A ∈ N ,

is called the Palm measure of M (with respect to P); see [3]. This measure is σ -finite and
satisfies the refined Campbell theorem, i.e.

E

[∫
f (N − x, x)M(dx)

]
= EM

[∫
f (N, x) dx

]

for all measurable functions f : N × Rd → [0, ∞), where EM denotes expectation with
respect to PM and dx indicates integration with respect to Lebesgue measure. If the intensity,
λM := E[M([0, 1]d)], of M is positive and finite, then we can define the Palm probability
measure, P0

M := λ−1
M PM , of M . The expectation of a random variable ξ with respect to P0

M is
denoted by E0

M [ξ ].
2.2. Voronoi tessellations

Closely following [7] and Section 6.2 of [10], we now give a detailed description of Voronoi
tessellations. We refer the reader with measurability questions to the latter monograph.

Let ω ∈ N . The Voronoi cell, C(ω, x), of x ∈ ω consists of all points y ∈ Rd satisfying
|y − x| ≤ min{|y − z| : z ∈ ω}. By Sd(ω) := {C(ω, x) : x ∈ ω} we then denote the Voronoi
tessellation based on ω. The elements of Sd(ω) are bounded and convex polytopes, and any
bounded set is intersected by only finitely many cells in Sd(ω) (see Satz 6.2.1 of [10]). The
subject of this paper is Sd(N), the random tessellation based on the Poisson process N .

For k ∈ {0, . . . , d − 1}, a k-face (of Sd(ω)) is a nonempty intersection of d − k + 1 Voronoi
cells (see also Satz 6.2.3 of [10]). The system of all such k-faces is denoted by Sk(ω). A cell
is referred to as a d-face. For k ∈ {0, . . . , d} and x ∈ Rd , we write Fk(ω, x) ≡ F ∈ Sk(ω)

provided that x is in the relative interior of F . For all other x, we define Fk(x) := {x} and note
the following covariance property:

Fk(ω, x) = Fk(ω − x, 0) + x, ω ∈ N , x ∈ Rd .

The k-faces are generated in the following way. For points x0, . . . , xd−k ∈ Rd in general po-
sition, we let z(x0, . . . , xd−k) denote the centre of the uniquely determined (d−k)-dimensional
ball with x0, . . . , xd−k on its boundary. Furthermore, we let F(x0, . . . , xd−k) denote the
k-dimensional affine space that is orthogonal to the above ball and contains z(x0, . . . , xd−k).
Let F ∈ Sk(ω). Then there exist (lexicographically ordered) points x0, . . . , xd−k ∈ ω such
that

F = {x ∈ F(x0, . . . , xd−k) : B0(x, |x − x0|) ∩ ω = ∅}. (2.1)
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Conversely, given different points x0, . . . , xd−k ∈ ω such that the thus-defined set F has a
nonempty relative interior, we have F ∈ Sk(ω).

Let ω ∈ N , let x be a point in the relative interior of some F ∈ Sk(ω), and choose
x0, . . . , xd−k ∈ ω as in (2.1). By definition of N the set {x0, . . . , xd−k} ⊂ ω is uniquely
determined by (2.1), and we define

Rk(ω, x) := |x − x0| = · · · = |x − xd−k|,
Xk,i(ω, x) := xi, i = 0, . . . , d − k,

Zk(ω, x) := z(x0, . . . , xd−k).

For points x ∈ Rd that are not in the relative interior of some k-face, we set Rk(ω, x) := 0
and Xk,0(ω, x) = · · · = Xk,d−k(ω, x) = Zk(ω, x) := x. For k = 0, we always have
Zk(ω, x) = x. The mappings introduced above possess natural covariance and invariance
properties with respect to shifts; e.g.

Xk,i(ω, x) = Xk,i(ω − x, 0) + x, ω ∈ N , x ∈ Rd ,

Zk(ω, x) = Zk(ω − x, 0) + x, ω ∈ N , x ∈ Rd ,
(2.2)

Rk(ω, x) = Rk(ω − x, 0), ω ∈ N , x ∈ Rd . (2.3)

2.3. Random measures associated with the Voronoi tessellation

Recall from (1.1) that, for any k ∈ {0, . . . , d},

Mk =
∑

F∈Sk(N)

Hk(F ∩ ·)

is a stationary random measure, with Palm probability measure P0
k ≡ P0

Mk
.

We now construct another series of random measures using suitable centres of the k-faces.
Let k ∈ {0, . . . , d} and denote by Pk the system of all k-dimensional, nonempty, bounded
polytopes F ⊂ Rd . We define a measurable mapping πk : N × Pk → Rd in the following
way. For ω ∈ N and F ∈ Sk(ω), we choose an arbitrary point y in the relative interior of F

and define πk(ω, F ) := Zk(ω, y). In all other cases, we define πk(ω, F ) to be the centre of the
smallest ball circumscribing F ∈ Pk . From (2.2) we have the following covariance property:

πk(ω, F ) = πk(ω − y, F − y) + y, ω ∈ N , F ∈ Pk. (2.4)

As the factorial moment measures of a Poisson process are absolutely continuous with respect
to Lebesgue measure, it can easily be shown that the points πk(N, F ), F ∈ Sk(N), are almost
surely mutually different. Moreover, for P-almost every ω,

ωk :=
∑

F∈Sk(ω)

δπk(ω,F )

is an element of N ′. For ωk ∈ N ′ and x ∈ ωk , there exists a unique k-face, Ck(ω, x) ∈ Sk(ω),
defined by the equivalence

Ck(ω, x) = F ⇐⇒ πk(ω, F ) = x. (2.5)
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In all other cases, we define Ck(ω, x) := {x}. For points x ∈ Rd in the relative interior of
some F ∈ Sk(ω), we define πk(ω, x) := πk(ω, Fk(ω, x)). Otherwise, we let πk(ω, x) := x.
From (2.4) we have

Ck(ω, x) = Ck(ω − x, 0) + x, ω ∈ N , x ∈ Rd , (2.6)

πk(ω, x) = πk(ω − x, 0) + x, ω ∈ N , x ∈ Rd . (2.7)

We often write Fk(x) ≡ Fk(N, x), Ck(x) ≡ Ck(N, x), πk(x) ≡ πk(N, x), and πk(F ) ≡
πk(N, F ).

We now define Nk , the point process of centres of k-faces, by Nk(ω) := ωk for ωk ∈ N ′ and
Nk(ω) := 0 otherwise. By (2.7), Nk is stationary. Note that Nd = N . The distribution of the
cell Ck(0) under the Palm probability measure P0

Nk
is that of the typical k-face of the Voronoi

tessellation. Actually, we interpret P0
Nk

itself as the distribution of N as seen from a typical
k-face. As expected, the Palm measure of Nk is closely related to the Palm measure of Mk .

