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Non-Selfadjoint Perturbations of Selfadjoint
Operators in Two Dimensions IIIa.
One Branching Point

Michael Hitrik and Johannes Sjöstrand

Abstract. This is the third in a series of works devoted to spectral asymptotics for non-selfadjoint

perturbations of selfadjoint h-pseudodifferential operators in dimension 2, having a periodic classical

flow. Assuming that the strength ǫ of the perturbation is in the range h2 ≪ ǫ ≪ h1/2 (and may

sometimes reach even smaller values), we get an asymptotic description of the eigenvalues in rectangles

[−1/C, 1/C] + iǫ[F0 − 1/C, F0 + 1/C], C ≫ 1, when ǫF0 is a saddle point value of the flow average

of the leading perturbation.

1 Introduction

This work is the third in a series devoted to non-selfadjoint perturbations of self-
adjoint semiclassical pseudodifferential operators in two dimensions, whose classical

bicharacteristic flow is periodic on each energy surface. The general background is
an observation by A. Melin and the second author [18] that there are quite general
classes of analytic non-selfadjoint operators in dimension 2 for which (in the semi-
classical limit when h → 0) the eigenvalues in some h-independent region of the

complex plane are determined by a Bohr–Sommerfeld quantization condition, very
much as for selfadjoint operators in dimension 1. Recall here that for selfadjoint op-
erators in dimension 2 or higher, this can happen (to the authors’ knowledge) only in
the completely integrable case.

The previous works in this series are [14, 15], and more recently, in collabora-
tion with S. Vũ Ngo. c, the authors have begun a study of the case when the classical
flow of the unperturbed operator is no longer periodic but rather possesses invari-
ant Lagrangian tori with a Diophantine property; see [16] for the first work in this

direction.
In this work, we continue with the perturbed periodic case. After switching on a

perturbation of size ǫ, the spectrum will be confined to a band of width O(ǫ), and the
more precise distribution of eigenvalues is very much governed by the flow average of

the imaginary part of the leading symbol of the perturbation. In the previous works,
we studied the eigenvalues associated with non-critical values of this flow average
or with non-degenerate maxima or minima in a suitable sense (after restriction to
the 2-dimensional manifold of trajectories in an energy surface). In this paper we
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study the remaining generic case, namely that of eigenvalues associated with a non-
degenerate saddle point.

We will work under the general assumptions of [14, 15], which we now recall. Let
M denote R2 or a compact real-analytic manifold of dimension 2. We shall let MC

stand for a complexification of M (obtained by covering M by finitely many real and
analytic coordinate patches and then passing to corresponding complex ones in the

natural way) so that MC = C2 in the case when M = R2.
When M = R2, let Pǫ = P(x, hDx, ǫ; h) be the Weyl quantization on R2 of a

symbol P(x, ξ, ǫ; h) depending smoothly on ǫ ∈ neigh(0,R) with values in the space
of holomorphic functions of (x, ξ) in a tubular neighborhood of R4 in C4, with

(1.1) |P(x, ξ, ǫ; h)| ≤ O(1)m(Re(x, ξ))

there. Here m is assumed to be an order function on R4, in the sense that m > 0 and

for some C0, N0 > 0,

(1.2) m(X) ≤ C0〈X − Y 〉N0 m(Y ), X,Y ∈ R4, 〈X − Y 〉 := (1 + |X − Y |2)
1
2 .

We also assume that

(1.3) m ≥ 1,

and

(1.4) P(x, ξ, ǫ; h) ∼
∞∑

j=0

p j,ǫ(x, ξ)h j , h → 0,

in the space of such functions. We make the ellipticity assumption

(1.5) |p0,ǫ(x, ξ)| ≥ 1

C
m(Re(x, ξ)), |(x, ξ)| ≥ C,

for some C > 0.
When M is a compact manifold, we let Pǫ =

∑
|α|≤m aα,ǫ(x; h)(hDx)α, be a differ-

ential operator on M, such that for every choice of local coordinates, centered at some

point of M, aα,ǫ(x; h) is a smooth function of ǫ with values in the space of bounded
holomorphic functions in a complex neighborhood of x = 0. We further assume
that

aα,ǫ(x; h) ∼
∞∑

j=0

aα,ǫ, j(x)h j , h → 0,

in the space of such functions. The semi-classical principal symbol in this case is

given by p0,ǫ(x, ξ) =
∑

aα,ǫ,0(x)ξα, and we make the ellipticity assumption

(1.6) |p0,ǫ(x, ξ)| ≥ 1
C
〈ξ〉m, (x, ξ) ∈ T∗M, |ξ| ≥ C,
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for some large C > 0. (Here we assume that M has been equipped with some Rie-
mannian metric, so that |ξ| and 〈ξ〉 = (1 + |ξ|2)1/2 are well defined.)

Sometimes, we write pǫ for p0,ǫ and simply p for p0,0. Assume

(1.7) Pǫ=0 is formally selfadjoint.

In the case when M is compact, we let the underlying Hilbert space be L2(M, µ(dx))
for some positive real-analytic density µ(dx) on M.

Under these assumptions, Pǫ will have discrete spectrum in some fixed neighbor-
hood of 0 ∈ C, when h > 0, ǫ ≥ 0 are sufficiently small, and the spectrum in this

region will be contained in a band | Im z| ≤ O(ǫ).

Assume for simplicity that (with p = pǫ=0)

(1.8) p−1(0) ∩ T∗M is connected.

Let Hp = p ′
ξ · ∂

∂x
− p ′

x · ∂
∂ξ be the Hamilton field of p. In this work, we will always

assume that for E ∈ neigh(0,R),

(1.9)
the Hp-flow is periodic on p−1(E) ∩ T∗M with period T(E) > 0

depending analytically on E.

Let q =
1
i
( ∂
∂ǫ )ǫ=0 pǫ, so that

(1.10) pǫ = p + iǫq + O(ǫ2m),

in the case when M = R2, and pǫ = p + iǫq + O(ǫ2〈ξ〉m) in the compact case. Let

〈q〉 =
1

T(E)

∫ T(E)/2

−T(E)/2

q ◦ exp tHp dt on p−1(E) ∩ T∗M.

Notice that p, 〈q〉 are in involution 0 = Hp〈q〉 =: {p, 〈q〉}. In [14], we saw how to
reduce ourselves to the case when pǫ = p+iǫ〈q〉+O(ǫ2), near p−1(0)∩T∗M. An easy
consequence of this, also remarked upon in [14], is that the spectrum of Pǫ in {z ∈
C ; |Re z| < δ} is confined to ]−δ, δ[+ iǫ]〈Re q〉min,0−o(1), 〈Re q〉max,0 +o(1)[, when
δ, ǫ, h → 0, where 〈Re q〉min,0 = minp−1(0)∩T∗M〈Re q〉 and similarly for 〈Re q〉max,0.
We shall mainly think about the case when 〈q〉 is real-valued but will work under the
more general assumption that

(1.11) Im〈q〉 is an analytic function of p and Re〈q〉,

in a region of T∗M, where |p| ≤ 1/|O(1)|.
Let Λ0,F0

= {ρ ∈ T∗M ; p(ρ) = 0, Re〈q〉(ρ) = F0}. Assume

(1.12)
T(0) is the minimal period for the Hp-flow at every point of Λ0,F0

and Λ0,F0
is connected.
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The connectedness assumption is for convenience only and can easily be removed.
Then Σ0 := p−1(0)/ exp(RHp) is a symplectic 2-dimensional manifold near the im-

age Λ̃0,F0
of Λ0,F0

. We consider Re〈q〉 as an analytic function on neigh(Λ̃0,F0
,Σ0).

Assume that

(1.13)
this function has F0 as critical value and the corresponding critical
point is unique, non-degenerate and of signature 0.

Then Λ̃0,F0
is an ∞-shaped curve, and 〈q〉 is an analytic function in a neighborhood

of that curve (which is the level-curve of Re〈q〉 corresponding to F0).
In the following, we may assume that F0 = 0 for simplicity. In Section 2 we shall

construct an ǫ-dependent canonical transformation κǫ which is an ǫ-perturbation of
a real canonical transformation κ0, with

κǫ, κ0 : neigh({τ = 0}, (T∗S1)C
t,τ ) × neigh(K0,0,C2

x,ξ) → neigh(Λ0,0,T
∗MC),

such that p ◦ κ0 = g(τ ), 〈q〉 ◦ κ0 = 〈q〉(τ , x, ξ) and

(1.14) pǫ ◦ κǫ = g(τ ) + iǫ〈q〉(τ , x, ξ) + O(ǫ2),

where the O(ǫ2) is also independent of t . Here K0,0 ⊂ R2 is an ∞-shaped curve
with the self-crossing at (0, 0) and (0, 0) is the saddle point for the function (x, ξ) 7→
Re〈q〉(0, x, ξ) with 〈q〉(0, x, ξ) = F0 (= 0).

In the present work it seems quite essential to assume that

(1.15) the subprincipal symbol of Pǫ=0 vanishes.

(In [14] this assumption was an optional one that permitted to get improved results.)
After further reductions for the lower order symbols, described in Section 2, we get

a microlocal reduction of Pǫ near Σ0,0 to an operator P̂ǫ(hDt , x, hDx; h) with symbol

P̂ǫ(τ , x, ξ; h) = g(τ ) + iǫ
(
〈q〉(τ , x, ξ) + O(ǫ) +

h2

iǫ
p2(τ , x, ξ) +

h

i
p̃1 + · · ·

)

= g(τ ) + iǫQ
(
τ , x, ξ, ǫ,

h2

ǫ
; h
)
.

(1.16)

The operator P̂ǫ is only microlocally defined near

{(t, τ , x, ξ) ∈ T∗S1 × T∗R ; τ = 0, (x, ξ) ∈ K0,0},

but that allows us to define asymptotically its eigenvalues in a rectangle ]− 1
C
, 1

C
[ +

iǫ] 1
C
, 1

C
[, and they are of the form

(1.17) g
(

hk − S0

2π
− k0h

4

)
+ iǫw j,k, k ∈ Z,

where w j,k are the eigenvalues near 0 of Q(hk − S0

2π − k0

4
h, x, hDx, ǫ,

h2

ǫ ; h) in the mi-
crolocal space L2

θ ′(R) defined with Floquet conditions along the two loops of K0,0 as
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in [14]. Here θ ′ = (θ1, θ2) ∈ R2 with θ j =
S j

2π +
k j h

4
, k j ∈ Z, and (S0, S1, S2) appear

as action differences when quantizing κ0, while k0, k1, k2 are Maslov indices.
For τ ∈ neigh(0,R), let R(τ ) be the real analytic curve formed by the values

of 〈q〉(τ , · ). That R(τ ) is a curve follows from (1.11) and we see that R(τ ) is of

the form Im w = r(τ ,Re w), where r is analytic in a neighborhood of 0. Also, let
ρ0

c (τ ) ∈ neigh((0, 0),R2) be the critical point of ρ 7→ 〈q〉(τ , ρ) (with ρ0
c (0) = (0, 0)),

and let ρc(τ ) ∈ neigh((0, 0),C2) be the critical point of the principal symbol

(x, ξ) 7→ Q0
(
τ , x, ξ, ǫ,

h2

ǫ

)
= 〈q〉 + O(ǫ) +

h2

iǫ
p2(τ , x, ξ)

of Q(τ , x, ξ, ǫ, h2/ǫ; h) appearing in (1.16). Clearly, ρc(τ ) = ρ0
c (τ ) + O(ǫ + h2

ǫ ). Put
wc(τ ) = 〈q〉(τ , ρ0

c (τ )) and introduce the exceptional boxes
(1.18)

B(τ ) =

{
w ; |Re(w−w0

c (τ )| ≤ C0

(
ǫ+

h2

ǫ

)
, | Im w−r(τ ,Re w)| ≤ C0

(
ǫ + h2

ǫ

)

| ln
(
ǫ + h2

ǫ

)
|

}
,

for some fixed sufficiently large C0 > 0.

Theorem 1.1 We make the assumptions above and especially (1.7), (1.9), (1.11),
(1.12), (1.13), (1.15), and put τk = hk − S0

2π − k0h
4

, k ∈ Z. Assume furthermore

that h2 ≪ ǫ ≪ h1/2. For C > 0 sufficiently large, the eigenvalues of Pǫ in ]− 1
C
, 1

C
[ +

iǫ]F0 − 1
C
, F0 + 1

C0
[ are of the form (1.17), where the following can be said about the

w j,k:

• The number of w j,k in B(τk) is O
(
ǫ
h

+ h
ǫ

)
| ln
(
ǫ + h2

ǫ

)
|.

• If w j,k 6∈ B(τk), then |Re(w j,k − w0
c (τk))| > C0(ǫ + h2

ǫ ), with C0 as in (1.18).
• There is a bijection bk between the set of these w j,k outside B(τk) and the union of

three sets of points away from B(τk): Eext = Ee, Eleftint = Eli , Erightint = Eri such that

bk(w) − w = O

(
e

−| Re(w−w0
c (τk))|

Ch
h

| ln |Re(w − w0
c (τk))|| + h∞

)
.

• Here Ee is a subset of {Re(w − w0
c (τk)) < −C0(ǫ + h2

ǫ )} and Eli , Eri are subsets of

{Re(w − w0
c (τk)) > C0(ǫ + h2

ǫ )} (or vice versa, but we only stick to the first option
for simplicity) that can be described by Bohr–Sommerfeld conditions

(1.19) bΘ

(
w, ǫ,

h2

ǫ
, τk; h

)
= 2π

(
j +

1

2

)
h, j ∈ Z, Θ = e, li, ri,

where

bΘ

(
w, ǫ,

h2

ǫ
, τk; h

)
∼

∞∑

ν=0

bνΘ(w, ǫ,
h2

ǫ
, τk; h)hν ,

in the space of bounded functions of w, ǫ, h2/ǫ, τ , that are smooth near (0, 0, 0) in
(ǫ, h2/ǫ, τ ) and holomorphic in w for

| Im(w − wc(τ ))| ≤ 1
C
|Re(w − wc(τ ))|, ±Re(w − wc(τk)) ≥ C0

(
ǫ +

h2

ǫ

)
,
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with a “−” when Θ = e and “+” for Θ = li, ri.
• Further, b1

Θ
is holomorphic in a full neighborhood of w = wc(τ ),

bνΘ = O(|w − wc(τ )|1−ν), ν ≥ 2,

and

b0
e (w, ǫ,

h2

ǫ
, τk) − 2µ ln(−µ), bli − µ lnµ, bri − µ lnµ

are holomorphic in a neighborhood of w = wc(τ ). Here µ is a renormalized spec-

tral parameter defined by w = Kǫ,h2/ǫ(τk, µ; h), with K given in Propositions 6.2,
6.1. Finally b0

Θ
can be described as actions along suitable cycles in the complexified

cotangent space, see Section 10.

