VALUE DISTRIBUTION OF BIAXIALLY SYMMETRIC HARMONIC POLYNOMIALS

J. D'ARCHANGELO AND P. A. McCOY

1. Introduction. Consider the biaxially symmetric potential equation

$$
\begin{equation*}
L_{\alpha \beta}(\Phi)=\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{2 \beta+1}{u} \frac{\partial}{\partial u}+\frac{\partial^{2}}{\partial v^{2}}+\frac{2 \alpha+1}{v} \frac{\partial}{\partial v}\right) \Phi(u, v)=0 \tag{1.1}
\end{equation*}
$$

where $\alpha, \beta>-1 / 2$. If $2 \alpha+1$ and $2 \beta+1$ are non-negative integers and if χ corresponds to the hypercircle

$$
\begin{equation*}
u=\left(x_{1}^{2}+\ldots+x_{2 \beta+2^{2}}\right)^{1 / 2}, \quad v=\left(y_{1}^{2}+\ldots+y_{2 \alpha+2^{2}}\right)^{1 / 2}, \tag{1.2}
\end{equation*}
$$

then the biaxisymmetric Laplace equation in $\mathbf{E}^{2(\alpha+\beta+2)}$,

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x_{1}{ }^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{2 \beta+2}{ }^{2}}+\frac{\partial^{2}}{\partial y_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial y_{2 \alpha+2}}\right) \Phi(\chi)=0 \tag{1.3}
\end{equation*}
$$

and (1.1) are equivalent. A complete set of solutions for (1.1) which are regular about the origin is given by (cf. [1, 2])

$$
\begin{equation*}
\Phi_{k}(\chi)=\Phi_{k}(u, v)=\Phi_{k}(r, \theta)=r^{2 k} R_{k}^{(\alpha, \beta)}(\cos 2 \theta), \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{k}^{(\alpha, \beta)}(\cos 2 \theta)=P_{k}^{(\alpha, \beta)}(\cos 2 \theta) / P_{k}^{(\alpha, \beta)}(1), \tag{1.5}
\end{equation*}
$$

the $P_{k}{ }^{(\alpha, \beta)}(x)$ are the Jacobi polynomials, and $u=r \cos \theta, v=\mathrm{r} \sin \theta$ are the polar coordinates.

It is known that any biaxisymmetric harmonic polynomial (BAHP) of degree $2 n$ can be represented in the form

$$
\begin{equation*}
H(\chi)=\underset{\sim}{H}(u, v)=\sum_{k=0}^{n} a_{k} r^{2 k} R_{k}^{(\alpha, \beta)}(\cos 2 \theta), \tag{1.6}
\end{equation*}
$$

where $\alpha, \beta>-1 / 2$. Until now, the lack of suitable representations for $R_{k}{ }^{(\alpha, \beta)}(\cos 2 \theta)$ had made it difficult to determine a value distribution for BAHP's analogous to the value distribution for axisymmetric harmonic polynomials determined by Morris Marden in [4] using the Whittaker formula. However, Tom Koornwinder's Laplace type integral for Jacobi polynomials now allows us to determine information about the value distribution for BAHP's using a convexity argument drawn from the analytic theory of polynomials of one complex variable.

[^0]According to Koornwinder's integral representation, cf. [3], if $\alpha>\beta>$ $-1 / 2$, then

$$
\begin{align*}
& \Phi_{k}(u, v)=r^{2 k} R_{k}^{(\alpha, \beta)}(\cos 2 \theta) \\
&=\int_{t=0}^{1} \int_{\phi=0}^{\pi}\left(u^{2}-v^{2} t^{2}+2 i u v t(\cos \phi)\right)^{k} d m_{\alpha, \beta}(\phi, t) \tag{1.7}
\end{align*}
$$

where the non-negative measure

$$
\begin{equation*}
d m_{\alpha, \beta}(\phi, t)=\frac{2 \Gamma(\alpha+1)\left(1-t^{2}\right)^{\alpha-\beta-1} t^{2 \beta+1}(\sin \phi)^{2 \beta} d \phi d t}{\pi^{1 / 2} \Gamma(\alpha-\beta) \Gamma(\beta+1 / 2)} \tag{1.8}
\end{equation*}
$$

