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Abstract

A systematic study of random Laguerre tessellations, weighted generalisations of the
well-known Voronoi tessellations, is presented. We prove that every normal tessellation
with convex cells in dimension three and higher is a Laguerre tessellation. Tessellations
generated by stationary marked Poisson processes are then studied in detail. For these
tessellations, we obtain integral formulae for geometric characteristics and densities of
the typical k-faces. We present a formula for the linear contact distribution function and
prove various limit results for convergence of Laguerre to Poisson–Voronoi tessellations.
The obtained integral formulae are subsequently evaluated numerically for the planar
case, demonstrating their applicability for practical purposes.
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1. Introduction

Random tessellations are widely used to model natural cellular structures ranging from
organic tissues to telecommunication networks to the origins of the universe. Perhaps the most
popular model is the Voronoi tessellation in R

d which is defined by an at most countable set
of distinct ‘generator’ points or nuclei ϕ = {x1, x2, . . . } ⊂ R

d as follows. With each xi ∈ ϕ,
there is associated a cell C(xi, ϕ) consisting of the points of R

d which are closer to xi than to
any other xj ∈ ϕ. Being the intersection of half-spaces, i.e.

C(xi, ϕ) =
⋂
xj ∈ϕ

{y ∈ R
d : ‖y − xi‖ ≤ ‖y − xj‖}, (1.1)

all the cells are nonempty polytopes and it is also customary to call xi the centre or centroid
of the cell Ci = C(xi, ϕ), meaning that there is a one-to-one correspondence between the
cells and ϕ. In the case when the nuclei set is a random point process �, the tessellation
{C(x, �) : x ∈ �} becomes a random object, too, and it is usually described by means of the
random closed set of the cells’ boundaries. In particular, when � is a homogeneous Poisson
process, we speak of the Poisson–Voronoi tessellation. A multitude of results is available for
both nonrandom and random Voronoi tessellations. A comprehensive account of these can be
found in the monographs [7] and [20].
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Figure 1: A Poisson–Voronoi tessellation in R
2 (left) and the Laguerre tessellation of the same set of

points with radii chosen from a two-atom distribution (right). Note how the cell geometry is altered by
the introduction of weights, that some Laguerre cells are empty (around position (0.3, 0.6) or (0.9, 0.3)),

and that some cells do not contain the nucleus (for instance, the almost triangular cell at (0.1, 0.1)).

Although Voronoi tessellations proved extremely useful in modelling many natural phenom-
ena, in some situations they may still be too restrictive. In particular, the cell geometry depends
entirely on the mutual position and the distances between the nuclei; in this respect all the
nuclei bear the same ‘weight’. But we can also envisage practical scenarios when different
nuclei have different ‘power’, so that the more powerful has a bigger cell. This idea leads to
the replacement of the Euclidean norm in (1.1) by a power distance. Namely, if each nucleus
xi has an associated weight wi then the new cells are defined to be

Ci =
⋂

(xj ,wj )∈ϕ

{y ∈ R
d : pow(y, (xi, wi)) ≤ pow(y, (xj , wj ))},

where pow(y, (x, w)) = ‖y − x‖2 −w. If w is positive then it is indeed the power of the point
y with respect to a sphere s(x, r) centred in x with radius r = √

w, hence the name. In this
paper we mainly consider the case of positive weights and label the nuclei xi with these radii
ri rather than with wi .

The power distance has been considered by several authors [6], [8], [9]. The first analyses
of the corresponding deterministic tessellations seem to be [1], [3], and [11]. Often these
tessellations are called power tessellations; however, the synonym Laguerre tessellations has
also been established and will be used in this paper.

It is clear that when all weights are the same, the Laguerre tessellation is the Voronoi
tessellation. When they are not, much similarity to the Voronoi case still remains: the cells are
all polytopes and, under some mild regularity assumptions of general position type imposed
on the nuclei, the Laguerre tessellation is also normal, i.e. each k-dimensional face lies in the
intersection of exactly d − k + 1 cells (vertices are zero-dimensional faces). But there are also
differences, the most striking, perhaps, are that a nucleus may not be contained in its cell and
that a Laguerre cell may be empty. Hence, for Laguerre tessellations, the notions of nuclei and
cell centroids are different; see Figure 1.

In this paper the authors present the first systematic study of random Laguerre tessellations.
The next section contains notation and formal definitions of the objects we will be dealing
with: tessellations, their general properties, and their moment characteristics. In Section 3 we
establish important topological properties of Laguerre tessellations and state that every normal
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tessellation in dimension three and higher is a Laguerre tessellation. The proof of this new
result is given in Appendix A. Section 4 concentrates on Poisson–Laguerre tessellations. We
first show a necessary and sufficient condition for the existence of the tessellation in terms of
the moments of the radius distribution. Then we present general expressions for the intensities
and the mean k-content of the k-faces of the tessellation. The proofs of these results are
rather technical and therefore deferred to Appendix B. In Section 5 some limit results studying
the convergence of Laguerre tessellations to Voronoi tessellations are presented. Finally, the
obtained general expressions are illustrated for the planar case in Section 6. The formulae
are specified, numerically evaluated for some examples, and further results are obtained. In
particular, it is possible to explicitly evaluate the probability of a cell being empty. The paper
concludes with appendices containing the proofs.

2. Preliminaries

2.1. Basic notation

Throughout this paper, we work in d-dimensional Euclidean space R
d equipped with the

Euclidean norm ‖ · ‖ and the corresponding scalar product 〈·, ·〉. For x ∈ R
d and r ≥ 0, let

b(x, r) denote the closed d-dimensional ball of radius r centred in x and let s(x, r) = ∂b(x, r)

denote the sphere given by its boundary. The d-dimensional unit sphere is denoted by S
d−1.

Write Bd for the Borel sets in R
d , λd for the d-dimensional Lebesgue measure, and σ for

the surface measure on S
d−1. Let ωd = λd(b(0, 1)) denote the volume, and let σd = σ(Sd−1)

denote the surface area of the unit ball in R
d , i.e.

ωd = πd/2

�(d/2 + 1)
and σd = 2

πd/2

�(d/2)
.

Let Ld
k and Ed

k denote the set of k-dimensional linear and affine subspaces, respectively, of R
d .

Write SOd for the group of rotations about the origin in R
d and write ν for its unique rotational

invariant probability measure. The translation x + B of a set B ⊂ R
d by a point x ∈ R

d is
defined via x +B = {x +b : b ∈ B}. The rotation ϑB of B by ϑ ∈ SOd is defined analogously.
For k ∈ {0, . . . , d}, denote the k-dimensional Hausdorff measure by Hk . Finally, we denote
the indicator function of a set B ⊂ R

d by 1B , i.e. 1B(x) = 1 if x ∈ B and 1B(x) = 0 otherwise.

2.2. Tessellations of RRR
d

A tessellation of R
d is a countable set T = {Ci : i ∈ N} of sets Ci ⊂ R

d (the cells of the
tessellation) such that

(i) int(Ci) ∩ int(Cj ) = ∅, i �= j ;

(ii)
⋃

i∈N
Ci = R

d ;

(iii) T is locally finite, i.e. #{i ∈ N : Ci ∩ B �= ∅} < ∞ for all bounded B ⊂ R
d ; and

(iv) each cell of the tessellation is a compact set with interior points.

If, in addition, all the cells are convex, as it will always be in this paper, then [24, Lemma 6.1.1]
implies that the cells are bounded d-dimensional polytopes.

