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SUMMARY

Although the effect of weather on crop growth has been studiedwidely, the contribution of other water sources has
been less well studied, mainly due to data limitation. To address this gap, the current analysis considers the
importance of water availability on crop growth by taking advantage of crop field boundaries and information on
South Africa’s four major grain producing provinces (Northwest, Mpumalanga, Free State and Gauteng) provided
by the Agricultural Geo-referenced Information System dataset. To capture crop growth along the crop growing
cycle at the plot level, the MODIS’s MOD13Q1 dataset of 16-day normalized difference vegetation index (NDVI)
was used. To estimate the determinants of crop growth, weather effects were considered and represented by
rainfall and reference evapotranspiration satellite derived data provided by the National Oceanic and
Atmospheric Administration’s RFE and GDAS dataset, respectively. Hydrologic and irrigation determinants
were estimated based on the HYDRO1K river network dataset produced by the US Geological Survey. The results
show that althoughweather is an important explanatory factor, other sources of water, such as irrigation, proximity
to perennial and ephemeral rivers, and stream flow are also influential. Taking into account the interaction effects
betweenweather andwater availability related factors is also important to determine the effect of water availability
on crop growth.

INTRODUCTION

Agriculture is an important sector of South Africa’s
economy, representing 0·03 of GDP and 0·065 of total
national exports (van Niekerk 2012). However, while
0·12 of South Africa’s land can be used for crop
production, only 0·22 of this is considered as high-
potential arable land. The greatest limitation in this
regard is the availability of water, with uneven and
unreliable rainfall over South Africa’s seven climatic
regions, causing at times severe agricultural losses to
commercial and subsistence farmers. Thus, under-
standing the role that water scarcity plays in crop
productivity is a necessary step to ensuring food
sufficiency and export earnings in the region.

Crop growth studies considering the role of climatic
factors generally can be categorized as either bio-
physical or statistical models. Biophysical models rely
on controlled environments (growth chambers and/or
field trial) experiments over small areas (Azam-Ali &
Squire 2002), whereas statistical models are based on
time series of single crop plots or temporally pooled
cross-sectional data. Traditionally, the statistical mod-
els have been based on country or regional level data
and thus the unit of analysis is spatially relatively
aggregated. However, advances in satellite techno-
logies have provided crop biomass production indi-
cators, such as net primary production (NPP) or the
normalized difference vegetation index (NDVI), at a
high resolution, which have led to a rising number of
crop development statistical models at a much lower
unit of analysis than those using information collected
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by national statistical agencies. Benedetti & Rossini
(1993) show that such an index provides a relatively
low-cost and useful cropmonitoring tool. For instance,
a study by Yang et al. (1997) of Nebraska at a 1-km
resolution showed a strong correlation between NDVI
temporal change and temperature. Karnieli et al.
(2010) use NDVI data at an 8 km resolution over
North America and also find a significant correla-
tion between NDVI and land surface temperature.
In Western Africa, Malo & Nicholson (1990) showed
a linear relationship between precipitation and
NDVI at a 3×5-km resolution, whereas Schultz &
Halpert (1993) showed at a global 1° grid scale that
the influence of climatic factors on NDVI differ
regionally.
Although the recent surge of satellite-data-based

statistical models have enabled researchers to study
the climatic determinants of crop production at a small
unit of analysis while still covering large spatial areas,
they have generally been limited to examining crop-
land without being able to distinguish between crop
types over space and time – see, for example, Milesi
et al. (2010) and Blanc & Strobl (2013). Additionally,
existing analyses have not been able to consider water
availability, which is location-specific. In the present
paper, these weaknesses are addressed using detailed
spatial crop field information in the four major grain
producing provinces of South Africa –Northwest,
Mpumalanga, Free State and Gauteng – representing
>0·90 of the total summer grain growing area in the
country (Ferreira et al. 2006). More specifically, in
contrast to the usual gridded cropland data, the current
dataset not only identifies exact crop field boundaries,
but also the type of crop grown and whether the field
is irrigated. Moreover, knowing the specific location
of the crop plot enables one to estimate their distance
from water sources. For each of these fields, a
satellite-based measure of crop biomass productivity
is calculated every 16 days over the crop’s growing
cycle and the impact of water availability is estimated
in a regression framework. Water availability in this
regard is measured along a number of dimensions,
including local precipitation, river flow and distance
to the nearest river.
The remainder of the paper is organized as follows.

The next section describes the data and provides
some summary statistics, whereas the Modelling
Framework and Results section outlines the regression
methodology and provides results. Conclusions, lim-
itations and future work are discussed in the final
section.

DATA

Spatial delineation: crop plot boundaries

Crop field boundaries were provided by the
Agricultural Geo-referenced Information System
(AGIS) developed by the South African National
Department of Agriculture (available online from
www.agis.agric.za). These data were available for the
provinces of Free State, Gauteng, Northwest and
Mpumalanga. The field boundaries in this dataset
were determined using the Producer Independent
Crop Estimate System (PICES) which combines sat-
ellite imagery, Geographic Information System (GIS),
point frame statistical platforms and aerial observa-
tions (Ferreira et al. 2006). Satellite imagery of crop
field of cultivated fields was obtained from the
SPOT 5 satellite at a 2·5-m resolution. Crop field
boundaries were then digitized using GIS. When
cloud-free satellite images were not available, field
polygons hidden by clouds were removed before
processing. This ensured a more accurate dataset.
Over the four regions of interest, PICES distinguished
c. 280000 plots covering an area of c. 6·5 million
hectares.

To approximately match the resolution of the crop
growth indicator data described below, which were
only available at the 250-m resolution, the analysis
was limited to plots larger than 6·25 ha. This restricted
the sample to 213110 crop fields. A geographical
representation of the crop fields’ location is presented
in Fig. 1.

