VALUE DISTRIBUTION OF BIAXIALLY SYMMETRIC HARMONIC POLYNOMIALS

J. D'ARCHANGELO AND P. A. McCOY

1. Introduction. Consider the biaxially symmetric potential equation

(1.1)
$$L_{\alpha\beta}(\Phi) = \left(\frac{\partial^2}{\partial u^2} + \frac{2\beta + 1}{u}\frac{\partial}{\partial u} + \frac{\partial^2}{\partial v^2} + \frac{2\alpha + 1}{v}\frac{\partial}{\partial v}\right)\Phi(u, v) = 0$$

where α , $\beta > -1/2$. If $2\alpha + 1$ and $2\beta + 1$ are non-negative integers and if χ corresponds to the hypercircle

(1.2)
$$u = (x_1^2 + \ldots + x_{2\beta+2}^2)^{1/2}, \quad v = (y_1^2 + \ldots + y_{2\alpha+2}^2)^{1/2},$$

then the biaxisymmetric Laplace equation in $\mathbf{E}^{2(\alpha+\beta+2)}$,

(1.3)
$$\left(\frac{\partial^2}{\partial x_1^2} + \ldots + \frac{\partial^2}{\partial x_{2\beta+2}^2} + \frac{\partial^2}{\partial y_1^2} + \ldots + \frac{\partial^2}{\partial y_{2\alpha+2}^2}\right) \Phi(\chi) = 0$$

and (1.1) are equivalent. A complete set of solutions for (1.1) which are regular about the origin is given by (cf. [1, 2])

(1.4)
$$\Phi_k(\chi) = \Phi_k(u, v) = \Phi_k(r, \theta) = r^{2k} R_k^{(\alpha, \beta)}(\cos 2\theta),$$

where

(1.5)
$$R_k^{(\alpha,\beta)}(\cos 2\theta) = P_k^{(\alpha,\beta)}(\cos 2\theta)/P_k^{(\alpha,\beta)}(1),$$

the $P_k^{(\alpha,\beta)}(x)$ are the Jacobi polynomials, and $u = r \cos \theta$, $v = r \sin \theta$ are the polar coordinates.

It is known that any biaxisymmetric harmonic polynomial (BAHP) of degree 2n can be represented in the form

(1.6)
$$H(\chi) = \underbrace{H}_{\widetilde{\omega}}(u,v) = \sum_{k=0}^{n} a_{k} r^{2k} R_{k}^{(\alpha,\beta)}(\cos 2\theta),$$

where α , $\beta > -1/2$. Until now, the lack of suitable representations for $R_k^{(\alpha,\beta)}(\cos 2\theta)$ had made it difficult to determine a value distribution for BAHP's analogous to the value distribution for axisymmetric harmonic polynomials determined by Morris Marden in [4] using the Whittaker formula. However, Tom Koornwinder's Laplace type integral for Jacobi polynomials now allows us to determine information about the value distribution for BAHP's using a convexity argument drawn from the analytic theory of polynomials of one complex variable.

Received August 20, 1975. The research of the first author was supported by a grant from the U.S. Naval Academy Research Council.

According to Koornwinder's integral representation, cf. [3], if $\alpha > \beta > -1/2$, then

(1.7)
$$\Phi_{k}(u,v) = r^{2k} R_{k}^{(\alpha,\beta)}(\cos 2\theta) = \int_{t=0}^{1} \int_{\phi=0}^{\pi} (u^{2} - v^{2}t^{2} + 2iuvt(\cos \phi))^{k} dm_{\alpha,\beta}(\phi,t),$$

where the non-negative measure

(1.8)
$$dm_{\alpha,\beta}(\phi,t) = \frac{2\Gamma(\alpha+1)(1-t^2)^{\alpha-\beta-1}t^{2\beta+1}(\sin\phi)^{2\beta}d\phi dt}{\pi^{1/2}\Gamma(\alpha-\beta)\Gamma(\beta+1/2)}$$

is normalized so that

(1.9)
$$\int_{0}^{1} \int_{0}^{\pi} dm_{\alpha,\beta}(\phi,t) = 1.$$

2. Value distribution for BAHP's. Let $\underline{\mathcal{H}}(\chi) = H(u, v)$ be a BAHP as in (1.6), and assume that $\alpha > \beta > -1/2$. Define the associate polynomial of H to be

(2.1)
$$h(\xi) = \sum_{k=0}^{n} a_k \xi^k, \quad \xi \in \mathbf{C}, a_n \neq 0$$

so that

(2.2)
$$H(\chi) = \underline{H}(u, v) = \int_0^1 \int_0^{\pi} h(z_{u,v}(\phi, t)) dm_{\alpha,\beta}(\phi, t)$$

where

(2.3)
$$z_{u,v}(\phi, t) = u^2 - v^2 t^2 + 2 i u v t (\cos \phi).$$

THEOREM 2.1. Let H be a BAHP of degree 2n as in (2.2) with h as its associate. If h omits the complex value γ in the sector