The faces of a convex polytope P are the intersections of P with its supporting hyperplanes
[22, Section 2.4]. We call a face of P of dimension s, s ∈ {0, . . . , d − 1}, an s-face of P . For
convenience, the polytope P itself is considered as a d-face. Write Fs(P ) for the set of s-faces
of a polytope P and Fs(T ) = ⋃

i∈N
Fs(Ci) for the set of s-faces of all cells of the tessellation T .
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Furthermore, let F(y) be the intersection of all cells of the tessellation containing the point y.
Then F(y) is a finite intersection of d-polytopes and, since it is nonempty, F(y) is an
s-dimensional polytope for some s ∈ {0, . . . , d}. Therefore, we may introduce

Ss(T ) = {F(y) : dim F(y) = s, y ∈ R
d}, s = 0, . . . , d,

the set of s-faces of the tessellation T . Then an s-face H ∈ Fs(C) of a cell C of T is the union
of all those s-faces F ∈ Ss(T ) of the tessellation contained in H .

A tessellation T is called face-to-face if the faces of the cells and the faces of the tessellation
coincide, i.e. if Ss(T ) = Fs(T ) for s = 0, . . . , d. For s = 0 and s = d, this is always true.

A tessellation T is called normal if it is face-to-face and every s-face of T is contained in
the boundary of exactly d − s + 1 cells for s = 0, . . . , d − 1.

Write T for the set of all tessellations in R
d and equip it with a suitable σ -field T as described

in [16, p. 46]. A random tessellation in R
d is then a random element X on a probability space

(�, A, P) with range (T, T ). It is called normal or face-to-face if its realisations are almost
surely normal or face-to-face, respectively.

The structure of a random tessellation is usually described by means of geometric and topo-
logical characteristics of its k-faces. For stationary tessellations, the easiest such characteristics
are the intensities of the k-faces, i.e. the mean number of k-faces per unit volume. In order to
formalise this, we first define the notion of the centroid of a k-face.

Denote by Pk the set of k-dimensional polytopes in R
d , and let ck : Pk × T → R

d be a
measurable centroid function, i.e.

ck(F + x, T + x) = ck(F, T ) + x, x ∈ R
d , F ∈ Pk, T ∈ T, (2.1)

such that ck(F ) �= ck(F
′) for different k-faces F, F ′ ∈ Sk(T ). We call the point ck(F, T ) the

centroid of the k-face F ∈ Sk(T ). For a random tessellation X, we can now introduce the
point process Nk of centroids of the k-faces of X. By (2.1), Nk is almost surely a simple and
stationary point process whose intensity γk is then given by

γk = E

[ ∑
F∈Sk(X)

1[0,1]d (ck(F, X))

]
, k = 0, . . . , d.

The values of γk do not depend on the choice of the centroid function ck [16, p. 47].
Provided that the intensities above are finite, the Palm distribution P0

k of Nk can be defined.
Under P0

k , there is a k-face Ck(0) with centroid in the origin. Its distribution is called the
distribution of the typical k-face of the tessellation X.

Further random measures induced by a random tessellation are the measures

Mk(B) =
∑

F∈Sk(X)

Hk(F ∩ B), k = 0, . . . , d, B ∈ Bd .

Their intensities

µk = E

[ ∑
F∈Sk(X)

Hk(F ∩ [0, 1]d)

]
, k = 0, . . . , d,

can be interpreted as the mean total k-content of the k-faces of the tessellation per unit volume.
Also, the Palm probability measure Q0

k of Mk is of special interest. With respect to this measure,
the origin is almost surely contained in a k-face Fk(0) of X.
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The Palm measures P0
k and Q0

k are closely related. In particular, their intensities satisfy

γk = µk E0
Mk

[Hk(Fk(0))−1], (2.2)

where E0
Mk

denotes the expectation with respect to Q0
k .

As shown in [13], the mean values of the cell characteristics of a planar face-to-face
tessellation are completely determined by the values of µ0 and µ1 (usually denoted by LA). For
a spatial tessellation, the required parameters are µ0, µ1 (LV ), µ2 (SV ), and the cell intensity,
γ3.

3. Laguerre tessellations

For y, x ∈ R
d and r ≥ 0, define the power of y with respect to the sphere s(x, r) as

pow(y, s(x, r)) = ‖y − x‖2 − r2.

Let ϕ ⊂ R
d × R+ be an at most countable set such that min(x,r)∈ϕ pow(y, s(x, r)) exists for

each y ∈ R
d . Then the Laguerre cell of (x, r) ∈ ϕ is defined as

C((x, r), ϕ) = {y ∈ R
d : pow(y, s(x, r)) ≤ pow(y, s(x′, r ′)), (x′, r ′) ∈ ϕ}.

The point x is called the nucleus of the cell C((x, r), ϕ), and the Laguerre diagram L(ϕ) is the
set of the nonempty Laguerre cells of ϕ. If the radii of all spheres in ϕ are equal then L(ϕ) is
the Voronoi tessellation of the set {x : (x, r) ∈ ϕ}.

We will often identify a pair (x, r) ∈ R
d × R+ with the sphere s(x, r) and use both forms

of notation synonymously. Also, the abbreviation si = s(xi, ri) will be used.
Note that a Laguerre cell does not necessarily contain its nucleus and that a nucleus does not

necessarily generate a cell. A necessary condition for a cell to be empty is that the generating
sphere is completely contained in the union of the remaining spheres. However, this is not a
sufficient condition, as Figure 1 shows.

Given two spheres s1 = s(x1, r1) and s2 = s(x2, r2) in R
d , the points z ∈ R

d satisfying
pow(z, s1) = pow(z, s2) form a hyperplane Ra(s1, s2) given by

Ra(s1, s2) = {z ∈ R
d : 2〈z, x1 − x2〉 = ‖x1‖2 − ‖x2‖2 + r2

2 − r2
1 },

which is perpendicular to the line joining x1 and x2 and called the radical axis of s1 and s2. If
two spheres intersect then their radical axis passes through their intersections. If two spheres
have equal radii, their radical axis is the perpendicular bisector of the line joining their centres.

Every s-face F ∈ Ss(L(ϕ)) can be written as

F = F(s0, . . . , sk, ϕ) =
k⋂

i=0

C(si, ϕ), s0, . . . , sk ∈ ϕ, (3.1)

with a suitable number of cells involved. ThenF(s0, . . . , sk, ϕ) is included in the affine subspace
{y ∈ R

d : pow(y, s0) = · · · = pow(y, sk)}.
For ϕ ⊂ R

d × R+, introduce the following regularity conditions:

(R1) for every y ∈ R
d and every t ∈ R, only finitely many elements (x, r) ∈ ϕ satisfy

‖y − x‖2 − r2 ≤ t ; and

(R2) the convex hull of {x : (x, r) ∈ ϕ} is the whole space R
d .
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If the set of radii is bounded, condition (R1) implies the local finiteness of the set of points
{x : (x, r) ∈ ϕ}.

Furthermore, we say that the points of ϕ are in general position if

(GP1) no k + 1 nuclei are contained in a (k − 1)-dimensional affine subspace of R
d for

k = 2, . . . , d; and

(GP2) no d + 2 points have equal power with respect to some point in R
d .

In the case of equal radii this is exactly the property addressed as general quadratic position
in [18, p. 5].

Theorem 3.1. If the set ϕ ⊂ R
d ×R+ satisfies the regularity conditions (R1) and (R2) then the

set of the Laguerre cells C((x, r), ϕ), (x, r) ∈ ϕ, with nonvanishing interior is a face-to-face
tessellation of R

d . If, in addition, the points of ϕ are in general position then all the cells of
L(ϕ) have dimension d and the Laguerre tessellation L(ϕ) is normal.