Proposition 2.1. For all measurable functions g : N → [0, ∞), we have

EMk
[g(N − πk(0))] = ENk

[Hk(Ck(0))g(N)], (2.8)

ENk
[g(N)] = EMk

[Hk(Fk(0))−1g(N − πk(0))]. (2.9)

Proof. Both formulae are basically known. The first can be most easily proved with the
help of the exchange formula of [9]. To prove the second we can apply the first with g replaced
with gHk(Ck(0))−1. Then (2.9) follows from

Ck(N − πk(0), 0) = Fk(0) − πk(0) PMk
-almost surely.

By (2.8), the intensity, λk , of Nk is related to the intensity, µk , of Mk by the intuitively
obvious formula

µk = λk E0
Nk

[Hk(Ck(0))]. (2.10)

Equation (2.9) tells us that the Palm measure PNk
is an area-debiased version of the Palm

measure PMk
.

The next proposition is basically a well-known fact about general stationary face-to-face
tessellations. For more details, we refer the reader to Theorem 5.1 of [6], which treats the case
of shift-invariant functions.

Proposition 2.2. For any measurable function g : N × N → [0, ∞) and any j, 0 ≤ j < k ≤
d, we have

ENj

[ ∑
F∈Sk(N), Cj (0)⊂F

g(N, N − πk(F ))

]
= ENk

[ ∑
G∈Sj (N), G⊂Ck(0)

g(N − πj (G), N)

]
.

As M0 = N0 has a finite intensity, it follows from the version of this proposition with j = 0
and g := 1 that the intensity of Nk is finite for all k ∈ {0, . . . , d}. The values of this intensity
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in the cases d = 2 and d = 3 can be found in, e.g. [10, p. 262]. The following special case will
be important in Section 5.

Corollary 2.1. For any measurable function f : N → [0, ∞), we have

EN0

[ ∑
F∈S1(N), 0∈F

f (N − π1(F ))

]
= 2 EN1 [f (N)].

3. Proof of Theorem 1.1

We first need to introduce further notation. Let k ∈ {0, . . . , d}, let ω ∈ N , and let x be a
point in the relative interior of some F ∈ Sk(ω). For k ≤ d − 1, the number

R′
k(ω, x) := |Xk,0(ω, x) − Zk(ω, x)|

is positive, and we can thus define the unit vectors

Uk,i(ω, x) := Xk,i(ω, x) − Zk(ω, x)

R′
k(ω, x)

, i = 0, . . . , d − k.

For k = d, we define R′
d(ω, x) := 0 and Ud,0(ω, x) := 0. Furthermore, for k ≥ 1 we define

R′′
k (ω, x) := |x − Zk(ω, x)|

and, given that R′′
k (ω, x) > 0, the unit vector

Uk(ω, x) := Zk(ω, x) − x

R′′
k (ω, x)

.

In the exceptional case in which R′′
k (ω, x) = 0, we choose Uk(ω, x) to equal some fixed unit

vector. For k = 0, we define R′′
0 (ω, x) := 0 and U0(ω, x) := 0. For points x ∈ Rd that

are not in the relative interior of some k-face, we let R′
k(ω, x) = R′′

k (ω, x) ≡ 0 and choose
Uk,0(ω, x), . . . , Uk,d−k(ω, x), Uk(ω, x) to be fixed unit vectors. Exceptions are the cases in
which k = 0 and k = d , where we define U0(ω, x) := 0 and Ud,0(ω, x) := 0, respectively.
The mappings R′

k , R′′
k , and Uk,i have the same invariance property as Rk in (2.3).

We can now rewrite the random variables occurring in Theorem 1.1 as follows: Rk ≡
Rk(N, 0), R′

k ≡ R′
k(N, 0), R′′

k ≡ R′′
k (N, 0), Uk,i ≡ Uk,i(N, 0) for i = 0, . . . , d − k, and

Uk ≡ Uk(N, 0). For ease of exposition of the proof of the theorem, we now assume that
1 ≤ k ≤ d − 1. The (well-known) case in which k = d is easy to treat while the (somewhat
easier) case in which k = 0 can be proved similarly. Our proof is similar to those of Theorem 7.2
of [6] and Satz 6.2.4 of [10]. Let B := B(0, 1). For all measurable functions h : N → [0, ∞),
we have

κd EMk
[h(N)] = E

[∫
B

h(N − y)Mk(dy)

]

= 1

(d − k + 1)! E

[ ∑∗

x0,...,xd−k∈N

∫
h(N − y)1{y∈F(x0,...,xd−k)∩B}

× 1{B0(y,|y−x0|)∩N=∅}Hk(dy)

]
,
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where ‘∗’ indicates that the summation is over pairwise-different points of N . Using an iterated
version of Mecke’s fundamental formula for Poisson processes (see Satz 3.1 of [3]) and letting

c := λd−k+1(κd(d − k + 1)!)−1,

we obtain

EMk
[h(N)] = c E

[∫
· · ·

∫
h((N ∪ {x0, . . . , xd−k}) − y)1{y∈F(x0,...,xd−k)∩B}

× 1{N∩B0(y,|y−x0|)=∅}Hk(dy) dx0 · · · dxd−k

]
.

For ω ∈ N , t ≥ 0, and y ∈ Rd , we define

ωt := ω ∩ (Rd \ B(0, t)) and �(ω, y) := {U0(ω, y), . . . , Ud−k(ω, y)},
where on the right-hand side of the latter definition (and below) we omit the indices referring
to the dimension of the faces. We apply the previous result to

h(ω) := g1(ω
R(ω,0))g2(R(ω, 0), R′′(ω, 0))w1(�(ω, 0))w2(U(ω, 0)),

for suitable measurable, nonnegative functions g1, g2, w1, and w2. Using covariance and
invariance properties as in (2.2) and (2.3), we obtain

EMk
[h(N)] = c E

[∫
· · ·

∫
1{y∈F(x0,...,xd−k)∩B}1{N∩B0(y,|y−x0|)=∅}

× g1((N − y)R(N∪{x0,...,xd−k},y))

× g2(R(N ∪ {x0, . . . , xd−k}, y), R′′(N ∪ {x0, . . . , xd−k}, y))

× w1(�(N ∪ {x0, . . . , xd−k}, y))

× w2(U(N ∪ {x0, . . . , xd−k}, y))Hk(dy) dx0 · · · dxd−k

]
.