North West
Gauteng

Mpumalanga

Free State

Fig. 1. Crop plot location in South Africa.
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Crop types

Within each crop plot described above, AGIS provided
information on the crop cultivated. Crop types were
determined using the digitized satellite images de-
scribed above. Sample points were selected randomly
and surveyed by trained observers from a very light
aircraft in order to determine crop type (Ferreira et al.
2006). Crop information collected during the aerial
surveys on the sample points was used as a training
set for crop type classification for each field and for
accuracy assessment. For crops planted sparsely,
field verification on certain sample points was not
possible and therefore larger areas were considered
to include these crops. These estimated crop classifi-
cations were checked against a producer based
survey for the Gauteng region. The Gauteng census
survey showed that less than 1·8% of crop types had
been misclassified.

All in all, seven summer crops were distinguished
(classification of winter crops was generated for the
season 2007/08 only, therefore these crops were not
considered in the analysis): cotton, dry beans, ground-
nuts, maize, sorghum, soya and sunflower. Given the
small number of cotton observations (110 plots over
only one province), these were excluded from the
analysis. Although the data also identified fallow and
pasture plots, these were also not considered given the
focus of the analysis on cropland.

Crop classification data were available for the
summer season 2006/07 for the provinces of Free
State, Gauteng, Northwest and Mpumalanga, and for
one province only, Free State, for the summer season
2007/08. A geographical representation of crop types
for each season is provided in Fig. 2. Figure 3 provides
a close-up representation of crop type change across
seasons. As can be seen, crops showed patterns of
alternation between crop types and fallow/pasture.

Crop growth measure

Crop biomass production was estimated using the
NDVI. Vegetation indices such as the NDVI are
particularly attractive as they provide consistent
spatial and temporal representations of vegetation
conditions. As a matter of fact, numerous studies have
demonstrated that NDVI values are significantly
correlated with crop yields including wheat (Das
et al. 1993; Gupta et al. 1993; Doraiswamy & Cook
1995; Hochheim & Barber 1998; Labus et al. 2002),
sorghum (Potdar 1993), corn (Hayes & Decker

1996; Prasad et al. 2006), rice (Quarmby et al. 1993;
Nuarsa et al. 2011), soybean (Prasad et al. 2006),
barley (Weissteiner & Kühbauch 2005), millet (Groten
1993) and tomato (Koller & Upadhyaya 2005).
Moreover, NDVI has also been shown to provide a
very good indicator of crop phenological development
(Benedetti & Rossini 1993).

The NDVI index is calculated using ratios of
vegetation spectral reflectance over incoming radi-
ation in each spectral band. More specifically, NDVI
can be formulated as:

NDVI = (NIR− VIS)/(NIR+ VIS)

where the difference between near-infrared reflec-
tance (NIR) and visible reflectance (VIS) values are
normalized by the total reflectance and vary between
−1·0 and 1·0 (Eidenshink 1992). Negative and very
low values corresponding to water and barren areas
were excluded from the analysis by design. The
NDVI datawere extracted from theMOD13Q1 dataset
(available online from: https://lpdaac.usgs.gov/lpdaac/
content/view/full/6652), which regroups reflectance
information collected by the MODerate-resolution
Imaging Spectroradiometer (MODIS) instrument

CROP
Cotton
Drybeans
Fallow
Groundnuts
Maize
Pasture
Sorghum
Soya
Sunflower

CROP
Cotton
Drybeans
Fallow
Groundnuts
Maize
Pasture
Sorghum
Soya
Sunflower

2006/07 2007/08

Fig. 2. Crop type location for the summer seasons 2006/07
and 2007/08.
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operating on NASA’s Terra satellite (Huete et al. 2002).
The NDVI estimates were available as 16-day com-
posite indices at a resolution of 250m. Area-weighted
averages of the 16-day NDVI values for each crop field
were calculated using the ‘zonal statistics’ tool in
ArcGIS.

Growing season

Crop growing seasons are characterized by the
planting date and the phenology cycle, which
determine the length of the season. In South Africa,
planting dates are spread from October to December
in order to reduce the vulnerability to erratic rainfalls
(Ferreira et al. 2006). At the same time, however,
phenology cycles also differ among crops. The
TIMESAT program (Jönsson & Eklundh 2002, 2004)
was used to determine crop- and field-specific growing
seasons. The algorithm within the software is com-
monly used to extract seasonality information from
satellite time-series data. Within this context, it allows
one to approximate the start and end of growing

seasons based on distribution properties of NDVI.
The repartition of growing season for each crop is
presented in Fig. 4. This bar chart shows that within the
area considered, groundnuts had the shortest growing
season, whereas sunflower had the more widespread
planting period.

Using these growing season estimates for each crop
plot, it was also possible to determine the stage of the
biomass development within the cropping season.
In this exercise, the position of each 16-day period
was determined relative to the length of the cropping
season. For instance, the first 16-day period of a
160-day cropping season was assigned the value 0·1,
and the last was assigned the value 1. This measure
therefore accounts for the difference in growing season
length of each crop plot.

Weather

Daily rainfall data were extracted from the rainfall
estimation algorithm RFE (version 2.0) dataset imple-
mented by the National Oceanic and Atmospheric
Administration (NOAA) –Climate Prediction Center
(CPC). These data, which were generated from a
combination of rain gauges and satellite observations,
were available at FEWS NET Africa Data Portal
(available online from: http://earlywarning.usgs.gov/
fews/africa/index.php) at the 0·1° resolution (c. 10 km).