For the proof, we refer the reader to [12] and [21].
Aurenhammer [2] gave a complete characterisation of the set of Laguerre diagrams generated

by finite sets of spheres. A very pleasing result is that each finite normal cell complex can
be realised as a Laguerre diagram. However, diagrams with finitely many cells necessarily
contain unbounded cells; hence, they do not belong to T. Theorem 3.2, below, generalises
Aurenhammer’s results to the case of infinitely many spheres (or cells), which then also applies
to tessellations in the sense defined above. The proof can be found in Appendix A.

Theorem 3.2. Every normal tessellation of R
d with convex cells for d ≥ 3 is a Laguerre

tessellation.

Note that the above statement cannot be strengthened to include d = 2, a counterexample
is given in [2].

4. Poisson–Laguerre tessellations

From now on we will assume that the set ϕ is a realisation of a stationary, independently
marked Poisson process � on R

d × R+ with intensity λ > 0 and mark distribution ρ. The
proofs of the statements in this section are mainly given in Appendix B.

Theorem 4.1. Suppose that R is a positive random variable with distribution ρ. Then the
Laguerre tessellation of � exists, i.e. min(x,r)∈� pow(y, (x, r)) > −∞ almost surely for all
y ∈ R

d , if and only if E[(R ∨ 1)d ] < ∞, where a ∨ b = max(a, b).

From now on we will assume that the mark distribution ρ of � satisfies the condition
E[(R ∨ 1)d ] < ∞.

Theorem 4.2. The Laguerre tessellation of � is a normal random tessellation.

Now we pass to the properties related to the Palm probability measure Q0
k defined in Section 2.

Its complete description in terms of integrals has been obtained in [12], the special case of the
Voronoi tessellation has been studied in [5]. Here, we only state the formulae for the mean
number γk and the mean k-content µk of k-faces per unit volume.
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For a natural number m and x0, . . . , xm ∈ R
m, let �m(x0, . . . , xm) be the m-dimensional

volume of the convex hull of x0, . . . , xm in R
m. For w0, . . . , wm ≥ 0, define

Vm,k(w0, . . . , wm) = (m!)k+1
∫

Sm−1
· · ·

∫
Sm−1

�k+1
m (w0u0, . . . , wmum)σ(du0) · · · σ(dum).

In the remainder of this section,

p(t) = exp

(
−λωd

∫ ∞

0
([t + r2]+)d/2ρ(dr)

)
,

where t+ = max(t, 0), is the probability that the power from the origin to each point of �

exceeds t ; see (B.1) in Appendix B.

Theorem 4.3. Let � be a stationary marked Poisson process with intensity λ > 0 and mark
distribution ρ satisfying E[(R ∨ 1)d ] < ∞. The intensities µk, 0 < k < d, are given by the
formula

µk = λm+1

4(m + 1)!cdmσk

×
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

m∏
i=0

(t + r2
i )(m−2)/2Vm,k((t + r2

0 )1/2, . . . , (t + r2
m)1/2)

×
∫ ∞

0
p(s + t)s(k−2)/2 ds dtρ(dr0) · · · ρ(drm), (4.1)

where m = d − k and cdm = σd−m+1 · · · σd/σ1 · · · σm. For k = d, we have µd = 1, for k = 0,

µ0 = λd+1

2(d + 1)!

×
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

d∏
i=0

(t + r2
i )(d−2)/2Vd,0((t + r2

0 )1/2, . . . , (t + r2
d )1/2)

× p(t) dtρ(dr0) · · · ρ(drd).

The formulae for µk cannot be evaluated further because of the lack of an explicit formula
for Vm,k(w0, . . . , wm). However, a formula by Miles [14] shows that

Vm,k(1, . . . , 1) = 2m+1πm(m+1)/2 �((1/2)(m + 1)(d + 1) − m)

�(md/2)�((d + 1)/2)m+1

m∏
i=1

�((1/2)(k + 1 + i))

�(i/2)
.

(4.2)
For a degenerate radius distribution ρ, i.e. the case of a Poisson–Voronoi tessellation, applying
(4.2) to (4.1) leads to the well-known values

µV
k = λm/d2m+1πm/2�((dm + k + 1)/2)�(d/2 + 1)m+k/d�(m + k/d)

d(m + 1)! �((dm + k)/2)�((d + 1)/2)m�((k + 1)/2)
.

While this formula is explicit, the computation of µk for other radius distributions ρ usually
requires numerical integration. Some examples will be considered in Section 6.
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Nevertheless, it can indeed be shown that the intensities µk, k = 0, . . . , d, are finite
[12, Theorem 3.2.9]. Hence, the Palm probability measure Q0

k is well defined.
Relation (2.2) can be used to obtain formulae for the intensities γk . However, in contrast to

the formulae for µk , they appear intractable to the application of numerical methods.

Theorem 4.4. For 0 < k < d, the intensity γk of the k-faces is given by

γk = λm+1

4(m + 1)!cdmσk

×
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

m∏
i=0

(t + r2
i )(m−2)/2Vm,k((t + r2

0 )1/2, . . . , (t + r2
m)1/2)

×
∫ ∞

0
p(t + s)s(k−2)/2 E[AL⊥(t, s, �s+t )−1] ds dtρ(dr0) · · · ρ(drm),

where L ∈ Ld
m is a fixed subspace of R

d , �t = � ∩ {(x, r) : pow(0, (x, r)) > t},

AL⊥(t, s, η) =
∫ ∞

0
lk−1

∫
Sd−1∩L⊥

1{τ(l, t, s, v, u) ≤ pow(lv, (x, r)), (x, r) ∈ η}σL⊥(dv) dl

with τ(l, t, s, u, v) = l2 + t + s − 2ls1/2〈u, v〉 for fixed u ∈ S
d−1 ∩L⊥, and σL⊥ is the surface

measure on the (d − m)-dimensional sphere S
d−1 ∩ L⊥.

The formula for the cell intensity γd reads

γd = λσd

2

∫ ∞

0

∫ ∞

−r2
0

(t + r2
0 )(d−2)/2p(t) E[A(t, r0, u, �t )−1] dtρ(dr0),

where u ∈ S
d−1 is fixed and

A(t, r0, u, η) =
∫ ∞

0
ld−1

∫
Sd−1

1{ζ(l, t, r0, v, u) ≤ pow(lv, (x, r)), (x, r) ∈ η}σ(dv) dl

with ζ(l, t, r0, u, v) = l2 + t − 2l([t + r2
0 ]+)1/2〈u, v〉.

