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Abstract

Large deviation estimates are derived for sums of random variables with certain
dependence structures, including finite population statistics and random graphs. The
argument is based on Stein’s method, but with a novel modification of Stein’s equation
inspired by the Cramér transform.
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1. Introduction

It has been well known for a long time that under suitable conditions, sums of independent,
and also certain dependent random variables, tend to have an approximately normal distribution.
One of the classical problems in probability is to bound the error in the normal approximation.
A particularly interesting issue is the approximation of large deviation probabilities. More
precisely, if W is a random variable with EW = 0 and var(W) = 1, the problem is to
approximate tail probabilities P(W ≥ x), where x can be substantially greater than 1. As the
corresponding normal tail probabilities, 1 −�(x), where, as usual,

�(x) = 1√
2π

∫ x

−∞
e−z2/2 dz,

are rather small, it is desirable to bound the relative error.
One of the crucial breakthroughs on this topic is due to Cramér [11], who succeeded in

transforming the problem of approximating large deviation probabilities into the problem of
approximating tail probabilities P(W ≥ x) with x close to 0. This can be accomplished
by multiplying the original probability measure by eλW/E eλW for a suitable λ (Cramér’s
transformation).

Cramér’s result was extended and refined in many directions. The following result is a
simplified version of Theorem 2 of [34].

Theorem 1.1. Suppose that W = (ξ1 + · · · + ξn)/
√
n is a sum of independent and identically

distributed (i.i.d.) variables, with E ξ1 = 0 and var(ξ1) = 1, satisfying Cramér’s condition
E eHξ1 < ∞ for some H > 0. Then, for all 0 ≤ x ≤ C0

√
n, we have

P(W ≥ x)

1 −�(x)
= exp

(
x3

√
n
λ

(
x√
n

))(
1 + C1θ(1 + x)√

n

)
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for some θ ∈ [−1, 1], where λ(z) is a power series in z with coefficients depending on the
moments of ξ1 and C0 and C1 are constants depending only on H and E eHξ1 .

Remark. Of course, an analogous result to Theorem 1.1 holds for negative x.

The series λ(z) is called the Cramér series. Its coefficients can be explicitly bounded in
terms of H and E eHξ1 ; see estimate (5) in [34]. Therefore, Theorem 1.1 yields the following
weaker version which may be useful in the absence of information about higher moments.

Corollary 1.1. For ξi and W as given in Theorem 1.1 and for 0 ≤ x ≤ C0
√
n, we have

exp

(
−C2x

3

√
n

)(
1 − C1(1 + x)√

n

)
≤ P(W ≥ x)

1 −�(x)
≤ exp

(
C2x

3

√
n

)(
1 + C1(1 + x)√

n

)
, (1.1)

where, again, C0, C1, and C2 depend only on H and E eHξ1 .

Theorem 1.1 has been extended in many ways to sums of dependent random variables. An
important general approach is based on cumulant estimation. A survey with several applications,
including mixing and (weighted) U -statistics, is given in [32].

The aim of this paper is to prove a version of Corollary 1.1 for certain dependence structures
where Stein’s method can be applied. This method was introduced in 1970 to derive uniform
bounds for the error in the normal approximation; see [35]. The original approach was gradually
extended in various directions, including approximations by other distributions, asymptotic
expansions, and multivariate and functional settings. Apart from other settings, Stein’s method
can be applied to various sums of dependent random variables, particularly where no natural
ordering of the summands is present. For a detailed survey with numerous applications see
[4] and [5]. Many applications arise from random discrete structures such as permutations and
graphs, both of which will also be considered in the present paper.

Stein’s method works very well when approximating expectations of Lipschitz or smooth
test functions. With additional effort and some loss of generality, we can also derive uniform
(Berry–Esséen type) bounds of the correct order; see Section 4. Recently, Stein’s method was
refined to yield nonuniform bounds, where the absolute error for the tail probability P(W ≥ x)

is bounded by ε/(1 + |x|3); see [8]–[10]. Surprisingly, in the context of Stein’s method, little
effort has been put put into deriving large deviation probabilities in the domain of normal
approximation. A heuristic treatment is given in [36], with no explicit result given.

The main idea of Stein’s method to approximate the distribution of a random variable W
is first to show that for a certain (usually differential or difference) linear operator A, the
expectations E Af (W) are small. The next step is then to solve the equation

Af = h− ch

for a suitable constant ch depending on h; if E Af (W) is small, then we have E h(W) ≈ ch
(with small absolute error). For the normal approximation, we take Af (w) = f ′(w)−f (w)w
(it can be easily checked that in this case, E Af (Z) vanishes if Z is a standard normal variate).

In the present paper we modify the second step in such a way that means ch need no longer be
a constant, but a function whose expectation is easy to derive or estimate. Inspired by Cramér’s
transformation, ch is taken to be a multiple of eλw, so that we can write

f ′(w)− f (w)w = h(w)−Nλheλw, (1.2)
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Large deviation bounds based on Stein’s method 733

where Nλh is a constant factor which is chosen in such a way that the expectation of the right-
hand side with respect to the standard normal distribution vanishes. As in the classical setting
when λ = 0, this allows us to conclude that E h(W) ≈ NλhE eλW with small absolute error.
However, the right-hand side of (1.2) is flexible enough to yield an approximation with small
relative error for a suitably chosen λ. Finally, it turns out that the relative error can also be
controlled in the approximation of E eλW . This allows us to derive our main result, Theorem 2.2.

For ξi andW as given in Theorem 1.1 and with Cramér’s condition strengthened to E eH |ξ1| <
∞, Theorem 2.2 reduces to

exp

(
−C2x

3

√
n

)(
1 − C1(1 + x2)√

n

)
≤ P(W ≥ x)

1 −�(x)
≤ exp

(
C2x

3

√
n

)(
1 + C1(1 + x2)√

n

)
. (1.3)

Apart from constants, the upper bound in (1.3) is of the same quality as the one in (1.1) and
is applicable in the range x = O(n1/2); beyond x = O(n1/2), the upper bound on P(W ≥ x)

begins to increase in x, while the tail probability P(W ≥ x) trivially vanishes if the summands
ξi are appropriately bounded (remember that W is scaled so that var(W) = 1). Conversely,
the lower bound in (1.3) is comparable to the one in (1.1) only for x = O(n1/4); beyond this
range, it becomes negative and therefore useless. Improvements on the lower bound will be the
subject of a forthcoming work.

Theorem 2.2 can be applied in various cases where dependence plays a part (see Sec-
tion 3), although in all of them we assume boundedness of the summands Xi . More precisely,
our construction requires certain ‘independently bounded’ components (see condition (iii) in
Section 2), which, for sums of independent random variables, allow us to derive the Berry–
Esséen theorem (with a weaker constant; see (2.7)). For dependent random variables, our result
does not typically yield uniform bounds expressed in terms of third absolute moments. For the
sake of simplicity, we assume boundedness, though our techniques may be applied to certain
unbounded random variables.