Assume that x0, . . . , xd−k are in general position. Taking y ∈ F(x0, . . . , xd−k) and assuming
that

N ∩ B(y, |y − x0|) = ∅,

we have

R(N ∪ {x0, . . . , xd−k}, y) = |x0 − y|,
R′′(N ∪ {x0, . . . , xd−k}, y) = |z(x0, . . . , xd−k) − y|,
�(N ∪ {x0, . . . , xd−k}, y) = �̃(x0, . . . , xd−k),

U(N ∪ {x0, . . . , xd−k}, y) = Ũ (x0, . . . , xd−k, y),

where

�̃(x0, . . . , xd−k) :=
{

x0 − z(x0, . . . , xd−k)

|x0 − z(x0, . . . , xd−k)| , . . . ,
xd−k − z(x0, . . . , xd−k)

|xd−k − z(x0, . . . , xd−k)|
}
,

Ũ (x0, . . . , xd−k, y) := z(x0, . . . , xd−k) − y

|z(x0, . . . , xd−k) − y| .

https://doi.org/10.1239/aap/1175266467 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266467


Some distributional results for Poisson–Voronoi tessellations SGSA • 25

(Here we take Ũ (x0, . . . , xd−k, y) to equal some fixed unit vector if z(x0, . . . , xd−k) = y. If
x0, . . . , xd−k are not in general position, then all of these functions can be defined arbitrarily.)
It follows that

EMk
[h(N)] = c E

[∫
· · ·

∫
1{y∈F(x0,...,xd−k)∩B}1{N∩B0(y,|y−x0|)=∅}

× g1((N − y)|x0−y|)g2(|x0 − y|, |z(x0, . . . , xd−k) − y|)

× w1(�̃(x0, . . . , xd−k))

× w2(Ũ(x0, . . . , xd−k, y))Hk(dy) dx0 · · · dxd−k

]
.

Since N is stationary and has independent increments, we obtain

EMk
[h(N)] = c

∫
· · ·

∫
1{y∈F(x0,...,xd−k)∩B} exp[−λκd |y − x0|d ]

× E[g1(N
|x0−y|)]g2(|x0 − y|, |z(x0, . . . , xd−k) − y|)

× w1(�̃(x0, . . . , xd−k))

× w2(Ũ(x0, . . . , xd−k, y))Hk(dy) dx0 · · · dxd−k.

Following [10, pp. 260–261], we next apply the Blaschke–Petkantschin formula (see,
e.g. Satz 7.2.1 of [10]) and Satz 7.2.2 of [10]. Recalling the definitions of the functions �̃

and Ũ , for a suitable constant c′ > 0 we obtain

EMk
[h(N)] = c′

∫
· · ·

∫
1{y∈(z+ϑL⊥)∩B, z∈ϑ(y0+L), r≥0, y0∈L⊥}

× E
[
g1

(
N

√
|y−z|2+r2

)]
× g2

(√
|y − z|2 + r2, |z − y|

)
w1({u0, . . . , ud−k})

× w2

(
z − y

|z − y|
)

exp
[
−λκd

(√
|y − z|2 + r2

)d]
rd(d−k)−1

× �d−k(u0, . . . , ud−k)
k+1

× Hk(dy)SϑL(du0) · · · SϑL(dud−k) drHd−k(dz)Hk(dy0)ν(dϑ),

where L ⊂ Rd is some fixed (d − k)-dimensional linear subspace and SϑL is the uniform
distribution on the unit sphere in the linear subspace ϑL. We take

g2(a, b) := g3(a)g4((a
2 − b2)/a2), 0 ≤ b < a,
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for measurable functions g3, g4 : [0, ∞) → [0, ∞). Noting that �d−k(·), | · |, and H i (·) are
invariant under rotations, and replacing (u0, . . . , ud−k, y, z) with (ϑu0, . . . , ϑud−k, ϑy, ϑz),
we arrive at

EMk
[h(N)] = c′

∫
· · ·

∫
1{y∈(z+L⊥)∩B, z∈y0+L, r≥0, y0∈L⊥}

× E
[
g1

(
N

√
|y−z|2+r2

)]
g3

(√
|y − z|2 + r2

)

× g4

(
r2

|y − z|2 + r2

)
w1({ϑu0, . . . , ϑud−k})

× w2

(
ϑ(z − y)

|z − y|
)

exp
[
−λκd

(√
|y − z|2 + r2

)d]
rd(d−k)−1

× �d−k(u0, . . . , ud−k)
k+1

× Hk(dy)SL(du0) · · · SL(dud−k) drHd−k(dz)Hk(dy0)ν(dϑ)

= c′
∫

· · ·
∫

1{x∈L⊥, z−x∈B, z∈y0+L, r≥0, y0∈L⊥} E
[
g1

(
N

√
|x|2+r2

)]

× g3(
√

|x|2 + r2)g4

(
r2

|x|2 + r2

)
w1({ϑu0, . . . , ϑud−k})

× w2

(
ϑx

|x|
)

exp[−λκd(
√

|x|2 + r2)d ]rd(d−k)−1

× �d−k(u0, . . . , ud−k)
k+1Hk(dx)SL(du0) · · · SL(dud−k)

× drHd−k(dz)Hk(dy0)ν(dϑ),

where we have used the change of variable y = z − x to obtain the second equality. For any
fixed x ∈ Rd , it can easily be shown that∫∫

1{z−x∈B, z∈y0+L, y0∈L⊥}Hd−k(dz)Hk(dy0) = κd .

Hence,

EMk
[h(N)] = κdc′

∫
· · ·

∫
1{x∈L⊥, r≥0} E

[
g1

(
N

√
|x|2+r2

)]
g3(

√
|x|2 + r2)

× g4

(
r2

|x|2 + r2

)
w1({ϑu0, . . . , ϑud−k})

× w2

(
ϑx

|x|
)

exp[−λκd(
√

|x|2 + r2)d ]

× rd(d−k)−1�d−k(u0, . . . , ud−k)
k+1

× Hk(dx)SL(du0) · · · SL(dud−k) drν(dϑ).
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Using polar coordinates in L⊥ gives

EMk
[h(N)] = c′′

∫ ∞

0

∫ ∞

0
E
[
g1

(
N

√
s2+r2

)]
g3(

√
s2 + r2)g4

(
r2

r2 + s2

)

× exp[−λκd(
√

s2 + r2)d ]rd(d−k)−1sk−1 dr ds

×
∫

· · ·
∫

w1({ϑu0, . . . , ϑud−k})w2(ϑu)

× �d−k(u0, . . . , ud−k)
k+1SL(du0) · · · SL(dud−k)SL⊥(du)ν(dϑ),

for a suitable constant c′′. It remains to treat the first double integral. Here, using the substitution
(s, r) = (v

√
1 − t, v

√
t), t ∈ [0, 1], v ∈ [0, ∞), with Jacobian v/2

√
t (1 − t), we find that the

integral is proportional to∫ ∞

0
E[g1(N

v)]g3(v)vd(d−k)+k−1e−λκdvd

dv

∫ 1

0
td(d−k)/2−1(1 − t)k/2−1g4(t) dt.

The substitution z = vd completes the proof of the theorem.

4. Typical faces of a Poisson–Voronoi tessellation

In this section we deal with the distribution of the area of the typical k-face and its neighbours.
Our basic general tool is Proposition 2.1. We first need to establish some results that hold
under P0

k .

