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ABSTRACT. This describes our integrator RADAU, which has been used by 
several groups in the U.S.A., in Italy, and in the U.S.S.R. over the 
past 10 years in the numerical integration of orbits and other problems 
involving numerical solution of systems of ordinary differential equa­
tions. First- and second-order equations are solved directly, including 
the general second-order case. A self-starting integrator, RADAU pro­
ceeds by sequences within which the substeps are taken at Gauss-Radau 
spacings. This allows rather high orders of accuracy with relatively few 
function evaluations. After the first sequence the information from 
previous sequences is used to improve the accuracy. The integrator 
itself chooses the next sequence size. When a 64.-bit double word is 
available in double precision, a 15th-order version is often appro­
priate, and the FORTRAN code for this case is included here. RADAU is 
at least comparable with the best of other integrators in speed and 
accuracy, and it is often superior, particularly at high accuracies. 

1 . INTRODUCTION 

The first description of RADAU was by Everhart (1974a). A more full 
treatment is in an unpublished technical report, Everhart (1974-b), 
which has had a wide distribution, and there have been improvements 
suggested by experience in the past 10 years. Our method is related to 
the implicit Runge-Kutta procedures of Butcher (1964.), which also use 
Gauss-Radau spacings, but the algorithms of the two methods are quite 
different. RADAU can easily be written to a very high order of accuracy. 
In special tests we have used it in 31st order. 

It has been used sucessfully in determining the original orbits for 
some 224- comets, Marsden, Sekanina, and Everhart (1978), Everhart and 
Marsden (1983). Starting with the comet in its accurate osculating orbit 
near perihelion, they integrated in 15th order backwards through the 
solar system, taking into account the perturbations of every planet on 
every other planet and on the comet. It was a 10-body integration near 
the sun, with 30 simultaneous second-order equations. As the comet moved 
outward in this barycentric integration, the masses of the inner planets 
were one by one added to the sun's mass until at large distances only 
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the 5 outer planets and the comet were included. This 6-body integration 
was continued until the comet was 60 AU away from the sun, at which 
place the original barycentric orbit was determined. The formal accuracy 
was far more than was justified by the accuracy of the starting ele­
ments. Such effects as the close encounters of Comet Bowell with both 
Saturn and Jupiter were accurately handled. The perturbations of Saturn 
on Jupiter, which changed the position of Jupiter slightly, made a 
significant difference on the computed original orbit of this comet. 

The results of the first paper on this, Everhart (1974-a), showed 
the enormous advantages of using Gauss-Radau spacings. In 1973 we were 
developing an integrator for the equation y" = F(y,t) for applications 
in celestial mechanics. We expanded y" in an empirical time series 

3 5 
through terms in t , and the corresponding expansion for y was to t . 
The idea was to examine a sequence of overall length T. With uniform 
spacing of substeps it was evident that the force function F would have 
to be evaluated at 0, .3333T, .6667T, and at T. This did result in a 
5th-order integrator, with errors of the order of T in y. Thus if one 
cut the sequence size in half one should expect to see 1/6̂ th the error. 
Then some rather complicated algebra suggested that if the substeps were 
taken at 0., 0.21234T, 0.59053T, and 0.9U41T, then the integrator 
would be 7th order, instead. When this was tried the results were aston­
ishing. Errors dropped by a factor of 100 at the same number of function 
calls. It was now a 7th-order integrator. Soon thereafter, this was 
discussed with W. H. Goodyear, who suggested that Gaussian spacings had 
just been re-invented. It turned out that the spacings found here were 
those used in Gauss-Radau quadratures. They were camouflaged a bit be­
cause for quadratures one uses the range -1 to +1, instead of 0 to +1 as 
here. The special spacings of Gaussian quadratures allow one to get 
almost double the order of accuracy that one gets with constant 
spacings, comparisons being made at the same number of function calls. 
The present integrator extends the advantages of Gaussian spacings to 
the integration of differential equations. 

The detailed example of the next section describes an expansion 
that would give 6th-order results at constant spacings, but which is a 
9th-order integrator with Gauss-Radau spacings. In our most practical 

9 7 
version we use a time expansion through t in y (and through t in y"), 
achieving 15th-order accuracy with these spacings. 

The present method solves simultaneous differential equations of 
first or second order directly. We define several classes: 

Class I y' = F(y,t) 

Class IIS (special) y" = F(y,t) 

Class II (general) y" = F(y',y,t) 
The method can be extended also to solve general 3rd- or 4-th-order 
differential equations directly. The theory is given for solving one 
equation. Extension to any number of such simultaneous equations 
involves simple loops as seen in the examples of Sec. A* 
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2. THE ALGORITHM 

We illustrate the method in solving the general class II equation, 
y" = F(y',y,t), in 9th order of accuracy. 

2.1 Expansions 

Since y! and y are implicit functions of the independent variable t, one 
may expand y" (which is F) as a truncated series, 

y'» = F = F1 + A.jt + A2t
2 + A3t

3 + A^t4, (1) 

about the initial value t1 = 0, where F has the value F.. At the end 

of a sequence of length T the problem is to find y(T). Equation (1) is 
not a Maclaurin series expansion in t where the error is comparable with 
the first term neglected. With Gaussian spacings the error in the trun­
cated series can be a millionth the size of the last term included. 