is normalized so that
(1.9) $\quad \int_{0}^{1} \int_{0}^{\pi} d m_{\alpha, \beta}(\phi, t)=1$.
2. Value distribution for BAHP's. Let $\underset{\sim}{H}(\chi)=H(u, v)$ be a BAHP as in (1.6), and assume that $\alpha>\beta>-1 / 2$. Define the associate polynomial of H to be

$$
\begin{equation*}
h(\xi)=\sum_{k=0}^{n} a_{k} \xi^{k}, \quad \xi \in \mathbf{C}, a_{n} \neq 0 \tag{2.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
H(\chi)=H(u, v)=\int_{0}^{1} \int_{0}^{\pi} h\left(z_{u, v}(\phi, t)\right) d m_{\alpha, \beta}(\phi, t) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{u, v}(\phi, t)=u^{2}-v^{2} t^{2}+2 i u v t(\cos \phi) . \tag{2.3}
\end{equation*}
$$

Theorem 2.1. Let H be a BAHP of degree $2 n$ as in (2.2) with has its associate. If h omits the complex value γ in the sector

$$
\begin{equation*}
S=\{\xi \in \mathbf{C}:|\arg (\xi-c)|<\pi-\pi / 2 n\} \tag{2.4}
\end{equation*}
$$

with vertex at $c \geqq 0$, then on each hypercircle $\chi \in \Omega \subset \mathbf{E}^{2(\alpha+\beta+2)}$ where Ω is the region common to the set

$$
x_{1}^{2}+\ldots+x_{2 \beta+2}^{2}-x_{2 \beta+3}^{2}-\ldots-x_{2(\alpha+\beta+2)^{2}} \geqq c
$$

and the hyperbolic cylinder

$$
\begin{aligned}
&\left(x_{1}^{2} \ldots+x_{2 \beta+2^{2}}-y_{1}^{2}-\ldots-y_{2 \alpha+2^{2}}-c\right)^{2} \tan ^{2} \pi / 2 n \geqq \\
& 4\left(x_{1}^{2}+\ldots+x_{2 \beta+2^{2}}\right)\left(y_{1}^{2}+\ldots+y_{2 \alpha+2^{2}}\right)
\end{aligned}
$$

then $H(\chi) \neq \gamma+\eta$ for $\eta=0$ or for all $\left|\arg \left(\eta / a_{n}\right)\right|<\pi / 2 \bmod (n+1)$.
Proof. Suppose $H\left(\chi_{0}\right)=\gamma$ or $\underset{\sim}{H}\left(u_{0}, v_{0}\right)-\gamma=0$ for some u_{0}, v_{0} correspond-
ing to χ_{0}. Then if

$$
\begin{equation*}
h(\xi)-\gamma=a_{n} \prod_{k=1}^{n}\left(\xi-\alpha_{k}\right) \tag{2.5}
\end{equation*}
$$

by (2.2)

$$
\begin{equation*}
\underset{\sim}{H}\left(u_{0}, v_{0}\right)-\gamma=\int_{0}^{1} \int_{0}^{\pi} w(\phi, t) d m_{\alpha, \beta}(\phi, t)=0 \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
w(\phi, t)=a_{n} \prod_{k=1}^{n}\left(\alpha_{k}-z_{u 0, v 0}(\phi, t)\right) \tag{2.7}
\end{equation*}
$$

Notice that for a fixed u_{0}, v_{0}, the region F in the complex plane defined by $z_{u_{0}, v_{0}}(\phi, t)$ as ϕ goes from 0 to π and t goes from 0 to 1 is the region bounded by the parabola $y^{2}=-4 u_{0}{ }^{2}\left(x-u_{0}\right)$ and the line $x=u_{0}{ }^{2}-v_{0}{ }^{2} . F$ is contained in the sector where $|\arg (\xi-c)| \leqq \pi / 2 n$ by our assumption that $\left(u_{0}{ }^{2}-v_{0}{ }^{2}-c\right)$ $\tan \pi / 2 n \geqq 2 u v$. Therefore

$$
\begin{equation*}
\pi-\pi / 2 n<\arg \left\{\alpha_{k}-z_{u_{0}, v_{0}}(\phi, t)\right\}<\pi+\pi / 2 n \tag{2.8}
\end{equation*}
$$