4.1. Typical faces

In Section 2 we defined two Palm measures P0
k and Q0

k . Under P0
k , there is a k-face Ck(0)

with centroid in the origin, allowing us to call this random element a typical k-face. In contrast,
with respect to Q0

k , the origin has been ‘uniformly’chosen on the k-dimensional boundary of the
tessellation which gives rise to a k-face Fk(0) containing the origin. Then Fk(0) is, in a sense,
a typical edge weighted with its k-content. In particular, Fd(0) is simply the cell containing the
origin. In the following, we will give the formulae for the mean k-content of the k-faces Fk(0)

and Ck(0).
Denote by κ(l, r1, r2) the volume of the union of two balls with radii r1 and r2 and

centres separated by distance l. There is an explicit expression for this union, which is rather
cumbersome; see, e.g. [12, Proposition 3.3.4]. Introduce, for l ≥ 0 and t1, t2 ∈ R,

ξ(l, t1, t2) = exp

(
−λ

∫ ∞

0
κ(l, ([t1 + r2]+)1/2, ([t2 + r2]+)1/2)ρ(dr)

)
. (4.3)
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Theorem 4.5. The mean k-content of the k-dimensional face Fk(0) for 0 < k < d is given by

µk E0
Mk

[Hk(Fk(0))]

= λm+1

4(m + 1)!cdmσk

×
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

m∏
i=0

(t + r2
i )(m−2)/2Vm,k((t + r2

0 )1/2, . . . , (t + r2
m)1/2)

×
∫ ∞

0
s(k−2)/2

∫ ∞

0
lk−1

∫
Sd−1∩L⊥

ξ(l, s + t, τ (l, t, s, u, v))

× σ(dv) dl ds dtρ(dr0) · · · ρ(drm),

where u ∈ S
d−1 ∩ L⊥ is a fixed vector and the function ξ is defined in (4.3). For the mean

volume of Fd(0), we have

E0
Md

[Hd(Fd(0))]
= λσd

2

∫ ∞

0

∫ ∞

−r2
0

(t + r2
0 )(d−2)/2

∫ ∞

0
ld−1

∫
Sd−1

ξ(l, t, ρ(l, t, r0, u, v))σ (dv) dl dtρ(dr0).

A formula for the mean k-content of the typical k-face Ck(0) is obtained from the previous
results via the relation γkE

0
Nk

[Hk(Ck(0))] = µk . Further formulae for distributions related to
the typical k-faces Fk(0) and Ck(0), in particular the joint distribution of their generators, are
given in [12, Section 3.3].

4.2. Contact distributions

Recall that, for a random closed set X and a convex compact set B in R
d containing the

origin, the contact distribution function HB is defined via

HB(r) = P(X ∩ rB �= ∅ | 0 /∈ X), r ≥ 0.

The random closed set of interest here is the union of cell boundaries of the tessellation. Since
the origin is almost surely contained in the cell Fd(0), we have HB(r) = 1 − P(rB ⊂ Fd(0))

for every choice of B. Important special cases are the spherical contact distribution function
Hs , where B = b(0, 1) is the unit ball centred in the origin, and the linear contact distribution
function Hl(v), where B = l(v) is a line segment of unit length in direction v ∈ Sd−1.

Contact and chord length distributions of the Poisson–Voronoi tessellation have been studied
in [19], while the Voronoi tessellation with respect to more general point processes has been
investigated in [10]. For Poisson–Laguerre tessellations, we have the following result.

Theorem 4.6. The linear contact distribution function Hl(v) for v ∈ Sd−1 is given by

1 − Hl(v)(r) = λ

2

∫ ∞

0

∫ ∞

−r2
0

(t + r2
0 )(d−2)/2

×
∫

Sd−1
ξ(r, t, ρ(r, t, r0, u, v))σ (du) dtρ(dr0), r ≥ 0,

where ξ(l, t1, t2) is defined in (4.3).
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Since the Poisson–Laguerre tessellation is isotropic, the values of Hl(v)(r) do not depend
on the direction v of the line segment.

An expression for the spherical contact distribution function can also be obtained and is
given in [12, Corollary 3.3.16].

5. Limit results

Since a Voronoi tessellation can be interpreted as a Laguerre tessellation with respect to a
degenerate distribution of radii, it is natural to consider Poisson–Voronoi tessellations as limits
of Poisson–Laguerre tessellations when changing the parameters of the mark distribution. In
this section we present some limit results which we prove in Appendix B.

Consider a stationary marked Poisson process � on R
d × R+ with intensity λ and mark

distribution ρ satisfying E[(R ∨ 1)d ] < ∞. Write �v = {(x, vr) : (x, v) ∈ �}, v > 0, for a
mark-scaled version of the point process �.

The first result states that a Laguerre tessellation converges to a Voronoi tessellation if the
radii are reduced to 0. Recall that a closed set Fn converges to F in Wijsman topology if the
distance functions d(x, Fn) = infy∈Fn ‖x − y‖ converge to d(x, F ) for every x; see, e.g. [15,
p. 401].

Theorem 5.1. Almost surely, as v ↓ 0, the boundary Fd−1(L(�v)) of the Laguerre tessellation
L(�v) converges in Wijsman topology to the boundary Fd−1(L

V (�̂)) of the Voronoi tessella-
tion LV (�̂) constructed with respect to the Poisson process �̂ = {x ∈ R

d : (x, v) ∈ �} with
intensity λ.

The next limiting regime is when there is an atom at the maximum value of the radius
distribution, implying that the corresponding largest radius cells will eventually dominate the
others.

Theorem 5.2. Assume that the mark distribution ρ is supported by a bounded segment [0, s]
and is such that ρ({s}) = p > 0. Denote by �̃ = {x ∈ R

d : (x, s) ∈ �} the subset of points
carrying the weight s (which is a Poisson process with intensity pλ in R

d ). Then almost surely
for any bounded set W ⊂ R

d there exists v0 = v0(�, W) > 0 such that the boundary of the
Laguerre tessellation L(�v) inside W coincides with the boundary of the Voronoi tessellation
LV (�̃) restricted to W for all v > v0.

This theorem also implies the almost sure Wijsman convergence of the boundaries
Fd−1(L(�v)) to their Voronoi tessellation counterparts. But the result formulated above is
stronger, of ‘a finite coupling time’ type.

Convergence in the above schemes is also discussed in [12] in terms of the Palm distributions
P0

k corresponding to the k-faces of the tessellation.

6. The planar case

For applications, the cases in which d = 2 and d = 3 are of special interest. In this section
we discuss the planar case in detail: more explicit formulae for µ0 and µ1 are obtained and
evaluated for some examples. Furthermore, we derive a formula for the probability p0 that the
typical point of � generates a nonempty cell.

The main problem when working with the expressions in Theorem 4.3 is the lack of explicit
general formulae for �k+1

m (w0u0, . . . , wmum) and Vm,k(w0, . . . , wm). However, in some
special cases it is possible to overcome this problem. In the two-dimensional case we have to
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consider �2 and �2
1. Unfortunately, �2(w0u0, w1u1, w2u2) remains intractable. But we have

�2
1(w0u0, w1u1) = w2

0 + w2
1 − 2〈u0, u1〉w0w1, u0, u1 ∈ S

1 ∩ L, w0, w1 > 0,

and, therefore, V1,1(w0, w1) = 4(w2
0 + w2

1).
For the intensities µ0 and µ1, we obtain

µ0 = λ3

12

∫∫∫
R

3+

∫ ∞

− mini r2
i

exp

(
−λπ

∫ ∞

0
[t + r2]+ρ(dr)

)

× V2,0((t + r2
0 )1/2, (t + r2

1 )1/2(t + r2
2 )1/2) dtρ(dr0)ρ(dr1)ρ(dr2)

and

µ1 = λ2π

∫∫
R

2+

∫ ∞

− mini r2
i

2t + r2
0 + r2

1

(t + r2
0 )1/2(t + r2

1 )1/2

×
∫ ∞

0
exp

(
−λπ

∫ ∞

0
[t + s + r2]+ρ(dr)

)

× s−1/2 ds dtρ(dr0)ρ(dr1).

These two formulae provide all the parameters which are required for computing the mean
values of the cell characteristics using the mean-value relations for normal tessellations [13]. In
particular, we can derive a formula for the probability p0 that the typical point of � generates a
nonempty cell: since the intensity of cells is given by γ2 = p0λ and µ0 = γ0 = 2γ2, we have

p0 = λ2

24

∫∫∫
R

3+

∫ ∞

− mini r2
i

exp

(
−λπ

∫ ∞

0
[t + r2]+ρ(dr)

)

× V2,0((t + r2
0 )1/2, (t + r2

1 )1/2, (t + r2
2 )1/2)

× dtρ(dr0)ρ(dr1)ρ(dr2).