Using h = t/T and B = A..T, B = A.T , B = AT..., one has 

y" = F = F + B h + B h2 + B h3 + B / . (2) 

After F1 is found at h, = 0 , other values F„, ... , F^ are developed at 
suitable spacings h?, ... , h,. within the interval of h between 0 and 1. 

We expand F in a way that incorporates these spacings h , introducing a 
set of coefficients G and writing 

F(h) = F1 + G.jh + 

+ G2h(h-h2) + G3h(h-h2)(h-h3) + G^h(h-h2)(h-hj)(h-h^) . (3) 

This truncates at each location h . Thus F_ = F.. + G.h0 + Goh0(h_- h„). 
n 3 1 1 3 2 3 3 2' 

Abbreviating with r . = 1/(h -h.) and r .. = 1/h one finds 
G1 " (F2-Vr21 ' 
G 2 = ((F3-F1)r31-G1)r32 , 

G 3 = ( ( (YV r 4r G i ) r 42 - G 2 ) r 43 ' 

V ( ( ( ( F 5 - F 1 ) r 5 1 - G 1 ) r 5 2 - G 2 ) r 5 3 - G 3 ) r 5 4 * 

The B's and G's are related through Eqs. (2) and (3) . This gives 

B1 = C11G1 + C21G2 + C 31 G 3 + *•• ' 

B 2 = C 2 2 G 2 + C 3 2 G 3 + ••• ' ( 5 ) 

B„ = C. .G, + . . • , 

U) 
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where the recurrence relationships for the c's are 

(6) 

The 

c.. 
22 
c. : 
J1 
c. = 

= 1 , 

= -h.c. „ . 
2 J-1.1 

> 

= c j - i ,k- i _ V j - i , k 
reverse relationships are 

G1 = 

G2 = 

G3 = 

d11B1 + d21B2 

d22B2 

» 

2 

k 

also needed. 

+ d31B3 

+ d32B3 

d33B3 

+ 

+ 

+ 

• • i 

• • i 

• • i 

> 

< 

1 , 

J • 

These 

• 

• 

• 

> 

> 

t 

are 

(7) 

with the recurrence relationships 

d.. = 1 , 
22 

dj1 =h2dj-1,1 = h 2 _ 1 . 3 > 1 . (8) 

d
jk

 =dj-1,k-1 + hk+1
dj-1,k ' k < i ' 

In this dimensionless form the c-, d-, and r-values do not depend on the 
sequence length T and are calculated but once for a given integration 
order. Evaluating these constants uses simple loops and takes much less 
than one second. 

2.2 Predictors and Correctors 

The predictors y (h ) and y'(h ) at each substep n within a sequence 

are found by integrating Eqs. (1) or (2). These are 

^n = h + W + 

+ hV(F 1 /2+h n (B 1 /6+h n (B 2 /12+h n (B 3 /20+h n B 4 /30 ) ) ) ) , (9) 

y' = y-! + 

+ hnT(F1 + hn(B.,/2 + hn(B2/3 + \(^/A + h
n
B A / 5 ) ) ) ) * (10) 

At the end of the sequence, where h = 1 and t = T, the correctors are 

y(T) = y., + y-|T + 

+ T 2 (F 1 /2 + B.,/6 + B2/12 + B3/20 + B./30) , (11) 

y ' (T ) = y] + T(F1 + B.,/2 + B2/3 + B^A + B^/5) • (12) 

The system is implicit; the B-values are not known when they are first 
needed. 
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2.3 Procedure 

After the first sequence, fairly good values of the B-coefficients are 
predicted for the current sequence (as will be described in Sec. 2.4-
below). The corresponding G-values are known through Eqs. (7). Using the 
Radau spacings, the integrator steps through the sequence. At each step 
the position (and velocity if necessary) is obtained from Eqs. (9), (10) 
using the B-values. Then the force is calculated at the predicted posi­
tion, and each new force value determines an improved G-value as in Eqs. 
(4.). Every B-value that depends on this G-value is immediately upgraded 
using Eqs. (5). Essentially, the B-values determine the predicted 
positions, the forces at these positions determine the G-values, and 
these determine better B-values. After stepping through a sequence once, 
the integrator has considerably improved B- and G-values. A second pass 
refines these to high accuracy. The procedure becomes very clear when 
one follows through the listing of the 15th-order integrator in Sec. 4» 

On initial starting, the initial B-values are all zero, and the 
predicted positions are inaccurate. Nonetheless, the process converges 
to high accuracy with enough iterations. It is worthwhile to take 6 
iterations to start the 15th-order integrator and 10 iterations to start 
in 27th order. 

2.4- Prediction of the B-values for the Next Sequence 

Convergence is speeded greatly by using past information, and after the 
first sequence only 2 passes are required. Let B.., ... , B. be accurate 

values from the previous sequence, and let Q = T(new)/T(old) = T'/T be 
the ratio of the sequence sizes. An analytic continuation of the curve 
for F from one sequence to the next (with a change in origin and this 
change in scale) requires that 

B^new) = Q (B1 + 2B2 + 3B_ + 4.B.) 

B2(new) = 

B (new) = 

B. (new) = 
4 

Q2(B2 + 3B3 + 6B^) 

Q3(B3 + 46^) 

0 > B 4 

(13) 

These are excellent values with which to start the new sequence, espe­
cially with the refinement discussed in the next section. Equations (13) 
can easily be extended to any order by noting the pattern of binomial 
coefficients in the columns. Thus, if there were a B,. term, the con­
stants in the added column then are 1, 5, 10, 10, 5 from bottom to top. 

