Continuing Commentary on


Kugler, P. N. & Turvey, M. T. Two metaphors for neural afference and efference

Author’s Response

Roland, P. E. Degrees of freedom between somatosensory and somatomotor processes; or, One nonsequitur deserves another

Number 3, September 1979

Target Article

Olton, D. S., Becker, J. T. & Handelmann, G. E. Hippocampus, space, and memory

Open Peer Commentary

Adey, W. R. Hippocampal theta and organism-environment interaction

Bennett, T. L. A gating function for the hippocampus in working memory

Berger, T. W. The hippocampus and "general" mnemonic function

Buhr, R. D. Comparative memory and the hippocampus

Buret, J. Spatial working memory — significance of intramaze and extramaze cues

Deadwyler, S. A. How much work should the hippocampus do?

Divac, I. A neuropsychological theory of hippocampal function: Procrustean treatment of inconvenient data

Douglas, R. J. Working memory, interference, and inhibition

Ellen, P. Limitations of unitary theories of hippocampal functions

Gambarian, L. S. The hippocampus, behavioral optimization, and working memory

Halgren, E. The human amnesic syndrome and homologies in cross-species hippocampal function

Hirsh, R. Working memory redefined in terms of organizational processes

Honig, W. K. Spatial aspects of working memory

Horel, J. A. The hunting of the engram

Isaacson, R. L. & Bohus, B. Multiple memories?

Jarrard, L. E. On the role of the hippocampus in memory: information processing versus memory system

Kimble, D. P. Some working notes on working memory

Livesey, P. J. The hippocampus: a system for coping with environmental variability

Mahut, H. Nonunitary function of the hippocampus in the monkey

Author’s Response

Olton, D. S., Becker, J. T. & Handelmann, G. E. A re-examination of the role of hippocampus in working memory

Target Article

Parker, S. T. & Gibson, K. R. A developmental model for the evolution of language and intelligence in early hominids

Open Peer Commentary

Brainerd, D. J. Recapitulationism, Piaget, and the evolution of intelligence: déjà vu

Chevalier-Skolnikoff, S. The gestural abilities of apes

Dingwall, W. O. Reconstruction of the Parker/Gibson “model” for the evolution of intelligence

https://doi.org/10.1017/S0140525X00062701 Published online by Cambridge University Press
Ettlinger, G. Does development tell us about evolution? 384
Fishbein, H. D. An evolutionary perspective of the family 384
Gould, S. J. Panselectionist pitfalls in Parker & Gibson’s model for the evolution of intelligence 385
Gruber, H. E. Protocultural factors in a constructionist approach to intellectual evolution 386
Hewes, G. W. Some complexities in the evolution of language 387
Isaac, G. L. Evolutionary hypotheses 388
Jolly, A. Feeding versus social factors in cognitive evolution: can we have it both ways? 389
Kitahara-Frisch, J. The evolution of intelligence: making assumptions explicit and hypotheses testable 390
Konner, M. Origins of language: a proposed moratorium 391
Lamendella, J. T. Assumptions about hominid “intelligence” and “language” 391

Target Article

Dismukes, R. K. New concepts of molecular communication among neurons 409

Open Peer Commentary

Arch, S. Terminology, modes of communication, and a command neurohormone 416
Arluison, M. The problem of nonsynaptic transmission in the neostriatum 416
Barker, J. L. Intercellular communication in the CNS 417
Boulton, A. A. The trace amine: neurohormones (cytosolic, pre- and/or postsynaptic, secondary, indirect)? 418
Branton, W. D. & Mayeri, E. Nonsynaptic interactions in Aplysia and their relation to vertebrate systems 419
Brown, D. A. Neurmodulators 419
Bullock, T. H. Communication among neurons includes new permutations of molecular, electrical, and mechanical factors 419
Butcher, L. L. What’s in a name? A neuromodulator by any other name would function just as well 420
Chute, D. L. Do new concepts of molecular communication rejuvenate old concepts of behavioral “states” in learning and memory? 420
Coscina, D. V. No real alternative to existing definitions of neuronal communication 421
Dreifuss, J. J. & Harris, M. C. Hypothalamic neurohormones and neurotransmitters 421
Dunn, A. J. Molecular signals released by neurons 422
Elliott, G. R. & Barchas, J. D. Neuroregulators: neurotransmitters and neuromodulators 423
Evans, P. D. Modulatory actions of an identified octopaminergic neuron in the locust neuromuscular junction 424
Florey, E. Modulation of neuronal function— a not so new concept 424
Freedman, R. Electrophysiology is not sufficient to determine neuromodulatory function 425
Hatton, G. I. Neuromodulation: don’t forget the glia! 426
Hoyle, G. Classification of communications between neurons 427