As an example, we consider the Poisson–Laguerre tessellation for the case where ρ is a two-
atom distribution, taking the value a with probability q and the value b > a with probability
1−q. The parameters are chosen as λ = 100, a = 0.01, b = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, and q = 0.5. This means that we start with a Poisson–Voronoi tessellation of intensity
λ = 100 and gradually increase the value of the larger radius.

The formulae for µ0(= γ0) and µ1(= LA) are evaluated using the numerical integration
functions of MATHEMATICA®. From these, the mean values of characteristics of the typical
nonempty cell are computed using the mean-value relations. The results are summarised in
Table 1. For comparison, the values for Poisson–Voronoi tessellations with intensities λ = 100
and λ = 50 are included.

When investigating the intensities µk of the measures Mk , we may ask not only for the total
value of µk but also for the contribution of each class of k-faces to this value. Hence, we write
µ0(r0, r1, r2) for the intensity of vertices whose neighbours carry the weights r0, r1, and r2 and
µ1(r0, r1) for the total length of edges whose neighbours carry the weights r0 and r1. Clearly,

µ0 = µ0(a, a, a) + µ0(a, a, b) + µ0(a, b, b) + µ0(b, b, b),

µ1 = µ1(a, a) + µ1(a, b) + µ1(b, b).

The results of the numerical evaluation for the example discussed above are presented in Table 2.

https://doi.org/10.1239/aap/1222868179 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1222868179


Random Laguerre tessellations SGSA • 641

Table 1: Mean values of cell characteristics for a two-dimensional Laguerre tessellation generated by
a stationary Poisson process of intensity λ = 100 with marks independently drawn from a two-atom
distribution taking the values 0.01 and b with probability 0.5 each. The columns PV100 and PV50 contain
the values for Poisson–Voronoi tessellations with intensities λ = 100 and λ = 50, respectively. Given
are the intensities of the k-faces γk , the mean total edge length per unit volume LA, the mean length l1 of

the typical edge, and the mean area a2 and the perimeter u2 of the typical cell.

b PV100 0.05 0.10 0.15 0.20 0.25 0.30 PV50

γ0 200.000 192.406 148.398 110.968 101.050 100.043 100.001 100.000
γ1 300.000 288.609 222.597 166.452 151.574 150.065 150.001 150.000
γ2 100.000 96.203 74.199 55.484 50.525 50.022 50.001 50.000
LA 20.000 19.203 16.283 14.529 14.173 14.143 14.142 14.142
l1 0.067 0.066 0.073 0.087 0.094 0.094 0.094 0.094
a2 0.010 0.010 0.014 0.018 0.020 0.020 0.020 0.020
u2 0.400 0.399 0.439 0.524 0.561 0.566 0.566 0.566

Table 2: Contributions of different cell types to µ0 and µ1.

b PV100 0.05 0.10 0.15 0.20 0.25 0.30 PV50

µ0(b, b, b) 25.000 35.627 67.743 92.562 99.263 99.969 99.999 100.000
µ0(a, b, b) 75.000 77.291 48.678 12.652 1.331 0.058 0.001 0.000
µ0(a, a, b) 75.000 62.341 26.699 5.013 0.408 0.015 0.000 0.000
µ0(a, a, a) 25.000 17.148 5.279 0.741 0.047 0.001 0.000 0.000

µ1(b, b) 5.000 6.935 11.239 13.615 14.100 14.141 14.142 14.142
µ1(a, b) 10.000 8.839 3.987 0.766 0.063 0.002 0.000 0.000
µ1(a, a) 5.000 3.430 1.056 0.148 0.010 0.000 0.000 0.000

Convergence to a Poisson–Voronoi tessellation of intensity λ = 50 with increasing b in line
with Theorem 5.2 is clearly visible in both tables. It turns out that already for b = 0.3 nearly
all of the cells generated by points with the smaller weight have disappeared.

A number of further numeric results can be found in [12]. These include numerical evalua-
tions of the formulae presented here for the case of a uniform distribution of radii. Distributions
of cell characteristics, namely the probability density functions of the area, perimeter, and
number of edges of a typical Poisson–Laguerre cell in R

2 are studied by simulation. In addition,
the spatial case, d = 3, is discussed in detail.

Appendix A. Proof of Theorem 3.2

In this section we consider the more general situation where the weights of the points do not
necessarily have to be positive. Hence, we will work with weights wi rather than with the radii
ri . Nevertheless, we will use the abbreviation si for the pairs (xi, wi).

Definition A.1. Consider a tessellation T = {Ci : i ∈ N} of R
d . An orthogonal dual of T is a

point set D(T ) = {xi : i ∈ N} in R
d with the following properties.

(i) Duality. Each cell Ci of T is associated with exactly one point xi ∈ D(T ) such that
xi �= xj for i �= j .
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(ii) Orthogonality. For cells Ci and Cj , i �= j , of T , let Li,j denote the line connecting xi

and xj . Then Li,j is orthogonal to Ci ∩ Cj .

(iii) Orientation. Any ray parallel to Li,j directed from xi to xj and intersecting both of Ci

and Cj first meets Ci .

Theorem A.1. A tessellation T of R
d is the Laguerre tessellation of some set ϕ if and only if

an orthogonal dual D(T ) of T exists.

Proof. If T is a Laguerre tessellation of R
d , the set of nuclei yields the required orthogonal

dual. Conversely, consider a tessellation T = {Ci : i ∈ N} of R
d and assume the existence of an

orthogonal dual D(T ) = {xi : i ∈ N}. Sort the points xi in increasing distance from the origin,
ordering points with equal distance lexicographically. We will now iteratively assign weights
wi to the points xi such that T is the Laguerre tessellation of the set ϕ = {(xi, wi) : i ∈ N}.
The weight w1 can be chosen arbitrarily. Consider three cells Ci, Cj , and Cm, i < j < m,
such that F = Ci ∩ Cj ∩ Cm �= ∅, and assume that wi has already been constructed. Denote
the closed half-space bounded by Ra(si, sj ) by

H(si, sj ) = {z ∈ R
d : 2〈z, xi − xj 〉 ≥ ‖xi‖2 − ‖xj‖2 + wj − wi},

and write si ∼ sj if Ci ⊆ H(si, sj ) and Cj ⊆ H(sj , si). A result in [2, Fact 1] shows
that, for any weight wi of si and for any cell Cj distinct from Ci , there exists a wj such
that sj ∼ si . Hence, we find weights wj and wm such that sj ∼ si and sm ∼ si . Then
F ⊂ Ra(si, sj )∩Ra(si, sm). Since the radical axes of si , sj , and sm are not parallel, they intersect
in a common (d − 2)-dimensional subspace of R

d . Therefore, we also have F ⊂ Ra(sj , sm).
Obviously, F ⊂ Cj ∩ Cm. Since both Cj ∩ Cm and Ra(sj , sm) are orthogonal to the line
joining xj and xm and contain F , we conclude that Cj ∩ Cm ⊂ Ra(sj , sm). Furthermore, the
orientation of D(T ) yields Cj ⊂ H(sj , sm). This implies transitivity of the relation ‘∼’ for
F �= ∅, which allows the construction of a set ϕ = {si : i ∈ N} such that T = L(ϕ).