2.5 Refinements 

In the technical report, Everhart (1974b), we advocating absorbing the 
constants 1/6, 1/12, 1/20, etc, that appear in Eqs. (9) and (11) into 
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the B-values. This can be done, and it does speed the computation some 
10-20%, but it has the disadvantage of changing all the above equations 
and making the program difficult to check. We have discarded this idea. 

Two other improvements are incorporated: First, we have found in 
some quite recent tests that if the equations are written out without 
loops then the integration is 25% to 30% faster! This is entirely prac­
tical through 15th order, as listed in the Sec. 4. 

A second improvement has been incorporated. If one saves the values 
of B(new) predicted by Eqs. (13) and compares them later with the final 
B-values of the sequence, the difference is slowly-varying, and can be 
applied in advance as a correction. This simple change in the algorithm 
cuts the global error by a factor of 2 to 10 and is quite worthwhile. 

2.6 Gauss-Radau, Gauss-Lobatto, and Gauss-Legendre Spacings 

The use of Gaussian spacings for the substeps enhances the integration 
order for Class I, IIS, and II equations alike. For quadratures one 
ordinarily uses Gauss-Legendre spacings, but for solving differential 
equations with an implicit algorithm there is reason to use the Gauss-
Radau or Gauss-Lobatto spacings. They use F1 at h =0, and F. is not 
recalculated in the iteration. 

Radau and Lobatto spacings may be found to 30 significant digits in 
Tables 12 and 11 of Stroud and Secrest (1966) to extremely high orders. 
These span the range -1 to +1, and they must be rescaled to the range 0 
to +1 for the present application. The spacings so rescaled may be found 
in Table I of our 1974- paper for orders through 15th. There is a typo-
raphical error in h_ for 15th order. The correct number is in the 

listing in Sec. 4. The reason Radau spacings, which give odd orders, are 
preferred to Lobatto spacings is that the order is one higher for a 
given number of terms. Thus Eq.(2) with terms through 4th order in time 
gives 9th order with Radau spacings and 8th order with Lobatto spacings. 

2.7 Sequence Size Control 

To control T one can monitor the last term in the y-expansion, here 
2 2 

B.T /30. This term is B'T' /30 for the next sequence (primed values), 
-L L 

which will be controlled to have magnitude 10 . Now B! = (T'/T) B,, 
4 4 

as in the last of Eqs. (13), so the condition on T' is 

10"L = B'T'2/30 = (T'/T)VT|2/30 = H.T' , (U) 
4 4 4 

whence H = B./(30T ), or rather the largest such term in absolute value 
-L 1 /6 

in any of the equations. Upon solving for T' one finds T' = (10~ /H) 
is appropriate for the next sequence in a 9th-order integration. 

In the case of a 15th-order integration of a system of simultaneous 
Class IIS or Class II equations, the result of an analogous calculation 
is 
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T' = (10"L/H)1/9, (15th-order case) (15) 

where H is taken from the largest value of 

H = B?/(72T
7) . (16) 

In 15th order values of L will run from 6 or 7 for low-accuracy calcula­
tions to 10 or more for high-accuracy problems. The global error for the 

entire integration is much smaller than 10" . See Sec. 3«2 below. 
We can give no strong theoretical reason why the above calculation 

should be a good sequence size control. However, practical experience 
over a 10-year time span with invariably accurate results suggest that 
the above sequence size control is appropriate and usable. 

The initial trial sequence size may be furnished by the programmer. 
If he makes no choice then the value +0.1 is chosen for forward integra­
tion and -0.1 for backward integration. This always gets one started. 
Choosing too large a starting value of T is not a serious problem. If 
the value of T(new) called for by the sequence size control is less than 
T(start), then the program itself chooses a more appropriate starting 
value and restarts. 

The integrator can be set to accept a constant step size, and this 
is appropriate in some cases, as in Sees. 3.3 and 3.4- below. 

3. RECENT PRACTICAL TESTS 

Among the best of other integrators is DVDQ, a variable-order Adams 
(multistep) method by Krogh (1973) that solves equations of Class I, 
IIS, and II directly. There are DIFSIS and DIFSI2 by Bulirsch and 
Stoer (1966), extrapolation methods that solve Class I and IIS, res­
pectively. Another is RKN8(9), a Runge-Kutta-Nystrom integrator of 
8th order by Fehlberg (1972) that solves Class IIS. The first of these 
is accurate though not always fastest, the extrapolation methods 
have a low overhead per function call and are fast, and the RKN8(9) 
integrator is easy to program and fast for comparitively low accuracy 
problems. In some celestial mechanics problems, the customary inte­
gration is by a multistep method of high order. In an earlier time 
predictors were hand-calculated by differencing, but with machines it 
is often advantageous to predict with Lagrangian formulas. 