2. Main results

In this section we shall state the precise formulation of our results, proved in Section 5. We
shall focus on random variables which can be decomposed as in [6] (see below). In [6], this
elegant and powerful approach was applied to random graphs, but can actually be used in many
other cases in which Stein’s method for normal approximation has been applied; see [26].

According to [6], let I be an index set and

W =
∑
i∈I

Xi, EXi = 0, var(W) = 1. (2.1)

For every i ∈ I , suppose that the following first-order decomposition is given:

W = Wi + Zi, (2.2)

where Wi is independent of Xi . Next, suppose that

Zi =
∑
k∈Ki

Zik (2.3)

and consider a σ -algebra Hik , such that Xi and Zik are Hik-measurable.
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Remark. The index sets I and Ki can also be infinite, provided that∑
i∈I
(EX2

i )
1/2 < ∞,

∑
i∈I

∑
k∈Ki

E|XiZik| < ∞. (2.4)

The estimation of the error in normal approximation is based on the distance between the
distribution ofW (which will be denoted by L(W)) and the conditional distributions ofW and
Wi given Hik (which will be denoted by L(W | Hik) and L(Wi | Hik); see (4.2) and the text
below). This is the reason whyZi should be written as a sum: Zik usually contain considerably
less information than Zi itself, so that L(W) is substantially closer to L(W | Xi, Zik) than to
L(W | Xi, Zi).

To estimate the error between L(W) and L(W | Hik) or L(Wi | Hik), Barbour et al. [6]
suggest second-order decompositions. In order to obtain their main result (i.e. an estimation of
the error in normal approximation in the Wasserstein metrics), it suffices to construct random
variablesWik independent of Hik , and to bound the conditional expectations of |W −Wik| and
|Wi −Wik| given Hik . In our case, this is not enough and we shall need a more sophisticated
construction. We need to construct random variables Wik , W ∗

ik , Uik , Vik , and U∗
ik such that

(i) W ∗
ik is independent of Hik and has the same distribution as W ,

(ii) Uik and Vik are Hik-measurable,

(iii) U∗
ik is conditionally independent of Wik given Hik ,

(iv) |W −Wik| ≤ Uik , |Wi −Wik| ≤ Vik , and |W ∗
ik −Wik| ≤ U∗

ik .

We shall need U∗
ik to bound the difference between L(W) = L(W ∗ | Hik) and L(Wik | Hik);

the random variable Uik will be used to estimate the difference between L(Wik | Hik) and
L(W | Hik) and the random variable Vik will be used to estimate the difference between
L(Wik | Hik) and L(Wi | Hik).

Remark. If |W ∗
ik −W | and |W ∗

ik −Wi | can be bounded by sufficiently small Hik-measurable
random variables, we can simplify the whole construction by setting Wik = W ∗

ik and U∗
ik = 0.

However, although in all applications given in Section 3, the summands Xi are assumed to be
bounded, unboundedness can nevertheless appear in the first-order decompositions, but may
be controlled by U∗

ik . This occurs in the case of random graphs; see Subsection 3.2.

The following theorem provides uniform bounds in the normal approximation.

Theorem 2.1. For every x ∈ R, we have

| P(W ≤ x)−�(x)| ≤ 6√
2π

∑
i∈I

∑
k∈Ki

E[|XiZik|(Uik + Vik + 16U∗
ik)].

Now we turn to large deviation results. For every λ ≥ 0, define

β(λ) :=
∑
i∈I

∑
k∈Ki

E|XiZik|[eλUikUik + eλVikVik

+ exp(2λE(U∗
ik | Hik))(6eλUik + 6eλVik + 4eλU

∗
ik )U∗

ik]. (2.5)

Remark. IfW is a sum of n random variables, which are, along with the random variables Zik ,
Uik , Vik , and U∗

ik uniformly bounded by B, and if the size of the set Ki does not grow with n,
we have β(λ) = O(nB3e3λB). In this case, the variance of W is typically of order nB2. So if
var(W) = 1, we typically have B = O(n−1/2) and also β(λ) = O(n−1/2) for λ = O(n1/2).
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The following theorem is our main result.

Theorem 2.2. For every x ≥ 0 with β(x) < ∞, we have

e−x3β(x)/6[1 −Q(x)β(x)] ≤ P(W ≥ x)

1 −�(x)
≤ ex

3β(x)/6[1 +Q(x)β(x)] (2.6)

and

e−x3β(x)/6[1 −Q(x)β(x)] ≤ P(W ≤ −x)
�(−x) ≤ ex

3β(x)/6[1 +Q(x)β(x)],

where

Q(x) = 12√
2π

+ 23

2
x + 11

√
2π

2
x2.

To see how all this works, consider first the easiest case, where the summands are i.i.d.

Example 2.1. Let ξ1, ξ2, . . . be i.i.d. random variables with E ξi = 0 and var(ξ1) = 1. Then
we can write

W = ξ1 + · · · + ξn√
n

=
n∑
i=1

Xi,

where Xi = ξi/
√
n. Set I = {1, 2, . . . , n}, Ki := {0}, Zi := Zi0 := Xi , Wi := Wi0 :=

W − Xi , and define Hi0 to be the σ -algebra generated by Xi . Furthermore, for each i ∈ I ,
let X∗

i be an independent copy of Xi . Now put W ∗
i0 := Wi0 +X∗

i , Ui0 := |Xi | = |W −Wi0|,
Vi0 := 0 = |Wi − Wi0|, and U∗

i0 := |X∗
i | = |W ∗

i0 − Wi0|. We can easily check that these
random variables satisfy conditions (ii)–(iv). Applying Theorem 2.1, after some calculation,
we obtain

| P(W ≤ x)−�(x)| ≤ 6√
2πn

[E|ξ1|3 + 16 E ξ2
1 E|ξ1|].