Reference evapotranspiration (ETo), which repre-
sents the evaporative demand of the air, was calcu-
lated using the Penman–Monteith equation following
the FAO methodology (Allen et al. 1998). These data
are also available from: http://earlywarning.usgs.
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Fig. 3. Crop type changes across the summer seasons
2006/07 and 2007/08.

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

Drybeans

Average growing season
End rangeStart range

Groundnuts

Maize

Sorghum

Soya

Sunflower

Fig. 4. Crop growing season estimated using Timesat.
Notes: Average growing season bars represent the average
start and end of growing season for each crop. Start and
End range bars represent respectively start and end dates of
growing seasons comprised between the 10th and the 90th
percentile.
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gov/fews/global/index.php: this source labels ETo as
‘potential evaporation’. However, as noted in Allen
et al. (1998), ‘the use of other denominations such as
potential ET is strongly discouraged due to ambiguities
in their definitions.’ Daily ETo data at 1° resolution
were calculated using a 6-hourly assimilation of
conventional and satellite observational data of air
temperature, atmospheric pressure, wind speed, rela-
tive humidity and solar radiation extracted from the
NOAA’s Global Data Assimilation System.

Irrigation

The AGIS crop boundaries dataset also provides
information regarding irrigation for each crop plot.
As displayed on the left-hand side of Fig. 5, cropland in
South Africa was mainly rain-fed. Moreover, the right-
hand side of Fig. 5, which represents a detailed view of
the crop plots, shows that irrigated crop plots were
generally clustered around streams. It should be noted
that the lines representing streams were not represen-
tative of the width of the actual streams, which may
explain the ‘gap’ between the plots and the streams.

Other water sources

To account for water sources other than local
precipitation, the proximity of crop plots to streams
and the daily flow of these were calculated. The
proximity of each crop plot to a river or stream
(perennial and non-perennial) was estimated using the
river network of the African continent from the
HYDRO1K dataset (USGS 2011). Stream flow was
estimated using the Geospatial Stream Flow Model
(GeoSFM) (Artan et al. 2008), which simulates the
dynamics of runoff processes using spatial information
on river basin and network coverage, land cover type,
soil characteristics, and daily precipitation and evapo-
transpiration data. River basins in South Africa were
delineated using the HYDRO1K dataset, which
provides drainage basin boundaries data derived
from river network and flow direction data. Soil
characteristics (water-holding capacity, hydrologically
active soil depth, texture, average saturated hydraulic
conductivity) were extracted from the Digital Soil Map
of the World (FAO 2011). The GeoSFM model
produced daily stream flow in terms of cubic meters
per second (m3/s). Each crop plot was then assigned to

No

Yes

IRRIGATION

IRRIGATION

CROP
Drybeans

Fallow

Groundnuts

Maize

Pasture

Sorghum

Soya

Sunflower

Fig. 5. Crop plots irrigation.
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a river basin and its corresponding river flow. For crop
plots spreading over more than one river basin, the
basin to which the plot belongs is determined by the
largest area share located in the basin.

Summary statistics

Summary statistics of time-invariant plot character-
istics for each crop are provided in Table 1. Maize was
the most prevalent crop with nearly 50000 plots in the
2006/07 season. Groundnuts plots were on average
the largest (37 ha). Irrigation summary statistics indi-
cate that the irrigation rate for crops ranged from 4 to
7% (i.e. lowest for sorghum and highest for sunflower).
Dry beans and groundnuts plots were located the
furthest from perennial rivers, with an average distance
of 13 km.
Crop plot time-series statistics are presented by crop

type in Table 2 for all provinces over the 2006/07
season. Table 3 provides similar statistics for the Free
State province over both the 2006/07 and 2007/08
seasons. The NDVI index, showing daily biomass
productivity, was the largest for soya. Productivity was
generally slightly larger during the 2007/08 season.
One may also note that although the NDVI index is
theoretically bounded, it never actually came close to
either bound within this dataset.
The growing season length was the longest for dry

beans and the shortest for groundnuts, with an average
of 172 and 141 days, respectively. Weather variables
show that sorghum and soya were grown in the wettest
conditions (i.e. the highest rainfalls and the lowest ETo
rates) during the 2006/07 season. Dry beans and soya
were cultivated within the basin having the lowest
stream flows in both seasons.
The skewness statistics show that the Stream flow

and Rain were positively skewed and may need to be
transformed.

MODELLING FRAMEWORK AND RESULTS

Regression specification

In the current analysis, a vector of various weather and
irrigation factors was considered to estimate the
determinants of crop growth. The base regression
specification was formulated as follows:

NDVIpt = α+ δXpt + εpt (1)
where p and t are plot and time indicators, respect-
ively, X represents a vector of explaining variables,

δ are the estimated coefficients representing the
marginal effects and ε a standard independent and
identically distributed (i.i.d.) error term. The vector X
includes weather variables, represented by rainfall and
ETo, and irrigation-related variables such as the
distance to perennial and non-perennial rivers, stream
flow and irrigation application. Many factors explain-
ing crop growth, such as soil fertility, ozone concen-
tration, crop variety, nutrient application and other
management practices, were not included in the
analysis. The omission of these explaining factors
was an important issue for this, andmany other, studies
but was unavoidable due to data limitation. However,
in order to control for region-specific fixed effects, a set
of province factors was also included in all specifica-
tions. This regional distinction was deemed the most
appropriate as it captures the geographic and political
unobservable specificities. Also, it may reflect data
collection discrepancies across regions as the data
were collected at the province level. As a sensitivity
analysis, regression (6) was re-estimated for the full
sample using alternatives to the province factors.
Climatic zone factors were considered first. The
study area spreads over three major climate zones
defined by FAO (1996): warm Sub-Tropics, cool Sub-
Tropics and cold Sub-Tropics. A second alternative
considered agro-ecological zones (AEZ) developed by
Monfreda et al. (2009), who defines zones globally by
overlaying six categories of growing length periods
with climatic zones. In the study area, five AEZ
categories are distinguished. However, neither of
these alternative regional indicators changed the
estimation results in any noticeable qualitative or
quantitative manner. Detailed results are available
from the authors upon request. It should be noted that,
since the full set of these factors would be perfectly
correlated if included together, the Free State factor
was excluded so that anymarginal effects on the others
must be interpreted in terms of additional marginal
productivity relative to this reference province.
Additionally, as these fixed effects assume that the
explanatory variables coefficients are similar across
provinces, the interaction of the province factor
variables with each determinant were also included
to relax this condition.