Comparitive tests of RADAU and other integrators, by House, Weiss, 
and Weigandt (1978), have studied numerical integration of stellar 
orbits, while Papp, Innamen, and Patrick (1977, 1980) studied numerical 
orbit computations in galaxy models. These authors found RADAU to be a 
good compromise between speed and efficiency for their problems. It was 
chosen by Shefer (1982), who used it in 11th order for his study of 
perturbed orbits. In a review article Batrakov (1982) speaks of RADAU 
as being among the best of modern integrators, particularly for the 
Encke method. After extensive comparitive tests Carusi, Kresak, Perozzi, 
and Valsecchi (1985) chose RADAU in 19th order for their study of the 
long term evolution of all the short-period comets. 
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3.1 A particular 3-body Problem 

A periodic orbit in the restricted three-body problem was described by 
Newton (1959)- In the earth-moon system, idealized to circular orbits, 
a small body follows a complicated path with 3 loops passing very near 
the earth and the moon. Step size must be changed frequently on this 
orbit. The equations are: 

Here 

y" = ^ + y r u ' ( y i + u ) / r r u(y-r u l ) / r 2 » 

y2 = "2 y1 + y2" U V r 1 " U y 2 / r 2 

r1 = ( ( y i + u ) 2 + /2)
h, r 2 = ( ( 7 1 - u<)2 + y 2 )* , 

(17) 

and u = 1/82.45 , u1 = 1 - u. 

The initial conditions are: 

y., = 1.2, y.| = o , 

y2 = °» y2 = -1-°^935 75098 30319 90731 04104 3 4 . . . , (18) 

and t „ . , = 6.19216 93313 19639 70699 23217 . . . 
linal 

A CDC 6600 computer was used with RADAU in orders 7, 11, and 15 in 
single precision (60-bit word) and orders 19, 23, and 27 in double 
precision (120-bit word). In every case RADAU used less function calls 
than the other integrators. However, for the same absolute error, DVDQ 
was close at intermediate acccuracies. DIFSYS used twice as many func­
tion calls because it solved this system as 4 first order equations. 
However, its low overhead per function call made it comparable in 
timing. Gallaher and Perlin (1966) gave the long numbers in the problem 
to 21 digits. The last 5 or 6 digits were found by RADAU in 27th order. 

3.2 An Elliptical Orbit Problem 

Using the IBM-PC with a 64-bit double word one integrates 8 times around 
an ellipse of eccentricity 0.6 looking at the error of closure. Here 
11 th and 15th order were about comparable in timing for accuracies from 
5 to about 12 digits. 

Quite recently we tested this problem again using a Cray-1 computer 
in double precision (128-bit word). Our integrator could be set for 
15th, 19th, 23rd, or 27th order (version RA27). The limiting accuracy 
was in the 24th or 25th decimal digit because of roundoff. The high 
orders reached this accuracy easily, but, surprizingly, so did 15th 
order at L=14. (15th order used more function calls.) This 15th order 
case is most interesting. The last term in the series for each sequence 

—1L -24 
was held to 10~ or less, but the global error was 10" in hundreds 
of sequences. The error in one sequence must have been very much 
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smaller than this latter figure. More than anything else, this fact 
shows the extraordinary properties of the truncated series developed 
from Gaussian spacings. 

In these highly accurate calculations it is advantagous to iterate 
3 times through each sequence. 

This test is useful, but if one must integrate such an eccentric 
two-dimensional orbit, he should use Levi-Civita regularization (1903), 
see Bettis and Szebehely (1972). This removes the singularities from the 
differential equations and speeds this problem by a factor of eight. 

3.3 The Outer Planets Problem 

We tested the outer planet integration problem of Eckert, Brouwer, and 
Clemence (1951). They used a 12th-order multistep Lagrangian integrator 
in the predict-evaluate mode with 40-day steps. Their result was the 
positions of the 5 outer planets to 9 decimals for the years 1653-2060. 
Their calculation required 120 hours on a very early large computer. 
We used RADAU in 15th order, taking 320-day sequences (7 substeps/se-
quence) and integrating from a starting point in 1941 back to 1653 in 
3.7 seconds on a CDC 7600 computer in single precision (60-bit word). 
The agreement for Jupiter with the 1951 paper was exact to the number of 
digits published. The other planets sometimes differed by 1 or 2 in the 
last digit. It should be noted that the multistep method would be just 
as fast on a modern computer. The advantage of RADAU is the it is self-
starting, whereas the multistep methods are difficult to start. 

Recently this same problem was done to the same accuracy with an 
IBM Personal Computer (equipped with the 8087 co-processor) in double-
precision FORTRAN (64-bit word). Using RADAU in 15th order, the time was 
8.7 minutes. It is practical to do such problems on this home computer. 

3.4 A Class I Problem 

Most of the problems in celestial mechanics involve 2nd-order differen­
tial equations, but the 1st-order equation is important in many fields. 
We tried the equation 

yt = t(1 - y) + (1 - t) exp(-t), y(0) = 1, (19) 

described by Krogh (1973), for which the solution is 

y = 1 - exp(-t) + exp(-t2/2). (20) 

The test is to integrate out to t=10. This equation is difficult to 
integrate because instability usually sets in as the integration pro­
ceeds. Indeed, RADAU became unstable and could not do this when allowed 
to pick its own sequence sizes, but when a constant sequence size of 0.2 
or smaller was specified, then the error was in the 16th digit. For this 
test RADAU was in 15th order with a 64-bit double word. This is a 
'stiff equation. Often systems of stiff equations have both very large 
and very small eigenvalues. Though not developed for these, RADAU can 
handle some cases. The equations of celestial mechanics are not stiff. 
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This problem is somewhat unusual in that the independent variable 
t appears explicitly on the right. This causes no difficulty with the 
integrator, but does not often happen in celestial mechanics problems. 