Using the well-known fact that, for any two increasing functions f and g, the random variables
f (Y ) and g(Y ) are positively correlated for any Y such that E(f (Y ))2 and E(g(Y ))2 are finite,
we find that

| P(W ≤ x)−�(x)| ≤ 41E|ξ3
1 |√
n

, (2.7)

which is the Berry–Esséen theorem with a weaker constant.
Now we turn to large deviation estimates. Recalling (2.5), a straightforward calculation

shows that

β(λ) ≤ 1√
n

[E|ξ1|3eλ|ξ1|/√n + 6e2λE|ξ1|/√n E ξ2
1 eλ|ξ1|/√n E|ξ1|

+ 6e2λE|ξ1|/√n E ξ2
1 E|ξ1| + 4e2λE|ξ1|/√n E ξ2

1 E|ξ1|eλ|ξ1|/√n].

Clearly, E|ξ1| ≤ (E ξ2
1 )

1/2 = 1. Again, using the fact that any two increasing functions of the
same random variable are positively correlated, we obtain

β(λ) ≤ 17√
n

e2λ/
√
n E|ξ1|3eλ|ξ1|/√n,

which together with Theorem 2.2 implies (1.3).
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In the next section we give two nontrivial examples where our approach can be used to
advantage: finite population statistics and random graphs. Another important case where the
decompositions of [6] (and Theorem 2.2) can be applied is the case of local dependence.
However, the latter has already been worked out by Gorchakov [14], [15], using the cumulant
estimation argument (more precisely, a large deviation result can be deduced from Theorem 2
of [15], and Lemma 1 of [31]).

3. Applications

3.1. Finite population statistics

Consider a statisticW based on a simple random sample of size n, drawn from a population
of size N ≥ n. Any such statistic can be expressed in terms of a uniformly distributed random
injection π : Nn → NN , where Nn := {1, . . . , n}. Suppose that W is decomposed in the
following way:

W =
∑
α⊆Nn

0<|α|≤r

hα(π(α)),

where 0 < r ≤ n, | · | denotes cardinality and where for each α ⊆ Nn, hα is a function defined
on all subsets of NN with the same cardinality as α.

Large deviations of finite population statistics have been considered in many special cases.
The case in which r = 1 has been well elaborated. Robinson [30] proved a result similar
to Theorem 1.1 with the error terms bounded in terms of supremum norm. Assuming that
EW = 0 and var(W) = 1, Robinson’s result typically covers tail probabilities P(W ≥ x) in
the zone x = o(n1/2) (with a somewhat weaker result given for x = O(n1/2), too). In the
range x = o(n1/6) (i.e. the range where we can generally expect P(W ≥ x) ∼ �(−x)), it
was shown, for certain special cases, that the supremum norm can be replaced by more refined
moment-type quantities; see Kallenberg [22]. Kallenberg’s result has also been extended in
other directions; see [17] and the references therein.

Another interesting case is the one where the functions hα are the same for all α with
|α| = r and hα = 0 for |α| < r . In this case, we obtainU -statistics of finite populations. Large
deviations ofU -statistics were considered by [23]. Their result covered the case in which r = 2
and x = o(n1/6).

Theorem 3.1. Suppose that EXα = 0 for all α and that var(W) = 1. Furthermore, suppose
that there are constants b1, . . . , br such that

max
K⊆NN|K|=|α|

hα(K)− min
K⊆NN|K|=|α|

hα(K) ≤ b|α|

for all α ⊆ Nn with 0 < |α| ≤ r . Then Theorem 2.2 holds with

β(x) ≤ nrb3(8e4rbx + 10e5rbx), where b :=
r∑
s=1

(
n− 1

s − 1

)
bs. (3.1)

Remark. For r = 1, Theorem 3.1 is more or less a special case of Robinson’s [30] result,
except that the constants here are completely explicit. For r = 2, our result covers a wider range
(x = O(n1/2)) than the result of Kokic and Weber [23], which covers the range x = o(n1/6)

and also does not give any explicit constants. Conversely, the bounds given by Kokic and Weber
are sharper in the sense that they are based on moments instead of the supremum norm. Finally,
our result seems to be entirely new for r > 2.
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To see the typical behavior of the bound in (3.1), we focus on U -statistics in more detail.
Consider the following sequence of U -statistics:

Wk := σ−1
k

∑
α⊆Nn(k)

|α|=r

Hk(πk(α)),

where, again, for any k ∈ N, πk : Nn(k) → NN(k) is a uniformly distributed random injection.
We assume that ∑

K⊆NN(k),|K|=r
Hk(K) = 0

(so that EW = 0) and choose σk so that var(Wk) = 1. In addition, we assume that

• limk→∞ n(k) = ∞ and n(k) ≤ qN(k) for some q < 1;

• there exists a constant B such that |Hk(K)| ≤ B for all k and K ⊆ NN(k) with |K| = r;

• limk→∞
l! [(r − l)!]2[N(k)− 2r + l]!

[N(k)]!
∑

K,L⊆NN(k)

|K|=|L|=r
|K∩L|=l

Hk(K)Hk(L) = 
l for some 
1, . . . ,


r with 
1 > 0.

In this case, we have σ 2
k ≥ CN(k)2r−1 for some C > 0, provided that k is sufficiently large;

see equations (3.7) and (3.8) of [24]. Thus, after some calculation, the following assertion can
be deduced from Theorem 3.1.

Corollary 3.1. For Wk as above and sufficiently large k, Theorem 2.2 holds with

β(x) ≤ C1√
n(k)

eC2x/
√
n(k)

for some C1 and C2 depending only on B, q, and 
1, . . . , 
r .

Now we turn to the proof of Theorem 3.1. The decompositions required by Theorem 3.1
will be based on the standard ‘rearrangement’ argument; see, e.g. Theorem 6 of [3]. Here we
shall continue in the following way: first consider a family of random permutations τK of the
set NN , indexed by all subsets K ⊆ NN , such that, for each K , the images of the elements
of K are chosen randomly, with the uniform distribution over all variations of |K| elements.
Given τK |K , the elements of τK(K)\K are then mapped into the elements ofK \τK(K), again
chosen uniformly at random. The other elements of NN remain fixed. Thus, τK alters at most
2|K| elements. The following assertion is straightforward and is therefore left without proof.

Lemma 3.1. Let π be a uniformly distributed random injection Nn → NN . Generate a family
of random permutations, {τK | K ⊆ NN }, satisfying the conditions above and independent
of π . Then, for any subset α ⊆ Nn, the random mapping τπ(α) ◦ π is independent of the
restriction π |α , has the same distribution as π , and coincides with π on Nn \ S(α), where
S(α) := α ∪ π−1(τπ(α)(π(α))).
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Proof of Theorem 3.1. Take a family T = {τK | K ⊆ NN } as above, which is independent
of π , and define

Xα := hα(π(α)), Xαβ := hβ(πα(β)), Zαβ := Xβ −Xαβ,

πα := τπ(α) ◦ π, Wα :=
∑
β⊆Nn

Xαβ, Zα :=
∑
β⊆Nn

Zαβ.

By Lemma 3.1, πα is independent of Xα; the same holds for Wα . Next, define Hαβ to be the
σ -algebra generated by π |α∪β and T , and notice that Xα , Xβ , and Xαβ are Hαβ -measurable.
Thus, to complete the decompositions, generate a copy T ′ = {τ ′

K | K ⊆ NN } of the family T ,
which is independent of the pair (π, T ). Set

παβ := τ ′
π(α) ◦ π, Xαβγ := hγ (παβ(γ )), Wαβ := W ∗

αβ :=
∑
γ⊆Nn

Xαβγ .