Proposition 4.1. Let k ∈ {1, . . . , d}. Then (Hk(Fk(0)), R′
k, R

′′
k ) and �k are independent

under the Palm probability measure P0
k .

Proof. For ω ∈ N , r, r ′′ ≥ 0, and u, v ∈ Sd−1, we define

ρ(ω, r, r ′′, u, v) := sup{t ≥ 0 : B0(tv,
√

r2 + t2 − 2r ′′t〈u, v〉) ∩ ωr = ∅}.
Recall that ωr := ω ∩ (Rd \ B(0, r)). An interpretation of this function will be given below.

In the following we will always assume that 0 is in the relative interior of some k-face. By
definition, the linear hull of the k-face Fk(0) is then given by

Gk := Span(Uk,0, . . . , Uk,d−k)
⊥.

Take v ∈ Gk ∩ Sd−1 and recall that Xk,0 is one of the neighbours of Fk(0). Then

|Xk,0 − tv|2 = |R′
kUk,0 + R′′

k Uk − tv|2
= R′

k
2 + |R′′

k Uk − tv|2
= R′

k
2 + R′′

k
2 + t2 − 2R′′

k t〈Uk, v〉
= R2

k + t2 − 2R′′
k t〈Uk, v〉.

Hence, we have the equivalence

tv ∈ Fk(0) ⇐⇒ ρ(N, Rk, R
′′
k , Uk, v) ≥ t,

https://doi.org/10.1239/aap/1175266467 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266467


28 • SGSA V. BAUMSTARK AND G. LAST

according to which ρ(N, Rk, R
′′
k , Uk, ·) can be interpreted as the radial function of Fk(0). It

follows that
Hk(Fk(0)) = AGk

(N, Rk, R
′′
k , Uk),

where, for a k-dimensional linear subspace S,

AS(ω, r, r ′′, u) := 1

k

∫
Sd−1∩S

ρ(ω, r, r ′′, u, v)kHk−1(dv).

We now apply Theorem 1.1, to obtain, for measurable, nonnegative functions f1, f2, and f3
with suitable domains,

E0
Mk

[f1(H
k(Fk(0)))f2(Rk, R

′′
k )f3(�k)]

= c−1
k

∫
· · ·

∫
f1(AϑL⊥(ω, r, r ′′, ϑu))f2(r, r

′′)f3({ϑu0, . . . , ϑud−k})

× �d−k(u0, . . . , ud−k)
k+1

× SL(du0) · · · SL(dud−k)SL⊥(du)ν(dϑ)�r(dω) P0
k((R, R′′) ∈ d(r, r ′′)),

(4.1)

where �r is the distribution of Nr under P. For any fixed r, r ′′ ≥ 0, we have the invariance
property ρ(ϑω, r, r ′′, ϑu, ϑv) = ρ(ω, r, r ′′, u, v) for ω ∈ N , u, v ∈ Sd−1, and ϑ ∈ SOd . As
�r is invariant under rotations, it follows that∫∫

f1(AϑL⊥(ω, r, r ′′, ϑu))SL⊥(du)�r(dω)

=
∫∫

f1(AϑL⊥(ϑω, r, r ′′, ϑu))SL⊥(du)�r(dω)

=
∫∫

f1(AL⊥(ω, r, r ′′, u))SL⊥(du)�r(dω)

=: f ∗
1 (r, r ′′).

Inserting this result into (4.1), we obtain

E0
Mk

[f1(H
k(Fk(0)))f2(Rk, R

′′
k )f3(�k)]

= c−1
k

∫
· · ·

∫
f ∗

1 (r, r ′′)f2(r, r
′′)f3({ϑu0, . . . , ϑud−k})�d−k(u0, . . . , ud−k)

k+1

× SL(du0) · · · SL(dud−k)ν(dϑ) P0
k((R, R′′) ∈ d(r, r ′′))

= E0
Mk

[f ∗
1 (Rk, R

′′
k )f2(Rk, R

′′
k )f3(�k)]

= E0
Mk

[f ∗
1 (Rk, R

′′
k )f2(Rk, R

′′
k )] E0

Mk
[f3(�k)],

where we have again used Theorem 1.1. Using this and specializing to the case in which f3 := 1
yields the assertion.

The preceding proof yields more detailed, though not very explicit, information on the
distribution of (Hk(Fk(0)), Rk, R

′′
k ) under P0

k .
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Corollary 4.1. For all k ∈ {1, . . . , d}, we P0
k-almost surely have

P0
k(H

k(Fk(0)) ∈ · | Rk, R
′′
k ) =

∫∫
1{A

L⊥ (ω,Rk,R
′′
k ,u)∈ ·}SL⊥(du)�Rk (dω).

For x ∈ Nk , we let ρk(x) ≡ pk(N, x) denote the distance of x from N and Vk,0(x), . . . ,

Vk,d−k(x) the unit vectors such that ρk(x)Vk,0(x), . . . , ρk(x)Vk,d−k(x) are the neighbours of
the k-face Ck(x) (see (2.5)). We let �k(x) ≡ �k(N, x) := {Vk,0(x), . . . , Vk,d−k(x)}. For
x /∈ Nk , we give ρk(x) and �k(x) some fixed values.

Theorem 4.1. For any k ∈ {1, . . . , d}, the following assertions hold under P0
Nk

.

(i) The random variables (Hk(Ck(0)), ρk(0)) and �k(0) are independent.

(ii) The distribution of �k(0) is Qk(· × Sd−1), where Qk is as given in (1.3).

Proof. We will use Proposition 4.1 together with (2.9). Assume that 0 is in the relative interior
of a k-face. Then �k(N − πk(0), 0) = �k , ρk(N − πk(0), 0) = R′

k , and Ck(N − πk(0), 0) =
Fk(0) − πk(0). Applying (2.9) to measurable functions h1 and h2 (with suitable domains), we
obtain

λk E0
Nk

[h1(H
k(Ck(0)), ρk(0))h2(�k(0))]

= µk E0
Mk

[Hk(Fk(N, 0))−1h1(H
k(Fk(0)), R′

k)h2(�k)]
= µk E0

Mk
[Hk(Fk(N, 0))−1h1(H

k(Fk(0)), R′
k)] E0

Mk
[h2(�k)]

= λk E0
Nk

[h1(H
k(Ck(0)), ρk(0))] E0

Mk
[h2(�k)],

where we have used Proposition 4.1 to obtain the second equality. Specializing to the case in
which h1 := 1 yields (i) and, in view of Theorem 1.1(v), also (ii).

The above proof and Corollary 4.1 yield the following result.