4- LISTING OF RADAU INTEGRATOR 

It is not easy to program a complicated integrator, such as RADAU, even 
when given a full mathematical description of the algorithm. A FORTRAN 
listing of the subroutine is therefore given here. There was a choice: 
(1) Giving a version called RA7 which uses loops to calculate the 
series and where one may choose 7th, 11th, or 15th order. (2) Giving 
a 15th-order version called RA15 where the series are written out 
explicitly. Choice (2) was made: because it is some 30% faster, because 
15th-order is often suitable, and because it is easier to compare the 
written-out series with the mathematical description. 

It will be evident how to handle any number NV of simultaneous 
differential equations. In the listing will be seen loops with index K 
running from 1 to NV which bring all equations along together. 

It should not be difficult to write (say) an 11th-order version by 
modification of the 15th-order listing in the appendix. Dimension H for 
6 and put the Radau spacings for order 11 in the DATA statement. The 
dimensioning of other quantities is a little excessive, but will do no 
harm. Each series in written out only through terms with indices (5,K). 
The index 7 in most loops is changed to 5, and 8's are changed to 6's. 
The quantity PW becomes 1./7. Besides RA7 described already, another 
version available on request is RA27. This will integrate in 15th, 19th, 
23rd, or 27th order. This requires a computer with a 120- or 128-bit 
double word and will integrate to 24 decimal-digit accuracy. 

4.1 FORTRAN Listing of RA15, the 15th-order version of RADAU 

SUBROUTINE RA15(X,V,TF,XL,LL,NV,NCLASS,NOR) 
C Integrator by E. Everhart, Physics Department, University of Denver 
C This 15th-order version is called RA15. Order NOR is 15. 
C y'=F(y,t) is NCLASS=1 , y»=F(y,t) is NCLASS= -2, 
C y"=F(y',y,t) is NCLASS=2 
C TF is t(final) - t(initial). (Negative when integrating backward.) 
C NV = the number of simultaneous differential equations. 
C Change dimensioning if NV is greater than 18. 
C LL controls accuracy. Thus SS=10.**(-LL) controls the size of 
C the last term in a series. Try LL=8 and work up or down from there. 
C However, if LL.LT.O, then XL is the constant sequence size used. 
C A non-zero XL sets the size of the first sequence regardless of 
C LL's sign. Zero's and Oh's look alike on this printer. Use care! 
C X and V enter as the starting position-velocity vector (values of y 
C and y' at t=0) and they output as the final position-velocity vector. 
C Integration is in double precision. A 64-bit double-word is assumed. 
C In some computers IMPLICIT REAL*8 should be IMPLICIT DOUBLE PRECISION 

IMPLICIT REAL*8 (A-H,0-Z) 
REAL*4 TVAL,PW 
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C The vectors X and V are dimensioned for unity below, because they 
C appear in the call. Storage for them is set out in the main program. 

DIMENSION X(1),V(1),F1(18),FJ(18),C(21),D(21),R(21),Y(18),Z(18), 
A B(7,18),G(7,18),E(7,18),BD(7,18),H(8),W(7),U(7),NW(8) 
LOGICAL NPQ,NSF,NPER,NCL,NES 
DATA NW/0,0,1,3,6,10,15,21/ 
DATA ZERO, HALF, 0NE,SR/0.0D0, 0.5D0, 1.0D0,1.4-DO/ 

C These H values are the Gauss-Radau spacings, scaled to the range 0 
C to 1, for integrating to order 15. H(1) = 0.D0 always. 

DATA H/ 0.D0, .05626256053692215D0, .1802^069173689236D0, 
A.352624.7171131696AD0, .54715362633055538D0, .734-2101772154-1053D0, 
B.88532094683909577D0, .97752061356128750D0/ 

C The sum of these H-values should be 3-7333333333333333 
NPER=.FALSE. 
NSF=.FALSE. 
NCL=NCLASS.EQ.1 
NPQ=NCLASS.LT.2 

C y'=F(y,t),NCL=.TRUE. y»=F(y,t),NCL=.FALSE. y"=F(y',y,t),NCL=.FALSE. 
C NCLASS=1, NPQ=.TRUE. NCLASS—2,NPQ=.TRUE. NCLASS= 2, NPQ=.FALSE. 
C NSF is .FALSE, on starting sequence, otherwise .TRUE. 
C NPER is .TRUE, only on last sequence of the integration. 
C NES is .TRUE, only if LL is negative. Then the sequence size is XL. 

DIR=0NE 
IF(TF.LT.ZERO) DIR=-0NE 
NES=LL.LT.0 
XL=DABS(XL)*DIR 
PW=1./9. 

C Evaluate the constants in the W-, U-, C-, D-, and R-vectors 
DO U N=2,8 
WW=N+N*N 
IF(NCL) W=N 
W(N-1)=0NE/WW 
WW=N 

U U(N-1 )=0NE/W 
DO 22 K=1 ,NV 
IF(NCL) V(K)=ZER0 
DO 22 L=1,7 
BD(L,K)=ZER0 

22 B(L,K)=ZER0 
W1=HALF 
IF(NCL) W1=0NE 
C(1)=-H(2) 
D(1)=H(2) 
R(1)=0NE/(H(3)-H(2)) 
LA=1 
LC=1 
DO 73 K=3,7 
LB=LA 
LA=LC+1 
LC=NW(K+1) 
C(U)=-H(K)*C(LB) 
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C(LC)=C(LA-1)-H(K) 
D(LA)=H(2)*D(LB) 
D(LC)=-C(LC) 
R(LA)=0NE/(H(K+1)-H(2)) 
R(LC)=0NE/(H(K+1)-H(K)) 
IF(K.EQ.3) GO TO 73 
DO 72 L=4,K 
LD=LA+L-3 
LE=LB+L-4 
C(LD)=C(LE)-H(K)*C(LE+1) 
D(LD)=D(LE)+H(L-1)*D(LE+1) 

72 R(LD)=0NE/(H(K+1)-H(L-1)) 
73 CONTINUE 

SS=10.**(-LL) 
C The statements above are used only once in an integration to set up 
C the constants. They use less than a second of execution time. Next 
C set in an estimate to TP based on experience. Same sign as DIR. 