Again by Lemma 3.1,Wαβ is independent of Hαβ and has the same distribution asW . Therefore,
these decompositions satisfy the independence conditions given in Section 2. Moreover, we
can estimate

|Zαβ | ≤ b|β| 1[S(α) ∩ β �= ∅],
|Xαβγ −Xγ | ≤ b|γ | 1[S′(α ∪ β) ∩ γ �= ∅],

|Xαβγ −Xαγ | ≤ b|γ | 1[(S(α) ∪ S′(α ∪ β)) ∩ γ �= ∅],
where S(α) is as given in Lemma 3.1 and where S′(α) is equivalent to S(α) for the family
{τ ′
K | K ⊆ NN }. Consequently,

|Wαβ −W | ≤ 4rb =: Uαβ, |Wαβ −Wα| ≤ 5rb =: Vαβ,
and, of course, we can set U∗

αβ := 0. Noting that

∑
β

b|β| 1[S(α) ∩ β �= ∅] ≤ 2|α|b,
∑
α

|α|b|α| =
r∑
s=1

s

(
n

s

)
bs = nb,

and collecting terms, the result follows.

3.2. Random graph degree statistics

Let  = K(n, p) be a random graph on n vertices such that, for any two distinct vertices, the
event that they are adjacent has probability p and all such events are independent. An important
class of problems is to consider random variables based on the so called semi-induced properties
of certain subsets of the vertex set, that is, determined by those edges with at least one endpoint
in the subset. The most natural examples are ‘being an isolated tree’ or ‘having a given degree’.
We consider a number of subsets with the given property. Normal approximation of such
statistics by Stein’s method was studied by [2], [6], and [13]. Large deviations were studied by
[19], [20], [21], and [25].

In the present paper we consider statistics based on degrees. Take a bounded measurable
function H : I → R, where I = {1, . . . , n} denotes the vertex set of , and define

S :=
∑
i∈I

H(δi), W := S − µ

σ
,

where δi denotes the degree of the vertex i with respect to , µ = E S, and σ 2 = var(S).
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Theorem 3.2. If maxk∈I H(k)− mink∈I H(k) ≤ B, then Theorem 2.2 holds with

β(x) ≤ nB3

σ 3 (13 + 43np + 27(np)2) exp

{
Bx(8 + 4np)

σ
+ 2np(eBx/σ − 1)

}
. (3.2)

If n → ∞ and np → c, where c is fixed and where H : Z+ → R is also a fixed nonconstant
bounded function then, for sufficiently large n, Theorem 2.2 holds with

β(x) = C1√
n

exp

{
C2x√
n

+ C3(e
C4x/

√
n − 1)

}
, (3.3)

where C1, . . . , C4 depend only on H and c.

Remark. For the number of isolated vertices, i.e. the case whereH(k) = 1(k = 0), O’Connell
[25] derived a large deviation principle. Janson [20] and Janson et al. [21] considered statistics
with locally dependent summands (which is not the case for degree statistics). Applied for
P(W ≤ t

√
n), where n → ∞, t is fixed, and W is a suitable statistic on K(n, p) scaled in

such a way that EW = 0 and var(W) = 1, the results of [20] and [21] yield bounds as in
Corollary 1.1; O’Connell’s result yields something between the set-up of Corollary 1.1 and
Theorem 1.1; however, none of these results provides explicit constants.

Proof of Theorem 3.2. To prove (3.2), first rewrite W in the following way:

W =
∑
i∈I

Xi, where Xi = h(δi) and h(k) = 1

σ

(
H(k)− µ

n

)
.

Next, for J ⊆ I , denote by δJk the degree of the vertex k with respect to the graph obtained from
 by removing all edges with an endpoint in J . Since δ{i}k is independent of Xi , we can set

Wi :=
∑
k∈I

h(δ
{i}
k ) and Zik := h(δk)− h(δ

{i}
k ).

To construct the second order decompositions, denote by [j ∼ l] the event that j is adjacent to
l and let Hik be the σ -algebra generated by all events [j ∼ l], where j ∈ {i, k} and l ∈ I \ {j}.
Furthermore, take an independent copy ∗ of the graph  and denote by δJ∗

k the degree of the
vertex k with respect to the graph with vertex set I and with edge set consisting of the edges in
∗ with an endpoint in J and the edges in  with no endpoint in J . Define

Wik :=
∑
l∈I

h(δ
{i,k}
l ) and W ∗

ik :=
∑
l∈I

h(δ
{i,k}∗
l ).

Now, since supXi − inf Xi ≤ b := B/σ and EXi = 0, we have |Xi | ≤ b. Clearly, |Zii | ≤ b.
Next, for i �= k, observe that

Zik = 1[i ∼ k](h(δk)− h(δ
{i}
k ))

and thus |Zik| ≤ b 1[i ∼ k]. Furthermore,

|W −Wii | =
∣∣∣∣∑
l∈I
(h(δl)− h(δ

{i}
l ))

∣∣∣∣ ≤ b(δi + 1) =: Uii,

|Wi −Wii| = 0 =: Vii,

|W ∗
ii −Wii| =

∣∣∣∣∑
l∈I
(h(δ

{i}∗
l )− h(δ

{i}
l ))

∣∣∣∣ ≤ b(δ∗i + 1) =: U∗
ii ,
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where δ∗i denotes the degree of the vertex i with respect to ∗. For i �= k, we have

|W −Wik| ≤ b(δi + δk + 2) =: Uik,

|Wi −Wik| ≤ b(δk + 1) =: Vik,

|W ∗
ik −Wik| ≤ b(δ∗i + δ∗k + 2) =: U∗

ik .

Recalling (2.5) and using independence, we now find that

β(x) ≤ b3
[∑
i∈I

Ai(x)+
∑
i∈I

∑
k∈I\{I }

pikAik(x)

]
,

where
Ai(x) := E[ebx(δi+1)(δi + 1)

+ e2bx(E δi+1)(6ebx(δi+1)(E δi + 1)+ 4 E ebx(δi+1)(δi + 1))]
and

Aik(x) := E[ebx(δi+δk+2)(δi + δk + 2)+ e2bx(E δi+E δk+2)

× {6(ebx(δi+δk+2) + ebx(δk+1))(E δi + E δk + 2)

+ 4 E ebx(δi+δk+2)(δi + δk + 2)} | i ∼ k].
Now observe that Ai(x) and Aik(x) can be expressed entirely in terms of a few expectations
of type E S, E ebxS , and E ebxSS; the choices of S may be different, but any such S is a sum of
independent Bernoulli random variables, such that E S ≤ np.