Corollary 4.2. For all k ∈ {1, . . . , d}, we have

P0
Nk

((Hk(Ck(0)), ρk(0)) ∈ ·) = µk

λk

∫∫∫
AL⊥(ω, r, r ′′, u)−11{(A

L⊥ (ω,r,r ′′,u),
√

r2−r ′′2)∈ ·}

× SL⊥(du)�r(dω) P0
k((Rk, R

′′
k ) ∈ d(r, r ′′)),

where the distribution P0
k((Rk, R

′′
k ) ∈ ·) is as given in Theorem 1.1.

Finally in this section, we establish a more detailed version of Proposition 4.1 that holds for
k = 1. For a point x in the relative interior of some edge F ∈ S1(N), we define U∗

1 (x) as the
unique vector in {−U1(N, x), U1(N, x)} such that −U∗

1 (x) is lexicographically smaller than
U∗

1 (x). Furthermore, we let I1(x) denote the {−1, 1}-valued random variable satisfying

U1(N, x) = I1(x)U∗
1 (x)

and T ′(x) and T ′′(x) the nonnegative random variables satisfying

F1(x) = [x − T ′(x)U∗
1 (x), x + T ′′(x)U∗

1 (x)].
Note that T ′(x)+T ′′(x) = H1(F1(x)) is the length of the edge F1(x). For all points x that are
not in the relative interior of some edge, we give U∗

1 (x), I1(x), T ′(x), and T ′′(x) some fixed
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values. Similarly to above, we use the abbreviations T ′ ≡ T ′(0), T ′′ ≡ T ′′(0), I1 ≡ I1(0), and
U∗

1 ≡ U∗
1 (0).

Together with Theorem 1.1, the following proposition provides a complete description of
the joint distribution of the edge [−T ′U∗

1 , T ′′U∗
1 ] and its neighbours under P0

1. We denote by
V (a, s, t) the d-dimensional volume of the union of two balls with radii s and t whose centres
are separated by a distance a.

Proposition 4.2. Under the Palm probability measure P0
1, the random variables �1 and

(T ′, T ′′, I1, R1, R
′
1) are independent and the random variables T ′ and T ′′ are conditionally

independent given (I1, R1, R
′
1). Furthermore, for all t1, t2 > 0, we almost surely have

P0
1(T

′ > t1 | I1, R1, R
′
1) = eλκdRd

1 exp
[
−λV

(
t1, R1,

√
R2

1 + 2I1R
′′
1 t1 + t2

1

)]
,

P0
1(T

′′ > t2 | I1, R1, R
′
1) = eλκdRd

1 exp
[
−λV

(
t2, R1,

√
R2

1 − 2I1R
′′
1 t2 + t2

2

)]
.

Proof. P0
1-almost surely, the point 0 is in the relative interior of some F ∈ S1(N) and

{T ′ > t1} =
{
N ∩ B

(
−t1U

∗
1 ,

√
R′2

1 + (t1 + I1R
′′
1 )2

)
∩ (Rd \ B(0, R1)) = ∅

}
,

{T ′′ > t2} =
{
N ∩ B

(
t2U

∗
1 ,

√
R′2

1 + (t2 − I1R
′′
1 )2

)
∩ (Rd \ B(0, R1)) = ∅

}
.

It is easy to check that

B
(
−t1U

∗
1 ,

√
R′2

1 + (t1 + I1R
′′
1 )2

)
∩ B

(
t2U

∗
1 ,

√
R′2

1 + (t2 − I1R
′′
1 )2

)
∩ (Rd \ B(0, R1)) = ∅.

Assertions (i) and (iii) of Theorem 1.1 imply that

P(N \ B(0, R1) ∈ · | R1, R
′
1, �1, I1) = P(N \ B(0, R1) ∈ · | R1) P0

1 -almost surely.

Hence, T ′ and T ′′ are conditionally independent given (�1, I1, R1, R
′
1). The theorem also

implies that

P0
1(T

′ > t1 | R1, R
′
1, �1, I1)

= exp
[
−λHd

(
B

(
−t1U

∗
1 ,

√
R2

1 + 2I1R
′′
1 t1 + t2

1

)
\ B(0, R1)

)]
= eλκdRd

1 exp
[
−λV

(
t1, R1,

√
R2

1 + 2I1R
′′
1 t1 + t2

1

)]
,

where we have used the fact that R′2
1 + R′′

1
2 = R2

1. A similar formula holds for the conditional
distribution of T ′′. In particular, we obtain the asserted formulae. Given �1, there are almost
surely only two possible values for U1. Hence, it follows easily from Theorem 1.1(v) that �1
and I1 are independent. Using the fact that the above conditional probabilities depend only on
(I1, R1, R

′′
1 ), we obtain the remaining assertions using Theorem 1.1(i).

5. The typical edge and its neighbours

The topic of this, final, section is the Palm probability measure P0
N1

. It turns out that under
this measure Theorem 4.1 (and Corollary 4.2) can be considerably improved.
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α'' α'

V1,0 (0)

V1,2 (0)V1,1 (0)

L' (0)U(0)L''(0)U(0) U(0)
0
ρ1(0)

Figure 2: The situation under P0
N1

, for d = 3.

First we introduce a convenient description of the typical edge C1(0) (see (2.5) for notation).
For x ∈ N1, we let U(x) denote the unit vector orthogonal to the affine hull of �1(x) such that
−U(x) is lexicographically smaller than U(x). Let L′(x) and L′′(x), L′(x) ≤ L′′(x), denote
random variables such that

C1(x) = [L′(x)U(x), L′′(x)U(x)].
For x /∈ N1, we give U(x) some fixed value and define L′(x) = L′′(x) := 0. The case in
which d = 3 and k = 1 is illustrated in Figure 2 (using the notation introduced just before
Theorem 4.1).

By (2.10), we have µ1 = λ1 E0
N1

[L′′(0) − L′(0)]. Since 2λ1 = (d + 1)λ0 (to see this, set
f := 1 in Corollary 2.1) and λ0 = µ0, we obtain

E0
N1

[L′′(0) − L′(0)] = µ1

λ1
= 2µ1

(d + 1)λ0
= 2µ1

(d + 1)µ0
.

Hence, (1.2) yields a formula for the mean length, E0
N1

[L′′(0)−L′(0)], of the typical edge; see
also [8, p. 285].