In order to give the proof of Theorem 3.2, we first fix some notation. Let T = {Ci : i ∈ N}
be a normal tessellation of R

d . For i ≥ d , define Qi = ⋃i
j=1 Cj , and let v be a vertex in the

boundary of Qi . Denote by e1, . . . , es the edges in ∂Qi having v as a vertex. We say that Qi

is concave at v if the convex hull of {e1, . . . , es} is not contained in Qi . Since T is normal,
concavity of Qi implies the existence of a unique cell C of T containing all faces F in ∂Qi

with v ∈ F . This cell is called proper with respect to Qi .

Proof of Theorem 3.2. Let T be a normal tessellation of R
d with d ≥ 3. We will introduce a

certain ordering C1, C2, . . . of the cells of T which can then be used for an iterative construction
of an orthogonal dual D(T ) = {x1, x2, . . . }.

Choose C1, . . . , Cd such that they share a common edge. A set of points x1, . . . , xd that
satisfies duality, orthogonality, and orientation can easily be found. For i > d, choose Ci

proper with respect to Qi−1 such that Qi is simply connected. For j < i, denote by Fj,i the
face Ci ∩ Cj (if it exists) and denote by Lj,i the line orthogonal to Fj,i through xj . Define
Fi = Qi−1 ∩ Ci . If we show that xi = ⋂

Fj,i∈Fi
Lj,i is a singleton, this implies orthogonality

of the set Xi = {x1, . . . , xi}. Duality and orientation of Xi follow from the convexity of Ci .
Call a vertex in Fi \ ∂Qi an inner vertex of Fi . By [2, Claim 1], for any inner vertex v of Fi ,

the intersection
⋂

v∈Fj,i
Lj,i is a single point z. If the set of inner vertices of Fi \ ∂Qi contains

exactly one element, we set xi = z. Otherwise, let v and v′ be two inner vertices joined by
the edge e. Then there exist unique points z = ⋂

v∈Fj,i
Lj,i and z′ = ⋂

v′∈Ft,i
Lt,i . Since, by
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[2, Claim 2], the graph consisting of the inner vertices of Fi and the edges joining them is
connected, it is sufficient to show that, for any such v and v′, the points z and z′ coincide. The
edge e is contained in exactly (d − 1) two-faces of Fi ; hence, j = t occurs for (d − 1) values
of j . Since d ≥ 3, the intersection point z = z′ is uniquely determined by the (d − 1) lines
corresponding to these indices.

Repeating this construction, the set
⋃

i Xi yields an orthogonal dual D(T ) of T . Hence,
Theorem A.1 shows that T is a Laguerre tessellation.

Appendix B. Proofs from Section 4

Proof of Theorem 4.1. For suitable functions v, the generating functional G of an indepen-
dently marked Poisson process � is given by the formula

G(v) = E

[ ∏
(x,r)∈�

v(x, r)

]
= exp

(
−λ

∫
(1 − v(x, r))λd(dx)ρ(dr)

)
.

Let y ∈ R
d be an arbitrary point, and denote by p(t) the probability that the power from y to

each point of � exceeds t . Then

p(t) = E

[ ∏
(x,r)∈�

1{pow(y, (x, r)) > t}
]

= exp

(
−λ

∫ ∞

0

∫
Rd

1{pow(y, (x, r)) ≤ t}λd(dx)ρ(dr)

)

= exp

(
−λ

∫ ∞

0

∫
Rd

1{‖y − x‖2 ≤ t + r2}λd(dx)ρ(dr)

)

= exp

(
−λωd

∫ ∞

0
([t + r2]+)d/2ρ(dr)

)
, (B.1)

where t+ = max(t, 0). If E[(R ∨ 1)d ] < ∞ then

P
(

inf
(x,r)∈�

pow(y, (x, r)) = −∞
)

= lim
t→−∞ P

(
inf

(x,r)∈�
pow(y, (x, r)) < t

)

= lim
t→−∞(1 − p(t))

= 0.

Thus, for each y ∈ R
d , we have at least one point (x, r) ∈ � minimising pow(y, (x, r)).

Hence, y ∈ C((x, r), �). On the other hand, E[(R ∨ 1)d ] = ∞ implies that p(t) = 0 for each
t ∈ R and, therefore, inf(x,r)∈� pow(y, (x, r)) = −∞ with probability 1.

Proof of Theorem 4.2. We will check the applicability of Theorem 3.1. The property
pow(y, (x, r)) ≤ t for (x, r) ∈ � is equivalent to y ∈ b(x,

√[t + r2]+) for (x, r) ∈ �. In other
words, y is contained in the Boolean model of balls b(x,

√[t + r2]+) with (x, r) ∈ �. For
such a Boolean model, the condition E[Rd ] < ∞ implies that, for each bounded set B ⊂ R

d ,
the set {(x, r) ∈ � : b(x,

√[t + r2]+) ∩ B �= ∅} is almost surely finite. With B = {y}, this
implies condition (R1). Regularity condition (R2) is a consequence of the stationarity of �

[24, Satz 1.3.5]. The proof that (GP1) and (GP2) are fulfilled is standard and similar to the one
that the points of a Poisson point process are almost surely in general quadratic position; see,
e.g. [12] and [17, Proposition 4.1.2].
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The proof of Theorem 4.3 is based on the next statement generalising a transformation
formula given in [24, p. 314].

Proposition B.1. Let L ∈ Ld
k , and let f : Lk+1 → R+ be a measurable function. Further-

more, consider strictly monotonic increasing, differentiable functions ri : [a, ∞) → R+, i =
0, . . . , k, with an arbitrary real number a. Then we have

∫
L

· · ·
∫

L

f (x0, . . . , xk)λd(dx0) · · · λd(dxk)

= k!
∫

L

∫ ∞

a

k∏
i=0

(ri(t)
k−1ṙi (t))

×
∫

Sd−1∩L

· · ·
∫

Sd−1∩L

f (y + r0(t)u0, . . . , y + rk(t)uk)

× �k

(
1

ṙ0(t)
u0, . . . ,

1

ṙk(t)
uk

)

× σL(du0) · · · σL(duk) dtHk(dy),

where ṙi is the derivative of the function ri, i = 0, . . . , k.

Proof. We will only prove this proposition for L = R
k ⊂ R

d . The statement then follows
by introducing an appropriate coordinate system on L. Define a mapping

T : R
k × [a, ∞) × S

k−1 × · · · × S
k−1 → (Rk)k+1,

(y, t, u0, . . . , uk) �→
⎛
⎜⎝

y + r0(t)u0
...

y + rk(t)uk

⎞
⎟⎠ .

It is easy to see that T is injective. We have to show that the determinant of the Jacobian of T

is given by

D = D(y, t, u0, . . . , uk) = k!
k∏

i=0

(ri(t)
k−1ṙi (t))�k

(
1

ṙ0(t)
u0, . . . ,

1

ṙk(t)
uk

)
.

Assume that the unit vectors ui are given in spherical coordinates, and let u̇i denote the derivative
of ui with respect to these coordinates. Writing Ek for the k-dimensional unit matrix we obtain

D =

∣∣∣∣∣∣∣∣∣

Ek ṙ0(t)u0 r0(t)u̇0 0 · · · 0

Ek ṙ1(t)u1 0 r1(t)u̇1 · · · 0
...

...
...

...
. . .

...

Ek ṙk(t)uk 0 0 · · · rk(t)u̇k

∣∣∣∣∣∣∣∣∣
.
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For D̃ = (
∏k

i=0 1/ri(t))
k−1D, this leads to

D̃2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ek Ek · · · Ek

ṙ0(t)u
t
0 ṙ1(t)u

t
1 · · · ṙk(t)u

t
k

u̇t
0 0 · · · 0

0 u̇t
1 · · · 0

...
...