TP=0.1D0*DIR 
IF(XL.NE.ZERO) TP=XL 
IF(TP/TF.GT.HALF) TP=HALF*TF 
NC0UNT=0 
WRITE (*,3) 

3 F0RMAT(/' No. of calls, Every 10th seq.X(1),X(2),T,TM,TF') 
C An * is the symbol for writing on the monitor. The printer is unit 4« 
C Line 4000 is the starting place of the first sequence. 
4000 NS=0 

NF=0 
NI=6 
TM=ZER0 
CALL FORCE (X, V, ZERO, F1) 
NF=NF+1 

C Line 722 begins every sequence after the first. First find new 
C G-values from the predicted B-values, following Eqs. (7) in text. 
722 DO 58 K=1,NV 

G(1,K)=B(1,K)+D(1)*B(2,K)+ 
X D(2)*B(3,K)+D(4)*B(4,K)+D( 7)*B(5,K)+D(11)*B(6,K)+D(16)*B(7,K) 
G(2,K)= B(2,K)+ 
X D(3)*B(3,K)+D(5)*B(4,K)+D( 8)*B(5,K)+D(12)*B(6,K)+D(17)*B(7,K) 
G(3,K)=B(3,K)+D(6)*B(4,K)+D( 9)*B(5,K)+D(13)*B(6,K)+D(18)*B(7,K) 
G(4,K)= B(4,K)+D(10)*B(5,K)+D(14)*B(6,K)+D(19)*B(7,K) 
G(5,K)= B(5,K)+D(15)*B(6,K)+D(20)*B(7,K) 
G(6,K)= B(6,K)+D(21)*B(7,K) 

58 G(7,K)= B(7,K) 
T=TP 
T2=T*T 
IF(NCL) T2=T 
TVAL=DABS(T) 

C Writing to the screen during the integration lets one monitor the 
C progress. Values are shown at every 10th sequence. 

IF(NS/10*10.EQ.NS) WRITE(*,7) NF,NS,X(1),X(2),T,TM,TF 
7 F0RMAT(1X,2I6,5F12.5) 
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C Loop 175 is 6 iterations on first sequence and 2 iterations therafter 
DO 175 M=1,NI 

C Loop 174- is for each substep within a sequence. 
DO 174 J=2,8 
JD=J-1 
JDM=J-2 
S=H(J) 
Q=S 
IF(NCL) Q=0NE 

C Here Y is used for the value of y at substep n. We use Eq. (9). 
C These collapsed series are broken into two parts because an otherwise 
C excellent compiler could not handle the complicated expression. 

DO 130 K=1,NV 
A=W(3)*B(3,K)+S*(WU)*BU,K)+S*(W(5)*B(5,K)+S*(W(6)*B(6,K) + 
V S*W(7)*B(7,K)))) 
Y(K)=X(K)+Q*(T*V(K)+T2*S*(F1(K)*W1+S*(W(1)*B(1,K)+S*(W(2)*B(2,K) 
X +S»A)))) 
IF(NPQ) GO TO 130 

C Next are calculated the velocity predictors if needed for general 
C Class II. Here Z is used as the value of y' at substep n. (Eq. (10)) 

A=U(3)*B(3,K)+SMUU)*BU,K)+S*(U(5)*B(5,K)+S*(U(6)*B(6,K) + 
T S*U(7)*B(7,K)))) 
Z(K)=V(K)+S*T*(F1(K)+S*(U(1)*B(1,K)+S*(U(2)*B(2,K)+S*A))) 

130 CONTINUE 
C Find forces at each substep. 

CALL FORCE(Y,Z,TM+S*T,FJ) 
NF=NF+1 
DO 171 K=1,NV 

C Find G-values from the force FJ found at the current substep. This 
C section, including the many-branched GOTO, uses Eqs. (4) of text. 

TEMP=G(JD,K) 
GK=(FJ(K)-F1(K))/S 
GO TO (102,102,103,104,105,106,107,108),J 

102 G(1,K)= GK 
GO TO 160 

103 G(2,K)= (GK-G(1,K))*R(1) 
GO TO 160 

104 G(3,K)= ((GK-G(1,K))*R(2)-G(2,K))*R(3) 
GO TO 160 

105 G(4,K)= (((GK-G(1,K))*R(4)-G(2,K))*R(5)-G(3,K))*R(6) 
GO TO 160 

106 G(5,K)= ((((GK-G(1,K))*R(7)-G(2,K))*R(8)-G(3,K))*R(9)-
X G(4,K))*R(10) 
GO TO 160 

107 G(6,K)= (((((GK-G(1,K))*R(11)-G(2,K))*R(12)-G(3,K))*R(13)-
X G(4,K))*R(14)-G(5,K))*R(15) 
GO TO 160 

108 G(7,K)=((((((GK-G(1,K))*R(16)-G(2,K))*R(17)-G(3,K))*R(18)-
X G(4,K))*R(19)-G(5,K))*R(20)-G(6,K))*R(21) 

C TEMP is now the improvement on G(JD,K) over its former value. 
C Now we upgrade the B-value using this difference in the one term. 
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C This section is based on Eqs. (5). 
160 TEMP=G(JD,K)-TEMP 