We now introduce the notation

V ∗(t, r, w) := d

dt
V (t, r,

√
t2 + r2 − 2trw), t, r ≥ 0, |w| ≤ 1. (5.1)

More details on this function can be found in [8] and below. We define

J (u0, u1, . . . , ud) := 1 − 2 × 1{〈z(u1,...,ud ),u1−u0〉≤0}, u0, . . . , ud ∈ Sd−1,

where z(u1, . . . , ud) := 0 for points u1, . . . , ud that are not in general position. To interpret
this function we consider the Voronoi tessellation generated by points u0, . . . , ud ∈ Sd−1 in
general position. We then have J (u0, . . . , ud) = 1 if and only if z(u0, . . . , ud) is pointing
along the edge generated by u1, . . . , ud and starting at the point 0. We define a probability
measure on the interval [−1, 1] by

W := c−1
0

∫
· · ·

∫
1{J (u0,...,ud )|z(u1,...,ud )|∈ ·}�d(u0, . . . , ud)S(du0) · · · S(dud), (5.2)

where c0 is as defined in Theorem 1.1(v) and S is the uniform distribution on the unit sphere
Sd−1. Note that W({−1}) = W({1}) = 0. In view of Theorem 1.1(v) and Corollary 2.1,
we can interpret W as the conditional distribution of the signed distance of the typical vertex
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from the centre of a randomly chosen edge emanating from the vertex, given that the distance
from the typical vertex to its neighbours is 1. Another interpretation of W and a more explicit
formula will be given in Proposition 5.2.

The following proposition generalizes a result of [8] and provides the joint distribution of the
typical edge and its neighbours. The result can be considered a preliminary one: a more explicit
version will be given in Theorem 5.1. As above, it is convenient to introduce the shorthand
notation (L′, L′′, ρ1, �1) ≡ (L′(0), L′′(0), ρ1(0), �1(0)), where we recall from Section 4 that
�1(x) is the set of the normalized directions to the d neighbours of the edge with centre x ∈ N1.

Proposition 5.1. The following assertions hold under P0
N1

.

(i) The random variables (L′, L′′, ρ1) and �1 are independent.

(ii) The distribution of �1 is Q1(· × Sd−1), where Q1 is as given in (1.3) for k = 1.

(iii) For any measurable mappings h1 : R2 → [0, ∞) and h2 : [0, ∞) → [0, ∞),

E0
N1

[h1(L
′, L′′)h2(ρ1)]

= dλ(λκd)d

2�(d)

∫ 1

−1

∫ ∞

0

∫ ∞

0
(h1(rw − t, rw) + h1(−rw, −rw + t))

× h2(r
√

1 − w2)V ∗(t, r, w)

× exp[−λV (t, r,
√

t2 + r2 − 2trw)]

× rd2−1 dt drW(dw), (5.3)

where V ∗(t, r, w) is as defined in (5.1) and W is as given in (5.2).

Proof. Using Proposition 4.2 instead of Proposition 4.1, the first two assertions can be proved
as were the equivalent assertions of Theorem 4.1. To determine the distribution of (L′, L′′, ρ1)

under P0
N1

, we will now use Corollary 2.1 and an idea that goes back to [4] (see also [8]).
Assume that x0, . . . , xd ∈ Rd are in general position. Then, for any i ∈ {0, . . . , d}, define

zi(x0, . . . , xd) := z(x0, . . . , xi−1, xi+1, . . . , xd)

and note that

zi(ax0, . . . , axd) = azi(x0, . . . , xd), a �= 0.

For points x0, . . . , xd ∈ Rd that are not in general position, we define zi(x0, . . . , xd) := 0. For
a measurable function h : N → [0, ∞), using Corollary 2.1 we obtain

2λ1 E0
N1

[h] = λ0

d∑
i=0

E0
N0

[h(N − Rzi(U0, . . . , Ud))], (5.4)

where R ≡ R0 and (U0, . . . , Ud) ≡ (U0,0, . . . , U0,d ).
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Next we introduce some random variables as seen from the typical vertex. From i ∈
{0, . . . , d}, we define

Ji := J (Ui, U0, . . . , Ui−1, Ui+1, . . . , Ud),

Zi := zi(U0, . . . , Ud), ηi := |Zi |−1Zi,

Li := L′′(N − RZi, 0) − L′(N − RZi, 0) = L′′(N, RZi) − L′(N, RZi).

We also define U(i) := Ui+1 for i ≤ d − 1 and U(d) := U0. Let t > 0. A crucial fact is the
equivalence

Li > t ⇐⇒ N ∩ [B(tJiηi, |RU(i) − tJiηi |) \ B(0, R)] = ∅.

Assertions (i) and (iii) of Theorem 1.1 imply that

P0
N0

(Li > t | �0, R) = exp
[
−λV

(
t, R,

√
R2 + t2 − 2tRJi〈U(i), ηi〉

)]
eλκdRd

,

i.e.

P0
N0

(Li ∈ dt | �0, R) = F(Ji〈U(i), ηi〉, t, R) dt, (5.5)

where

F(w, t, r) := −eλκdrd d

dt
exp[−λV (t, r,

√
t2 + r2 − 2trw)]

= λeλκdrd

V ∗(t, r, w) exp[−λV (t, r,
√

t2 + r2 − 2trw)].
Under P0

N1
we consider the set, E := {L′U(0), L′′U(0)}, of vertices of the typical edge.

From (5.4) and (5.5), for any nonnegative, measurable function g with suitable domain we then
obtain

2λ1 E0
N1

[g(E, ρ1)]

= λ0

d∑
i=0

E0
N0

[g({−RZi, −RZi + LiJiηi}, R
√

1 − |Zi |2)]

= λ0

d∑
i=0

E0
N0

[∫
g({−RZi, −RZi + tJiηi}, R

√
1 − |Zi |2)F (Ji〈U(i), ηi〉, t, R) dt

]
.

It is now easy to check that

〈U(i), zi(U0, . . . , Ud)〉 = |zi(U0, . . . , Ud)|2 = |Zi |2, i = 0, . . . , d.

Hence, we have 〈U(i), ηi〉 = |Zi |. Letting ξi := Ji |Zi |, and noting that Zi = |Zi |ηi = Jiξiηi ,
we can rewrite our previous result as

2λ1 E0
N1

[g(E, ρ1)]

= λ0

d∑
i=0

E0
N0

[∫
g
(
{−RξiJiηi, −RξiJiηi + tJiηi}, R

√
1 − ξ2

i

)
F(ξi, t, R) dt

]
.
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Let Ai denote the event that −JiZi < JiZi , and let Ac
i be its complement. By definition of

(L′, L′′), for any measurable function h : R2 × [0, ∞) → [0, ∞) we obtain

2λ1 E0
N1

[h(L′, L′′, ρ1)]

= λ0

d∑
i=0

E0
N0

[
1Ai

∫
h
(
−Rξi, −Rξi + t, R

√
1 − ξ2

i

)
F(ξi, t, R) dt

]

+ λ0

d∑
i=0

E0
N0

[
1Ac

i

∫
h
(
Rξi − t, Rξi, R

√
1 − ξ2

i

)
F(ξi, t, R) dt

]
. (5.6)

To conclude the proof of assertion (iii), we apply a symmetry argument based on Q0, the
distribution of {U0, . . . , Ud} (see (1.3)) and the independence of (U0, . . . , Ud) and R. For all
u0, . . . , ud ∈ Sd−1, we have

zi(−u0, . . . ,−ud) = −zi(u0, . . . , ud)

and, hence,

Ji(−u0, . . . ,−ud) = Ji(u0, . . . , ud).