(2.4)
$$S = \{\xi \in \mathbf{C} : |\arg(\xi - c)| < \pi - \pi/2n\},\$$

with vertex at $c \ge 0$, then on each hypercircle $\chi \in \Omega \subset \mathbf{E}^{2(\alpha+\beta+2)}$ where Ω is the region common to the set

$$x_{1^{2}} + \ldots + x_{2\beta+2^{2}} - x_{2\beta+3^{2}} - \ldots - x_{2(\alpha+\beta+2)^{2}} \ge c$$

and the hyperbolic cylinder

$$(x_1^2 \dots + x_{2\beta+2}^2 - y_1^2 - \dots - y_{2\alpha+2}^2 - c)^2 \tan^2 \pi/2n \ge 4(x_1^2 + \dots + x_{2\beta+2}^2)(y_1^2 + \dots + y_{2\alpha+2}^2),$$

then $H(\chi) \neq \gamma + \eta$ for $\eta = 0$ or for all $|\arg(\eta/a_n)| < \pi/2 \mod (n+1)$.

Proof. Suppose $H(\chi_0) = \gamma$ or $\mathcal{H}(u_0, v_0) - \gamma = 0$ for some u_0, v_0 correspond-

https://doi.org/10.4153/CJM-1976-073-9 Published online by Cambridge University Press

ing to χ_0 . Then if

(2.5)
$$h(\xi) - \gamma = a_n \prod_{k=1}^n (\xi - \alpha_k),$$

by (2.2)

(2.6)
$$\underbrace{H}(u_0, v_0) - \gamma = \int_0^1 \int_0^{\pi} w(\phi, t) dm_{\alpha, \beta}(\phi, t) = 0$$

where

(2.7)
$$w(\phi, t) = a_n \prod_{k=1}^n (\alpha_k - z_{u_0, v_0}(\phi, t)).$$

Notice that for a fixed u_0 , v_0 , the region F in the complex plane defined by $z_{u_0,v_0}(\phi, t)$ as ϕ goes from 0 to π and t goes from 0 to 1 is the region bounded by the parabola $y^2 = -4u_0^2(x - u_0)$ and the line $x = u_0^2 - v_0^2$. F is contained in the sector where $|\arg(\xi - c)| \leq \pi/2n$ by our assumption that $(u_0^2 - v_0^2 - c) \tan \pi/2n \geq 2uv$. Therefore

$$(2.8) \quad \pi - \pi/2n < \arg \left\{ \alpha_k - z_{u_0,v_0}(\phi,t) \right\} < \pi + \pi/2n$$

which implies by (2.7) that (2.6) cannot possibly hold since

 $w(\phi, t) \in \{\xi \in \mathbf{C} : |\arg(\xi/a_n) - n\pi| < \pi/2\}, \ 0 < t < 1, 0 < \phi < \pi$

and $dm_{\alpha,\beta} \geq 0$. Consequently, $\underline{\mathcal{H}}(u_0, v_0) - \gamma \in \{\xi \in \mathbf{C} : |\arg(\xi/a_n) - n\pi| < \pi/2\}$ so that $\underline{\mathcal{H}}(u_0, v_0) \neq \gamma + \eta$ if $\eta = 0$ or $|\arg(\eta/a_n) - (n+1)\pi| < \pi/2$.

THEOREM 2.2. Let H be the BAHP

(2.9)
$$H(\chi) = \underbrace{H}(u, v) = \sum_{k=0}^{n} a_{k} r^{2k} R_{k}^{(\alpha, \beta)}(\cos 2\theta), \quad \alpha > \beta > -1/2,$$

and let γ be an arbitrary constant. If.

(2.10)
$$\nu = 1 + \max\{|a_0 - \gamma|/|a_n|, |a_1/a_n|, \dots, |a_{n-1}/a_n|\}$$

and χ is a hypercircle in the region Ω defined in Theorem 2.1 with $c = \nu \operatorname{cosec} (2\pi/n)$, then

$$H(\chi) \neq \gamma + \eta$$

for $\eta = 0$ and for all $|\arg(\eta/a_n)| < \pi/2 \mod (n+1)$.

Proof. If we denote by $h(\xi)$ the associate of H, then by Cauchy's inequality, (cf. [5, p. 123]) the zeros of

$$h(\xi) - \gamma = (a_0 - \gamma) + a_1\xi + a_2\xi^2 + \ldots + a_n\xi^n$$

satisfy the inequality $|\xi| < \nu$, with ν given by (2.10). Therefore, $h(\xi) \neq \gamma$ in

the sector S of (2.4) where

 $c = \nu \operatorname{cosec} (2\pi/n) > 0,$

and the conclusion follows from the previous theorem.