The statistical analysis was performed using Stata
12.0 (StataCorp 2011). To investigate the possibility
that crop growth is spatially correlated, a Moran’s I test
(Moran 1950) was conducted. Since this test indicated
that the crop growth measure was spatially correlated,
the non-parametric covariance matrix estimator
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Table 1. Crop plots summary statistics

Variable Name Dry beans Groundnuts Maize Sorghum Soya Sunflower

Plots (number) 2006/07 Number 1288 1404 49194 728 6946 10511
2007/08 Number 339 673 36038 1902 2124 4092

Area (Ha) 2006/07 Mean 29·79 36·83 31·28 24·15 24·31 28·74
Skewness 4·18 2·14 3·54 2·78 3·74 2·85
MinMax [6·25;341·07] [6·26;249·12] [6·25;602·27] [6·26;168·5] [6·25;321·2] [6·25;292·25]

2007/08 Mean 20·86 37·84 30·61 27·09 20·13 29·35
Skewness 1·79 0·8 1·56 1·43 1·92 1·5
MinMax [6·34;90·13] [6·59;114·81] [6·25;335·99] [6·26;136·43] [6·26;100·15] [6·26;150·11]

Irrigation (irrigated=1,
non-irrigated=0)

2006/07 Mean 0·04 0·04 0·05 0·02 0·06 0·07
MinMax [0;1] [0;1] [0;1] [0;1] [0;1] [0;1]

2007/08 Mean 0·01 0·03 0·06 0·01 0·01 0·03
MinMax [0;1] [0;1] [0;1] [0;1] [0;1] [0;1]

Distance perennial river (m) 2006/07 Mean 12583·66 13557·42 7485·29 3087·84 2865·3 7886·47
Skewness 1·86 1·41 2·77 2 2·88 2·53
MinMax [0;76437] [10;69765] [0;127111] [0;22318] [0;38235] [0;81938]

2007/08 Mean 2785·3 11636·11 7908·46 4553·82 2987·54 9565·4
Skewness 1·28 1·09 2·11 1·36 1·92 2·14
MinMax [0;11248] [333;57190] [0;58216] [0;23393] [0;21986] [0;58014]

Distance non-perennial
river (m)

2006/07 Mean 9717·64 7061·61 8743·43 10789·16 10577·7 8172·57
Skewness 1·00 1·11 1·76 0·68 0·88 1·95
MinMax [0;39962] [0;31258] [0;66961] [0;37867] [0;38982] [0;67080]

2007/08 Mean 6127·68 6809·64 7204·36 5614·39 10396·86 6961·04
Skewness 2·28 1·43 2·8 1·22 1·06 2·06
MinMax [20;36187] [0;31181] [0;67565] [0;24718] [0;39323] [0;61643]
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proposed byDriscoll & Kraay (1998) was implemented
to obtain robust S.E. for all estimations.
To account for the skewness of the Stream flow and

Rain variables, the log of Stream flow and the square
root of Rain, which were deemed the most appropriate
at reducing the skewness, were also considered.
However, the results indicated that the transformed
variables did not improve the fit of the regression and
the distribution of the residuals. Therefore, for ease of
interpretation, the Stream flow and Rain variables were
kept in levels.

Regression results

Regressions results at the crop level are presented in
Tables 4–6. These regressions were obtained through
a selection process to remove non-significant second-
ary variables (i.e. non-linear terms and interaction
terms) from the most general specification of Eqn (1).
In order to make the results more legible, the
dependent variable was scaled by a factor of 10000
in all specifications. The crop samples were pooled
across the four provinces. Differences between pro-
vinces were accounted for by including a set of
province factors (the reference case is Free State) and
their interaction terms with explanatory variables.

Rainfall and evapotranspiration were considered in
the model to represent the effect of weather on crop
biomass productivity. The Rain coefficients suggest
that precipitation had a direct beneficial impact on
sorghum and soya biomass productivity in all pro-
vinces. For dry beans, the beneficial effect was
observed in the Mpumalanga province only. Rainfall
had no significant effect on sunflower and groundnuts.
Increases in evapotranspiration had a negative effect
on dry beans, except in the Mpumalanga province,
where it was beneficial to biomass productivity
growth. For groundnuts, the effect of increased
evapotranspiration was detrimental in all provinces,
whereas it was beneficial for maize, sorghum and
sunflower. The largest evapotranspiration effect was
observed for sorghum.