which implies by (2.7) that (2.6) cannot possibly hold since

$$
w(\phi, t) \in\left\{\xi \in \mathbf{C}:\left|\arg \left(\xi / a_{n}\right)-n \pi\right|<\pi / 2\right\}, \quad 0<t<1,0<\phi<\pi
$$

and $d m_{\alpha, \beta} \geqq 0$. Consequently, $\underset{\sim}{H}\left(u_{0}, v_{0}\right)-\gamma \in\left\{\xi \in \mathbf{C}:\left|\arg \left(\xi / a_{n}\right)-n \pi\right|<\right.$ $\pi / 2\}$ so that $\underset{\sim}{H}\left(u_{0}, v_{0}\right) \neq \gamma+\eta$ if $\eta=0$ or $\left|\arg \left(\eta / a_{n}\right)-(n+1) \pi\right|<\pi / 2$.

Theorem 2.2. Let H be the BAHP

$$
\begin{equation*}
H(\chi)=\underset{\sim}{H}(u, v)=\sum_{k=0}^{n} a_{k} r^{2 k} R_{k}^{(\alpha, \beta)}(\cos 2 \theta), \quad \alpha>\beta>-1 / 2, \tag{2.9}
\end{equation*}
$$

and let γ be an arbitrary constant. If.

$$
\begin{equation*}
\nu=1+\max \left\{\left|a_{0}-\gamma\right| /\left|a_{n}\right|,\left|a_{1} / a_{n}\right|, \ldots,\left|a_{n-1} / a_{n}\right|\right\} \tag{2.10}
\end{equation*}
$$

and χ is a hypercircle in the region Ω defined in Theorem 2.1 with $c=$ $\nu \operatorname{cosec}(2 \pi / n)$, then

$$
H(\chi) \neq \gamma+\eta
$$

for $\eta=0$ and for all $\left|\arg \left(\eta / a_{n}\right)\right|<\pi / 2 \bmod (n+1)$.
Proof. If we denote by $h(\xi)$ the associate of H, then by Cauchy's inequality, (cf. [5, p. 123]) the zeros of

$$
h(\xi)-\gamma=\left(a_{0}-\gamma\right)+a_{1} \xi+a_{2} \xi^{2}+\ldots+a_{n} \xi^{n}
$$

satisfy the inequality $|\xi|<\nu$, with ν given by (2.10). Therefore, $h(\xi) \neq \gamma$ in
the sector S of (2.4) where

$$
c=\nu \operatorname{cosec}(2 \pi / n)>0,
$$

and the conclusion follows from the previous theorem.
3. Remarks. (On the set Ω). It is clear from the proof of Theorem 2.1, that the projection of Ω on the complex plane according to the transformations of (1.2) results in the set

$$
\Omega=\left\{u+i v: u \geqq 0, v \geqq 0, \text { and }\left|\arg \left((u+i v)^{2}-c\right)\right| \leqq \pi / 2 n\right\} .
$$

Using this description, Ω is the intersection, with the first quadrant, of the interior of the hyperbola $u^{2} / d^{2} c-v^{2} / d^{2} c=1$ rotated $-\alpha(=-\pi(n-1) / 4 n)$ radians from the u - axis where $d^{2}=\cos 2 \alpha$. If $c=0, \underline{\Omega}=\{\xi \in \mathbf{C}: 0 \leqq$ $\arg \xi \leqq \pi / 4 n\}$.

If (x, y, z) are the Cartesian coordinates in \mathbf{E}^{3}, and if we view u as the distance of a point from the x-axis and v as its distance from the y-axis, then

$$
\begin{equation*}
u^{2}=y^{2}+z^{2} \text { and } v^{2}=x^{2}+z^{2} . \tag{3.1}
\end{equation*}
$$

Geometrically, Ω is the set of points in \mathbf{E}^{3} generated by the intersection of cylinders about the x-axis of radius u and about the y-axis of radius v, where once u is chosen so that $u \geqq c^{1 / 2}$, then $v \leqq-\cot (\pi / 2 n) u+\left(u^{2} \operatorname{cosec}^{2}(\pi / 2 n)-c\right)^{1 / 2}$.