3. Remarks. (On the set Ω). It is clear from the proof of Theorem 2.1, that the projection of Ω on the complex plane according to the transformations of (1.2) results in the set

 $\Omega = \{ u + iv : u \ge 0, v \ge 0, \text{ and } |\arg((u + iv)^2 - c)| \le \pi/2n \}.$

Using this description, Ω is the intersection, with the first quadrant, of the interior of the hyperbola $u^2/d^2c - v^2/d^2c = 1$ rotated $-\alpha \ (= -\pi(n-1)/4n)$ radians from the u - axis where $d^2 = \cos 2\alpha$. If c = 0, $\Omega = \{\xi \in \mathbb{C} : 0 \leq \arg \xi \leq \pi/4n\}$.

If (x, y, z) are the Cartesian coordinates in E^3 , and if we view u as the distance of a point from the x-axis and v as its distance from the y-axis, then

(3.1)
$$u^2 = y^2 + z^2$$
 and $v^2 = x^2 + z^2$

Geometrically, Ω is the set of points in \mathbf{E}^3 generated by the intersection of cylinders about the x-axis of radius u and about the y-axis of radius v, where once u is chosen so that $u \ge c^{1/2}$, then $v \le -\cot(\pi/2n)u + (u^2 \csc^2(\pi/2n) - c)^{1/2}$.

For example, if in Theorem 2.1, $H(\chi)$ is a *BAHP* of degree 2 and c > 0, then Ω is the region defined by the interior of the hyperbola $u^2/c - v^2/c = 1$, without rotation, intersected with the first quadrant. Using (3.1), we get that in \mathbf{E}^3 , $\Omega = \{(x, y, z) : x^2/c - z^2/c \ge 1\}$, the interior of hyperbolic cylinders.

 $(On \ \alpha > \beta > -1/2)$. First note that the set Ω in Theorem 2.1 depends only on $\alpha > \beta > -1/2$ and not specifically on the values of α and β . If in the expression for H in (1.6), $\beta > \alpha > -1/2$, then one must use the identity

$$P_{n}^{(\alpha,\beta)}(x) = (-1)^{n} P_{n}^{(\beta,\alpha)}(-x)$$

in (1.5) thereby changing (1.6) to

$$\underline{H}(u,v) = \sum_{k=1}^{n} c_k r^{2k} R_k^{(\beta,\alpha)}(-\cos 2\theta),$$

and a similar argument to that used in Theorem 2.1, (where u and v are switched in (1.7) due to the $-\cos 2\theta$) using the associated polynomial $h(\xi) = \sum_{k=0}^{n} c_k \xi^k$, will give information about the value distribution for H.

4. The converse problem. The methods found in [5] also apply to the converse problem of relating the values of the associate to those (known) values of the BAHP. This class of relationships was not considered in [4]. However, the reasoning which follows adopts itself to similar considerations for axisymmetric harmonic polynomials.

772

THEOREM 4.1. If the BAHP H of degree 2n assumes the value γ on the sphere of radius $R_0 = (u_0^2 + v_0^2)^{1/2}$, then the associate h assumes the value γ at least once in the disc $|\xi| \leq R_0^2 \operatorname{cosec} (\pi/2n)$.

Proof. Following [5, p. 111], consider the point ξ_0 for which $H(u_0, v_0) = h(\xi_0) = \gamma$ so that

(4.1)
$$\int_0^1 \int_0^{\pi} [h(z_{u_0,v_0}(\phi,t)) - \gamma] dm_{\alpha,\beta}(\phi,t) = 0.$$

By factoring $h(\xi_0) - \gamma$ as in (2.5), it is clear that if $(\alpha_k) \ge R_0^2 \operatorname{cosec} (\pi/2n)$ for $1 \le k \le n$, then $\alpha_k - z_{u_0,v_0}(\phi, t)$ satisfies an inequality of the type (2.8) since

$$|z_{u_0,v_0}(\phi,t)| \leq |z_{u_0,v_0}(0,1)| = R_0^2$$

Consequently, the integrand of (4.1) is non-vanishing, a contradiction to the fact that $H(u_0, v_0) = \gamma$.

References

- 1. R. P. Gilbert, Integral operator methods in biaxially symmetric potential theory, Contrib. Differential Equations 2 (1963), 441-456.
- 2. P. Henrici, A survey of I.N. Vekua's theory of elliptic partial differential equations with analytic coefficients, Z. Angew. Math. Phys. 8 (1957), 169-203.
- T. Koornwinder, Jacobi polynomials II. An analytic proof of the product formula, SIAM J. Math. Anal. 5 (1974), 125-137.
- 4. M. Marden, Value distribution of harmonic polynomials in several real variables, Trans. Amer. Math. Soc. 159 (1971), 137-154.
- 5. —— Geometry of polynomials, Math. Surveys 3 (Amer. Math. Soc., Providence, R.I., 1966).

United States Naval Academy, Annapolis, Maryland