Now we use the fact that the Bernoulli distribution Be(p) precedes the Poisson distribution
Po(p) in the convex order sense, i.e. for every convex function f , we have∫

f dBe(p) ≤
∫
f dPo(p).

To prove this, observe that Be(p) precedes Be(p/2)∗Be(p/2) and that our relation is invariant
under convolution; then apply the Poisson law of small numbers. Applying the invariance under
convolution again, it follows that S precedes Po(E S). Thus, if f is convex and increasing, we
have E f (S) ≤ ∫

f dPo(np). Hence,

E ebxS ≤
∞∑
k=0

ekbx (np)ke−np

k! = enp(ebx−1),

E ebxSS ≤
∞∑
k=0

kekbx (np)k e−np

k! = np ebx+np(ebx−1).

The estimate (3.2) is now completed by routine calculation.
To derive (3.3), it only remains to bound the variance from below. Using independence, we

may write

σ 2 =
∑
i∈I

[
var(H(δi))+

∑
k∈I\{i}

E(H(δi)− EH(δi))(H(δk)−H(δ
(i)
k ))

]

= n var(H(Nn−1))+ n2p(EH(1 +Nn−2)− EH(Nn−1))

× (EH(1 +Nn−2)− EH(Nn−2)),
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where Nk ∼ Bi(k, p) (Bi(·, ·) denotes the binomial distribution). Noting that the point
probabilities of Nn−1 and Nn−2 converge to the point probabilities of Po(c), we conclude
that for sufficiently large n, σ 2

n ≥ Cn for some C > 0 and the proof is complete.

4. A bound on the Stein expectation

The aim of this section is to prove an auxiliary result which handles the dependence structure
and the boundedness conditions from Section 2. This is one of the key steps in the proof of the
main result and is independent of the rest of the proof, which is given in Section 5.

The main idea of Stein’s method is to express the error in the normal approximation for a
test function h, i. e. E h(W)− N(0, 1){h} in terms of the Stein expectation,

E[f ′(W)− f (W)W ], (4.1)

where f solves the Stein equation f ′(w)−f (w)w = h(w)−N(0, 1){h} and where N(µ, σ ){h}
denotes the expectation of h with respect to the appropriate normal distribution. Taylor’s
expansion then typically allows us, roughly speaking, to express (4.1) in terms of expectations
of the form E f ′′(W̃ ), multiplied by small quantities; see (4.2). If h is Lipschitz, we can then
estimate the supremum norm of (a suitable version of) f ′′ in terms of the Lipschitz constant of
h; thus, it suffices simply to bound | E f ′′(W̃ )| in terms of the supremum norm of f ′′. However,
when deriving Berry–Esséen type bounds, the indicators of half-lines are not even continuous,
let alone Lipschitz. Of course, they can be approximated by Lipschitz functions, but it is then
too crude to bound | E f ′′(W̃ )| by the supremum norm of f ′′, because |f ′′| is large only on
a small set. In some cases, the probability that W̃ actually belongs to this set can be directly
estimated. This is the so called concentration inequality approach; see [8]–[10] and [18].

Since |f ′′| is large only on a small set, | E f ′′(Z)| can be controlled if Z has a bounded
density, in particular if Z is normal. Thus, a sufficiently sharp bound on | E f ′′(W̃ )| can be
derived if we succeed to derive a sharp bound for the error in the normal approximation of W̃ .
In order to do this, we may again apply Stein’s method similarly as for W . Thus, a Berry–
Esséen type bound for W can be derived by induction. This type of argument was introduced
by Bolthausen [7], where it was applied to random permutations. It was also extended by
Schneller [33] to asymptotic expansions of order 1 and by Götze [16] to the multivariate case.

Although the induction argument is very flexible, extending it to a more general setting
seems to be a difficult job. However, instead of deriving a separate CLT for W̃ , we may refer
back to the original random variable W : to bound | E f ′′(W̃ )|, it actually suffices to show that
the law of W̃ is close to the law of W . This ‘bootstrapping’ argument was introduced by Stein
(see [36, Chapter IX]) to derive the classical Berry–Esséen theorem and subsequently extended
to many cases of dependence; see [2], [12], [27], [28], and [29]. The ‘bootstrapping’ argument
can be written in quite a general setting, but it usually requires boundedness. To some extent, it
also allows for some unbounded components, but in this case with some additional assumptions
on independence.

Lemma 4.1, below, bounds the Stein expectation in terms of certain expectations related to
W in such a way that the bootstrapping argument can then be applied to bound large deviation
probabilities; see Section 5.

Lemma 4.1. Let W be a random variable decomposed as defined in (2.1)–(2.4), along with a
construction satisfying conditions (i)–(iv) from Section 2, and let h : R → R be a differentiable
function with absolutely continuous derivative. Then, for each λ ≥ 0, the Stein expectation
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satisfies

E[f ′(W)− f (W)W ] ≤ β(λ)

2
sup
t∈R

E|f ′′(W + t)| min{1, e−λt },

where β(λ) is as given in (2.5).

Before proving Lemma 4.1, we need a couple of technical results. The first one deals with
‘independent unboundedness’. The result is easy and therefore left without proof.

Lemma 4.2. Let W0, W ∗, and U∗ be random variables such that U∗ is independent of W0
and |W ∗ −W0| ≤ U∗. Then, for any constant u∗ such that P(U∗ ≤ u∗) > 0, any measurable
function f : R → [0,∞), and any a ≤ b, we have

∫ b

a

E f (W0 + t) dt ≤ 1

P(U∗ ≤ u∗)

∫ b+u∗

a−u∗
E f (W ∗ + t) dt.

The following assertion is the key step in proving Lemma 4.1.

Lemma 4.3. Let f : R → [0,∞) be a measurable function and suppose thatW ∗ is a random
variable such that, for all t ∈ R,

E f (W ∗ + t) ≤ Cmax{1, eλt } for some C, λ ≥ 0.

In addition, suppose that there are random variablesW0, W ′, and U∗ and constants u′ and u∗
such that

|W ′ −W0| ≤ u′, |W ∗ −W0| ≤ U∗, and P(U∗ ≤ u∗) > 0

and such that U∗ is independent of W0. Then the following inequality holds:

∣∣∣∣E
∫ W ′

W ∗
f (s) ds

∣∣∣∣ ≤ C

{
eλu

′
u′ + eλu

∗

P(U∗ ≤ u∗)
[2eλu

′
u∗ + eλu

′
EU∗ + E eλU

∗
U∗]

}
.

Taking u∗ := 2 EU∗ and making use of Markov’s inequality, we obtain the following result.

Corollary 4.1. With f , C, λ, W ∗, W0, W ′, U∗, and u′ as given in Lemma 4.3, we have

∣∣∣∣E
∫ W ′

W ∗
f (s) ds

∣∣∣∣ ≤ C

{
eλu

′
u′ + e2λEU∗

E[6eλu
′
U∗ + eλu

′
EU∗ + 2 E eλU

∗
U∗]

}
.