Ito, M. What is the primary contribution of the proposed types of communication to neuronal networks? 429
Iversen, L. L. Co-transmitters, modulation and the peripheral nervous system 430
Kupfermann, I. Thank goodness we do not need a definition of modulation 430
Lembeck, F. Defining neuromodulation 430
Libet, B. Neuronal communication and synaptic modulation: experimental evidence vs. conceptual categories 431
Ochs, S. Aspects of communication related to axoplasmic transport 433
Osborne, N. N. Axonal varicosities, variable thresholds, and Dale’s Principle 434
Palay, S. L. Modes of interneuronal communication 434
Phillis, J. W. Neurotransmitters versus neuromodulators 434
Ryall, R. W. What is a synapse? 435
Smith, B. H. Polarity and modality of neuronal information transfer 436
Tömböl, T. Modulation and neurotransmitters 436
Traczyk, W. Z. Neurohypophyseal hormone release 437
Truman, J. W. Hormones as modulators of neuronal activity 437
Weight, F. F. Communication at synapses 438
Wilson, D. L. Restricted extracellular pathways for molecular communication? 439
York, D. H. A note of caution in neurohormon nomenclature 440

Author’s Response

Dismukes, R. K. Discussing new neurocommunication concepts: complements, counterdefinitions and counterexamples 441

Authors’ Response

Parker, S. T. & Gibson, K. R. How the child got his stages 399
Target Article

Arbib, M. A. & Caplan, D. Neurolinguistics must be computational 449

Open Peer Commentary

Blumstein, S. E. Phrenology, "boxology," and neurology 460
Buckingham, H. W., Jr. Must neurolinguistics be computational? 461
Cohen, G. Are computational models like HEARSAY psychologically valid? 462
Frazier, L. Constraining models in neurolinguistics 463
Freemon, F. R. Computers are dumb 464
Gardner, H. Computational neurolinguistics: promises, promises 465
Garrett, M. & Zurif, E. Neurolinguistics must be more experimental before it can be effectively computational 465
Goodglass, H. Is model building advancing neurolinguistics? 466
Greenblatt, S. H. Is neurolinguistics ready for reductionism? 467
Halwes, T. An embarrassment of riches in nascent neurolinguistics 467
Hudson, P. T. W. What is computational neurolinguistics anyway? 468

One Author's Response

Arbib, M. A. Cooperative computation as a concept for brain theory 475

Continuing Commentary


Otto, H. R. Models in cognitive psychology: contrast and constraint 485
Pask, G. A broader view of psychology and of computation 486

Number 4, December 1979

Target Article

O'Keefe, J., Nadel, L. Précis: The hippocampus as a cognitive map 487

Open Peer Commentary

Amsel, A. Hippocampus, memory and movement 494
Berger, T. W. Selective activation of hippocampal neurons 495
Blanchard, D. C., Blanchard, R. J. Behavioral analysis of the hippocampal syndrome 496
Bliss, T. V. P. O'Keefe & Nadel's three-stage model for hippocampal representation of space 496
Bures, J. The "neuroethological revolution" in unit studies 497
Douglas, R. J. The hippocampus and its apparent migration to the parietal lobe 498
Downs, R. M. On the nature of cognitive maps 499
Ellen, P. The hippocampus and operant behavior 500
Gray, J. A. Spatial mapping only a special case of hippocampal function 501
Greene, E. On panspatial theories of brain and behavior 503
Hecaen, H. Cortical areas involved in spatial function 498
Hirsch, R., Krajden, J. Hippocampal function: logic, logic, and more logic 504
Holmes, J. E. Waves and cells, maps and memories, space and time 505
Horel, J. A. Lost maps and memories 506
Isaacson, R. L. Hippocampal lesions and intermittent reinforcement 507
Jackendoff, R. What is a cognitive map? 507
Jarrard, L. E. Considerations in evaluating the cognitive mapping theory of hippocampal function 509
Kenner, R. P. Hippocampus and memory 509
Moore, J. W. The hippocampus and informational salience 510
Nonneman, A. J. Time: a fourth dimension for the hippocampal cognitive map 511
Olton, D. S. Inner and outer space: the neuroanatomical bases of spatially organized behavior 511
Pinker, S. Mental maps, mental images, and intuitions about space 513
Ranck, J. B. Jr. On O'Keefe, Nadel, space and brain 513
Squire, L. R. The hippocampus, space, and human amnesia 514
Swanson, L. W. The anatomy of a cognitive map 515
Thomas, G. J. Cognition, memory, and the hippocampus 515