Inside the exceptional boxes the eigenvalues w j,k (for each fixed k) continue to ac-
cumulate to roughly at most five curves where three of the curves are the extensions
of the curves carrying the Ee, Eli , Eri (defined by replacing 2πh j (1.19) by a continu-
ous real parameter) and one of the new curves, which exists under certain conditions,

can be related to barrier top resonances in dimension 1. There are at most two and at
least one point (if we exclude degenerate cases) where three of the curves terminate
and form a “Y”. Away from those points we may have crossings of two of the curves
(like, for instance, the ones carrying Eli and Eri). Away from the Y points and with

some margin, the distribution of eigenvalues can be described by Bohr–Sommerfeld
rules as in the theorem, and near the Y points as well as elsewhere, we can get quite
detailed estimates for the distribution of eigenvalues. Indeed, the eigenvalues can be
identified with zeros of quite explicitly given holomorphic functions which in most

regions appear as the sum of four exponential functions, and for such functions it
is possible to study the distribution of zeros quite in detail. (See Davies [7] for in-
spiring results in this direction and Hager [11] for quite elaborated results obtained
in parallel with the present work.) The appearance of Y-shaped eigenvalue distribu-

tions for non-selfadjoint operators in one dimension seems to be quite well known
and we refer to Shkalikov [24], Redparth [22] and further references given there, as
well as to the recent works by L. Nedelec [19] and E. Servat and A. Tovbis [23]. The
Y-shaped eigenvalue distribution is also readily observed numerically; see Figure 1–3

illustrating the main result of this work.

Unfortunately it turned out to be exceedingly difficult to give a concise and precise

description of what happens inside the exceptional boxes in the form of a theorem
in less than several pages, so instead we refer the reader to Sections 8–10 where this
description can be found.

In Section 13 we apply our results to the study of barrier top resonances for po-
tentials of the form −x2 + O(x4), R2 ∋ x → 0. In Section 12, we make a remark
that permits improving the domain of validity in the direction of small resonances.
This gives an improvement also in the applications to barrier tops in [14, 15] and

allows us in the present work to treat resonances E with h1−δ ≪ |E| ≪ h1/3 for
every fixed δ > 0, while a direct application of Theorem 1.1 would only give the
range h2/3 ≪ |E| ≪ h1/3. (In this special situation one can say that the lower bound
ǫ≫ h2, can be replaced by ǫ≫ hN0 for every fixed N0 > 0.)
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Figure 1: Numerical computation of the eigenvalues of the operator Pǫ = hDt + iǫQ(x, hDx),

t ∈ S1, x ∈ R, where Q(x, hDx) is the one-dimensional double well Schrödinger operator

perturbed by a complex even potential, Q(x, hDx) = (hDx)2 − x2 + x4 + ieǫx2, eǫ = 0.8. We take

h = 0.001 and ǫ = 0.02 so that the assumption h2 < ǫ < h1/2 is satisfied. When computing

the eigenvalues of Q(x, hDx), following [32], we discretized the operator using the Chebyshev

spectral method.

When starting this project, we underestimated the amount of ingredients needed,

and in order to keep the work within a reasonable size, we decided to exclude from the
paper the very interesting case when there is more than one saddle point on the same
connected component of (Re〈q〉)−1(F0) at real energy 0. The most important case

here is probably the one with 2 saddle points arising because of an anti-symplectic
involution (typically (x, ξ) 7→ (x,−ξ) in the Schrödinger case). We hope to take
up at least the two saddle point case in a future work (having settled essentially all
heavy technicalities in the present work). We might then also include the interesting

case when (1.12) breaks down at isolated points, leading to orbifolds. See Colin de
Verdière–Vũ Ngo. c [4] in the selfadjoint case.

We also ran into a somewhat unexpected difficulty. Indeed, for the 1-dimensional
operators Q, we cannot exclude a pseudospectral phenomenon leading to an expo-
nential growth of the resolvent norm in important regions near the spectrum of these

operators (cf. [8, 9]). This makes it very important to keep the errors in the reduc-
tion to the operator P̂ǫ in (1.16) exponentially small, so that the accumulated error
in the global resolvent constructions remains controlled. In [14, 15] we avoided that
problem by working in naturally adapted norms where the pseudospectral problems

disappeared, but that does not seem equally easy to do here. This refined reduction
is carried out in Section 3 using quasi-norms from the theory of analytic pseudo-
differential operators originally due to Boutet de Monvel–Krée [2], in the simplified
variant of [26]. The price to pay is the apparent necessity to impose the condition
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Figure 2: Numerical computation of the eigenvalues of the operator Pǫ = hDt + Q(x, hDx),

t ∈ S1, x ∈ R, where Q(x, hDx) is the one-dimensional double well Schrödinger operator

perturbed by a complex odd potential, Q(x, hDx) = (hDx)2 − x2 + x4 + ieǫx3, eǫ = 0.8, in the

case when h = 0.001, ǫ = 0.02.

(1.15) and the upper bound ǫ≪ h1/2, that should be compared to the bound ǫ≪ hδ

for every fixed δ > 0 in [14, 15] or even ǫ≪ 1 in [29, 30].

2 Reduction to a One-Dimensional Pseudodifferential Operator

Let H0 ⊂ p−1(0) be a hypersurface which is transversal to the Hp-directions and

such that H0 can be identified with neigh(Λ̃0,0,Σ0). We can then identify Λ̃0,0 with a

curve H̃0,0 in H0.
Let f = g−1 ◦ p, where g is the unique increasing analytic function with g(0) = 0

such that the H f -flow is 2π periodic with 2π as its minimal period on Λ0,0.

Let α : neigh(K0,0,R2) → neigh(H̃0,0,H0) be a real-analytic canonical transfor-
mation, where K0,0 is an ∞-shaped curve, as in the introduction. The existence of

such a map with a suitable K0,0 follows from [6, Theorem 5] (see also [25]), according
to which if Ω1 and Ω2 are two compact real-analytic symplectic manifolds of dimen-
sion 2, possibly with boundary, which have the same area and such that there exists
an orientation preserving analytic diffeomorphism between them, then Ω1 can be

mapped onto Ω2 by an analytic canonical transformation.
We extend α to a canonical transformation

κ : neigh({τ = 0},T∗S1)t,τ ) × neigh(K0,0,R2
x,ξ) → neigh(Λ0,0,T

∗M),

with f ◦ κ = τ in the following way: extend H0 to an analytic hypersurface H in the
full phase space which intersects p−1(0) transversally along H0. Let t̃ be the grad-
periodic function defined near Λ0,0 which solves H f t̃ = 1, with t̃ = 0 on H. Because
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−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10
−3

0

0.5

1

1.5

2

2.5

3
x 10

−3

Figure 3: Numerical computation of the eigenvalues of the operator Pǫ = hDt + Q(x, hDx),

t ∈ S1, x ∈ R, Q(x, hDx) = (hDx)2 − x2 + x4 + ieǫ
`

x2 + δx
´

, in the case when h = 0.001,

ǫ = 0.02, eǫ = 0.8 and δ = 0.12. Here δ is chosen so that the perturbation x2 + δx is of

the same sign in both of the potential wells of the selfadjoint part of Q(x, hDx), although of

different orders of magnitude.

of the 2π-periodicity of the H f -flow, we see that t̃ is well defined up to an integer
multiple of 2π. Using that H f and Het commute, we notice that if ρ is a point close to

Λ0,0, then we can write ρ = exp(tH f + τHet )(ρ0), ρ0 ∈ H0, where τ ∈ R is small and
t ∈ R is well defined modulo a multiple of 2π.

Put κ(t, τ ; x, ξ) = exp(tH f + τHet )(α(x, ξ)). Then κ has the desired properties.

As in [15, §2], we introduce the triple S = (S0, S1, S3) ∈ R3 of action differ-
ences, with S0 corresponding to a closed Hp-orbit ⊂ p−1(0), and S1, S2 correspond-

ing to the left- and right-closed orbits of the ∞-shaped set H̃0,0. Let θ = (θ0, θ1, θ2),

θ j = S j/(2πh) + k j/4, where k j ∈ Z is a suitable Maslov index. Let L2
θ(S1 × R)

be the space of microlocally defined functions u(t, x) in neigh({τ = 0}, (T∗S1)t,τ ) ×
neigh(K0,0,R2) that are multivalued but θ-Floquet periodic as in [14, §6] (or as in [18,
§3]. Let U : L2

θ(S1 × R) → L2(M) be a microlocally defined unitary Fourier integral

operator as in the cited works.

Repeating the argument in the beginning of [14, §3], we will assume from now on
that the leading perturbation q in (1.10) has already been averaged along the Hp-flow
so that the leading symbol of Pǫ becomes

(2.1) pǫ = p + iǫ〈q〉 + O(ǫ2).

The operator P̃ǫ := U−1PǫU , has the principal symbol

p̃ǫ = g(τ ) + iǫ〈q〉(τ , x, ξ) + O(ǫ2).
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At this stage, we get a complete analogue to the situation in [14, §3]. There
[14, Proposition 3.2] extends, and we get a reduction of P̃ǫ to an operator P̂ǫ =

P̂ǫ(hDt , x, hDx; h), also acting on L2
θ , with a complete symbol independent of t , and

the principal symbol still of the form

(2.2) p̂ǫ = g(τ ) + iǫ〈q〉(τ , x, ξ) + O(ǫ2),

now completely independent of t .
As in [14, §5], we use Fourier series expansions in the t-variable and get a reduc-

tion of (2.2) to the family of operators:

(2.3) P̂ǫ

(
h
(

k − k0

4

)
− S0

2π
, x, hDx; h

)
, k ∈ Z,

where k0 ∈ Z is a fixed Maslov index and it is understood that we only consider such

values of k for which the first argument (τ ) in P̂ǫ is small.

(i) In the general case, without any assumption on the subprincipal symbol of
Pǫ=0, we write the full symbol of P̂ǫ as

P̂ǫ(τ , x, ξ; h)

= g(τ ) + ǫ
[

i〈q〉(τ , x, ξ) + O(ǫ) +
h

ǫ
p1(τ , x, ξ) + h

h

ǫ
p2(τ , x, ξ) + · · ·

]
,

(2.4)

and consider h/ǫ as an additional small parameter.
(ii) When the subprincipal symbol of Pǫ=0 vanishes, we have the same fact for P̂ǫ

by the improved Egorov property of U ; see [14, §2]. Thus (p1)ǫ=0 = 0 and we

can write
h

ǫ
p1(τ , x, ξ, ǫ) = hp̃1(τ , x, ξ, ǫ).

Instead of (2.4), we get

(2.5) P̂ǫ(τ , x, ξ; h) = g(τ )+ǫ
[

i〈q〉(τ , x, ξ)+O(ǫ)+
h2

ǫ
p2(τ , x, ξ)+hp̃1 +h2 p̃2 +· · ·

]
,

depending on the small parameters ǫ, h2/ǫ.
Summing up the discussion so far, we have the following.

Proposition 2.1 Let Pǫ be as above satisfying the assumptions (1.1), (1.2), (1.3), (1.4),
(1.5), (1.6), (1.7), (1.8), (1.9), (1.11), (1.12), (1.13). Also assume that 0 ≤ ǫ ≤ hδ

for some fixed δ > 0. Then there exist G0(x, ξ) holomorphic in some fixed neigh-
borhood of p−1(0), an elliptic Fourier integral operator U of order 0, with the as-

sociated canonical transformation κ as above, and an h-pseudodifferential operator
A = A(t, hDt , x, hDx; h) of order 0 with principal symbol O(ǫ2), such that the oper-
ator

(2.6) P̂ǫ = e
i
h

AU−1e−
ǫ
h

Gw
0 Pǫe

ǫ
h

Gw
0 U e−

i
h

A
= Ad

e
i
h

A
U−1e

− ǫ
h

G0
Pǫ

has a symbol P̂ǫ(τ , x, ξ, ǫ; h) independent of t, modulo O(h∞). Here Gw
0 = Gw

0 (x, hDx).
In the general case, we have (2.4), provided that h ≪ ǫ ≤ hδ , and when the subprin-

cipal symbol of Pǫ=0 vanishes, we have (2.5) provided that h2 ≪ ǫ ≤ hδ .
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In this proposition all symbols and phase functions are holomorphic in fixed
h, ǫ-independent domains. The weight G0 in (2.6) is used to get a first reduction

of the principal symbol to the form (2.1); see also (8.23) in Section 8.

3 Exponential Decoupling

Since some solution operators to the localized 1-dimensional problems later on will
have some exponential growth, the decoupling result of Section 2 has to be sharpened
in the sense that we get some exponential smallness control over the remainders.

First we need to recall some notions about classical analytic symbols and their

associated quasi-norms. That was introduced in the pioneering work by L. Boutet
de Monvel and P. Krée [2], but here we shall use the simplified quasi-norms of [26,
Chapter 1]. If Ω ⊂ C2n

x,ξ is open, a classical analytic symbol of order 0 is given by the
formal asymptotic expansion,

a(x, ξ; h) ∼
∞∑

k=0

hkak(x, ξ),

where ak are holomorphic in Ω and satisfy the growth condition,

∀K ⋐ Ω, ∃C = CK > 0; |ak(x, ξ)| ≤ Ck+1kk, (x, ξ) ∈ K.

To such an a, we associate the formal differential operator of infinite order,

(3.1) A(x, ξ,Dx; h) = a(x, ξ + hDx; h) ∼
∞∑

k=0

hkAk(x, ξ,Dx),

where

Ak =

∑

ℓ+|α|=k

1

α!
∂αξ aℓ(x, ξ)Dα

x .

Let Ωt ⋐ Ω, t0 ≤ t ≤ t1 be an increasing family of open subsets with t0 < t1, such
that dist∞(Ωs, ∂Ωt ) ≥ t − s, for t0 ≤ s < t ≤ t1, with the distance associated with
the ℓ∞-norm. Let f j(A j) ≥ 0 be the smallest constant such that

‖A j‖s,t ≤ f j(A j)
( j

t − s

) j

,

where ‖ · ‖s,t is the operator norm from the space of bounded holomorphic functions
on Ωt to the same space on Ωs. Then

|||a|||ρ :=

∞∑

0

ρ j f j(A j)

is finite for ρ > 0 small enough, and conversely, the finiteness of |||a|||ρ for some fixed
ρ > 0 implies that a = A(1) is a classical analytic symbol on Ωt1

. If a, b are classical
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analytic symbols on Ω and we let a(x, hD; h) and b(x, hD; h) denote the associated
h-pseudodifferential operators for the classical quantization, then the composition

of these two operators has the symbol

a#b ∼
∞∑

k=0

hk
∑

|α|=k

1

α!
∂αξ a(x, ξ; h)Dα

x b(x, ξ; h).

Using that the differential operators A,B compose correspondingly, it was shown
very simply in [26, Chapter 1] that

(3.2) |||a#b|||ρ ≤ |||a|||ρ|||b|||ρ,

implying that the composed symbol is also a classical analytic symbol.
If we prefer to work with the Weyl quantization, then the same result and proof

as in [26] remain valid, provided that we modify the choice of the associated infinite

order differential operator to

(3.3) A(x, ξ,Dx,ξ ; h)u =

∞∑

k=0

hk

k!

(( i

2
σ(Dx,ξ ; Dy,η)

) k

a(x, ξ; h)u(y, η)
)∣∣∣

y=x,η=ξ
,

so that A(x, ξ,Dx,ξ ; h) = a(x − h
2

Dξ, ξ + h
2

Dx; h).
In the following, we will consider symbols depending on additional parameters;

(3.4) a(x, ξ, ǫ, h; h) =

∑
hkak(x, ξ, ǫ, h),

including h (which is then viewed as an independent parameter) and consequently
the admissible values of ρ will depend on these parameters. When defining |||a|||ρ in
the case when h is among the additional parameters, we have in mind some specific
representation of the form (3.4). To have ρ tending to 0 as some power of h, and that

is what we will encounter, means roughly that we consider Gevrey symbols.