Proof of Lemma 4.3. Putting J (a, b) := ∫ b
a
f (s) ds, we first estimate

E J (W ∗,W ′) ≤ E J (W ∗,W0 + u′)
= E J (W ∗,W ∗ + u′)+ E J (W ∗ + u′,W0 + u′)
≤ E J (W ∗,W ∗ + u′)+ E J (W0 − U∗ + u′,W0 + u′)
= J1 + J2,

where

J1 =
∫ u′

0
E f (W ∗ + t) dt and J2 = E

∫ u′

−U∗+u′
f (W0 + t) dt.
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Clearly, J1 ≤ eλu
′
u′. Using independence and the conditional version of Lemma 4.2 givenU∗,

we estimate

J2 ≤ 1

P(U∗ ≤ u∗)
E

∫ u∗+u′

−U∗−u∗+u′
E f (W ∗ + t) dt ≤ C eλ(u

∗+u′)(2u∗ + EU∗).

Similarly,
E J (W ′,W ∗) ≤ E J (W0 − u′,W ∗)

= E J (W0 − u′,W ∗ − u′)+ E J (W ∗ − u′,W ∗)
≤ E J (W0 − u′,W0 + u∗ − u′)+ E J (W ∗ − u′,W ∗)
= J3 + J4,

where

J3 =
∫ 0

−u′
E f (W ∗ + t) dt and J4 = E

∫ U∗−u′

−u′
f (W0 + t) dt.

Now we have J3 ≤ u′ and again, we use independence and a suitable conditional version of
Lemma 4.2 to estimate J4:

J4 ≤ 1

P(U∗ ≤ u∗)
E

∫ U∗+u∗−u′

−u∗−u′
E f (W ∗ + t) dt ≤ C(E eλ(U

∗+u∗−u′)U∗ + 2eλ(u
∗−u′)u∗).

Noting that | E
∫W ′
W ∗ f (s) ds| ≤ max{J1 + J2, J3 + J4} and collecting all the estimates together,

the desired result follows.

Proof of Lemma 4.1. Observe that

E[f ′(W)− f (W)W ] =
∑
i∈I

E[f ′(W)EXiW − f (W)Xi]

=
∑
i∈I

E[f ′(W)EXiWi + f ′(W)EXiZi

− f (Wi)Xi − f ′(Wi + θZi)XiZi],
where θ is uniformly distributed over [0, 1] and independent of all other variates. By indepen-
dence, the first and the third term vanish; the others can be rewritten in the following way:

E[f ′(W)− f (W)W ] =
∑
i∈I

∑
k∈Ki

E[(f ′(W)EXiZik − f ′(Wi + θZi))XiZik]

=
∑
i∈I

∑
k∈Ki

E[(f ′(W ∗
ik)− f ′(Wi + θZi))XiZik]

= −
∑
i∈I

∑
k∈Ki

E

[∫ Wi+θZi

W ∗
ik

f ′′(s) dsXiZik

]
. (4.2)

The proof is now completed by making use of the conditional version of Corollary 4.1 given Hik

and θ , withf ′′ in place off ,W ∗
ik in place ofW ∗,Wik in place ofW0,Wi+θZi = (1−θ)Wi+θW

in place ofW ′, and by making use of Jensen’s inequality for the convex functions x �→ eλx and
x �→ xeλx .
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5. Proofs of main results

First, we turn to the study of the behavior of the solutions of the Stein equation

f ′(w)− f (w)w = h(w)− N(0, 1){h}, (5.1)

where N(µ, σ ){h} denotes the expectation of h with respect to the appropriate normal density.
Some of the results stated here are classical and some of them seem to be new.

As we can easily check, one of the solutions to (5.1) can be expressed in the following form:

f (w) = 1√
2π

ψ(−w)
∫ w

−∞
h(x) e−x2/2 dx − 1√

2π
ψ(w)

∫ ∞

w

h(x) e−x2/2 dx, (5.2)

where ψ denotes the Mills ratio, given by

ψ(x) := √
2πex

2/2�(x),

and

�(x) = 1√
2π

∫ x

−∞
e−z2/2 dz.

Note that (5.2) is the only ‘nice’ solution to (5.1). More precisely, Lemmas 5.1 and 5.2 show
that f or its derivatives are bounded if h is nice enough. This cannot be true for any other
solution because the latter differs from f by a multiple of ew

2/2.
We can write ψ(x) = ∫ ∞

0 etx−t2/2 dt and differentiation under the integral sign yields the
important fact that the derivatives of ψ satisfy

ψ(r)(x) =
∫ ∞

0
t retx−t2/2 dt > 0. (5.3)

Lemma 5.1. The function f given by (5.2) satisfies

‖f ‖∞ ≤ ‖h‖1, ‖f ′‖∞ ≤ suph− inf h, and ‖f ′′‖∞ ≤ suph′ − inf h′, (5.4)

where ‖ · ‖∞ denotes the supremum norm and ‖ · ‖1 denotes the L1-norm.

Remark. We shall also need ‘weak’ derivatives in the Lebesgue sense: for an absolutely
continuous function f , sup f ′ will be considered to be the essential supremum of f ′; similarly,
we shall take ‖f ′‖∞ to be the essential supremum of |f ′|. Moreover, V (f ′)will be considered
to be the infimum of the total variations of all versions of f ′; see Lemma 5.2, below.

Proof of Lemma 5.1. The second and the third estimate are modifications of the estimates
stated in Lemma 3 of [36, p. 25]. The second estimate, which is also stated in Lemma 2.3 of
[1], can be proved in much the same way as the corresponding estimate in Stein [36]. The third
estimate actually follows from the corresponding Stein’s estimate by noting that f ′′ does not
change if h(w) is replaced by h(w)+ kw for some k ∈ R.

To derive the first estimate, we use the fact that ψ is increasing to estimate

|f (w)| ≤ 1√
2π

∫ w

−∞
|h(x)|ψ(−x) e−x2/2 dx + 1√

2π

∫ ∞

w

|h(x)|ψ(x) e−x2/2 dx.
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Now, since

ψ(−x)e−x2/2

√
2π

= �(−x) ≤ 1 and
ψ(x)e−x2/2

√
2π

= �(x) ≤ 1,

the desired result obviously follows.

When estimating tail probabilities, the following test functions are of special importance:
for any a < b, define

ha,b(w) = 1

b − a

∫ b

a

1(w ≥ x) dx =

⎧⎪⎪⎨
⎪⎪⎩

0, w ≤ a,
w − a

b − a
, a ≤ w ≤ b,

1, w ≥ b.

The functions ha,b are standard smoothings of the indicators of half-lines, already used by [36].
Denote by fa,b the corresponding solution to (5.1) given by (5.2).