. . .
...

0 0 · · · u̇t
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

Ek ṙ0(t)u0 u̇0 0 · · · 0

Ek ṙ1(t)u1 0 u̇1 · · · 0
...

...
...

...
. . .

...

Ek ṙk(t)uk 0 0 · · · u̇k

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(k + 1)Ek

∑
ṙi (t)ui u̇0 u̇1 · · · u̇k∑

ṙi (t)u
t
i

∑
ṙi (t)

2 0 0 · · · 0

u̇t
0 0 Ek−1 0 · · · 0

u̇t
1 0 0 Ek−1 · · · 0
...

...
...

. . .
...

u̇t
k 0 0 0 · · · Ek−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Now we will use the formula |A| = |B||A22|, where

A =
(

A11 A12
A21 A22

)
and B = A11 − A12A

−1
22 A21,

if the matrix A is symmetric and A−1
22 exists. In our case we have A22 = E(k+1)(k−1). Further-

more, note that Ek − u̇i u̇
t
i = uiu

t
i , as the matrix uiu̇i is orthogonal. Using this relation, we

obtain

D̃2 =
∣∣∣∣(k + 1)Ek − ∑

u̇i u̇
t
i

∑
ṙi (t)ui∑

ṙi (t)u
t
i

∑
ṙi (t)

2

∣∣∣∣
=

∣∣∣∣
∑

uiu
t
i

∑
ṙi (t)ui∑

ṙi (t)u
t
i

∑
ṙi (t)

2

∣∣∣∣

=

∣∣∣∣∣∣∣
(

u0 · · · uk

ṙ0(t) · · · ṙk(t)

) ⎛
⎜⎝

ut
0 ṙ0(t)
...

...

ut
k ṙk(t)

⎞
⎟⎠

∣∣∣∣∣∣∣
= (k!)2

k∏
i=0

ṙi (t)
2�2

k

(
1

ṙ0(t)
u0, . . . ,

1

ṙk(t)
uk

)
,

which completes the proof.

Proof of Theorem 4.3. We will concentrate on the case in which 1 ≤ k ≤ d − 1. The proofs
for the cases in which k = 0 and k = d work similarly. Write m = d − k. Using the definition
of µk , the Slivnyak–Mecke formula (see, e.g. [4, pp. 186–187]), and (3.1), we obtain

µk = E

[ ∑
F∈Sk(X)

Hk(F ∩ [0, 1]d)

]

= 1

(m + 1)! E

[ ∑ �=

s0,...,sm∈�

∫
1{y ∈ [0, 1]d ∩ F(s0, . . . , sm, �)}Hk(dy)

]
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= λm+1

(m + 1)!
∫ ∞

0
· · ·

∫ ∞

0

∫
Rd

· · ·
∫

Rd

∫
E[1{y ∈ [0, 1]d ∩ F((x0, r0), . . . , (xm, rm), �)}]
× Hk(dy)λd(dx0) · · · λd(dxm)ρ(dr0) · · · ρ(drm),

where ‘
∑�=’ denotes summation over pairwise distinct points of �. Denote the affine hull of

F((x0, r0), . . . , (xm, rm), �) by G((x0, r0), . . . , (xm, rm)). Then,

µk = λm+1

(m + 1)!
×

∫ ∞

0
· · ·

∫ ∞

0

∫
Rd

· · ·
∫

Rd

∫
1{y ∈ [0, 1]d ∩ G((x0, r0), . . . , (xm, rm))}
× p(pow(y, (x0, r0)))H

k(dy)λd(dx0) · · · λd(dxm)

× ρ(dr0) · · · ρ(drm).

Using the affine Blaschke–Petkantschin formula (see, e.g. [23, Satz 6.1.5]), we obtain

µk = λm+1

(m + 1)!cdm(m!)k

×
∫ ∞

0
· · ·

∫ ∞

0

∫
Ed

m

∫
E

· · ·
∫

E

∫
1{y ∈ [0, 1]d ∩ G((x0, r0), . . . , (xm, rm))}

× p(pow(y, (x0, r0)))H
k(dy)

× �k
m(x0, . . . , xm)Hm(dx0) · · · Hm(dxm)

× µm(dE)ρ(dr0) · · · ρ(drm).

It is well known that there exist unique invariant measures νm on Ld
m and ηm on Ed

m such that
νm(Ld

m) = 1 and that, for any measurable function f : Ed
m → R+,

∫
Ed

m

f (E)ηm(dE) =
∫

Ld
m

∫
L⊥

f (L + y)Hd−m(dy)νm(dL)

=
∫

SOd

∫
L⊥

0

f (ϑ(y + L0))H
d−m(dy)ν(dϑ), (B.2)

where L0 ∈ Ld
m is a fixed linear subspace of R

d (see, e.g. [23, Satz 1.3.3, Satz 1.3.4, and p. 29]).
For an arbitrary subspace L ∈ Ld

m and (x0, r0), . . . , (xm, rm) ∈ ϑL × R+, we find a unique
point z = z((x0, r0), . . . , (xm, rm)) ∈ ϑL such that G((x0, r0), . . . , (xm, rm)) = z + ϑL⊥.
Furthermore, z((x + x0, r0), . . . , (x + xm, rm)) = x + z((x0, r0), . . . , (xm, rm)) for any x ∈
ϑL⊥.

Now fix a subspace L ∈ Ld
m and apply (B.2), which yields

µk = λm+1

(m + 1)!cdm(m!)k

×
∫ ∞

0
· · ·

∫ ∞

0

∫
SOd

∫
ϑL⊥

∫
ϑL

· · ·
∫

ϑL

∫
p(pow(y, (x + x0, r0)))

× 1{y ∈ [0, 1]d ∩ x + z((x0, r0), . . . , (xm, rm)) + ϑL⊥}
× Hk(dy)�k

m(x0, . . . , xm)Hm(dx0) · · · Hm(dxm)Hk(dx)ν(dϑ)ρ(dr0) · · · ρ(drm).
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Now the change of coordinates introduced in Proposition B.1 with z = z(s0, . . . , sm), t =
pow(z, s0), and ri(t) = (t + r2

i )1/2 yields

µk = λm+1cdm(m!)k+1

2(m + 1)!
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

m∏
i=0

(t + r2
i )(m−2)/2

×
∫

SOd

∫
ϑL⊥

∫
ϑL

∫
p(t + ‖x + z − y‖2)

× 1{y ∈ [0, 1]d ∩ x + z + ϑL⊥}Hk(dy)Hm(dz)Hk(dx)

×
∫

Sd−1∩ϑL

· · ·
∫

Sd−1∩ϑL

�k+1
m ((t + r2

0 )1/2u0, . . . , (t + r2
m)1/2um)

× σL(du0) · · · σL(dum)ν(dϑ) dtρ(dr0) · · · ρ(drm).

Substitute (u0, . . . , um, z, x) by (ϑu0, . . . , ϑum, ϑz, ϑx) and use the fact that �m(·) and H i (·)
are invariant under rotations. This yields

µk = λm+1cdm(m!)k+1

2(m + 1)!
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

m∏
i=0

(t + r2
i )(m−2)/2

×
∫

SOd

∫
L⊥

∫
L

∫
p(t + ‖ϑ(x + z) − y‖2)

× 1{y ∈ [0, 1]d ∩ ϑ(x + z + L⊥)}Hk(dy)Hm(dz)Hk(dx)ν(dϑ)

×
∫

Sd−1∩L

· · ·
∫

Sd−1∩L

�k+1
m ((t + r2

0 )1/2u0, . . . , (t + r2
m)1/2um)

× σL(du0) · · · σL(dum) dtρ(dr0) · · · ρ(drm).