203 

204 

205 

206 

207 

B 
GO 
B 
GO 
B 
B 
GO 
B 
B 
B 
GO 
B 
B 
B 
B 
GO 
B 
B 
B 
B 
B 
GO 

JD,K)=B(JD,K)+TEMP 
TO (171,171,203,204,205,206,207,208),J 

K)+C(1)*TEMP 

171 
174 

635 

175 

1,K)=B 
TO 17 
,K)=B 
,K)=B 
TO 17 
,K)=B 
,K)=B 
,K)=B 
TO 17 
,K)=B 
,K)=B 
,K)=B 
,K)=B 
TO 17 
,K)=B 
,K)=B 
,K)=B 
,K)=B 
,K)=B 
TO 17 
,K)=B 
,K)=B 
,K)=B 
,K)=B 
,K)=B 
,K)=B 

K)+C 
K)+C 

K)+C 
K)+C 
K)+C 

K)+C 
K)+C 
K)+C 
K)+C 

K)+C 
K)+C 
K)+C 
K)+C 
K)+C 

2)*TEMP 
3)*TEMP 

4)*TEMP 
5)*TEMP 
6)*TEMP 

7)*TEMP 
8)*TEMP 
9)*TEMP 
10)*TEMP 

11)*TEMP 
12)*TEMP 
13)*TEMP 
14)*TEMP 
15)*TEMP 

Next is sequence size control. 

208 B(1,K)=B(1,K)+C(16)*TEMP 
2,K)+C(17)*TEMP 
3,K)+C(18)*TEMP 
4,K)+C(19)*TEMP 
5,K)+C(20)*TEMP 
6,K)+C(21)*TEMP 

CONTINUE 
CONTINUE 
IF(NES.OR.M.LT.NI) GO TO 175 

Integration of sequence is over. 
HV=ZER0 
DO 635 K=1,NV 
HV=DMAX1(HV,DABS(B(7,K))) 
HV=HV*W(7)/TVAL**7 
CONTINUE 
IF (NSF) GO TO 180 
IF(.NOT.NES) TP=(SS/HV)**PW*DIR 
IF(NES) TP=XL 
IF(NES) GO TO 170 
IF(TP/T.GT.ONE) GO TO 170 

8 FORMAT (2X,2I2,2D18.10) 
TP=.8D0*TP 
NC0UNT=NC0UNT+1 
IF(NCOUNT.GT.IO) RETURN 
IF(NCOUNT.GT.I) WRITE (4,8) NOR,NCOUNT,T,TP 

Restart with TP=0.8*T if new TP is smaller than original T on 1st seq 
GO TO 4000 
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170 NSF=.TRUE. 
C Loop 35 finds new X and V values at end of sequence• Eqs. (11)|(12). 
180 DO 35 K=1,NV 

X(K)=X(K)+V(K)*T+T2*(F1(K)*W1+B(1,K)*W(1)+B(2,K)*W(2)+B(3,K)*W(3) 
X +BU,K)*W(4)+B(5,K)*W(5)+B(6,K)*W(6)+B(7,K)*W(7)) 
IF(NCL) GO TO 35 
V(K)=V(K)+T*(F1(K)+B(1,K)*U(1)+B(2,K)*U(2)+B(3,K)*U(3) 
V +BU,K)*UU)+B(5,K)*U(5)+B(6,K)*U(6)+B(7,K)*U(7)) 

35 CONTINUE 
TM=TM+T 
NS=NS+1 

C Return if done. 
IF(.NOT.NPER) GO TO 78 
WRITE(*,7) NF,NS,X(1),X(2),T,TM,TF 
WRITE(A,7) NF,NS 
RETURN 

C Control on size of next sequence and adjust last sequence to exactly 
C cover the integration span. NPER=.TRUE. set on last sequence. 
78 CALL FORCE (X,V,TM,F1) 

NF=NF+1 
IF(NES) GO TO 341 
TP=DIR*(SS/HV)**PW 
IF(TP/T.GT.SR) TP=T*SR 

34-1 IF(NES) TP=XL 
IF(DIR*(TM+TP).LT.DIR*TF-1.D-8) GO TO 77 
TP=TF-TM 
NPER=.TRUE. 

C Now predict B-values for next step using Eqs. (13). Values from the 
C preceding sequence were saved in the E-matrix. The correction BD 
C is applied in loop 39 as described in Sec. 2.5. 
77 Q=TP/T 

DO 39 K=1,NV 
IF(NS.EQ.I) GO TO 31 
DO 20 J=1,7 

20 BD(J,K)=B(J,K)-E(J,K) 
31 E(1,K)= Q*(B(1,K)+ 2.D0*B(2,K)+ 3.D0*B(3,K)+ 

X 4-.D0*BU,K)+ 5.D0*B(5,K)+ 6.D0*B(6,K)+ 7.D0*B(7,K)) 
E(2,K)= Q**2*(B(2,K)+ 3.D0*B(3,K)+ 
Y 6.D0*B(4,K)+10.D0*B(5,K)+15.D0*B(6,K)+21.D0*B(7,K)) 
E(3,K)= Q**3*(B(3,K)+ 
Z 4-D0*B(4,K)+10.D0*B(5,K)+20.D0*B(6,K)+35.D0*B(7,K)) 
E(4,K)= Q**4*(B(4,K)+ 5.DO*B(5,K)+15.DO*B(6,K)+35.DO*B(7,K)) 
E(5,K)= Q**5*(B(5,K)+ 6.D0*B(6,K)+21.D0*B(7,K)) 
E(6,K)= Q**6*(B(6,K)+ 7.D0*B(7,K)) 
E(7,K)= Q**7*B(7,K) 
DO 39 L=1,7 