In order to investigate whether there may be non-
linearities in the relationship between these weather
factors and cropland biomass productivity, their
squared terms were included. Accordingly, there is
strong evidence that evapotranspiration had a non-
linear relationship with biomass productivity of maize,
sorghum and sunflower. For these crops, the regres-
sions indicate that evapotranspiration had a biomass
productivity enhancing effect up to a certain point.
The coefficients suggest that this threshold was about
7·4 mm/day for maize, 8·3 mm/day for sunflower and

Table 2. Summary statistics by crop type for all provinces for the 2006/07 season

Variable Name Dry beans Groundnuts Maize Sorghum Soya Sunflower

NDVI (unitless) Number 13107 11587 440342 6529 64058 96326
Mean 0·48 0·42 0·48 0·55 0·57 0·47
Skewness 0·52 0·66 0·43 0 −0·03 0·48
MinMax [0·2;0·88] [0·17;0·82] [0·07;0·93] [0·21;0·87] [0·2;0·91] [0·02;0·9]

Growing season
length (number of
16-day periods)

Number 13107 11587 440346 6529 64058 96333
Mean 10·75 8·83 9·51 9·27 9·61 9·79
Skewness 0·20 0·67 0·55 0·49 0·69 0·57
MinMax [4;17] [3;17] [3;20] [5;15] [3;19] [3;21]

ETo (mm/day) Number 13107 11587 440346 6529 64058 96333
Mean 4·58 4·72 4·56 4·45 4·45 4·56
Skewness −0·25 −0·42 −0·47 −0·75 −0·83 −0·41
MinMax [1·85;7·54] [1·68;7·54] [1·15;8·39] [1·69;6·79] [1·18;6·74] [1·18;8·39]

Rain (mm/16-day
period)

Number 13107 11587 440346 6529 64058 96333
Mean 30·89 19·99 28·87 35·81 36·84 26·46
Skewness 1·72 1·14 1·64 1·61 1·34 1·72
MinMax [0;168] [0;110] [0;212] [0;199] [0;199] [0;199]

Stream flow (m3/s) Number 13107 11587 440346 6529 64058 96333
Mean 66·71 577·22 219·86 105·16 86·99 214·86
Skewness 11·28 1·64 3·63 3·02 3·23 3·74
MinMax [0;4049·69] [0;4436·7] [0;4862·66] [0;2898·99] [0;3003·38] [0;4862·66]
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Table 3. Summary statistics by crop type for the Free State province for the 2006/07 and 2007/08 seasons

Variables Statistics Drybeans Groundnuts Maize Sorghum Soya Sunflower

NDVI (unitless) 2006/07 Number 2422 8556 199264 1889 21499 45501
Mean 0·5 0·43 0·45 0·46 0·52 0·44
Skewness 0·26 0·48 0·49 0·33 0·16 0·55
MinMax [0·26;0·82] [0·19;0·82] [0·07;0·89] [0·21;0·81] [0·23;0·87] [0·02;0·87]

2007/08 Number 3406 5440 335200 19631 21299 39101
Mean 0·58 0·52 0·52 0·51 0·58 0·48
Skewness 0 0·01 0·06 0·24 −0·03 0·24
MinMax [0·2;0·88] [0·18;0·86] [0·01;0·92] [0·21;0·88] [0·1;0·9] [0·12;0·87]

Growing season length
(number of 16-day periods)

2006/07 Number 2422 8556 199266 1889 21499 45508
Mean 10·40 8·39 9·51 9·71 9·81 9·82
Skewness −0·15 0·92 0·50 −0·03 0·53 0·53
MinMax [5;15] [3;17] [3;20] [5;14] [4;19] [3;21]

2007/08 Number 3406 5440 335200 19631 21299 39101
Mean 10·38 8·5 9·84 10·77 10·29 10·17
Skewness 1·12 1·42 0·70 0·33 0·35 0·42
MinMax [5;19] [4;19] [2;22] [5;20] [3;18] [3;21]

ETo (mm/day) 2006/07 Number 2422 8556 199264 1889 21499 45501
Mean 4·59 4·81 4·75 4·53 4·59 4·76
Skewness −0·85 −0·51 −0·49 −0·64 −0·87 −0·46
MinMax [2·2;6] [1·68;7·42] [1·15;8·39] [1·69;6·79] [1·18;6·24] [1·18;8·39]

2007/08 Number 3406 5440 335200 19631 21299 39101
Mean 4·24 4·69 4·53 4·54 4·33 4·57
Skewness −0·62 −0·26 −0·28 −0·32 −0·5 −0·29
MinMax [1·38;6·27] [1·59;6·81] [1·12;7·09] [1·38;6·98] [1·38;6·81] [1·15;7·02]

Rain (mm/16-day period) 2006/07 Number 2422 8556 199264 1889 21499 45501
Mean 40·17 20·15 28·29 32·66 40·67 25·85
Skewness 1·00 1·09 1·45 1·54 1·19 1·48
MinMax [0;138] [0;110] [0;212] [0;126] [0;143] [0;177]

2007/08 Number 3406 5440 335200 19631 21299 39101
Mean 47·67 30·91 35·53 36·75 46·25 32·89
Skewness 0·24 0·56 0·76 0·49 0·49 0·73
MinMax [0;144] [0;123] [0;179] [0;151] [0;168·71] [0;179]

Stream flow (m3/s) 2006/07 Number 2422 7754 194783 1889 21478 44830
Mean 136·81 689·68 354·64 292·32 172·77 361·74
Skewness 0·75 1·33 2·82 1·36 1·75 2·77
MinMax [05·32;487·6] [0·47;3471·9] [0·47;3776] [08·94;2326·7] [04·85;1350·8] [0·47;3776]

2007/08 Number 3406 4737 328433 19621 21299 38370
Mean 220·66 1032·18 664·44 1105·43 365·91 487·26
Skewness 1·07 1·93 2·79 0·45 4·69 3·37
MinMax [12·17;870·5] [4·57;7698·2] [0·16;7934·3] [10·72;5097·1] [9·09;7698·2] [0·16;7934·3]

314
E.B

lanc
and

E.Strobl

https://doi.org/10.1017/S0021859614000215 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0021859614000215