Proposition 3.1 Let ℓ(x, ξ) be affine and real and let a(x, ξ; h) be an analytic symbol
of order 0. Then

|||[ℓ(x, hD), a(x, hD; h)]|||ρ ≤ 2ρ‖∇ℓ‖∞|||a‖ρ.

Here and in the following we shall consider [ℓ, a] as an h-pseudodifferential oper-
ator of order 0.

Proof The symbol of [ℓ(x, hD), a(x, hD; h)] is equal to h
i
{ℓ, a} =

h
i
ν(∂x,ξ)a, where

ν = Hℓ is the Hamilton field of ℓ. With a we associate the infinite order differential
operator A(x, ξ,Dx; h) as in (3.1). Similarly, we have

[ℓ(x, hD), a(x, hD; h)] ↔
∞∑

j=1

h jB j(x, ξ,Dx) =
h

i

∞∑

k=0

hkCk,
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with Ck = ν(∂x,ξ)(Ak) in the sense that ν acts as a differential operator on the coeffi-
cients of Ak. Thus, B j =

1
i
C j−1 =

1
i
ν(∂x,ξ)(A j−1). We can also express this as

(3.5) B j =
1

i

( ∂

∂r

)

r=0
τ−rν ◦ A j−1 ◦ τrν ,

where τrν denotes translation in the complex domain by the vector rν and r may be

complex.
Assume for simplicity that |ν| = ‖ν‖∞ ≤ 1. Then for (x, ξ) ∈ Ωs, t0 ≤ s + |r| <

t̃ ≤ t1 − |r| and for u holomorphic in a larger domain, we get

|(τ−rν ◦ A j−1 ◦ τrνu)(x, ξ)| = |(A j−1τrνu)((x, ξ) + rν)|

≤ f j−1(A j−1)( j − 1) j−1

(̃t − (s + |r|)) j−1
sup
Ωet

|τrνu|

≤ f j−1(A j−1)
( j − 1) j−1

(̃t − (s + |r|)) j−1
sup
Ωet+|r|

|u|.

For t0 ≤ s < t ≤ t1, choose t̃ = t − |r|, 2|r| < t − s:

|τ−rν ◦ A j−1 ◦ τrνu(x, ξ)| ≤ f j−1(A j−1)
( j − 1) j−1

(t − s − 2|r|) j−1
sup
Ωt

|u|.

In other words,

‖τrν ◦ A j−1 ◦ τrν‖s,t ≤
f j−1(A j−1)( j − 1) j−1

(t − s − 2|r|) j−1
,

and from the Cauchy inequality and (3.5), we get

‖B j‖s,t ≤
f j−1(A j−1)( j − 1) j−1

δ(t − s − 2δ) j−1
=

2 f j−1(A j−1)

(t − s) j

( j − 1) j−1

2δ
(t−s)

(1 − 2δ
t−s

) j−1
, 0 < 2δ < t − s.

Here we choose δ so that θ := 2δ
t−s

minimizes 1
θ(1−θ) j−1 . We find

θ =
1

j
,

1
1
j
(1 − 1

j
) j−1

=
j j

( j − 1) j−1
.

Hence,

‖B j‖s,t ≤
2 f j−1(A j−1)

(t − s) j
j j ,

so

f j(B j) ≤ 2 f j−1(A j−1), and |||B|||ρ ≤ 2

∞∑

j=1

f j−1(A j−1)ρ j
= 2ρ|||A|||ρ.
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In the following, we allow a finite number of families (Ων
t )tν1 ≤t≤tν2

, Ων
t ⋐ Ω, ν =

1, . . . ,N as above. If |||a|||νρ denotes the ρ-quasi-norm, defined with the help of the

ν-th family, we define

(3.6) |||a|||ρ =

∑

ν

|||a|||νρ .

Here it is understood that if a is parameter dependent with h among the parameters,
then we use the same representation (3.4) when defining each of the quasi-norms
|||a|||νρ . Notice that we still have (3.2).

Proposition 3.2 Let g(x, ξ; h) be a classical analytic symbol of order 0, defined in a
finite union D =

⋃N
ν=1 Dν of polydiscs with Ω ⋐ D, and let g(x, hD; h) be the corre-

sponding h-pseudodifferential operator. Let ||| · |||ρ be a quasi-norm of the form (3.6)
with the corresponding family Ων

t ⋐ Dν . Then for ρ small enough, we have

|||[g(x, hD; h), a(x, hD; h)]|||ρ ≤ C(g)ρ|||a|||ρ.

Proof Write g = g0(x, ξ)+hg1(x, ξ; h), where g1 is a classical analytic symbol of order
0. We notice that |||hg1|||ρ ≤ Cρ|||g1|||ρ, (where hg1 is viewed as a symbol of order 0),

so on the operator level, we have

|||[hg1, a]|||ρ ≤ 2|||hg1|||ρ|||a|||ρ ≤ 2Cρ|||g1|||ρ|||a|||ρ.

Hence it only remains to treat the contribution to the commutator from g0(x, hD).
We may assume we work in a polydisc centered at (0,0) with the radii r1, r2, . . . , rn,
s1, . . . , sn. Then,

g0(x, ξ) =

∑

α,β∈Nn

g
α,β
0 xαξβ,

where
∑

|gα,β0 |rαsβ < ∞. Now choose the classical quantization for simplicity. On
the operator level,

(3.7) g0(x, hD) =

∑
g
α,β
0 xα(hD)β ,

where the sum converges in the space of analytic symbols, since |||x j |||ρ ≤ r j and
|||hDx j

|||ρ ≤ s j + ρ =: s̃ j , and we can allow some shrinking in r j , s j and choose ρ > 0
small enough.

Using that |||[x j , a]|||ρ, |||[hDx j
, a]|||ρ ≤ 2ρ|||a|||ρ, in view of Proposition 3.1, we see

that

|||[xα(hDx)β , a]|||ρ ≤
(
α1rα−e1 s̃β + α2rα−e2 s̃β + · · · + αnrα−en s̃β

+ β1rαs̃β−e1 + · · · + βnrαs̃β−en
)

2ρ|||a|||ρ,

which can be written more briefly as

|||[xα(hDx)β , a]|||ρ ≤ (∂r1
+ · · · + ∂rn

+ ∂es1
+ · · · + ∂esn

)(rα s̃β)2ρ|||a|||ρ.
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Hence

|||[g0(x, hD), a|||ρ ≤
[

(∂r1
+ · · · + ∂rn

+ ∂es1
+ · · · + ∂esn

)
(∑

α,β

|gα,β0 |rα s̃β
)]

2ρ|||a|||ρ.

Remark The proposition remains valid for the Weyl quantization. Indeed, only

(3.7) has to be modified, by adding a term hg̃1(x, hD; h) to the right-hand side, where
g1 is an analytic symbol of order 0.

Returning to the considerations of Section 2, let us consider the analytic symbol,

P = g(τ ) + ǫq(τ , x, ξ) + hr(t, τ , x, ξ, ǫ; h) = g(τ ) + ǫq̃,

defined in neigh(t ∈ S1, τ = 0; ((S1 + iR) × C) × Ω), where Ω ⊂ C2
x,ξ is open. Here

we assume either that r is a classical analytic symbol of order 0 or simply that r has an

asymptotic expansion in integral powers of h in the space of holomorphic functions.
We have already seen in Section 2 that after a finite number of conjugations, we may
assume that r is independent of t modulo O(hN ). We also assume that g ′ 6= 0.

In the general case, we have q̃ = O(1 + h
ǫ ), and when the subprincipal symbol of

Pǫ=0 vanishes, we have hr = O(h2 + ǫh + ǫ2), q̃ = O(1 + h2/ǫ + h + ǫ). In the two
cases, we shall assume respectively that

h ≪ ǫ ≤ hδ,(3.8)

h2 ≪ ǫ ≤ hδ,(3.9)

for some δ > 0. Then in both cases, we have q̃ = O(1).
We shall see how to eliminate the t-dependence by conjugation with a pseudo-

differential operator up to an exponentially decaying error. The problem can be at-
tacked directly, but it seems that we get better remainder estimates if we first reduce

ourselves to the case when

(3.10) g(τ ) = τ .

This is possible by means of a holomorphic functional calculus. Indeed, let f =

g−1 be the inverse of the map g. It is easy to see that f (P) is well defined in the
sense of formal analytic h-pseudodifferential operators or equivalently in the sense

of composition of classical analytic symbols. (When r is merely assumed to have an
asymptotic expansion in powers of h, we consider those hs as additional parameters.)
We also see that f (P) as a symbol has the same properties as P above, but now with
g given by (3.10). It will also be easy to return to the original P, for if AdA P =

eAPe−A, then at least formally, AdA f (P) = f (AdA P), and to say that a symbol is
independent of t is equivalent to saying that the corresponding operator commutes
with translations in t and this latter property is stable under taking holomorphic
functions of the operator. Until further notice g will be given by (3.10).
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Using Proposition 3.2, we get

(3.11) [P,A] = h
1

i
{g,A}(t, x, hDt,x; h) + R(A), R(A) = ǫ[q̃,A],

where

(3.12) |||R(A)|||ρ ≤ C(q̃)ǫρ|||A|||ρ,

assuming that the ||| · |||ρ-quasi-norm is chosen as in Proposition 3.2.
Consider the map

(3.13) A 7→ AdA(P) = eAPe−A,

where |||A|||ρ is supposed to be small. At least formally,

(3.14) AdA(P) = eadA (P).

We expand

(3.15) AdA(P) =

∞∑

0

1

k!
(adA)k(P),

and get the expression for the differential

δA 7→ adδA(P) +

∞∑

k=2

1

k!

∑

ν+µ=k−1
ν,µ≥0

(adA)ν adδA(adA)µ(P).

An application of Proposition 3.2 shows that the ρ quasi-norm of the last term can
be estimated by

C(P)ρ

∞∑

k=2

1

k!

∑

ν+µ=k−1

(2|||A|||ρ)ν+µ|||δA|||ρ = C(P)ρ(

∞∑

k=2

1

(k − 1)!
(2|||A|||ρ)k−1)|||δA|||ρ

= C(P)ρ(e2|||A|||ρ − 1)|||δA|||ρ.

So, if we assume some fixed upper bound on |||A|||ρ, we can represent the differential
of (3.13) as

δA 7→ adδA(P) + K(A, δA), |||K(A, δA)|||ρ ≤ C̃(P)ρ|||A|||ρ|||δA|||ρ,

and combining this with (3.11) and (3.12), we get the expression for the differential:

(3.16)
δA 7→ −h

i
{g, δA} + K̃(A, δA) = −h

i
g ′(τ )∂tδA + K̃(A, δA),

|||K̃(A, δA)|||ρ ≤ Cρ(|||A|||ρ + ǫ)|||δA|||ρ.
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Consider the linear problem 1
i
g ′(τ )∂t A = B − 〈B〉, where B is a classical analytic

symbol of order 0 and

〈B〉(τ , x, ξ; h) =
1

2π

∫ 2π

0

B(t, τ , x, ξ; h) dt.

It has the solution

A = L(B) = L(B − 〈B〉), L(B) = − i

g ′(τ )

∫ 2π

0

( s

2π
− 1

2

)
B(t − s, τ , x, ξ) ds.

Clearly (with a convenient choice of the families Ωs),

|||L(B)|||ρ ≤ C0|||B − 〈B〉|||ρ ≤ C̃0|||B|||ρ.

Choose

(3.17) ρ≪ h

ǫ
.

We look for A of the form
∑∞

0 A j such that AdA(P) is independent of t . We shall do
the construction by successive approximations in a such a way that uniformly during
all the steps, |||A|||ρ ≤ O(1), ρ|||A|||ρ ≪ h, and hence

(3.18) |||K̃(A, δA)|||ρ ≤ hθ|||δA|||ρ, where θ ≪ 1.

To start with, we may assume that r − 〈r〉 = O(h2) in the sense of ordinary symbols.
Choose A0 = L(r), |||A0|||ρ ≤ C0|||r − 〈r〉|||ρ = O(h2). Then, using (3.16) and (3.18),

AdA0
(P) = P − hr + h〈r〉 + hr1,

where P − hr + h〈r〉 is independent of t and |||r1|||ρ ≤ θ|||r − 〈r〉|||ρ.

Put A1 = L(r1), |||A1|||ρ ≤ C0θ|||r − 〈r〉|||ρ. Then

AdA0+A1
(P) = AdA0

(P) − h(r1 − 〈r1〉) + hr2 = g + ǫq + h〈r〉 + h〈r1〉 + hr2,

|||r2|||ρ ≤ θ|||r1|||ρ ≤ θ2|||r − 〈r〉|||ρ.

Since θ ≪ 1, the procedure will converge geometrically and we get a formal solution

A with |||A|||ρ ≤ C1|||r − 〈r〉|||ρ.

By construction |||A|||ρ = O(h2) for 0 < ρ ≪ min(1, h/ǫ) and we have defined
AdA(P) by (3.15). We define etA as a formal analytic symbol of order 0, by

etA
=

∞∑

k=0

tkAk

k!
,
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so that |||etA|||ρ ≤ e|||A|||ρ , ∂t e
tA = AetA = etAA, e0A = 1 in the space of formal symbols.

Similarly, we see that

Ft = AdtA = et adA =

∞∑

0

tk adk
A

k!

satisfies ∂t Ft = adA ◦Ft , F0 = id. We then verify (3.14) simply by noticing that

∂t (etAPe−tA) = adA(etAPe−tA).

Notice that from the fact that

|||A|||ρ = O(h2), A =

∞∑

0

hνAν , aν = Aν(1),

we infer that locally |aν | ≤ fν(Aν)(Cν)ν , with
∑

fν(Aν)ρν < O(h2). Hence |aν | ≤
C0h2(Cν/ρ)ν , so

|hνaν | ≤ C0h2(Cν)ν
( h

ρ

) ν
,

so A is an analytic symbol with h replaced by h/ρ and can be realized with an un-

certainty O(h2)e−1/(Ch/ρ)) = O(h2)e−ρ/(Ch); see [26, Chapter 1]. Taking ρ as large as
possible respecting (3.17), and recalling that we also assume that ρ is bounded, we
get the uncertainty

(3.19) O(h2)e−1/C(ǫ+h).

This discussion can also be applied with A replaced by eA. Let B be such a realiza-

tion of eA. Then we can view A as an analytic symbol of order 0 by declaring that h is
an independent parameter. Let B−1 be a parametrix, so that B#B−1 = 1+O(e−1/(Ch))
if we also denote by B−1 a realization. From the construction, it follows that B◦P◦B−1

has a symbol which is t-independent up to an error of the size (3.19). With this in

mind, we can state the following.

Proposition 3.3 We can construct A in Proposition 2.1, such that the symbol P̂ǫ there
is independent of t up to an error which is O(1) exp(−1/C(ǫ+h)). Here we assume (3.8)
in the general case and (3.9) in the case when the subprincipal symbol of Pǫ=0 vanishes.

We end this section with a heuristic discussion explaining why we eventually will
assume that the subprincipal symbol of Pǫ=0 is zero. After decoupling by eliminating

the t-dependence as above, we get a family of 1-dimensional operators (2.3) which
we consider at the branching level. If we first consider the general case without any
assumptions on the subprincipal symbol, we can expect to have an estimate on the
inverse of these operators or on the associated Grushin problems roughly of the order

exp
(

C
( ǫ

h
+

h/ǫ

h

))
= exp

(
C
( ǫ

h
+

1

ǫ

))
.