Lemma 5.2. The functions fa,b satisfy

‖fa,b‖∞ ≤
√

2π

4
, ‖f ′

a,b‖∞ ≤ 1, V (f ′
a,b) ≤ 2, and V (f ′′

a,b) ≤ 4

b − a
,

where V (f ) denotes the total variation of f .

Proof. The first estimate is an immediate consequence of Lemma 3 of [36, p. 25] and the
second one follows from the second estimate in (5.4). To derive the third estimate, first check
that

f ′
a,b(w) = 1

b − a

∫ b

a

Gx(w) dx, where Gx(w) =
{

−ψ ′(w)�(−x), w ≤ x,

ψ ′(−w)�(x), w > x.

Now use (5.3) to deduce that V (Gx) = 2 for all x. Similarly, we can check that

f ′′
a,b(w) = Hb(w)−Ha(w)

b − a
, where Hx(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψ ′′(w)

∫ ∞

x

�(−t) dt, w ≤ x,

−ψ ′′(−w)
∫ x

−∞
�(t) dt, w > x,

and again use (5.3) to find that V (Hx) = 2 for all x. This completes the proof.

The following assertion allows us to express the solutions of (1.2) in terms of the solutions
to the ‘classical’Stein equation. In other words, it allows us to express the solutions of the Stein
equation for test functions of exponential growth with the solutions for bounded test functions.
The result is immediate.

Lemma 5.3. Suppose that f̃ solves

f̃ ′(w)− f̃ (w)w = h(w + λ)− N(λ, 1){h}.
Then the function f (w) := eλwf̃ (w − λ) solves

f ′(w)− f (w)w = eλw(h(w)− N(λ, 1){h}).

https://doi.org/10.1239/aap/1189518636 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518636


746 M. RAIČ

Now we turn to the proof of Theorem 2.2. Here and hereafter, we assume that W is
decomposed as in Section 2. In particular, recall the definition of β(λ) from (2.5). Furthermore,
denote by Z a standard normal random variable.

Lemma 5.4. For all x ∈ R, all λ ≥ 0, and all h with bounded total variation, we have

| E eλW [h(W)− E h(Z + λ)]| ≤
(

6√
2π

+ λ+
√

2π

4
λ2

)
E eλWV (h)β(λ). (5.5)

Remark. The term withZ in (5.5) is chosen so that the left-hand side vanishes ifW is standard
normal.

Proof of Lemma 5.4. Fix λ ≥ 0. Clearly, we may assume that β(λ) and E eλW are finite. Set

δ := sup
V (h)>0

1

V (h)
| E eλW [h(W)− E h(Z + λ)]|. (5.6)

Since Z has a density and since every function h with bounded total variation can be expressed
in the form

h(w) =
∫

R

1(w ≥ x)µ(dx)+
∫

R

1(w > x)ν(dx),

where ‖µ‖ + ‖ν‖ = V (h), we can also write

δ = sup
x∈R

| E eλW 1(W ≥ x)−�(λ− x)E eλW |.

From the latter formula, it also follows that δ ≤ E eλW < ∞. Now let ε > 0. Noting that
1(W ≥ x) ≤ hx−ε,x(W) and

E hx−ε,x(Z + λ)−�(λ− x) = 1

ε
E[(Z + λ− x + ε) 1(x − ε ≤ Z + λ ≤ x)]

≤ 1

ε
√

2π

∫ x

x−ε
(z− x + ε) dz

= ε

2
√

2π
, (5.7)

we find that

E eλW [1(W ≥ x)−�(λ− x)] ≤ E eλW
[
hx−ε,x(W)− E hx−ε,x(Z + λ)+ ε

2
√

2π

]
.

Similarly,

E eλW [1(W ≥ x)−�(λ− x)] ≥ E eλW
[
hx,x+ε(W)− E hx,x+ε(Z + λ)− ε

2
√

2π

]
.

Thus,
δ ≤ sup

x∈R

| E eλW [hx,x+ε(W)− E hx,x+ε(Z + λ)]| + ε

2
√

2π
E eλW . (5.8)

Now fix x ∈ R and consider the function f (w) := eλwfx−λ,x−λ+ε(w − λ). By Lemma 5.3,
this function satisfies

f ′(w)− f (w)w = eλw[hx,x+ε(w)− E hx,x+ε(Z + λ)]. (5.9)
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Now we shall apply Lemma 4.1 to estimate the expectation of the left-hand side with W in
place of w. By Lemma 4.1, we need to consider E|f ′′(W + t)|. Since

f ′′(w) = eλw[λ2fx−λ,x−λ+ε(w − λ)+ λ f ′
x−λ,x−λ+ε(w − λ)+ f ′′

x−λ,x−λ+ε(w − λ)],
we find that E|f ′′(W + t)| ≤ eλt E eλW (R0 + R1 + R2), where

R0 = λ2|fx−λ,x−λ+ε(W − λ)| ≤
√

2π

4
λ2,

R1 = λ|f ′
x−λ,x−λ+ε(W − λ)| ≤ λ,

R2 = |f ′′
x−λ,x−λ+ε(W − λ)|,

by Lemma 5.2. It remains to estimate E eλWR2. First, observe that

E|f ′′
x−λ,x−λ+ε(Z)| ≤ 1√

2π
‖f ′′‖1 = 1√

2π
V (f ′) ≤ 2√

2π
, (5.10)

again, by Lemma 5.2. Recalling (5.6) and applying Lemma 5.2 once more, we find that

E eλW [|f ′′
x−λ,x−λ+ε(W − λ)| − |f ′′

x−λ,x−λ+ε(Z)|] ≤ δV (|f ′′
x−λ,x−λ+ε|)

= δV (f ′′
x−λ,x−λ+ε)

≤ 4δ

ε
. (5.11)

From (5.10) and (5.11), we deduce that

E eλWR2 ≤ 2√
2π

E eλW + 4δ

ε
. (5.12)

Putting everything together, we conclude that

E|f ′′(W + t)| ≤
(√

2π

4
λ2 + λ+ 2√

2π

)
E eλW + 4δ

ε
.

From Lemma 4.1 and the equality (5.9), we now find that

| E eλW [hx,x+ε(W)− E hx,x+ε(Z + λ)]| ≤
[(√

2π

8
λ2 + λ

2
+ 1√

2π

)
E eλW + 2δ

ε

]
β(λ).

Taking the supremum over x ∈ R and making use of (5.8), it follows that

δ ≤
[(√

2π

8
λ2 + λ

2
+ 1√

2π

)
E eλW + 2δ

ε

]
β(λ)+ ε

2
√

2π
E eλW .