Table 4. Regression results

Variables

Dry beans Groundnuts

Province factor interaction terms Province factor interaction terms

Mpumalanga Northwest Northwest

−4150 (P<0·01) (609·4) −1214 (P<0·01) (229·7) −698·1 (P<0·01) (241·5)
Rain −12·38 (8·680) 68·35 (P<0·01) (20·08) −17·63 (10·78)
ETo −239·3 (P<0·01) (52·24) 757·8 (P<0·01) (109·1) −223·4 (P<0·05) (108·8)
ETo2

Irrigation 934·2 (P<0·01) (179·2) 605·7 (P<0·01) (194·4) 693·9 (P<0·05) (258·0)
Distance perennial river −0·0216 (P<0·01)

(0·00593)
0·0368 (P<0·01)
(0·00996)

0·0212 (P<0·01)
(0·00571)

−0·00342 (0·00222)

Distance non-perennial river −0·00190 (0·00268) −0·00229 (0·00319)
Stream flow 0·480 (P<0·1) (0·273) −1·663 (P<0·01)

(0·454)
−0·0196 (0·0698) 0·440 (P<0·01) (0·0917)

ETo× rain 2·764 (1·711) −13·95 (P<0·01)
(4·132)

4·112 (P<0·1) (2·400)

Rain× irrigation
Stream flow× irrigation −3·275 (P<0·01) (0·701) 4·983 (P<0·01) (0·719) 0·237 (0·144) −0·459 (P<0·05) (0·227)
Stream flow×distance
perennial river

1·00×10−5 (3·07×10−5) −5·49×10−5 (P<0·1)
(3·23×10−5)

−3·09×10−6

(5·02×10−6)
−2·28×10−5 (P<0·01)
(5·68×10−6)

Stream flow×distance
non-perennial river

−2·87×10−5 (P<0·1)
(1·67×10−5)

0·000135 (P<0·01)
(4·18×10−5)

7·87×10−5 (P<0·01)
(2·51×10−5)

1·06×10−5 (P<0·01)
(1·26×10−6)

Growing season length −155·1 (P<0·01) (26·42) 138·2 (P<0·01) (24·27) −176·5 (P<0·01) (27·06) 122·3 (P<0·01) (29·97)
Growing season stage 11810 (P<0·01) (932·2) 1364 (P<0·01) (347·5) −8522 (P<0·01) (1073) 9590 (P<0·01) (1594) −5564 (P<0·01) (1697)
Growing season stage2 −11107 (P<0·01) (697·3) 7389 (P<0·01) (940·7) −8971 (P<0·01) (1574) 4812 (P<0·01) (1617)
Constant 5912 (P<0·01) (302·5) 5366 (P<0·01) (727·3)

Observations 16513 15522
Number of groups 1625 1845
R2 0·680 0·351
R2 adjusted 0·680 0·350

Notes: The dependent variable, NDVI, is scaled by a factor of 10000; S.E. in parentheses; the reference case for the province factors is Free State.
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Table 5. Regression results

Variables

Maize Sorghum

Province factor interaction terms Province factor interaction terms

Gauteng Mpumalanga Northwest Gauteng Mpumalanga

495·5 (P<0·05)
(213·6)

−392·6 (P<0·1)
(203·5)

−755·9 (P<0·01)
(161·1)

511·2 (P<0·05)
(225·2)

593·8 (468·1)

Rain 3·326 (2·318) 34·54 (P<0·1) (18·08)
ETo 584·2 (P<0·05) (267·0) 1248 (P<0·05) (521·5)
ETo2 −79·47 (P<0·05)

(33·84)
−120·7 (P<0·1)
(62·67)

Irrigation 1153 (P<0·01) (137·4) −555·5 (P<0·01)
(128·5)

−836·9 (P<0·01)
(131·6)

803·1 (P<0·01) (167·6) 103·1 (130·0)

Distance perennial river −0·0231 (P<0·01)
(0·00240)

0·00841 (P<0·05)
(0·00389)

0·0110 (P<0·01)
(0·00184)

−0·00274 (0·00779) −0·0921
(P<0·01)
(0·0214)

Distance non-perennial
river

0·0143 (P<0·01)
(0·00176)

−0·0220 (P<0·01)
(0·00188)

−0·0144 (P<0·01)
(0·00405)

−0·0161 (P<0·01)
(0·00229)

0·0376 (P<0·01)
(0·00617)

−0·0381 (P<0·01)
(0·00622)

Stream flow 0·108 (P<0·05)
(0·0441)

−0·493 (P<0·01)
(0·173)

−0·705 (P<0·01)
(0·127)

0·111 (0·0868)

ETo× rain −7·476 (P<0·05)
(3·701)

Rain× irrigation −6·810 (P<0·01)
(2·221)

8·232 (P<0·01)
(2·347)

8·688 (P<0·01)
(2·170)

−5·377 (P<0·05)
(2·053)

9·926 (P<0·01) (1·773)

Stream flow×irrigation −0·0487 (0·0420) −1·125 (P<0·01)
(0·248)

0·393 (P<0·05)
(0·185)

−0·196 (P<0·01)
(0·0546)

0·787 (P<0·01) (0·209)

Stream flow×distance
perennial river

−5·25×10−7

(1·28×10−6)
8·02×10−5 (P<0·05)
(3·54×10−5)

−9·29×10−6 (P<0·01)
(1·42×10−6)

3·02×10−6

(4·63×10−6)
−9·07×10−5 (P<0·05)
(3·61×10−5)

Stream flow×distance
non-perennial river

−5·76×10−6 (P<0·01)
(9·27×10−7)

8·23×10−5 (P<0·01)
(2·29×10−5)

1·25×10−5 (P<0·01)
(3·06×10−6)

−1·39×10−5 (P<0·01)
(3·69×10−6)