In order to combine everything, we would like this quantity times (3.19) to be ≪ 1.
This is clearly not the case.
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In the case when the subprincipal symbol of Pǫ=0 vanishes we expect to improve
the estimate on the 1-dimensional resolvents or inverses of Grushin problems to

roughly

exp
(

C
( ǫ

h
+

h2/ǫ

h

))
= exp

(
C
( ǫ

h
+

h

ǫ

))
.

This leads to the condition
ǫ

h
+

h

ǫ
≪ 1

ǫ + h
,

which simplifies to the condition ǫ2 ≪ h, h2 ≪ ǫ, which in addition to (3.9) gives

h2 ≪ ǫ≪ h1/2. This is the condition on ǫ stated in Theorem 1.1.

4 Transition Matrix at a Branching Level

In this section and the following one, we study certain model problems. Much of
the material is standard and close, for instance, to [10, 13, 21] (see also [3] for the
C∞-case), but our setup is somewhat different, and we need to recollect some of the
basic facts before returning to our operator Pǫ.

Consider

(4.1)
( 1

2
(xDx + Dxx) − α

)
u = 0,

or equivalently the equation

x
∂

∂x
u =

(
iα− 1

2

)
u.

From [21, Proposition 11] we recall that the solutions of (4.1) in D ′(R) form a
2-dimensional subspace of S ′(R).

• For x > 0, we express u as u1xiα− 1
2 ,

• For x < 0, we express u as u3|x|iα−
1
2 ,

• For ξ > 0, we express û(ξ) as u2ξ
−iα− 1

2 ,
• For ξ < 0, we express û as u4|ξ|−iα− 1

2 .

Here û(ξ) = Fu(ξ) =
1√
2π

∫
e−ixξu(x) dx is the Fourier transform and we observe

that (4.1) is equivalent to

( 1

2
(ξDξ + Dξξ) + α

)
û = 0.

If | Imα| < 1/2, we have two solutions u = U± of (4.1), given by

Û+(ξ) = H(ξ)ξ−
1
2
−iα and Û−(ξ) = H(−ξ)|ξ|− 1

2
−iα,

where H = 1]0,+∞[ is the Heaviside function, and the general solution to (4.1) be-
comes a linear combination, u = u2U+ +u4U−. We see that U+ is the boundary value
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of a holomorphic function in the upper half-plane that we also denote by U+, and for
x = i y, y > 0, we get

U+(i y) =
1√
2π

∫ ∞

0

e−yξξ−
1
2
−iα dξ =

1√
2π

Γ

( 1

2
− iα

)
yiα− 1

2 .

Thus for real x,

U+(x) =
1√
2π

Γ

( 1

2
− iα

)( x + i0

i

) iα− 1
2

,

which gives

(4.2) U+(x) =
1√
2π

Γ

( 1

2
− iα

)
×
{

e
π
2
α+i π

4 xiα− 1
2 , x > 0,

e−
π
2
α−i π

4 |x|iα− 1
2 , x < 0.

Similarly, U−(x) = U−(x − i0), with

U−(−i y) =
1√
2π

∫ 0

−∞
eyξ|ξ|−iα− 1

2 dξ =
1√
2π

Γ

( 1

2
− iα

)
yiα− 1

2 , y > 0,

so

U−(x) =
1√
2π

Γ

( 1

2
− iα

)
(i(x − i0))iα− 1

2 ,

(4.3) U−(x) =
1√
2π

Γ

( 1

2
− iα

)
×
{

e−
π
2
α−i π

4 xiα− 1
2 , x > 0,

e
π
2
α+i π

4 |x|iα− 1
2 , x < 0.

Now let u be a solution of (4.1), so that

u = u1H(x)x−
1
2

+iα + u3H(−x)|x|− 1
2

+iα
= u2U+ + u4U−.

Using (4.2) and (4.3), we get

u1 =
1√
2π

Γ

( 1

2
− iα)e

π
2
α+i π

4 u2 +
1√
2π

Γ

( 1

2
− iα)e−

πα
2
−i π

4 u4,

u3 =
1√
2π

Γ

( 1

2
− iα

)
e−

π
2
α−i π

4 u2 +
1√
2π

Γ

( 1

2
− iα)e

πα
2

+i π
4 u4.

(4.4)

Here we want to express u2, u1 in terms of u3, u4. From (4.4), we get

(4.5)

(
u2

u1

)
=




√
2π

Γ( 1
2
−iα)

e
π
2
α+i π

4 −eπα+i π
2

eπα+i π
2

√
2π

Γ( 1
2

+iα)
e
π
2
α−i π

4



(

u3

u4

)
,

where we also used the reflection identity,

Γ

( 1

2
+ iz
)

Γ

( 1

2
− iz

)
=

π

coshπz
.
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Recall that Γ(z) is meromorphic with simple poles at −k, for k ∈ N, and no other
poles. The reflection identity above can also be written

Γ(z)Γ(1 − z) =
π

sinπz
,

and implies that if Γ(z) = 0, then 1− z has to be pole, so 1− z = −k for some k ∈ N,

z = k + 1, which is impossible since we also know that Γ(k + 1) = k! 6= 0. Hence Γ(z)
has no zeros, and 1

Γ(z)
is entire. The transition matrix in (4.5) has determinant 1 and

is an entire holomorphic function of α. The relation (4.5) remains valid therefore for
all α ∈ C.

We next compute the transition matrix analogous to the one in (4.5) in the semi-
classical case, for solutions of

(4.6)
( 1

2
(xhDx + hDxx) − µ

)
u = 0.

This is, of course, the same equation as (4.1) with α = µ/h. We now require

u =

{
u1xi µ

h
− 1

2 x > 0,

u3|x|i
µ
h
− 1

2 x < 0,

Fhu(ξ) =

{
u2ξ

−i µ
h
− 1

2 ξ > 0,

u4|ξ|−i µ
h
− 1

2 ξ < 0,

where

(4.7) Fhu(ξ) =
1√
2πh

∫
e−ixξ/hu(x) dx =

1√
h

û
( ξ

h

)
.

A simple computation gives
(4.8)
(

u2

u1

)
=




√
2π h

i
µ
h

Γ( 1
2
−i µ

h
)
e
π
2
µ
h

+i π
4 −eπ

µ
h

+i π
2

eπ
µ
h

+i π
2

√
2π h

−i
µ
h

Γ( 1
2

+i µ
h

)
e
π
2
µ
h
−i π

4



(

u3

u4

)
=

(
a2,3 a2,4

a1,3 a1,4

)(
u3

u4

)
.

We summarize the discussion above in the following proposition.

Proposition 4.1 Let µ ∈ C be such that |Imµ| < h/2. If u ∈ D ′(R) is a solution of

(4.6), then u ∈ S ′(R) and there exist u1, u2, u3, u4 ∈ C such that

u = u1H(x)xi µ
h
− 1

2 + u2F
−1
h (H(ξ)ξ−i µ

h
− 1

2 )

= u3H(−x) |x|i
µ
h
− 1

2 + u4F
−1
h (H(−ξ) |ξ|−i µ

h
− 1

2 ).

Here Fh is the semiclassical Fourier transform defined in (4.7) and the coefficients u2, u1

can be expressed in terms of u3, u4 by (4.8). The transition matrix which occurs in (4.8)
is entire holomorphic in µ and has determinant 1.
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We finish this section by the following observation which will be useful in Section
6. The operator P0 =

1
2
(xhDx + hDxx) has the principal symbol p0(x, ξ) = xξ. For

µ ∈ C, |µ| ≪ 1, define ρ j ∈ p−1
0 (µ) by ρ1 = (1, µ), ρ2 = (µ, 1), ρ3 = (−1,−µ),

ρ4 = (−µ,−1). Working in the semiclassical limit, define the microlocal null so-
lutions e j of P0 − µ, for j = 1, . . . , 4 by e1 = xi µ

h
− 1

2 near ρ1, e1 = 0 near ρ3,

Fhe2 = ξ−i µ
h
− 1

2 near ρ1 ≈ κFh
ρ2, e2 = 0 near ρ4, e j(x) = e j−2(−x), j = 3, 4. Here

κFh
is the map (x, ξ) 7→ (ξ,−x) associated with Fh. Then a general null solution of

P0 − µ can be written either as u2e2 + u1e1 or as u3e3 + u4e4, where (4.8) holds.

5 Asymptotics of the Transition Matrix

In this section, we shall derive asymptotic formulas for the entries of the transition

matrix (4.8). We shall use the following version of Stirling’s formula [20],

(5.1)
Γ(z)√

2π
= e−zzz− 1

2 (1 +
1

12z
+ · · · ), |z| → ∞, | arg z| ≤ π − δ,

for every fixed δ > 0. We apply this in two cases.

Case A. We have |µ|/h ≫ 1 and µ 6∈ a conic neighborhood of the negative imaginary
axis. Then 1

2
− i µ

h
, −i µ

h
avoid a conic neighborhood of R− and we can apply (5.1), to

get

1√
2π

Γ

( 1

2
− i

µ

h

)
= e−

1
2

+i µ
h

( 1

2
− i

µ

h

)−i µ
h

eO( h
µ )

= exp
[
−1

2
+ i
µ

h
− i

µ

h
ln
( 1

2
− i

µ

h

)
+ O

( h

µ

)]

= exp
[
−1

2
+ i
µ

h
− i

µ

h

(
ln
(
−i
µ

h

)
− h

2iµ
) + O

( h

µ

)]

= exp
[
−1

2
+ i
µ

h
− i

µ

h
ln
(
−i
µ

h

)
+

1

2
+ O

( h

µ

)]
,

so in this case we have

(5.2)
1√
2π

Γ

( 1

2
− i

µ

h

)
= exp

[ iµ

h
− i

µ

h
ln(−iµ) +

iµ

h
ln h + O−

( h

µ

)]
.

Here and in what follows ln always stands for the principal branch of the logarithm.

Case B. We have |µ|/h ≫ 1 and µ avoids some conic neighborhood of the positive
imaginary axis. Then we can apply the earlier results with µ replaced by −µ and get

(5.3)
1√
2π

Γ

( 1

2
+ i
µ

h

)
= exp

[
− iµ

h
+ i
µ

h
ln(iµ) − iµ

h
ln h + O+

( h

µ

)]
.

If Reµ ≥ 1
C
| Imµ|, we combine this with the reflection identity

1

2π
Γ

( 1

2
− i

µ

h

)
Γ

( 1

2
+ i
µ

h

)
=

1

2 cosh πµ
h

= e−
πµ
h

+O(e−2π Re µ/h)
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and the fact that ln(iµ) − ln(−iµ) = iπ in this region, to conclude that

O+

( h

µ

)
+ O−

( h

µ

)
= O(e−2π Re µ/h).

It is straightforward to establish a corresponding estimate in the region Reµ ≤
− 1

C
| Imµ|, and we can summarize both cases in

(5.4) O+

( h

µ

)
+ O−

( h

µ

)
= O(e−2π Re µ/h), |Reµ| ≥ 1

C
| Imµ|.

Remark When µ is real we have

(5.5) Re O+

( h

µ

)
= Re O−

( h

µ

)
= O(e−2π|µ|/h).

In fact, if we first assume that µ≫ h, we get from (5.2) and (5.3):

Γ
(

1
2
− i µ

h

)
√
π

= exp
[

i
µ

h
− i

µ

h
lnµ + i

µ

h
ln h − πµ

2h
+ O−

( h

µ

)]
,

Γ
(

1
2

+ i µ
h

)
√
π

= exp
[
−i
µ

h
+ i
µ

h
lnµ− i

µ

h
ln h − πµ

2h
+ O+

( h

µ

)]
,

and using that the second quantity is equal to the complex conjugate of the other,
we conclude that (5.5) holds in this case. In the case µ ≪ −h, we can use the same

argument. In this case (5.2)and (5.3) give

Γ( 1
2
− i µ

h
)√

π
= exp

[
i
µ

h
− i

µ

h
ln |µ| + i

µ

h
ln h +

πµ

2h
+ O−

( h

µ

)]
,

Γ( 1
2

+ i µ
h

)√
π

= exp
[
− i

µ

h
− iµh ln |µ| − i

µ

h
ln h +

πµ

2h
+ O+

( h

µ

)]
,

and we can again conclude that (5.5) holds.
In any closed sector away from iR−, we can use (4.8) and (5.2) to get

(5.6) a2,3 = exp

(
i

h

(
µ ln(−iµ) − i

πµ

2
− µ +

hπ

4
+ ihO−

( h

µ

)))
.

In any closed sector away from iR+, we can use (4.8), the reflection identity and
(5.3), to get

(5.7) a2,3 = 2 cosh
( πµ

h

)
e

i
h

(µ ln(iµ)− iπµ
2
−µ+ πh

4
−ihO+( h

µ ))

Using (5.3) and (4.8), we get for µ away from a sector around iR+:

(5.8) a1,4 = e
i
h

(−µ ln(iµ)−i πµ
2

+µ− hπ
4

+ihO+(hµ)).
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In a sector Imµ > −C|Reµ|, we use the reflection identity

√
2π

Γ( 1
2

+ i µ
h

)
=

Γ( 1
2
− i µ

h
)√

2π
2 coshπ

µ

h
,

to get

(5.9) a1,4 = 2 cosh
( πµ

h

)
e

i
h

(−µ ln( µ
i

)−i πµ
2

+µ− hπ
4
−ihO−( h

µ )).

Combining the asymptotic formulae (5.6)–(5.9), we may summarize the discus-

sion in this section in the following proposition.

Proposition 5.1 We have the following tableau for the coefficients of the transition
matrix (4.8), when |µ|/h ≫ 1. In all cases:

a2,4 = −eπ
µ
h

+i π
2 , a1,3 = eπ

µ
h

+i π
2

For Reµ > C−1| Imµ|:

a2,3 = e
i
h

(µ ln µ−iπµ−µ+π h
4

+ihO−( h
µ )),

a1,4 = e
i
h

(−µ ln µ−iπµ+µ−π h
4

+ihO+( h
µ )).

For Imµ > −C|Reµ|:

a2,3 = e
i
h

(µ ln µ
i
−i πµ

2
−µ+ πh

4
+ihO−( h

µ )),

a1,4 = e
i
h

(−µ ln µ
i
−i πµ

2
±iπµ+µ− πh

4
−ihO−( h

µ )).

For Reµ < −C−1| Imµ|:

a2,3 = e
i
h

(µ ln(−µ)−µ+ πh
4

+ihO−( h
µ )),

a1,4 = e
i
h

(−µ ln(−µ)+µ− πh
4

+ihO+( h
µ )).

For Imµ < C|Reµ|:

a2,3 = e
i
h

(µ ln(iµ)−i πµ
2
±iπµ−µ+ πh

4
−ihO+( h

µ )),

a1,4 = e
i
h

(−µ ln(iµ)−i πµ
2

+µ− πh
4

+ihO+( h
µ )).