Furthermore, we have �d(−u0, . . . ,−ud) = �d(u0, . . . , ud). It follows that

d∑
i=0

E0
N0

[
1Ai

∫
h
(
−Rξi, −Rξi + t, R

√
1 − ξ2

i

)
F(ξi, t, R) dt

]

=
d∑

i=0

E0
N0

[
1Ac

i

∫
h
(
−Rξi, −Rξi + t, R

√
1 − ξ2

i

)
F(ξi, t, R) dt

]

= 1

2

d∑
i=0

E0
N0

[∫
h
(
−Rξi, −Rξi + t, R

√
1 − ξ2

i

)
F(ξi, t, R) dt

]
.

This and a similar formula for the second summand on the right-hand side of (5.6) yields

2λ1 E0
N1

[h(L′, L′′, ρ1)]

= λ0

2

d∑
i=0

E0
N0

[∫
h
(
−Rξi, −Rξi + t, R

√
1 − ξ2

i

)
F(ξi, t, R) dt

]

+ λ0

2

d∑
i=0

E0
N0

[∫
h
(
Rξi − t, Rξi, R

√
1 − ξ2

i

)
F(ξi, t, R) dt

]
.

By definition of W (see (5.2)) and Theorem 1.1(v), we have

W = 1

d + 1

d∑
i=0

P0
N0

(ξi ∈ ·). (5.7)
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Again, using the independence of R and (ξ0, . . . , ξd), this implies that

2λ1 E0
N1

[h(L′, L′′, ρ1)]
= (d + 1)λ0

2
E0

N0

[∫∫
h(−Rw, −Rw + t, R

√
1 − w2)F (w, t, R) dtW(dw)

]

+ (d + 1)λ0

2
E0

N0

[∫∫
h(Rw − t, Rw, R

√
1 − w2)F (w, t, R) dtW(dw)

]
.

Recalling that 2λ1 = (d + 1)λ0 and that Rd has a gamma distribution with shape parameter d

and scale parameter λκd , we obtain assertion (iii).

Assertion (iii) of the previous theorem implies the following natural symmetry property:

P0
N1

((L′, L′′, ρ1) ∈ ·) = P0
N1

((−L′′, −L′, ρ1) ∈ ·). (5.8)

To derive an alternative to (5.3), we introduce the [−1, 1]-valued random variables

η′ := − L′√
L′2 + ρ2

1

, η′′ := L′′√
L′′2 + ρ2

1

.

We have η′ = cos α′ and η′′ = cos α′′ for some random angles α′, α′′ ∈ [0, π ]. Here α′ is
the angle spanned by U(0) and the vector between the edge L′U(0) and one of the neighbours
of C1(0), while α′′ is the angle spanned by −U(0) and the vector between the edge L′′U(0)

and one of the neighbours of C1(0) (see Figure 2). Since sin(α′ + α′′) ≥ 0, it follows that
q(η′, η′′) ≥ 0, where

q(w, v) := v
√

1 − w2 + w
√

1 − v2. (5.9)

This inequality also follows more directly from L′′−L′ ≥ 0. Under P0
N1

there is (almost surely)
a one-to-one correspondence between (L′, L′′, ρ1) and (η′, η′′, L).

The next two propositions can be found in [8]. For any s ∈ R, we denote by [s] the largest
integer k such that k ≤ s.

Proposition 5.2. We have

P0
N1

(η′ ∈ ·) = P0
N1

(η′′ ∈ ·) = W. (5.10)

Moreover, the measure W is given by

W(dw) = c∗(1 − w2)(d
2−d−2)/2b(w) dw, (5.11)

where

c∗ = (d2 − d)�((d + 1)/2)�(d2/2)

�(d/2)�((d2 + 1)/2)
, b(w) :=

[(d−1)/2]∑
i=0

bi(w). (5.12)

The bi(w) are given by

b0(w) :=
{

π−1((π − arccos(w))w + √
1 − w2) if d is even,

(1 + w)/2 if d is odd,
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and, for i ∈ {1, . . . , [(d − 1)/2]}, by

bi(w) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1

4
√

π

�(i)

�(i + 3
2 )

(1 − w2)i+1/2 if d is even,

− 1

4
√

π

�(i − 1
2 )

�(i + 1)
(1 − w2)i if d is odd.

Proof. Here we prove only the first assertion. The second will be derived in the proof of
Proposition 5.3. We choose ω, ω′ ∈ N such that 0 ∈ N0(ω) and ω′ = ω − x for some (unique)
x ∈ N1(ω) satisfying 0 ∈ C1(ω, x). We then define α(ω, ω′) ∈ [0, π ] as the angle spanned by
the vector between 0 and one of the neighbours of C1(ω, x) and the (directed) edge C1(ω, x)

starting at 0. For all other ω, ω′ ∈ N , we give α(ω, ω′) some fixed value in [0, π ]. For j = 0
and k = 1, Proposition 2.2 yields, for any measurable function f : [−1, 1] → [0, ∞),

λ0 E0
N0

[ ∑
x∈N1, 0∈C1(x)

f (cos α(N, N − x))

]
= λ1 E0

N1

[ ∑
x∈N0, x∈C1(0)

f (cos α(N − x, N))

]
.

(5.13)
Using the notation established in the proof of Proposition 5.1, the left-hand side of this equation
can be written as

λ0 E0
N0

[ d∑
i=0

f (ξi)

]
= (d + 1)λ0

∫
f (w)W(dw);

see (5.7). However, the right-hand side of (5.13) equals

λ1 E0
N1

[f (η′) + f (η′′)].

Now, (5.8) implies that η′ and η′′ have the same distribution under P0
N1

. Therefore,

(d + 1)λ0

∫
f (w)W(dw) = 2λ1 E0

N1
[f (η′)].

As (d + 1)λ0 = 2λ1, the assertion in (5.10) follows.

We define L := L′′ − L′ as the length of the typical edge.