Choosing ε := 4β(λ), we obtain

δ ≤
(√

2π

8
λ2 + λ

2
+ 3√

2π

)
E eλWβ(λ)+ δ

2
,

which, together with the observation that δ is finite, yields the desired result.
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Lemma 5.5. For all x ∈ R and all λ ≥ 0, we have

|P(W ≥ x)− e−λ2/2 E eλW�(−x)| ≤ e−λx E eλW
(

6√
2π

+ 11

4
λ

)
β(λ). (5.13)

Proof. Fix x ∈ R, λ ≥ 0, and ε > 0. First, write

eλ(w−x−ε)hx,x+ε(w) ≤ 1(w ≥ x) ≤ eλ(w−x)hx−ε,x(w), (5.14)

where, for a < b,

ha,b,λ(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, w ≤ a,
w − a

b − a
, a ≤ w ≤ b,

e−λ(w−b), w ≥ b.

Next, observe that, similarly as in (5.7),

E hx−ε,x,λ(Z + λ)− eλx−λ2/2�(−x) = E[hx−ε,x,λ(Z + λ)− e−λ(Z+λ−x) 1(Z + λ ≥ x)]
≤ ε

2
√

2π
. (5.15)

Moreover,

eλx−λ2/2�(−x)− e−λε E hx,x+ε,λ(Z + λ)

= E

{[
e−λ(Z+λ−x) − e−λε

ε
(Z + λ− x)

]
1(x ≤ Z + λ ≤ x + ε)

}

≤ 1√
2π

∫ x+ε

x

[
e−λ(z−x) − e−λε

ε
(z− x)

]
dz

≤ 1√
2π

∫ x+ε

x

[
1 − 1 − e−λε

ε
(z− x)− e−λε

ε
(z− x)

]
dz

= ε

2
√

2π
(5.16)

(the last inequality was obtained by convexity of the exponential function). Combining (5.14),
(5.15), and (5.16), we find that the quantity

δ∗ := sup
x

eλx | P(W ≥ x)− e−λ2/2 E eλW�(−x)|

satisfies

δ∗ ≤ sup
x

eλx | E eλW (hx,x+ε,λ(W)− E hx,x+ε,λ(Z + λ))| + ε

2
√

2π
E eλW . (5.17)

Now consider the function f (w) := eλwfx−λ,x−λ+ε(w−λ), where fx−λ,x−λ+ε is the solution
of the Stein equation given in (5.2), with hx−λ,x−λ+ε in place of h. By Lemma 5.3, the function
f satisfies

f ′(w)− f (w)w = eλw[hx,x+ε,λ(w)− E hx,x+ε,λ(Z + λ)].
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Differentiating f , we find that E|f ′′(W + t)| ≤ eλt E eλW (R0 + R1 + R2 + R∗
2), where

R0,λ = λ2|fx−λ,x−λ+ε,λ(W − λ)| ≤ ελ2

2
+ λ,

R1,λ = λ|f ′
x−λ,x−λ+ε,λ(W − λ)| ≤ λ,

R2 = |f ′′
x−λ,x−λ+ε(W − λ)|,

R∗
2,λ = |f ′′

x−λ,x−λ+ε(W − λ)− f ′′
x−λ,x−λ+ε,λ(W − λ)| ≤ λ,

by Lemma 5.1 (notice that the function hx−λ,x−λ+ε − hx−λ,x−λ+ε,λ is increasing with the
Lipschitz constant λ). Putting everything together and applying Lemma 4.1 and (5.17), we
conclude that

δ∗ ≤ E eλW
[(
ελ2

4
+ 3

2
λ+ 1

2
R2

)
β(λ)+ ε

2
√

2π

]
. (5.18)

Now choose

ε := 8 + 2
√

2πλ

2 + √
2πλ2β(λ)

β(λ),

which reduces (5.18) to

δ∗ ≤ E eλW
(

2√
2π

+ 2λ+ 1

2
R2

)
β(λ).

The term with R2 will be estimated in two ways. Trivially, from the last estimate in (5.4), it
follows that R2 ≤ 1/ε. Conversely, we can use (5.12) and then estimate δ (which is defined in
(5.6)) by Lemma 5.4. Combining both estimates, we obtain

E eλWR2 ≤ E eλW
[

2√
2π

+ 1

ε
min{1, H(λ)}

]
,

where H(λ) := (24/
√

2π + 4λ+ √
2πλ2)β(λ). Estimating

1

ε
min{1, H(λ)} ≤ 2H(λ)+ √

2πλ2β(λ)

(8 + 2
√

2πλ)β(λ)
,

we find, after some calculation, that

E eλWR2 ≤ E eλW
[

2√
2π

+ 48/
√

2π + 8λ+ 3
√

2πλ2

8 + 2
√

2πλ

]

≤ E eλW
[

8√
2π

+ 3

2
λ

]
.

Substituting this into (5.18), the result follows.

Lemma 5.6. For every λ ∈ R, we have

exp

(
λ2

2
− β(|λ|)

6

)
≤ E eλW ≤ exp

(
λ2

2
+ β(|λ|)

6

)
.
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Proof. Noting that −W can be decomposed in the same way as W (with the same function
β(λ)), we find that it suffices to prove the result for λ ≥ 0. Define

F(λ) = ln E eλW

and note that

F ′(λ) = E eλWW

E eλW

so that

F ′(λ)− λ = − 1

E eλW
E[f ′

λ(W)− fλ(W)W ],

where fλ(x) := eλx . Again, we shall apply Lemma 4.1. Noting that E f ′′
λ (W + t) =

λ2eλt E eλW , it follows that

|F ′(λ)− λ| ≤ λ2

2
β(λ). (5.19)

Now write

F(λ) =
∫ λ

0
F ′(t) dt = λ2

2
+

∫ λ

0
(F ′(t)− t) dt,

which together with (5.19) and the fact that β is nondecreasing yields |F(λ)− 1
2λ

2| ≤ β(λ)/6.
This completes the proof.

Proofs of Theorems 2.1 and 2.2. Theorem 2.1 is an immediate consequence of Lemma 5.4
for λ = 0. To prove Theorem 2.2, first observe that, similarly to the proof of Lemma 5.6, it
suffices to prove (2.6). We shall use the fact that, for all x ≥ 0,

�(−x) ≥ e−x2/2

2 + √
2πx

(5.20)

(first, note that we have an equality for x = 0 and x → ∞; then examine the derivatives
of both sides). Applying inequality (5.20) to the right-hand side of (5.13) and dividing by
e−λ2/2 E eλW�(−x), we find that∣∣∣∣ P(W ≥ x)

e−λ2/2 E eλW�(−x) − 1

∣∣∣∣ ≤
(

6√
2π

+ 11

4
λ

)
(2 + √

2πx)e(λ−x)2/2β(λ).

The proof is now completed by choosing λ = x and applying Lemma 5.6.
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