Here the terms with ±iπµ in the exponents indicate that we should take the sum of the
two possible terms with the same remainders O+ or O− in the exponent for each of the
two terms.
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6 The One-Dimensional Spectral Problem

We now return to Proposition 2.1, which shows (when combined with the exponen-
tial remainder estimates of Section 3) that the study of Pǫ near Λ0,0 (considered in a

suitable weighted space) can be reduced by conjugation to that of P̂ǫ acting on the
space L2

θ(S1 × R) of functions defined microlocally in some fixed neighborhood of

τ = 0, (x, ξ) ∈ K0,0 ⊂ R2 in T∗S1 × T∗R, with a θ = (θ0, θ1, θ2) Floquet periodicity
condition. Here K0,0 is an ∞-shaped curve as in the introduction, and θ was defined
in the beginning of Section 2. In order to fix the ideas, we assume that we are in the
case when the subprincipal symbol of Pǫ=0 vanishes, so that the symbol of P̂ǫ is given

by (2.5), and we are then in the parameter range h2 ≪ ǫ ≤ hδ . At least formally,
the study of P̂ǫ can be reduced to a family of 1-dimensional problems by a Fourier
series expansion in the t-variable and (as noted in (2.3)) we get the 1-dimensional
operators

(6.1) P̂ǫ(h(k − θ0), x, hDx; h), k ∈ Z,

where θ0 = S0/(2πh)+k0/4, and we restrict the range of k by requiring that h(k−θ0)

be small. The operators (6.1) should be considered as acting on the microlocal space
L2
θ ′(R) defined similarly to L2

θ(S1 × R), with θ ′ = (θ1, θ2). Using (2.5), we see that
(6.1) becomes

g(τ ) + iǫQ
(
τ , x, hDx, ǫ,

h2

ǫ
; h
)
, τ = h(k − θ0),

where

Q
(
τ , x, ξ, ǫ,

h2

ǫ
; h
)
∼ Q0(τ , x, ξ, ǫ,

h2

ǫ
) + hQ1 + h2Q2 + · · ·

is holomorphic with respect to (τ , x, ξ) in a fixed complex neighborhood of {0}×K0,0

and depends smoothly on the other parameters. We further notice that

Q0(τ , x, ξ, 0, 0) = 〈q〉(τ , x, ξ)

is equal to the trajectory average of q, expressed in suitable real symplectic coordi-
nates, and we know by construction that 〈q〉(0, x, ξ) = 0 on K0,0.

We also recall the assumptions (1.11) and (1.13), which say that

(6.2) 〈q〉(τ , x, ξ) = f (τ ,Re〈q〉(τ , x, ξ)), Re f (τ , r) = r, f (0, 0) = 0,

Re〈q〉 ′′(x,ξ),(x,ξ)(0, 0, 0) is non-degenerate of signature 0.

Here we assume for simplicity that (0, 0) ∈ K0,0 is the branching point.
In the following we shall discuss the spectrum of the 1-dimensional operator

(6.3) Q = Qτ = Q
(
τ , x, hDx, ǫ,

h2

ǫ
; h
)
.

Since this operator is only defined microlocally and up to an error O
(

e−
1

C(ǫ+h)

)
, we

must keep in mind that for the moment the eigenvalues will be defined only formally
and up to errors of at least the same size.
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A First Localization of the Spectrum

Assume first that 〈q〉 is real-valued. Then from the sharp Gårding inequality, we see
that the spectrum of the operator (6.3) in the band |Re z| < 1/O(1) is contained in

(6.4)
{

z ∈ C; |Re z| < 1/O(1), | Im z| ≤ O(1)
(

h + ǫ +
h2

ǫ

)}
.

Under the more general assumption (6.2), we see that (6.4) can be applied to
g(τ ,Qτ ), where g(τ , · ) = f −1(τ , · ). So in the general case, we see that the spec-
trum of the operator (6.3) in the band |Re z| < 1/O(1) is contained in

(6.5) Στ :=
{

z ∈ C; |Re z| < 1/O(1), |z − f (τ ,Re z)| ≤ O(1)
(

h + ǫ +
h2

ǫ

)}
.

We also have

‖(Qτ − z)−1‖ ≤ O(1)

dist(z,Στ )
, for |Re z| < 1/O(1), z 6∈ Στ .

Normal Forms near the Branching Points

Let Q0 = Q0(τ , x, ξ, ǫ, h2

ǫ ) be the principal symbol of Q. Following [14] (and [13,

Appendix B]), we get the following adaptation of [14, Proposition 5.3].

Proposition 6.1 We can find a canonical transformation: (x, ξ) 7→ κτ ,ǫ,h2/ǫ(x, ξ)
depending analytically on τ and smoothly on ǫ, h2/ǫ with values in the holomorphic
canonical transformations: neigh((0, 0),C2) → neigh((0, 0),C2), and an analytic
function kǫ,h2/ǫ(τ , q) depending smoothly on ǫ, h2/ǫ, such that

κτ ,ǫ,h2/ǫ(0, 0) = (x(τ , ǫ, h2/ǫ), ξ(τ , ǫ, h2/ǫ))

is the unique critical point close to (0,0) of (x, ξ) 7→ Q0(τ , x, ξ, ǫ, h2/ǫ) and with

Q0(τ , κτ ,ǫ,h2/ǫ(x, ξ), ǫ, h2/ǫ) = kǫ,h2/ǫ(τ , xξ).

Moreover, κτ ,0,0 is real when τ is real and

∂

∂q
Re kǫ,h2/ǫ(τ , 0) > 0.

After a conjugation by an elliptic Fourier integral operator associated to the
canonical transformation κτ ,ǫ,h2/ǫ we may assume that the leading symbol of Qτ ,

Q0 = Q0(τ , x, ξ, ǫ, h2/ǫ)

is a function of τ , ǫ, h2/ǫ and xξ. We can get a complete normal form by making

further conjugations by analytic pseudodifferential operators of order 0 in such a
way that the complete symbol also becomes a function of τ , ǫ, h2/ǫ and xξ. This is
carried out in Appendix A. We get the following result which is very close to one of
the main results of [13, Appendix B].
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Proposition 6.2 We can quantize κτ ,ǫ,h2/ǫ by an elliptic Fourier integral operator U =

Uτ ,ǫ,h2/ǫ with an analytic symbol, depending holomorphically on τ and smoothly on

ǫ, h2/ǫ, such that

(6.6) U−1QU = Kǫ,h2/ǫ(τ , I; h) + O(e−
1

Ch ), I = P0 =
1
2
(x ◦ hDx + hDx ◦ x),

where Kǫ,h2/ǫ(τ , ι; h) is a classical analytic symbol of order 0 depending holomorphically
on τ and smoothly on ǫ, h2/ǫ. The leading part of K is kǫ,h2/ǫ(τ , ι) appearing in Propo-
sition 6.1.

The Quantization Condition

We start with a side remark about normalization. When P(x, hDx) is a selfadjoint 1-

dimensional h-pseudodifferential operator of principal type, and z ∈ R, then we can
normalize microlocally defined solutions of (P − z)u = 0, z ∈ R, by imposing that
(i/h[P, χ]u|u) = 1. Here χ = χ(x, ξ) is defined near a piece of the real characteristics
and has the property that ∇χ is of compact support near the characteristics of P − z

and χ increases from 0 to 1 when we progress in the Hamilton flow direction. (See
[13, (4.28)].) It is easy to check that if we view u as a solution of ( f (P) − f (z))u = 0,
then we get the corresponding normalization

( i

h
[ f (P), χ]u|u

)
= g(z, z)

( i

h
[P, χ]u|u

)
= g(z, z),

where f (P) − f (z) = (P − z)g(P, z). If we drop the requirement that P be selfadjoint
or just let z become complex, there is no obvious normalization of null-solutions of
P−z, but we still have a well-defined sesqui-linear form on N(P−z)×N(P∗−z), given

by (i/h[P, χ]u|v). If we have some additional information allowing us to identify the
two null-spaces, then this can still be used to normalize null-solutions of P−z. In the
following we abandon the attempt to normalize completely the null-solutions, since
already the operator Qǫ=0,h2/ǫ=0 is not necessarily selfadjoint.

By Proposition 6.2 we have an analytic symbol f ( · ; h) depending analytically on
τ and smoothly on ǫ, h2/ǫ, such that

(6.7) U−1 f (Q; h)U = P0.

Notice that if u is a null-solution of P0 − µ in a full

neighborhood of (0, 0), then (Q − z)U u = 0 near (0, 0), where the spectral pa-
rameters are related by

(6.8) f (z; h) = µ.

Recall from the end of Section 4 that P0 − µ has the four characteristic points ρ j ,
j = 1, 2, 3, 4 and that this operator has the microlocal null solutions e j described
after Proposition 4.1. When µ is real, we check that e j is normalized near ρ j . If v is
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a global null-solution of P0 − µ, with v = v je j near ρ j , then by Proposition 4.1 we
have:

(6.9)

(
v2

v1

)
=

(
a2,3 a2,4

a1,3 a1,4

)(
v3

v4

)
.

Assume for simplicity sake that κ = κτ ,ǫ,h2/ǫ is defined in a suitable domain, con-
taining ρ j , j = 1, . . . , 4. Let α j = κ(ρ j), f j = U e j . Then if u is a null-solution of
Q − z near the branching point κ((0, 0)), equal to v j f j near α j , then (6.9) still holds.
We may wish to renormalize the f j by putting

(6.10) f j = e
i
h

d j g j .

Then a straightforward calculation shows that if u is a null-solution of Q− z near the
branching point, and u = u jg j near α j , then

(6.11)

(
u2

u1

)
=

(
c2,3 c2,4

c1,3 c1,4

)(
u3

u4

)
, c j,k = e−

i
h

(d j−dk)a j,k.

Here is a natural example of such a renormalization. Assume for the sake of sim-
plicity that near α j the set Q−1

0 (z) takes the form ξ = λ j(x), where λ j is analytic and
depends analytically on the parameters ǫ, h2/ǫ, τ , z. Then choose g j so that microlo-
cally near α j we have the standard WKB-form:

g j = b j(x; h)e
1
h
ψ j (x),

where b j is a classical elliptic analytic symbol of order 0. The function ψ j solves the
eikonal equation

∂ψ j

∂x
− λ j(x) = 0, with the extra condition ψ j(πx(α j)) = 0,

and b j , ψ j depend analytically on the additional parameters τ , z and smoothly on
ǫ, h2/ǫ. Using an explicit representation of U we write near α j for j = 1, 3:

(6.12) f j(x) = h− 1+N
2

∫∫
ei/h(ψ(x,y,θ)+φ j (y))A(x, y, θ)a j(y) dydθ = ei/heψ j b̃ j(x; h).

Here the last equality follows from stationary phase, ψ is a non-degenerate phase
function generating κ and near ρ j we write e j in the WKB-form

e j(y) = a j(y)e
i
h
φ j (y)

= |y| iµ
h
− 1

2 = |y|− 1
2 e

i
h
µ ln |y|.

The function ψ̃ j(x) in (6.12) appears as the critical value in the stationary phase ex-
pansion of (6.12) and solves the same eikonal equation as ψ j .

For j = 2, 4, we get near α j :

f j(x) = h− 2+N
2

∫∫∫
ei/h(ψ(x,y,θ)+yη+φ j (η))A(x, y, θ)a j(η) dydηdθ = e

i
h

eψ j b̃ j(x; h),
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where a j and φ j appear when writing Fhe j on WKB-form near κF(ρ j).
In this case we see that d j = d j(h) is a classical analytic symbol of order 0, de-

pending analytically on the additional parameters and with the imaginary part of the
leading symbol vanishing when Imµ = 0, ǫ = 0, h2/ǫ = 0. The leading part of d j

can be further described in terms of symplectic geometry.
Put

(6.13) θ j,k := d j − dk.

We have the obvious relation θ2,3 + θ1,4 = θ1,3 + θ2,4.
Now we work in a full neighborhood of K0,0 (introduced after (1.14)). Recall that

we have the points α1, α2, α3, α4 on the four crossing branches of K0,0 distributed
with positive orientation around the branching point. We may assume that α3, α4

are situated close to the left closed curve γ1 of K0,0 and that α1, α2 are situated close
to the right closed curve γ2 of K0,0. Start with a microlocal null-solution to Q − z
near κ((0, 0)), of the form u4g4 near α4 and of the form u3g3 near α3. Here for the
moment u3, u4 can be prescribed arbitrarily, and we then know that u = u jg j near

α j for j = 2, 1, where u2, u1 are given by (6.11). We require temporarily that u is a
well-defined single-valued null-solution along the whole left closed component γ1 of
K0,0. Then if we follow u around the exterior part of γ1 from α4 to α3, we get

(6.14) u3 = ei/hS3,4 u4, where S3,4 =

∫

γ3,4

ξ dx + O(h) = S0
3,4 + O(h),

with γ3,4 denoting the exterior part of γ1 which joins α4 to α3.

Now recall that we really want u ∈ L2
θ ′ , θ

′ = (θ1, θ2), where θ j =
S j

2πh
+

k j

4
where

S j is a real action difference related to the reduction in Proposition 2.1 and k j ∈ Z a
corresponding Maslov index. This means that u should be multivalued, but Floquet

periodic along γ1 in the sense that

(6.15) γ1
∗u = e−2πiθ1 u,

where γ1
∗u denotes the extension of u along one loop of γ1 which we assume to be

oriented in the following way: α4 → α3 → (0, 0) → α4. Starting near α3, we get γ1
∗u

near the same point in two steps:

u3g3 → u4g4 → e
i
h

S3,4 u4g3.

The Floquet condition (6.15) therefore becomes e−2πiθ1 u3 = eiS3,4/hu4, or equivalently

(6.16) u3 = e2πiθ1+ i
h

S3,4 u4,

instead of (6.14).
Similarly, let γ2 be the right-hand loop in K0,0 with the orientation: α2 → α1 →

(0, 0) → α2. Then, if we want u to extend to a null-solution in L2
θ ′ near γ2, we get

the analogue of (6.16):

(6.17) u1 = e2πiθ2+ i
h

S1,2 u2,
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with S1,2 defined as in (6.14) with γ3,4 there replaced by γ1,2, the exterior segment in
γ2 that joins α2 to α1.

Start near α4 with u4g4, use (6.16) to get u3 and then (6.11) to get u2, u1:

u2 = (c2,3e2πiθ1+ i
h

S3,4 + c2,4)u4, u1 = (c1,3e2πiθ1+ i
h

S3,4 + c1,4)u4,

and in order to get a global solution in L2
θ ′ , we also need to apply (6.17), which gives

our global one-dimensional quantization condition

(6.18) 0 = c2,3e2πi(θ1+θ2)+ i
h

(S3,4+S1,2) + c2,4e2πiθ2+ i
h

S1,2 − c1,3e2πiθ1+ i
h

S3,4 − c1,4,

where we took u4 = 1.

In this relation, we substitute (6.11) and (6.13) and get after multiplication with
eiθ1,4/h:

0 = a2,3e
i
h

(bS3,4+bS1,2) + a2,4e
i
h

bS1,2 − a1,3e
i
h

bS3,4 − a1,4,

with

Ŝ1,2 = S1,2 + θ1,2 + 2πhθ2 = S1,2 + θ1,2 + S2 + hk2
π

2

Ŝ3,4 = S3,4 + θ3,4 + 2πhθ1 = S3,4 + θ3,4 + S1 + hk1
π

2
,

(6.19)

where we recall that θ j =
S j

2π +
k j

4
. With

(6.20) S̃ j,k = Ŝ j,k + h
π

2
,

we get

(6.21) 0 = a2,3e
i
h

(eS3,4+eS1,2)−i π
2 + a2,4e

i
h

eS1,2 − a1,3e
i
h

eS3,4 − a1,4ei π
2 .