By the change of variables y0 = y − ϑ(x + z) ∈ ϑL⊥ we get

µk = λm+1cdm(m!)k+1

2(m + 1)!
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

m∏
i=0

(t + r2
i )(m−2)/2

×
∫

SOd

∫
L⊥

∫
L

∫
p(t + ‖y0‖2) 1{y0 + ϑ(x + z) ∈ [0, 1]d ∩ ϑ(x + z + L⊥)}

× Hk(dy0)H
m(dz)Hk(dx)ν(dϑ)

×
∫

Sd−1∩L

· · ·
∫

Sd−1∩L

�k+1
m ((t + r2

0 )1/2u0, . . . , (t + r2
m)1/2um)

× σL(du0) · · · σL(dum) dtρ(dr0) · · · ρ(drm).

For fixed y0 ∈ ϑL⊥, we have∫
L⊥

∫
L

1{y0 + ϑ(x + z) ∈ [0, 1]d ∩ ϑ(x + z + L⊥)}Hm(dz)Hk(dx)

=
∫

L⊥

∫
L

1{y0 + x + z ∈ [0, 1]d}Hm(dz)Hk(dx)

= 1,
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and, therefore,

µk = λm+1

2(m + 1)!cdm(m!)k+1

×
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

m∏
i=0

(t + r2
i )(m−2)/2

∫
L⊥

p(t + ‖y0‖2)Hk(dy0)

×
∫

Sd−1∩L

· · ·
∫

Sd−1∩L

�k+1
m ((t + r2

0 )1/2u0, . . . , (t + r2
m)1/2um)

× σL(du0) · · · σL(dum) dtρ(dr0) · · · ρ(drm),

which, introducing spherical coordinates y0 = s1/2u in L⊥, reads

µk = λm+1cdm(m!)k+1

4(m + 1)! σk

×
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

m∏
i=0

(t + r2
i )(m−2)/2

∫ ∞

0
p(t + s)s(k−2)/2 ds

×
∫

Sd−1∩L

· · ·
∫

Sd−1∩L

�k+1
m ((t + r2

0 )1/2u0, . . . , (t + r2
m)1/2um)

× σL(du0) · · · σL(dum) dtρ(dr0) · · · ρ(drm).

Proofs of Theorem 4.4 and Theorem 4.5. Again, we restrict attention to the case in which
0 < k < d . With respect to the Palm probability measure of Mk , the origin is almost
surely contained in a unique k-face Fk(0) = F(Sk,0, . . . , Sk,m, �) generated by the spheres
Sk,0, . . . , Sk,m. Write Gk(0) for the affine hull of Fk(0) and choose v ∈ Gk(0) ∩ S

d−1 and
l ≥ 0. Then lv ∈ Fk(0) holds if and only if pow(lv, Sk,0) ≤ pow(lv, (x, r)) for all (x, r) ∈ �.
Hence,

Hk(Fk(0)) =
∫ ∞

0
lk−1

∫
Sd−1∩Gk(0)

1{pow(lv, Sk,0) ≤ pow(lv, (x, r)), (x, r) ∈ �}
× σGk(0)(dv) dl.

Let h : R+ → R+ be a measurable function. Then a calculation similar to the proof of
Theorem 4.3 yields

µk E0
Mk

[h(Hk(Fk(0)))]

= λm+1

4(m + 1)!cdm(m!)k+1
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

m∏
i=0

(t + r2
i )(m−2)/2

∫ ∞

0
p(t + s)s(k−2)/2

×
∫

Sd−1∩L⊥

∫
SOd

E[h(ÃϑL⊥(t, s, ϑu, �s+t ))]ν(dϑ)σL⊥(du) ds

×
∫

Sd−1∩L

· · ·
∫

Sd−1∩L

�k+1
m ((t + r2

0 )1/2u0, . . . , (t + r2
m)1/2um)

× σL(du0) · · · σL(dum) dtρ(dr0) · · · ρ(drm),
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where �t = � ∩ {(x, r) : pow(0, (x, r)) > t} and

ÃL(t, s, u, η) =
∫ ∞

0
lk−1

∫
Sd−1∩L

1{τ(l, t, s, u, v) ≤ pow(lv, (x, r)), (x, r) ∈ η}σL(dv) dl

with τ(l, t, s, u, v) = l2 + t +s −2ls1/2〈u, v〉. Now, by a short calculation using the invariance
under rotations of �s+t and σL⊥ , we obtain

µk E0
Mk

[h(Hk(Fk(0)))]

= λm+1

4(m + 1)!cdm(m!)k+1σk

×
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

− mini r2
i

m∏
i=0

(t + r2
i )(m−2)/2

×
∫ ∞

0
p(t + s)s(k−2)/2 E[h(ÃL⊥(t, s, u, �s+t ))] ds

×
∫

Sd−1∩L

· · ·
∫

Sd−1∩L

�k+1
m ((t + r2

0 )1/2u0, . . . , (t + r2
m)1/2um)

× σL(du0) · · · σL(dum) dtρ(dr0) · · · ρ(drm).

For the proof of Theorem 4.5, choose h(x) = x and check that

p(s + t) P(τ (l, t, s, u, v) ≤ pow(lv, (x, r)), (x, r) ∈ �s+t ) = ξ(l, s + t, τ (l, t, s, u, v)).

The formula for γk is obtained using (2.2) and h(x) = x−1.

Proof of Theorem 5.1. The theorem easily follows by observing that in every realisation of
� the power pow(y, (x, vr)) at any point y from any nucleus x of �v tends to ‖y − x‖2, the
distance function generating the Voronoi tessellation LV (�̂).

Proof of Theorem 5.2. Letφ = {(xi, ri)}be a configuration of�, letφv = {(x, vr) : (x, r) ∈
φ}, and let φ̃ = {x : (x, s) ∈ φ}. Given W , φ, and y ∈ W , consider

D = D(v, φ)

= pow(y, (x, vr)) − pow(y, (x̃(y), vs))

= ‖y − x‖2 − ‖y − x̃(y)‖ + v2(s2 − r2), (B.3)

where x̃(y) is (possibly one of) the point(s) of φ̃ closest to y. When x = x̃ ∈ φ̃ in (B.3), then
D = ‖y − x̃‖2 − ‖y − x̃(y)‖2 ≥ 0. When (x, r) ∈ φ, r < s, and ‖y − x‖ ≥ ‖y − x̃(y)‖,

D ≥ ‖y − x‖2 − ‖y − x̃(y)‖2 ≥ 0.

Finally, let m be the maximal value of the weights of the points (x, r) ∈ φ such that r < s

and ‖y − x‖ < ‖y − x̃(y)‖. By local finiteness, there is only a finite number of such points,
implying that m < s. Then

D ≥ −‖y − x̃(y)‖2 + v2(s2 − m2),

which is positive for all v2 > ‖y − x̃(y)‖2/(s2 − m2). Thus, we have shown that, for such
large v, the minimum power at y is provided by the nucleus (x̃(y), vs), so that y belongs to the
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Laguerre cell C((x̃(y), vs), φv) and also implying that y belongs to the Voronoi cell CV (x̃, φ̃)

constructed with respect to nuclei set φ̃. Thus, for all v > v0, all the points in W belong to the
Voronoi cells centred at their closest φ̃-points. As v0, we may take the square root of the ratio
of the maximal diameter d of all the cells CV (x̃, φv) intersecting W to s2 minus the squared
maximum radius among all non-φ̃-points in the d-neighbourhood of W .
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