For example, if in Theorem 2.1, $H(\chi)$ is a $B A H P$ of degree 2 and $c>0$, then Ω is the region defined by the interior of the hyperbola $u^{2} / c-v^{2} / c=1$, without rotation, intersected with the first quadrant. Using (3.1), we get that in $\mathbf{E}^{3}, \Omega=\left\{(x, y, z): x^{2} / c-z^{2} / c \geqq 1\right)$, the interior of hyperbolic cylinders.
(On $\alpha>\beta>-1 / 2$). First note that the set Ω in Theorem 2.1 depends only on $\alpha>\beta>-1 / 2$ and not specifically on the values of α and β. If in the expression for H in (1.6), $\beta>\alpha>-1 / 2$, then one must use the identity

$$
P_{n}{ }^{(\alpha, \beta)}(x)=(-1)^{n} P_{n}^{(\beta, \alpha)}(-x)
$$

in (1.5) thereby changing (1.6) to

$$
\underline{H}(u, v)=\sum_{k=1}^{n} c_{k} r^{2 k} R_{k}^{(\beta, \alpha)}(-\cos 2 \theta),
$$

and a similar argument to that used in Theorem 2.1, (where u and v are switched in (1.7) due to the $-\cos 2 \theta$) using the associated polynomial $h(\xi)=$ $\sum_{k=0}^{n} c_{k} \xi^{k}$, will give information about the value distribution for H.
4. The converse problem. The methods found in [5] also apply to the converse problem of relating the values of the associate to those (known) values of the $B A H P$. This class of relationships was not considered in [4]. However, the reasoning which follows adopts itself to similar considerations for axisymmetric harmonic polynomials.

Theorem 4.1. If the BAHP H of degree $2 n$ assumes the value γ on the sphere of radius $R_{0}=\left(u_{0}{ }^{2}+v_{0}{ }^{2}\right)^{1 / 2}$, then the associate h assumes the value γ at least once in the disc $|\xi| \leqq R_{0}{ }^{2} \operatorname{cosec}(\pi / 2 n)$.

Proof. Following [5, p. 111], consider the point ξ_{0} for which $H\left(u_{0}, v_{0}\right)=$ $h\left(\xi_{0}\right)=\gamma$ so that

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{\pi}\left[h\left(z_{u_{0}, v_{0}}(\phi, t)\right)-\gamma\right] d m_{\alpha, \beta}(\phi, t)=0 . \tag{4.1}
\end{equation*}
$$

By factoring $h\left(\xi_{0}\right)-\gamma$ as in (2.5), it is clear that if $\left(\alpha_{k}\right) \geqq R_{0}{ }^{2} \operatorname{cosec}(\pi / 2 n)$ for $1 \leqq k \leqq n$, then $\alpha_{k}-z_{u_{0}, v_{0}}(\phi, t)$ satisfies an inequality of the type (2.8) since

$$
\left|z_{u_{0}, v_{0}}(\phi, t)\right| \leqq\left|z_{u_{0}, v_{0}}(0,1)\right|=R_{0}{ }^{2}
$$

Consequently, the integrand of (4.1) is non-vanishing, a contradiction to the fact that $H\left(u_{0}, v_{0}\right)=\gamma$.

References

1. R. P. Gilbert, Integral operator methods in biaxially symmetric potential theory, Contrib. Differential Equations 2 (1963), 441-456.
2. P. Henrici, A survey of I.N. Vekua's theory of elliptic partial differential equations with analytic coefficients, Z. Angew. Math. Phys. 8 (1957), 169-203.
3. T. Koornwinder, Jacobi polynomials II. An analytic proof of the product formula, SIAM J. Math. Anal. 5 (1974), 125-137.
4. M. Marden, Value distribution of harmonic polynomials in several real variables, Trans. Amer. Math. Soc. 159 (1971), 137-154.
5. - Geometry of polynomials, Math. Surveys 3 (Amer. Math. Soc., Providence, R.I., 1966).

United States Naval Academy, Annapolis, Maryland

[^0]: Received August 20, 1975. The research of the first author was supported by a grant from the U.S. Naval Academy Research Council.