Proposition 6.3 Assume that

Q(τ , x, ξ, ǫ, h2/ǫ; h) ∼ Q0(τ , x, ξ, ǫ, h2/ǫ) + hQ1(τ , x, ξ, ǫ, h2/ǫ) + · · ·
is holomorphic in (τ , (x, ξ)) ∈ neigh(0,C) × neigh(K0,0,C2) and depends smoothly

on ǫ, h2

ǫ ∈ neigh(0,R). Here K0,0 is an ∞-shaped curve with the self-crossing at (0, 0).
Assume furthermore that

Q0(τ , x, ξ, 0, 0) = 〈q〉(τ , x, ξ) = f (τ ,Re〈q〉(τ , x, ξ)),

where f is an analytic function with f (0, 0) = 0. We assume next that along K0,0,

Re〈q〉(0, x, ξ) = 0 and that Re〈q〉(0, x, ξ) has a unique critical point on K0,0, (0, 0),
which is a non-degenerate saddle point. When z ∈ neigh(0,C), put µ = f (z; h) where
f (z; h) is an analytic symbol introduced in Propositions 6.1 and 6.2, and in (6.8). Then
z is a quasi-eigenvalue of the operator Q(τ , x, hDx, ǫ, h

2/ǫ; h) acting on L2
θ ′(R) if and

only if the corresponding µ satisfies (6.21). In (6.21), the coefficients a1,3, a1,4, a2,3, and

a2,4 are introduced in Proposition 4.1, and the quantities S̃1,2 and S̃3,4 are defined in

(6.19) and (6.20). They depend holomorphically on µ with ∂µS̃ j,k = O(1), and when µ

is real, we have Im S̃ j,k = O(ǫ + h2/ǫ).

In the formulation of the proposition, we leave the notion of a quasi-eigenvalue
undefined and refer the reader to Section 11 for a complete justification of this ter-
minology.
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7 Zeros of Sums of Exponential Functions

Here we elaborate on arguments in [7], and a related and even more general dis-
cussion can be found in Hager [11, Proposition 8.1]. The results established in this
section will be used in Section 10.

Let γ1, γ2, . . . , γN be compact C1 segments in C such that γ j starts at s j−1 ∈
D(z j−1, r j−1/2) and ends at e j ∈ D(z j , r j/2), where we use the cyclic convention
and view the index j as an element of Z/NZ. We assume that N ∈ {1, 2, . . . } is
fixed, but allow γ j , z j , r j, s j , e j to vary with the semi-classical parameter h while all

estimates below will be uniform in h. Let f be a holomorphic function defined in⋃N−1
j=0 (D(z j , r j) ∪ neigh(γ j+1)), such that

f = e
i
h

S j (z)+O(1) on γ j , | f | ≤ e1/h(− Im S j (z))+O(1) on D(z j , r j),

where S j is holomorphic in neigh(γ j) ∪ D(z j−1, r j−1) ∪ D(z j , r j) and

Im(S j+1 − S j) = O(h) on D(z j , r j).

In D(z j , r j) we can write f (z) = e
i
h

S j (z)g j(z), |g j(z)| ≤ O(1). We further know
that |g j(e j)| ≥ 1/O(1). Standard arguments (see for instance [28, §5]), including
Jensen’s formula, imply that the number of zeros of g j in D(z j , r j/2) is O(1) and if α j

is a segment in D(z j , r j/2) from e j to s j which avoids the zeros w1, . . . ,wM of g j in

D(z j , r j/2) such that | var argα j
(z − wk)| < 2π for every k, then

Re
1

2πi

∫

α j

g ′
j

g j
dz = O(1),

and consequently

Re
1

2πi

∫

α j

f ′

f
dz = O(1) + f rac12πh

∫

α j

Re S ′
j(z) dz

= O(1) +
1

2πh
Re(S j (s j) − S j(e j)).

(7.1)

Let γ be the closed contour given by γ1 ∪ α1 ∪ γ2 ∪ · · · ∪ γN ∪ α0. We want to

study

N( f , γ) :=
1

2πi

∫

γ

f ′(z)

f (z)
dz =

1

2π
var argγ( f ).

When γ is the oriented boundary of a bounded domain Γ, where f is holomorphic,
then N( f , γ) is the number of zeros of f inside Γ.

Along γ j , we write f = e
i
h

eS j (z), S̃ j(z) = S j(z) + O(h). Then,

1

2πi

∫

γ j

f ′

f
dz =

1

2πh

∫

γ j

S̃ ′
j(z) dz =

1

2πh
(S̃ j(e j) − S̃ j(s j−1)),
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so

N∑

j=1

1

2πi

∫

γ j

f ′

f
dz =

1

2πh

N−1∑

j=0

(S̃ j(e j) − S̃ j+1(s j))

=
1

2πh

N−1∑

j=0

(S j(e j) − S j+1(s j)) + O(1),

and hence in view of (7.1) and the uniform boundedness of N :

N( f , γ) =
1

2πh

N−1∑

j=0

(S j(s j) − S j+1(s j)) + O(1).

Here we recall that Im(S j − S j+1) = O(h) in D(z j , r j). It follows that ∇(S j − S j+1) =

O(h/r j) in D(z j , r j/2) and consequently that

S j(s j) − S j+1(s j+1) = S j(z) − S j+1(z) + O(h),

for any other point z ∈ D(z j , r j/2). Thus finally,

N( f , γ) =
1

2πh

N−1∑

j=0

(S j (w j) − S j+1(w j)) + O(1),

with w j ∈ D(z j , r j/2) chosen arbitrarily. Here we can further replace S j(w j) −
S j+1(w j) by its real part, since Im S j − S j+1 = O(h) in D(z j , r j).

8 Skeleton in the Region |µ| ≫ h.

We now return to the situation in Section 6. We are interested in the solutions µ of
(6.21). In the following, we will write S j,k instead of S̃ j,k, so we are interested in the
zeros of the function F0(µ; h) appearing in (6.21), given by

F0(µ; h) = e
i
h

(S1,2+S3,4)−i π
2 a2,3 + e

i
h

S1,2 a2,4 − a1,3e
i
h

S3,4 − a1,4e
iπ
2 .

Pulling out a factor e−iπ/2, we get the new equivalent function

(8.1) F(µ; h) = e
i
h

(S1,2+S3,4)a2,3 + e
i
h

S1,2+π µ
h + e

i
h

S3,4+π µ
h + a1,4,

which has the same zeros as F0. Here we have also used the explicit formulae for a2,4,
a1,3 in (4.8).

Using the results of Section 5, we shall now look at the asymptotics of F(µ; h),
when |µ|/h ≫ 1.

Case 1: Assume that

(8.2) Ch ≤ |µ| ≪ 1,
∣∣argµ− π

2

∣∣ ≤ π − 1
C
.
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(Case 2, given by | argµ + π
2
| < π − 1

O(1)
(see page 615) will be reduced to Case 1 by

a symmetry argument.) In this region, we have (5.9):

a1,4 = eO−( h
µ )
(

e
i
h

(−µ ln µ
i

+µ− πh
4

+i πµ
2

) + e
i
h

(−µ ln µ
i

+µ− πh
4
−i 3πµ

2
)
)
,

and using (8.1) and (5.6) we also get,

F(µ; h) = e
i
h

(S1,2+S3,4)e
i
h

(µ ln µ
i
−µ+ πh

4
−i πµ

2
)−O−( h

µ ) + e
i
h

S1,2+π µ
h + e

i
h

S3,4+π µ
h

+ eO−( h
µ )+ i

h
(−µ ln µ

i
+µ− πh

4
+i πµ

2
) + eO−( h

µ )+ i
h

(−µ ln µ
i

+µ− πh
4
−i 3πµ

2
)

= e
πµ
2h G(µ; h),

where

G(µ; h) = a1 + a2 + a3 + a4, a4 = a4+ + a4− ,

a1 = e
i
h

(S1,2+S3,4+µ ln µ
i
−µ+ πh

4
)−O−( h

µ ),

a2 = e
i
h

S1,2+ πµ
2h ,

a3 = e
i
h

S3,4+ πµ
2h ,

a4± = eO−( h
µ )+ i

h
(−µ ln µ

i
+µ− πh

4
)± πµ

h .

(8.3)

We have |a j | = er j/h, j = 1, 2, 3, 4±, where

r1 : = − Im S1,2 − Im S3,4 + (Imµ) ln
1

|µ| − Reµ arg
µ

i
+ Imµ− h Re O−

( h

µ

)
,

r2 : = − Im S1,2 +
π

2
Reµ,

r3 : = − Im S3,4 +
π

2
Reµ,

r±4 : = −(Imµ) ln
1

|µ| + Reµ arg
µ

i
− Imµ± π Reµ + h Re O−

( h

µ

)
.

Notice that a4± is dominating over a4∓ when ±Reµ ≥ 0, and in each half-plane

±Reµ > 0, we may associate a4 to the dominating term, modulo an error which
is O(e−2π| Re µ|/h) times the leading term. Also notice that the last equations take the
form

r1 = (Imµ) ln
1

|µ| − Im S1,2 − Im S3,4 − Y (µ),

r2 = − Im S1,2 +
π

2
Reµ,

r3 = − Im S3,4 +
π

2
Reµ,

r4± = −(Imµ) ln
1

|µ| ± π Reµ + Y (µ),
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where

(8.4) Y (µ) = (Reµ) arg
( µ

i

)
− Imµ + h Re O−

( h

µ

)
.

Following the general principles, as explained for example in [7] (see also [1]), we
shall now look for the curves Γ j,k, j, k = 1, 2, 3, 4±, where

∣∣a j

∣∣ = |ak|, and we shall

especially be interested in those parts of Γ j,k where
∣∣a j

∣∣ = |ak| is dominating over the
other |aν |. In doing so, let us remark first that we will not see any zeros of G generated
by the zeros of a2+a3 as a dominating part of G, for when Reµ > 0, then r+

4 dominates

over r−4 and r1+r+
4 = r2+r3 and clearly we cannot have r2 = r3 ≥ max(r1, r

+
4 )+Const.

Now when Reµ < 0, r−4 dominates over r+
4 and r2 + r3 − π Reµ = r1 + r−4 , so that

r2 + r3 < r1 + r−4 in this case, leading to an even stronger conclusion.
We now begin look at the location of zeros of a4 and of sums of two of the a j .

Zeros of a4 are of the form µ = i(k + 1
2
)h, k = 0, 1, 2, . . . .

Zeros of a3 + a4± are contained in the region Γ3,4± :

(Imµ) ln
1

|µ| = Im S3,4(µ) + Y (µ) − π

2
Reµ± π Reµ.

Similarly the zeros of a2 + a4± are contained in Γ2,4± :

(Imµ) ln
1

|µ| = Im S1,2(µ) + Y (µ) − π

2
Reµ± π Reµ.

The zeros of a1 + a3 are contained in Γ1,3:

(Imµ) ln
1

|µ| = Im S1,2(µ) +
π

2
Reµ + Y (µ).

The zeros of a1 + a2 are contained in Γ1,2:

(Imµ) ln
1

|µ| = Im S3,4(µ) +
π

2
Reµ + Y (µ).

The zeros of a1 + a4± are contained in Γ1,4± :

(Imµ) ln
1

|µ| =
1

2
(Im S1,2 + Im S3,4) ± π

2
Reµ + Y (µ).

Put

X =
π

2
Reµ + (Reµ) arg

( µ
i

)
− Imµ + h Re O−

( h

µ

)
=
π

2
Reµ + Y (µ).

When Reµ > 0, a4+ dominates over a4− and we shall only consider Γ3,4+ = Γ1,2,

Γ2,4+ = Γ1,3, Γ1,4+ given by

(8.5) (Imµ) ln
1

|µ| =





Im S3,4 + X, on Γ3,4+ = Γ1,2

Im S1,2 + X on Γ2,4+ = Γ1,3,
1
2
(Im S1,2 + Im S3,4) + X on Γ1,4+ .
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Recall now from Section 5 that O−(h/µ) in (8.4) appears as a remainder in Stir-
ling’s formula, so that ∂µO−(h/µ) = O(h/µ2), and hence X is uniformly Lipschitz

for |µ| ≥ h. Proposition B.1 can therefore be applied to get the approximate behavior
of the Γ j,k. This will be exploited later.

In the left half-plane, a4− dominates over a4+ and we consider all the 5 curves
Γ3,4− , Γ2,4− , Γ1,4− , Γ1,2, and Γ1,3, given by:

(8.6) (Imµ) ln
1

|µ| =





Im S3,4 − 2π Reµ + X on Γ3,4−

Im S1,2 − 2π Reµ + X on Γ2,4−

Im S1,2 + X on Γ1,3,

Im S3,4 + X on Γ1,2,
1
2
(Im S1,2 + Im S3,4) − π Reµ + X on Γ1,4− .

Again Proposition B.1 can be applied to give the approximate shape of Γ j,k. Recall

that we are in Case 1 with |µ| ≫ h, so that (8.2) holds.

8.1 Skeleton in the Region Reµ ≥ 0

(We will implicitly use that |a2||a3| = |a1||a4+ |.) The region |Reµ| ≤ O(h) will re-
quire a special discussion. In the region Reµ ≥ Ch, we have |a+

4 | = e2π Re µ/h|a4− | ≫
|a−4 |, so |a4| ∼ |a+

4 | and in this region we see from an earlier observation that the
zeros of a2 + a3 will not play any essential role. In this region we shall therefore use

the Γ j,k appearing in (8.5) and, as pointed out earlier, we are interested here in the
part of each such Γ j,k, where |a j | = |ak| dominates over the other |aν |.

It follows from Proposition B.1 that the curves in (8.5) (as well as the ones in
(8.6)), are of the form Imµ = γ j,k(Reµ), with |γ j,k|, |γ ′

j,k| ≪ 1. Notice that every

crossing point of two of the curves Γ1,4+ ,Γ1,2,Γ2,4+ is also a crossing point for all
three. This follows from (8.5) or even more trivially from the observation that two
of the three equations |a1| = |a4+ |, |a1| = |a2|, |a2| = |a4+ |, imply the third one. Also
notice that if we draw the two curves Γ1,2 = Γ3,4+ , Γ1,3 = Γ2,4+ , then Γ1,4+ is between

the two; see Figure 4.
For µ > 0 we have X(µ) = h Re O−( h

µ ) = hO(e−2πµ/h) by (5.5) and hence
γ j,k(Reµ) is described as in Proposition B.1 with
(8.7)

F = F j,k(Reµ) = hO(e−2π Re µ/h) +





Im S3,4(Reµ), ( j, k) = (3, 4+), (1, 2),

Im S1,2(Reµ), ( j, k) = (2, 4+), (1, 3),
1
2
(Im S1,2 + Im S3,4)(Reµ), ( j, k) = (1, 4+).

In the region Imµ < min(γ2,4+ (Reµ), γ3,4+ (Reµ)) we have

|a4+ | ≥ max(|a1|, |a2|, |a3|, |a4− |),

and if we restrict further to

(8.8) Imµ < min(γ2,4+ (Reµ), γ3,4+ (Reµ)) − Ch

ln 1
|µ|
, Reµ > Ch,
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with C ≫ 1, we see that a4+ is dominating in the sense that

|a4+ | ≥ 2|a1 + a2 + a3 + a4− |,

and hence G(µ; h) has no zeros in that region. Similarly in the region Imµ >
max(γ1,2, γ1,3)(Reµ), we have |a1| ≥ |a2|, |a3|, |a4± |, and if

(8.9) Imµ > max(γ1,2, γ1,3)(Reµ) +
Ch

ln 1
|µ|
, Reµ ≥ 0,

with C ≫ 1, then a1 is dominating in the sense that |a1| ≥ 2|a2 + a3 + a4|, and again

G(µ; h) has no zeros there.
Now consider a point µ ∈ Γ3,4+ , where γ3,4+ ≤ γ2,4+ , so that Im S3,4 ≤ Im S1,2,

with Reµ ≫ h. Going down (i.e., decreasing Imµ while keeping Reµ constant) by
a distance ≫ h/ ln 1

|µ| , we reach the region (8.8), where a4+ dominates.