39 B(L,K)=E(L,K)+BD(L,K) 
C Two iterations for every sequence. (Use 3 for 23rd and 27th order.) 

NI=2 
GO TO 722 
END 
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4.2 The main program 

Whereas the integrating subroutine RA15 of the previous section retains 
the same form for different problems, the main program is specific to 
the particular problem. Besides providing the parameters in the call 
to RA15, it must give inital conditions, final value of the independent 
variable, and display or use the final values. A listing of JSUNP.FOR 
that controls the outer planet program will be sent on request. This 
gives initial positions and velocities of the 5 planets at the start. 
When combined with the programs in Sec. 4-.1 and 4-3 all parts will be 
in hand for doing the outer planet problem of Sec. 3.3 

4.3 The FORCE subroutine 

This example of a force subroutine is rather complicated, but instruc­
tive and useful. 

SUBROUTINE FORCE(X,V,TM,F) 
C The FORCE subroutine for the 5 outer planet integration. 

IMPLICIT REAL*8 (A-H,0-Z) 
C The above Implicit statement assumes an 8-byte double word (64. bits). 
C X, V. and F are dimensioned unity because they appear in the call. 

DIMENSION X(1),V(1),F(1),RM(5),PM(5),R(5),RH(5,5) 
C The reciprocal masses of the 5 planets, units of reciprocal sun. 

DATA RM/104.7.355DO, 3501.6D0, 22869.DO, 193U-D0, 360000.D0/ 
DATA SC,SCZ,KSA/0.D0, 0.D0, 0/ 
IF(KSA.EQ.I) GO TO 5 
KSA=1 
SCZ=-(1.720209895D-2**2)*(800.D0**2) 
SC=-1.89384.94-521574-133D2 

C SCZ is the Gaussian constant for an 800-day time unit, and SC is the 
C same except the mass of the sun is augmented by masses of inner 
C planets, Mercury through Mars. 
C X, V, and F are dimensioned for 15 in calling programs. Indices 1,2,3 
C are for x,y,z for Jupiter, 4>5>6 are for x,y,z Saturn, 7,8,9 are for 
C x,y,z Uranus, 10,11,12 for x,y,z Neptune, and 13,14|15 for Pluto. 

DO 4 1=1,5 
4 PM(I)=-SCZ/RM(I) 
5 DO 10 N=1,5 

J=(N-1)*3+1 
R(N)=1 .D0/DSQRT(X(J)**2+X(J+1)**2+X(J+2)**2)**3 
IF(N.EQ.5) GO TO 10 
NA=N+1 
DO 9 L=NA,5 
K=(L-1)*3+1 
RH(N,L)=1.D0/DSQRT((X(J)-X(K))**2+(X(J+1)-X(K+1))**2+(X(J+2) 
A -X(K+2))**2)**3 

9 RH(L,N)=RH(N,L) 
C indices K and L run 1-15, indices N and L for the planets run 1-5. 
C The mass factors are in PM, the distance from the sun of each planet 
C contribute to R, and the planet-to-planet distances contribute to RH. 
10 CONTINUE 
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DO 20 N=1,5 
J=(N-1)*3+1 
SCM=(SC-PM(N))*R(N) 
F(J )=SCM*X(J ) 
F( J+1 )=SCM*X(J+1) 
F(J+2)=SCM*X(J+2) 

C The F-values above are for the sun-planet forces/unit mass. 
DO 20 L=1,5 
IF(L.EQ.N) GO TO 20 
K=(L-1)*3+1 
F(J )=F(J )+PM(L)*((X(K )-X(J ))*RH(N,L)-X(K )*R(L)) 
F(J+1)=F(J+1)+PM(L)*((X(K+1 )-X(J+1))*RH(N,L)-X(K+1 )*R(L)) 
F(J+2)=F(J+2)+PM(L)*((X(K+2)-X(J+2))*RH(N,L)-X(K+2)*R(L)) 

C The mutual planetary perturbation forces/unit mass are added on. The 
C first part of the second term is due to the planet-to-planet force, 
C and the second part is the indirect term because the sun at the 
C origin is not at the center of mass of the system. 
20 CONTINUE 

RETURN 
END 
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QUESTION: (A. Milani) At the University of Pisa we have been using an 
integrator similar to yours of the implicit Runge-Kutta type which 
uses information from a previous step to start the iteration. 
However, we use the Gauss-Legendre spacings because we get order 2n 
with n sub-steps. Why do you think the Gauss-Radau spacing is better? 

ANSWER: (E.Everhart) When one uses Gauss-Radau spacings there is a 
force found at the starting point of a sequence, and this is not re­
peated when one iterates. The trial expression of Eq. (9) is already 
correct through the quadratic terms, and the iteration should con­
verge quicker. None-the-less, a very fine integerator can surely be 
built on Gauss-Legendre spacings and I am delighted to hear of yours. 
Please send me a listing and description when you can. 
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