Proposition 5.3. The joint distribution of η′, η′′, and L under P0
N1

is given by

P0
N1

((η′, η′′, L) ∈ ·)

= d2(λκd)d+1

�(d)
c∗

∫ ∞

0

∫ 1

−1

∫ 1

−1
1{(w,v,t)∈ ·}1{q(w,v)>0}b(w)b(v)

× (1 − w2)(d
2−2)/2(1 − v2)(d

2−2)/2

q(w, v)d
2+d

td
2+d−1

× exp

[
−λtdV

(
1,

√
1 − v2

q(w, v)
,

√
1 − w2

q(w, v)

)]
dw dv dt,

(5.14)

where c∗, b(w), and q(w, v) are as given in (5.12) and (5.9), respectively.
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Proof. As

exp[−λV (t, r,
√

t2 + r2 − 2trw)] → 0 as t → ∞
and [d(λκd)d/�(d)]rd2−1e−λκdrd

is a density, for all w ∈ [−1, 1] we obtain

dλ(λκd)d

�(d)

∫ ∞

0

∫ ∞

0
V ∗(t, r, w) exp[−λV (t, r,

√
t2 + r2 − 2trw)]rd2−1 dt dr = 1. (5.15)

For measurable mappings h1 : [−1, 1]2 → [0, ∞) and h2 : [0, ∞) → [0, ∞), from (5.3)
we obtain

E0
N1

[h1(η
′, η′′)h2(L)]

= dλ(λκd)d

2�(d)

∫∫∫ (
h1

(
t − rw√

r2 + t2 − 2trw
, w

)
+ h1

(
w,

−rw + t√
r2 + t2 − 2trw

))

× h2(t)V
∗(t, r, w) exp[−λV (t, r,

√
t2 + r2 − 2trw)]

× rd2−1 drW(dw) dt. (5.16)

To modify the inner integration we write

r(w, t, v) := t
√

1 − v2

q(w, v)
, r ≥ 0, w, v ∈ [−1, 1],

provided that q(w, v) > 0. It is easy to check that, for any fixed t > 0 and w ∈ (−1, 1),
v �→ r(w, t, v) is a differentiable bijection between (0, ∞) and {v ∈ (−1, 1) : q(w, v) > 0}.
Moreover, we have

∂

∂v
r(w, t, v) = − t

√
1 − w2

q(w, v)2
√

1 − v2
,

t − r(w, t, v)w = tv
√

1 − w2

q(w, v)
,

t2 + r(w, t, v)2 − 2r(w, t, v)wt = t2(1 − w2)

q(w, v)2 .

Substituting these equations into (5.16) yields

E0
N1

[h1(η
′, η′′)h2(L)] =

∫∫∫
(h1(v, w) + h1(w, v))h2(t)H(w, t, v) dv dtW(dw), (5.17)

where

H(w, t, v) := dλ(λκd)d

2�(d)
1{q(w,v)>0}

t
√

1 − w2

q(w, v)2
√

1 − v2
V ∗

(
t,

t
√

1 − v2

q(w, v)
, w

)

×
(

t
√

1 − v2

q(w, v)

)d2−1

exp

[
−λV

(
t,

t
√

1 − v2

q(w, v)
,
t
√

1 − w2

q(w, v)

)]
. (5.18)
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In particular,

E0
N1

[h1(η
′, η′′)] =

∫∫
(h1(v, w) + h1(w, v))H ∗(w, v) dvW(dw), (5.19)

where

H ∗(w, v) :=
∫ ∞

0
H(w, t, v) dt.

Equation (5.15) implies that∫ 1

−1
H ∗(w, v) dv = 1

2
, w ∈ [−1, 1].

Hence, it follows from (5.19) that

P(η′ ∈ ·) = 1

2
W +

∫∫
1{v∈ ·}H ∗(w, v) dvW(dw).

Using (5.10), we obtain the invariance relationship

W =
∫ 1

−1

∫ 1

−1
1{v∈ ·}2H ∗(w, v) dvW(dw). (5.20)

We next compute the kernel function H ∗(w, v). From [8, Equation (11)],

V ∗
(

t,
t
√

1 − v2

q(w, v)
, w

)
= dκdtd−1

(√
1 − w2

q(w, v)

)d−1

b(v),

where b(v) is as given in (5.12). Recalling definition (5.18), we hence obtain

2H(w, t, v) = S(w, t, v)(1 − v2)(d
2−d−2)/2b(v), (5.21)

where

S(w, t, v) : = 1{q(w,v)>0}
d2(λκd)d+1

�(d)

(1 − w2)d/2(1 − v2)d/2

q(w, v)d
2+d

td
2+d−1

× exp

[
−λV

(
t,

t
√

1 − v2

q(w, v)
,
t
√

1 − w2

q(w, v)

)]
. (5.22)

As V (t, ta, tb) = tdV (1, a, b) for all a, b, t ≥ 0, we find from an easy calculation that∫ ∞

0
S(w, t, v) dt = 1{q(w,v)>0}d2κd+1

d

(1 − w2)d/2(1 − v2)d/2

q(w, v)d
2+d

G(w, v)−d−1,

where

G(w, v) := V

(
1,

√
1 − v2

q(w, v)
,

√
1 − w2

q(w, v)

)
.

This is a symmetric function of w and v, and it immediately follows that the right-hand side
of (5.11) does satisfy (5.20). Moreover, H ∗(w, v) is continuous and positive on {(w, v) ∈
(−1, 1)2 : q(w, v) > 0}, from which (5.11) follows since standard results on discrete-time
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Markov processes imply that there exists at most one probability measure W on [−1, 1]
satisfying both (5.20) and W({−1}) = W({1}) = 0. Indeed, we may consider 2H ∗(w, v) dv

a stochastic kernel on (−1, 1). The associated Markov process has the regeneration set
[−1/2, 1/2], for instance. By Theorem VII.3.5 of [1], the process can have at most one
invariant measure.

The value (see (5.12)) of the constant c∗ in (5.11) is a consequence of [8, Equation (13)].
Finally, we may substitute (5.21), (5.22), and (5.11) into (5.17) to obtain (5.14).

We can now summarize the main results of this section, as follows.

Theorem 5.1. Under P0
N1

the following assertions hold.

(i) The random variables (η′, η′′), G(η′, η′′)Ld , and �1 are independent.

(ii) The random variable G(η′, η′′)Ld has a gamma distribution with shape parameter d +1
and scale parameter λ.

(iii) The distribution of (η′, η′′) has the density

d2κd+1
d c∗1{q(w,v)>0}b(w)b(v)

(1 − w2)(d
2−2)/2(1 − v2)(d

2−2)/2

q(w, v)d
2+d

G(w, v)−d−1.

(iv) The distribution of �1 is Q1(· × Sd−1), where Q1 is as given in (1.3) for k = 1.

Proof. Assertion (iv) follows directly from Proposition 5.1 while assertions (ii) and (iii)
follow from (5.14) and a simple substitution. Combining Proposition 5.1 and (5.14) yields
assertion (i).

Remark 5.1. Under P0
N1

the origin is almost surely the centre of the typical edge. The random
variable G(η′, η′′)Ld is the volume of the union of the two balls, respectively centred at the
endpoints of the typical edge, whose radii are given by the respective distances from the
endpoints to one of the neighbours of the edge. This volume, the angles arccos η′ and arccos η′′,
and the normalized directions in �1 provide a complete geometric description of the typical edge
and its neighbours. Theorem 5.1 gives remarkably explicit formulae for the distribution of these
random variables. With a little more effort, Theorem 5.1 can be deduced from Propositions 4.2
and 2.1.
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