9·34×10−5 (P<0·01)
(2·68×10−5)

Growing season length −72·25 (P<0·01)
(19·79)

−33·95 (26·61) −113·7 (P<0·01)
(33·98)

Growing season stage 8244 (P<0·01) (862·8) 6148 (P<0·01) (1106) 7980 (P<0·01) (731·2) 6377 (P<0·01) (1131)
Growing season stage2 −7643 (P<0·01)

(876·5)
−5534 (P<0·01)
(1097)

−7161 (P<0·01)
(846·0)

−5644 (P<0·01)
(1174)

Constant 3046 (P<0·01) (563·6) 551·3 (794·1)
Observations 761494 26150
Number of groups 72900 2608
R2 0·412 0·476
R2 adjusted 0·412 0·476

Notes: The dependent variable, NDVI, is scaled by a factor of 10000; S.E. in parentheses; the reference case for the province factors is Free State.
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Table 6. Regression results

Variables

Soya Sunflower

Province factor interaction terms Province factor interaction terms

Gauteng Mpumalanga Northwest Gauteng Mpumalanga Northwest

131·5
(156·8)

798·1 (P<0·01)
(220·0)

1115 (P<0·01)
(275·5)

471·6 (P<0·05)
(202·7)

561·6 (389·2) 61·65 (180·9)

Rain 16·91 (P<0·1)
(9·255)

1·091 (6·904)

ETo 44·54 (142·3) 698·7 (P<0·01)
(224·2)

ETo2 −84·19 (P<0·01)
(28·51)

Irrigation 418·8 (P<0·01)
(105·5)

1182 (P<0·01)
(377·2)

1094 (P<0·01)
(133·0)

−514·6 (P<0·05)
(227·2)

−1061
(P<0·01)
(150·8)

690·4 (P<0·01)
(130·5)

Distance
perennial river

−0·0123
(P<0·01)
(0·00294)

−0·0551
(P<0·01)
(0·00677)

−0·0177
(P<0·01)
(0·00265)

−0·0512
(P<0·01)
(0·0150)

0·0185
(P<0·05)
(0·00862)

−0·00982
(P<0·01)
(0·00230)

Distance non-
perennial river

0·0159 (P<0·01)
(0·00316)

−0·0205
(P<0·01)
(0·00384)

−0·0239
(P<0·01)
(0·00578)

−0·0650
(P<0·01)
(0·00865)

0·00654 (P<0·05)
(0·00251)

−0·0297
(P<0·01)
(0·00473)

−0·00991
(P<0·01)
(0·00339)

−0·0357
(P<0·01)
(0·00518)

Stream flow 0·455 (P<0·1)
(0·235)

−1·294
(P<0·01)
(0·228)

0·251 (P<0·01)
(0·0689)

−0·704
(P<0·01)
(0·226)

−0·387
(P<0·01)
(0·0401)

ETo×rain −3·170 (1·982) 1·320 (P<0·05)
(0·654)

0·146 (1·606) 0·977 (0·766) 2·324 (P<0·01)
(0·714)

Rain× irrigation −0·282 (1·803) −17·46
(P<0·05)
(7·543)

−8·423 (P<0·01)
(2·593)

6·931 (4·281) 12·90 (P<0·01)
(2·681)

Stream
flow×irrigation

−0·144 (P<0·01)
(0·0508)

−0·945 (P<0·01)
(0·222)

Stream
flow×distance
perennial river

−2·43×10−5

(P<0·05)
(1·07×10−5)

−6·74×10−6

(P<0·1)
(3·38×10−6)

Stream
flow×distance
non-perennial
river

−1·33×10−5

(9·37×10−6)
0·000134
(P<0·01)
(2·55×10−5)

4·29×10−5

(P<0·01)
(9·59×10−6)

−6·77×10−6

(P<0·01)
(1·43×10−6)

−2·90×10−5

(P<0·01)
(5·51×10−6)

0·000107
(P<0·01)
(2·35×10−5)

3·09×10−5

(P<0·01)
(4·17×10−6)

Growing season
length

−71·79 (P<0·01)
(25·24)

−35·48 (22·39) −102·2
(P<0·01)
(23·99)
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10·3 mm/day for sorghum. In contrast, the impact of
rainfall was better modelled by simply including it in
its linear form.

To account for the effect of other forms of water
availability on crop biomass productivity, the effect of
the presence of irrigation on the crop plot was
investigated. The results show that irrigation enhanced
cropland biomass productivity substantially for all
crops except sorghum, which was the less irrigated
crop of the sample (<0·02 of the plots). The size of the
coefficients suggests that irrigation was the most
important for maize in the Northwest. More specifi-
cally, the estimated coefficient indicates that, in the
Northwest, an irrigated maize plot had a 0·2 greater
NDVI than a non-irrigated plot. In contrast, irrigation of
a sunflower plot in Mpumalanga only increased
biomass productivity by 0·003 NDVI.

Stream-related factors such as stream flow and the
distance of each plot from perennial and ephemeral
rivers were also considered. Stream flow had a positive
direct effect on biomass productivity for most crops,
although the quantitative effect was very small (e.g.
one SD of river flow entailed an increase of less than
0·00005 NDVI). In a few cases (i.e. dry beans
in Mpumalanga, maize in Gauteng and soya and
sunflower in Mpumalanga), however, the increased
stream flowappears to have had a detrimental effect on
biomass productivity. For sorghum, the direct effect of
stream flow was not significant.