Case a: 0 ≤ Im S1,2 − Im S3,4 ≤ O(h). Going up by a distance ≫ h/ ln 1
|µ| , we cross

Γ2,4+ = Γ1,3 and reach the region (8.9), where a1 is dominating.

Case b: Im S1,2 − Im S3,4 ≥ Ch for C ≫ 1. Going up by a distance ∼ h/ ln 1
|µ| , we

reach the region, where a3 is dominating, |a3| ≥ 2|a1 + a2 + a4|, and continuing to go
up, a3 remains dominating until we reach a h/ ln 1

|µ| -neighborhood of Γ1,3 = Γ2,4+ .

After crossing that curve and going up by another amount Ch/ ln 1
|µ| , we reach the

region, where a1 is dominating.

Our discussion shows the following.

Proposition 8.1 We work in the region (8.2) and assume in addition that Reµ > 0.
If Imµ ≤ min(γ2,4+ , γ3,4+ )(Reµ), then

(8.10) |a4+ | ≥ max(|a1|, |a2|, |a3|, |a4− |),

If Imµ ≥ max(γ1,2, γ1,3)(Reµ), then

(8.11) |a1| ≥ max(|a2|, |a3|, |a4± |).

If γ3,4+ (Reµ)(= γ1,2(Reµ)) ≤ Imµ ≤ γ1,3(Reµ)(= γ2,4+ (Reµ)), then

(8.12) |a3| ≥ max(|a1|, |a2|, |a4± |).

If γ2,4+ (Reµ)(= γ1,3(Reµ)) ≤ Imµ ≤ γ3,4+ (Reµ)(= γ1,2(Reµ)), then

(8.13) |a2| ≥ max(|a1|, |a3|, |a4± |).

If the distance from µ to (Γ1,2 = Γ3,4+ )∪(Γ1,2 = Γ3,4+ ) is ≥ Ch/ ln 1
|µ| , with C ≫ 1,

then in the respective cases (8.11), (8.12), and (8.13) can be sharpened to the dominance
in the sense explained above. In particular, G has no zeros in this region. If, in addition,
Reµ ≥ Ch with C ≫ 1, then we have the same conclusion in the case of (8.10).
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Imµ

Reµ

Ch

Γ3,4+ = Γ1,2

Γ2,4+ = Γ1,3

Γ1,4+

a4+ dominates

a1 dominates

a2 dominatesa3 dominates

Figure 4: The union of the solid curves in the figure gives a schematic representation of the

skeleton S′ in the right half-plane intersected with the region (8.2). Proposition 8.1 shows that

the zeros of G in this region are inside the union of the thickened skeleton, obtained by placing

a disc of radius Ch/ |ln |µ|| around each point µ ∈ S′, and the set of all µ with 0 ≤ Reµ ≤ Ch

below S′. Proposition 8.3 gives a more precise description of the location of the zeros of G with

|Reµ| ≤ O(h).

In the region (8.2), intersected with the right half-plane Reµ > 0 we define the
skeleton to be the union of the curves Imµ = max(γ1,2, γ1,3)(Reµ) and Imµ =

min(γ2,4+ , γ3,4+ )(Reµ). The proposition shows that the zeros of G in the region under

consideration are contained in the union of all discs D(µ,Ch/ ln 1
|µ| ) with µ in the

skeleton just defined, and the set of all µ below the skeleton, with 0 ≤ Reµ < Ch, for

C ≫ 1.

8.2 Skeleton in the Region Reµ ≤ 0.

Again the region |Reµ| ≤ O(h) will require a separate discussion so we restrict our
attention to Reµ ≤ −Ch and we will use |a4− | = e−2πµ/h|a4+ | ≫ |a4+ |, so that
|a4| ∼ |a4− |. We therefore concentrate our attention on the curves in (8.6). As before
we notice that every crossing point of two of the three curves Γ1,2,Γ2,4− ,Γ1,4− is a

crossing point of all three. The same holds for Γ1,3,Γ3,4− ,Γ1,4− .
Now use that | Imµ| is small and hence that Im S1,2, Im S3,4 and their derivatives

with respect to Reµ are small. We can therefore consider the two curves:

A : −2π Reµ = Im S1,2 − Im S3,4, B : −2π Reµ = Im S3,4 − Im S1,2.

They are of the form −Reµ = γA(Imµ) and −Reµ = γB(Imµ), where γA, γB are
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small with small derivatives and satisfy

(8.14) |γA(Reµ)| ∼ |γB(Reµ)|, γAγB ≤ 0.

The curve Γ1,4− will play a central role. It crosses A,B at the points µA, µB (unless
these points are hidden in the forbidden region), and we have

(ReµA)(ReµB) ≤ 0, |ReµA| ∼ |ReµB|.

We notice that µA is the unique crossing point for Γ1,3,Γ3,4− ,Γ1,4− while µB is the
unique crossing point for Γ1,2,Γ2,4− ,Γ1,4− . More precisely, γ1,3(t) − γ1,4−(t),

γ1,4−(t)−γ3,4−(t) vanish precisely for t = ReµA and have the same sign as t −ReµA.
Similarly γ1,2(t) − γ1,4−(t), γ1,4−(t) − γ2,4−(t) vanish precisely for t = ReµB and
have the same sign as t − ReµB. We also notice that if µ belongs to one of the three
curves Γ1,3,Γ1,4− ,Γ3,4− , then the distance from µ to any of the two other curves

among these three is ≥ C−1|Reµ − ReµA|/ ln 1
|µ| . The same observation holds for

Γ1,2,Γ1,4− ,Γ2,4− with µB instead of µA.

For µ < 0, we have X−π Reµ = h Re O−( h
µ ) = hO(e−2π|µ|/h) by (5.5), and hence

γ1,4− is described as in Proposition B.1 with

F = F1,4−(Reµ) =
1
2
(Im S1,2 + Im S3,4)(Reµ) + hO(e−2π| Re µ|/h).

To fix the ideas we now assume that ReµA ≤ 0 (the case ReµB ≤ 0 can be treated
similarly). Considering the three curves Γ1,3,Γ1,4− ,Γ3,4− , we see that for Reµ ≤ 0:

• If Imµ ≤ min(γ1,4− , γ3,4−)(Reµ), then |a4− | ≥ |a1|, |a2|, |a3|, |a4+ |. (In this case,
we also have Imµ ≤ γ2,4−(Reµ).)

• If Imµ ≥ max(γ1,4− , γ1,3)(Reµ), then |a1| ≥ |a2|, |a3|, |a4± |. (In this case, we
also have Imµ ≥ γ1,2(Reµ).)

• If γ3,4−(Reµ) ≤ Imµ ≤ γ1,3(Reµ), then |a3| ≥ |a1|, |a2|, |a4± |.
This covers all possible cases with Reµ ≤ 0. Notice that the last case can appear only
when ReµA ≤ Reµ ≤ 0. When ReµB ≤ 0, we get the analogous discussion after a

permutation of the indices 2 and 3.

• If Imµ ≤ min(γ1,4− , γ2,4−)(Reµ), then |a4− | ≥ |a1|, |a2|, |a3|, |a4+ |.
• If Imµ ≥ max(γ1,4− , γ1,2)(Reµ), then |a1| ≥ |a2|, |a3|, |a4± |.
• If γ2,4−(Reµ) ≤ Imµ ≤ γ1,2(Reµ), then |a2| ≥ |a1|, |a3|, |a4± |.

Moreover, if in addition all the inequalities for Imµ are valid with an extra mar-
gin Ch/ ln 1

|µ| , C ≫ 1, then in the various cases, we have dominance of a1, a2, a3

respectively, in the sense explained before. For the dominance of a4− , we also need
the assumption that Reµ ≤ −Ch with C ≫ 1.

8.2.1 Exponential Localization to the Skeleton

Recall that we are still working in the region (8.2). In this region we define the skele-
ton to be S = S ′ ∪Γ4, where we define S ′ to be the union of the following two sets in
the left and the right half-planes, respectively:
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Imµ

Reµ
−Ch

Γ1,3

Γ1,2

Γ1,4−

Γ3,4−

Γ2,4−

a1 dominates

a4− dominates

a3 dominates

Figure 5: The union of the solid curves in the figure gives a schematic representation of the

skeleton S′ in the left half-plane intersected with the region (8.2). Proposition 8.2 shows that

the zeros of G are inside the union of the thickened skeleton, obtained by placing a disc of

radius Ch/ |ln |µ|| around each point µ ∈ S′, and the set of all µ with |Reµ| ≤ Ch below S′.

• In the closed left half-plane (intersected with (8.2)), assume ReµA ≤ 0 to fix the

ideas. Then this part of S ′ is given by all points of the form Imµ = γ1,4−(Reµ)
with Reµ ≤ ReµA, all points of the form Imµ = γ3,4−(Reµ) or of the form
Imµ = γ1,3(Reµ), with ReµA ≤ Reµ ≤ 0.

• In the closed right half-plane the corresponding part of S ′ is defined to be the

union of the two curves:

Imµ = max(γ1,3, γ1,2)(Reµ) and Imµ = min(γ2,4+ , γ3,4+ )(Reµ).

Γ4 is defined to be the part of the imaginary axis given by

Reµ = 0, Ch ≤ Imµ ≤ min(γ2,4+ , γ3,4+ )(0),

where C is the same constant as in (8.2). Notice that this part may be empty. The

earlier discussion shows that we have the following.

Proposition 8.2 The zeros of G in the domain (8.2) are contained in the set

( ⋃
µ∈S ′

D
(
µ,

Ch

ln 1
|µ|

))
∪ {µ below S ′; |Reµ| < Ch}.
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Remark The localization result of Proposition 8.2 improves if we are far from the
branch points of the skeleton. Thus for instance, if µ is below S ′ and dist(µ, S ′) ≥
Ch/ ln 1

|µ| , then

max |a4± | ≥ e
ln 1

|µ|
Ch

dist(µ,S ′)(|a1| + |a2| + |a3|),

so the zeros of G are exponentially small perturbations of those of a4 = a4+ + a4− . In
this region there is a bijection b between the zeros of a4 and those of G, with

|b(µ) − µ| ≤ O(h) exp[−(Ch)−1 ln
( 1

|µ|
)

dist(µ, S ′)].

Similarly let µ0 be a point of S ′ in the right half-plane, say µ0 ∈ Γ1,3 with a1, a3

dominating above and below this point respectively. If

dist(µ0,Γ3,4+ = Γ1,2) ≥ C2h

ln 1
|µ0|

,

then in D
(
µ0,Ch/(ln(1/|µ|0|))

)
, we have

max(|a1|, |a3|) ≥ e
(Ch)−1(ln 1

|µ0|
) dist(µ0,Γ1,2)

max(|a2|, |a4|),

and we conclude that the zeros of G are exponentially close to those of a1 + a3. Essen-
tially the same statement holds when µ0 belongs to the lower part of S ′, but here the
size of Reµ also matters, so near a point µ0 ∈ Γ3,4+ ∩ S ′ we get a bijection b between

the zeros of a3 + a4+ and those of G with

b(µ) − µ = O(1)
( h

ln 1
|µ0|

)
(e−

ln 1
|µ0|
Ch

dist(µ,Γ1,3) + e−
2π| Re µ|

h ),

and we have to assume both that dist(µ0,Γ1,3) ≫ h/ ln 1
|µ0| and that |Reµ| ≫ h.

The analogous statements hold in the left half-plane.

8.2.2 More Refined Analysis in the Region |Reµ| = O(h)

The study of the upper part (Γ1,3 or Γ1,2) of the skeleton is unchanged in this region,
while the lower part requires more attention in view of the fact that |a4| may be
considerably smaller than max(|a4+ |, |a4− |) when we are close to a zero of a4. In
order to fix the ideas we assume that γ3,4+ (0) ≤ γ2,4+ (0).

After multiplication of a4, a4± , a3 by the same exponential factor, we arrive at

ã4 = ã4+ + ã4− = 2 cosh
πµ

h
, ã4± = e

±πµ
h , ã3 = e

i
h
φ(µ;h),

and we shall drop the tildes in the following discussion. Here

φ(µ; h) = S3,4(µ) − i
πµ

2
+ ihO−

( h

µ

)
+ µ ln

µ

i
+
πh

4
− µ,
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with

− Imφ(µ; h) = − Im S3,4(µ) + Re
πµ

2
− h Re O−

( h

µ

)

+ Imµ ln
1

|µ| − Reµ arg
( µ

i

)
+ Imµ.

We have

∂Im µ(− Imφ) = ln
1

|µ| + O(1), ∂Re µ(− Imφ) = O(1),

∇α
µ(− Imφ) = O(|µ|1−|α|), |α| ≥ 2.

Recall that we work in the region |µ| ≥ Ch. Notice that h∇µ ln |a3| = ∇µ(− Imφ).
Similarly, we look at

h∂µ ln a4 = π
sinh πµ

h

cosh πµ
h

= π

√
1 − 1

(cosh πµ
h

)2
,

for a suitable branch of the square root. Also h∂µ ln a4 = 0, so this relation gives a
bound for h∇µ ln a4 and its real part h∇µ ln |a4|. We have the general estimate

| cosh z| ≥ 1

C
dist(z, cosh−1(0))e| Re z|, for |Re z| ≤ Const,

so we get

h∂µ ln a4 = π sgn(Reµ) + O(1)
e−

π| Re µ|
h

dist(πµ
h
, cosh−1(0))

.

Assuming

dist
(
µ,

h

π
cosh−1(0)

)
≥ Ch

ln 1
|µ|
, with C ≫ 1,

we conclude that
∣∣h∇µ ln |a4|

∣∣ ≪ h
∣∣∇µ ln |a3|

∣∣ , and consequently,

h∂Im µ ln
|a3|
|a4|

= (1 + o(1)) ln
1

|µ| + O(1), h∂Re µ ln
|a3|
|a4|

= O(1) + o(1) ln
1

|µ| ,

where O(1) denotes terms that are uniformly bounded and o(1) denotes terms that

tend to 0, when

dist(µ, h
π cosh−1{0})

(h/ ln 1
|µ| )

→ ∞.
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For each zero µ j of cosh πµ
h

, we introduce the diamond shaped neighborhood

(8.15) D j =

{
µ; |Reµ| + | Imµ− Imµ j | ≤

Ch

ln 1
|µ|

}
,

with C large enough so that the preceding estimates apply away from the union of all

the D j . Define Γ3,4 to be the set of points with |a3|/|a4| = 1 away from the union of
all the D j , with D j0

added, if D j0
has the property that the distance from this diamond

to the points just defined, is zero. If it exists, D j0
is unique since the other points of

Γ3,4 form a curve Imµ = γ3,4(Reµ), with |γ ′
3,4| ≪ 1. From the above estimates we

get

γ3,4±(Reµ) − O(h)
ln ln 1

|µ|
ln 1

|µ|
≤ γ3,4(Reµ)

≤ γ3,4±(Reµ) +
O(h)

ln 1
|µ|
, ±Reµ ≥ 0.