Distance to perennial and non-perennial rivers were
also significant determinants of the dependent vari-
able. Generally, being closer to a perennial river
increased the biomass productivity of a plot but being
closer to an ephemeral river decreased it. For instance,
for each kilometre closer to a perennial river,
sunflower biomass productivity increased by up to
0·02 NDVI in Gauteng. In Mpumalanga, productivity
was slightly larger for dry beans and sunflower plots
being farther away from a stream. No effect was
estimated for groundnuts. In contrast, being farther
away from ephemeral streams increased biomass
productivity for maize, sorghum and soya in the Free
State and sorghum in Gauteng only.

Thus far, it was assumed that each of the explanatory
factors had potentially only isolated effects on the
biomass productivity of crops. This may arguably be
a rather restrictive and unrealistic assumption. For
instance, the importance of rainfall in providing water
to crops depends on the degree of evapotranspiration.
Similarly, the effect of river flow will be related to
the distance of the plot from rivers. Moreover, theTa
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existence of irrigation may make the dependence
on other time-varying water resources less important.
To investigate these factors, a set of interaction terms
was included. As can be seen for the regressions, this
unearthed some interesting features from the data.
When considering the interaction effect between
rainfall and evapotranspiration, the results indicate
that evapotranspiration not only had a direct effect on
sorghum, but also reduced the productivity enhancing
impact of precipitation by about 20%. Similar impacts
were found for dry beans in Mpumalanga and soya in
Northwest.
As gauged by the interaction term between the

Irrigation and Rain variables, irrigation also appeared
to reduce the reliance on precipitation for most crops
except dry beans and groundnuts. Irrigation reduced
the importance of rainfall as a water source for sun-
flower biomass production the most. When consider-
ing the combined effect of Stream flow with Irrigation,
stream flow increased sorghum biomass productivity
only if the plots were irrigated. For maize in Gauteng,
in contrast, the negative effect of stream flow on
biomass productivity was exacerbated by irrigation.
For groundnuts in the Northwest and dry beans, stream
flow had a smaller beneficial impact on biomass
productivity in irrigated plots. Finally, the distance to
perennial and ephemeral rivers can reduce the impact
of stream flow for some crops. More specifically, the
interaction terms of these factors with the stream flow
proxy show that being farther away from a perennial
river reduced the impact of stream flow on soya and
sunflower in all provinces and for maize in Free State
andNorthwest, sorghum inMpumalanga, and ground-
nuts and dry beans in Northwest.
All regressions included the growing season length,

growing season stage and its square term. The growing
season length unsurprisingly reduced the biomass
productivity of plots within South Africa, as crops
having a longer cropping season grow more slowly
and produce less biomass daily. The growing season
stage coefficients indicate that crop biomass increased
as the growing season advanced and then decreased
past an optimal point in the growing season. This
inverted U shape is representative of the biomass
evolution of crops along the phenological cycle.
These results are consistent across all specifications
in Tables 4–6.
The inspection of the residual for each crop-specific

regression confirmed that variances are constant over
the fitted range and that the residuals have a normal
distribution.

DISCUSSION

The current analysis considers the determinants of
crop growth at the crop plot level in four grain
producing provinces of South Africa. It is unique
in that it is based on a detailed high-frequency (every
16 days) dataset of satellite derived productivity
measures for four crop types at the plot level covering
the main agricultural areas of the country: Northwest,
Mpumalanga, Free State and Gauteng. The regression
results show that water availability plays an important
role in cropland biomass productivity in South Africa.
Weather, as represented by evapotranspiration and
precipitation, has a significant and well-known impact
on crop biomass productivity. The results also
demonstrate the importance of other sources of water
for crop biomass productivity growth by considering
irrigation, stream flow and proximity to perennial and
ephemeral rivers. However, the effect of these factors
depends on the crop type and province considered,
with the best representation obtained for dry beans.

It is noteworthy that the R2 in the estimations
suggests that the regression analyses explain biomass
productivity growth better for some crops than others.
For instance, c. 68% of dry beans productivity is
explained by the regressions. When considering
sunflower and groundnuts, however, the R2 is less
than 0·35. This may not be surprising given that the
vector of crop biomass determinants is missing a
number of potentially important factors as discussed
above. Moreover, NDVI is inevitably only a proxy of
actual crop yield and thus entails some measurement
error. Finally, the growing season of a crop is
determined by a decision rule, similarly inducing
some measurement errors.

One should practise some caution when interpret-
ing the determinants of crop growth in a strictly causal
way given that they are derived from an observational
study. As already indicated by the less than perfect
explanatory power, there are likely to be many other
determining factors driving crop growth that have not
been able to be included, but that could be correlated
with the ones that are. For example, crop location is
implicitly taken as given, but farmers with greater
access to fertilizers or machinery may be those that
choose, or can afford to, locate in more irrigated areas.
Similarly, the choice of crop for a particular location
may be determined by such potentially confounding
factors. Thus, it is perhaps best to view the estimated
relationships, particularly for the non-climatic factors,
as correlations rather than causal determinants.
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With these caveats in mind, the present results are
arguably most useful in terms of anticipating the
impact of weather shocks on the growth of a given
crop. More specifically, one could use these quanti-
tative estimates to forecast the growth of existing crops
in specific regions in South Africa once one observes
the weather in a given growing season. Alternatively,
one may use the results to compare short-term crop
growth under different climate scenarios. Once more
crop-level data – such as the one employed in the
present study – become available over a longer time
period, one could also then extend this analysis to
model crop choice.

Finally, one should note that the availability of
crop plot level information played an essential role
in this analysis. These plot information combined with
biomass productivity data would be also extremely
useful in devising an identification scheme of crop
type based on NDVI temporal evolution. More
generally, and related to this, it is encouraging that
satellite imagery is becoming increasingly more
sophisticated, offering products at finer spatial scale
and higher frequency. This will allow greater precision
in terms of crop identification and growth patterns.
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