(8.16)

(If Γ3,4 stays away from an h/C-neighborhood of the zeros of cosh πµ
h

, then the
agreement is better:

γ3,4(Reµ) = γ3,4±(Reµ) +
O(h)

ln 1
|µ|
, ±Reµ ≥ 0. )

In fact, we can get an even more precise estimate for the distance between Γ3,4 and
Γ3,4± . Let µ0 ∈ Γ3,4, and put

d(µ0) = max
( h

ln 1
|µ0|

, dist(µ0, a
−1
4 (0))

)
.

Then
d(µ0)

Ch
≤ |a4(µ0)|

|a4±(µ0)| ≤ C,

away from the diamonds. We therefore get the following estimate for the vertical
distance from µ0 to Γ3,4± :

|γ3,4(Reµ0) − γ3,4±(Reµ0)| ≤ Ch

ln 1
|µ0|

ln
h

d(µ0)
,

(assuming for simplicity that d(µ0) ≤ h/2). This is a refinement of the lower bound
in (8.16), and the argument also gives the upper bound there.

We reach the following conclusion about the location of the zeros in the region

|Reµ| ≤ Ch.

Proposition 8.3 • Above S ′ and at distance ≥ Ch/ ln 1
|µ| from S ′, a1(µ) is dominat-

ing.
• a4 is dominating if µ is below S ′, at distance ≥ Ch/ ln 1

|µ| from a−1
4 (0) and at dis-

tance ≥ Ch ln ln
ln

(
1
|µ|
)

from S ′.
• In between (for instance below Γ1,3 but above Γ3,4±), a3 (or a2) is dominating if the

distance to the skeleton is ≥ Ch/ ln 1
|µ| .
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8.2.3 Improvement in the Region Reµ≫ h

Let us recall that a1a4+ = a2a3. Therefore,

a1 + a2 + a3 + a4+ = a4+

(
1 +

a2

a4+

)(
1 +

a3

a4+

)
.

The zeros of 1 + (a2/a4+ ) are situated on Γ2,4+ and are given by the explicit quantiza-
tion condition

µ lnµ− µ +
πh

4
+ S1,2 + ihO−

( h

µ

)
= 2πh

(
k +

1

2

)
, k ∈ Z.

The distance between successive zeros is ∼ h/ ln 1
|µ| . If µ0 is such a zero, then in a

disc D(µ0, r) with r ≪ h/ ln 1
|µ0| , we have

∣∣∣∣1 +
a2

a4+

∣∣∣∣ ∼ |µ− µ0|
ln 1

|µ0|
h

.

Away from the union of all such discs, we have

∣∣∣∣1 +
a2

a4+

∣∣∣∣ ≥
1

O(1)
.

Similarly, the zeros of 1 + (a3/a4+ ) are situated on the curve Γ3,4+ and given by the
quantization condition

µ lnµ− µ +
πh

4
+ S3,4 + ihO−

( h

µ

)
= 2πh

(
k +

1

2

)
, k ∈ Z,

and the other statements about 1 + (a2/a4+ ) carry over to 1 + (a3/a4+ ).

Now consider

G(µ; h) = a4+

[(
1 +

a2

a4+

)(
1 +

a3

a4+

)
+

a4−

a4+

]

= a4+

[(
1 +

a2

a4+

)(
1 +

a3

a4+

)
+ e−

2πµ
h

]
.

We get the following.

Proposition 8.4 In the region Reµ ≫ h, there is a bijection b from the union of the

zeros of 1 + a2/a4+ and of 1 + a3/a4+ to the zeros of G with

b(µ) − µ = O(1)
h

ln 1
|µ|

e−
π Re µ

h .
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So in the region Reµ ≫ h, and modulo an exponentially small error, we can
identify the zeros of G with the union of the zeros of 1 + a2/a4+ and of 1 + a3/a4+ .

This finishes the analysis of the skeleton in the first case (8.2).

Case 2: Assume that

∣∣∣argµ +
π

2

∣∣∣ ≤ π − 1

C
, h ≪ |µ| ≪ 1.

In this case from (5.7) and (5.8), respectively, we recall that

a2,3 = 2 cosh
( πµ

h

)
exp
[
O+

( h

µ

)
+

i

h

(
µ ln(iµ) − µ +

πh

4

)
+
πµ

2h

]
,

a1,4 = exp
[
−O+

(
hµ
)
− i

h

(
µ ln(iµ) − µ +

πh

4

)
+
πµ

2h

]
.

Using (8.1), we get

(8.17) F(µ; h) = e
πµ
2h G(µ; h), G(µ; h) = a1 + a2 + a3 + a4,

where a j , j = 1, 2, 3, 4 are the same as in Case 1, but now with a partially different

representation:

a1 = a1+ + a1− ,

a1± = e
i
h

(S1,2+S3,4)+O+( h
µ )+ i

h
(µ ln(iµ)−µ+ πh

4
)± πµ

h ,

a2 = e
i
h

S1,2+ πµ
2h ,

a3 = e
i
h

S3,4+ πµ
2h ,

a4 = e−O+( h
µ )− i

h
(µ ln(iµ)−µ+ πh

4
)

Again we consider h times the real parts of the different exponents of the a j , j =

1±, 2, 3, 4:

r1± = − Im S1,2 − Im S3,4 + (Imµ) ln
1

|µ| − Ỹ (µ) ± π Reµ,

r2 = − Im S1,2 +
π

2
Reµ,

r3 = − Im S3,4 +
π

2
Reµ,

r4 = −(Imµ) ln
1

|µ| + Ỹ (µ),

where

Ỹ (µ) = (Reµ) arg(iµ) − Imµ− h Re O+

( h

µ

)
.
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By a symmetry argument, we shall now see that (r1± , r2, r3, r4) plays the same
role in the present Case 2 as (r4± , r3, r2, r1) in Case 1, provided that we perform the

following transformations on (r1± , r2, r3, r4):

• Add Im(S1,2 + S3,4) to each of the five terms.
• Replace µ by µ.

Then we get r̃ j(µ) = (Im(S1,2 + S3,4) + r j)(µ):

r̃1±(µ) = −(Imµ) ln
1

|µ| + (Reµ) arg
( µ

i

)
− Imµ + h Re O+

( h

µ

)
± π Reµ,

r̃2(µ) = Im S3,4 +
π

2
Reµ,

r̃3(µ) = Im S1,2 +
π

2
Reµ,

r̃4(µ) = Im S1,2 + Im S3,4 + (Imµ) ln
1

|µ| − (Reµ) arg
( µ

i

)

+ Imµ− h Re O+

( h

µ

)
.

This is analogous with (r4± , r3, r2, r1) in Case 1 except for the fact that Re O+( h
µ )

here corresponds to Re O−( h
µ ) in Case 1.

Remark Using (5.4), it is easy to check that

Ỹ (µ) − Y (µ) = ±π Reµ + hO(e−2π| Re µ|/h),

when

(8.18) | arg(±µ)| ≤ π

2
− 1

C
, |µ| ≥ h.

It follows that

(8.19) r j(µ) = r j±(µ) + hO(e−2π| Re µ|/h), j = 1, 4,

when µ satisfies (8.18), and hence if µ belongs to the skeleton S ′ defined according
to Case 1, the distance from µ to the corresponding skeleton S ′ defined according to
Case 2 is

O

( h

ln 1
|µ|

e−2π| Re µ|/h
)
.

We end this section by some general considerations that will be useful in Sec-

tion 13. We see from (8.7) that the spectrum will have a genuinely 2-dimensional
structure if | Im S3,4(0) − Im S1,2(0)| ≫ h, or if Im S3,4(0) and Im S1,2(0) have the
same sign and min(| Im S3,4(0)|, | Im S1,2(0)|) ≫ h ln 1

h
. In the latter case, we even

have some eigenvalues on the imaginary µ-axis, related to 1-dimensional barrier top
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resonances. It is therefore important to have a sufficiently invariant and direct de-
scription of Im S3,4(0), Im S1,2(0).

The final definition of S3,4 in the beginning of Section 6 is simply that we start
with the null-solution f4 of Q near α4 and extend it along the exterior part of K0,0

until we reach a neighborhood of α3, where we get exp( 1
h

S3,4) f3. (Here we neglected
the real Floquet parameter θ1, since we are only interested in the imaginary part of

S3,4). The definition of S1,2 is similar.
Now take µ = 0 (see (6.7) and (6.8)) and represent the operator Q as acting in

Hloc
Φ

(Ω), where Φ is strictly plurisubharmonic, with ΛΦ ≃ a neighborhood of K0,0

in T∗R. From the construction of e j , f j , we see that f j is near α j a normalized null-

solution of Q in Hloc
Φ0

(Ω), where Φ−Φ0 is small and Φ0 is defined in a sufficiently large
neighborhood of the projection of the branching point. Here if κT is the canonical
transformation associated to some standard FBI-Bargmann transform, then ΛΦ =

κT(R2), ΛΦ0
= κT ◦κU (R2), with U as in (6.7). Since ΛΦ0

= {ξ =
2
i
∂Φ0

∂x
} is naturally

identified with T∗R, where p0 = xξ, so (since µ = 0), we know that the null set of Q0

intersects ΛΦ0
along two crossing “real” curves that we can identify with “the interior

part” of K0,0.
Extend Φ0 to be defined in Ω with Φ − Φ0 small. If S3,4 ∼ S0

3,4 + hS1
3,4 + · · · , then

(8.20) − Im S0
3,4 =

∫

γ3,4

(− Im(ξ · dx) − dΦ0),

where γ3,4 now (see (6.14)) is a real curve from α4 to α3 in Q−1
0 (z(0)) close to the

exterior part of the “left loop” of K0,0. Here we let z(0) denote the z-value in (6.8)
corresponding to µ = 0. Let this left loop be denoted by γ1 and let us consider it
(after slight deformation) as a closed curve in Q−1

0 (z(0)) joining the critical point of
Q0 to itself staying close to the left loop of K0,0. Here, we may assume that the interior

part of γ1 (joining α3 to α4) is contained in ΛΦ0
, so − Im(ξ ·dx) = dΦ0 there. Hence

(8.20) becomes

(8.21) Im S0
3,4 =

∫

γ1

(Im(ξ · dx) + dΦ0) =

∫

γ1

(Im ξ · dx).

Here Im(ξ · dx) in the last integral can be replaced by Im(ξ · dx) + dΦ, which by
Stokes’ formula can be further replaced by any other real 1-form ω with dω = Imσ,
ω|ΛΦ

= 0. This means that we can reinterpret the last integral in (8.21) as the corre-
sponding one along the corresponding closed curve in the complexification of R2.

To simplify things further, recall that ǫ, h2/ǫ are small perturbative parameters for
Q0 and that Q−1

0 (z(0)) is real when ǫ = h2/ǫ = 0. In general, if q = qs depends
smoothly on a real parameter s, if E is not a critical value and γ = γ(s, E) is a simple
closed curve in q−1

s (E), then for E fixed,

∂

∂s

∫

γ

ξ dx = −
∫ T(E,s)

0

∂q

∂s
(x(t), ξ(t)) dt,

where [0,T(E, s)] ∋ t 7→ exp tHqs
(ρ(0)) is a natural parametrization. This can be

https://doi.org/10.4153/CJM-2008-028-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-028-3


618 M. Hitrik and J. Sjöstrand

applied to the case qs = q − E(s), so if E also depends on s, we get

∂

∂s

∫

γ

ξ · dx =

∫ T(E,s)

0

( ∂E(s)

∂s
− ∂q

∂s
(x(t), ξ(t))

)
dt.

In this form, we can treat a loop like γ1(s) ⊂ q−1
s (E(s)), starting and ending at the

critical points ρc(s) of qs, parametrized by ]−∞,+∞[ 7→ exp(tHqs
)(ρ(0)), provided

that we take E(s) equal to the critical value qs(ρc(s)):

(8.22)
∂

∂s

∫

γ1(s)

ξ dx =

∫ +∞

−∞

( ∂
∂s

(qs(ρc(s))) − (
∂

∂s
qs)(x(t), ξ(t))

)
dt.

This can be proved by a limiting procedure, approaching γ1(s) by closed curves at
non-critical levels.

Taking the imaginary parts, this means that we have a fairly simple way of comput-
ing Im S1,2, Im S3,4 perturbatively. From this computation, we see that it is of interest
to compute the ǫ2 contribution to the averaged principal symbol. This computation
was carried out in of [15, S2] under the assumption that 〈q〉 = 0 and it works es-

sentially the same way without that assumption. We start with the principal symbol
pǫ = p + iǫq + ǫ2r + O(ǫ3). The function

(8.23) G0 =
1

T(E)

∫ T(E)

0

(
t − T(E)

2

)
q ◦ exp(tHp) dt, on p−1(E)

introduced in Proposition 2.1, satisfies HpG0 = q − 〈q〉. Put G = G0 + iǫG1 +
O(ǫ2), where G1 remains to be determined. As in [15] we get at a general point
exp(iǫHG)(ρ) ∈ ΛǫG, (ρ ∈ T∗M):

pǫ|Λǫ
≃ pǫ(exp(iǫHG)(ρ)) =

∞∑

0

(iǫHG)k

k!
pǫ(ρ)

= p + iǫ〈q〉 + ǫ2(r + HpG1 − HG0
(t f rac12(q + 〈q〉))) + O(ǫ3),

where we used that H2
G0

p = −HG0
(q − 〈q〉).

Letting G1 solve

HpG1 = HG0
( 1

2
(q + 〈q〉)) − 〈HG0

( 1
2
(q + 〈q〉))〉 − (r − 〈r〉),

we get with G = G0 + iǫG1,

(8.24) pǫ(exp(iǫHG)(ρ)) = p + iǫ〈q〉 + ǫ2〈s〉 + O(ǫ3).

Now assume for simplicity that T(E) = T is constant. Then

〈s〉 = 〈r〉 − 1

2T

∫ T

0

{G0, q + 〈q〉} ◦ exp(tHp) dt

= 〈r〉 − 1

2T2

∫ T

0

∫ T

0

(
s − T

2

)
{q ◦ exp(t + s)Hp, (q + 〈q〉) ◦ exp(tHp)} dtds

= 〈r〉 − 1

2T

∫ T

0

(
s − T

2

)
〈{q ◦ exp(sHp), q + 〈q〉}〉 ds.
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Here we notice that

〈{q ◦ exp(sHp), 〈q〉}〉 = {〈q ◦ exp(sHp), 〈q〉} = {〈q〉, 〈q〉} = 0,

so finally:

(8.25) 〈s〉 = 〈r〉 − 1

2T

∫ T

0

(
s − T

2

)
〈{q ◦ exp(sHp), q}〉 ds.

The formulas (8.24) and (8.25) will be used in Section 13 together with the fol-
lowing remark. If we put

(8.26) Cor(q1, q2; s) = 〈{q1 ◦ exp(sHp), q2}〉,

then a simple computation shows that

(8.27) Cor(q1, q2; s) = −Cor(q2, q1;−s).

If we put

(8.28) C(q1, q2) =
1

T

∫ T

0

(
s − T

2

)
Cor(q1, q2; s) ds,

then combining (8.27) and the T periodicity of Cor(q1, q2; s) with the change of vari-
ables T/2 − s = s̃ − T/2, we get C(q1, q2) = C(q2, q1).

9 Skeleton for |µ| ≤ O(h)

In this section we shall consider the case |µ| ≤ O(1)h. In doing so, we will use (4.8)

more directly.

Case 1: We will first work in a region

{µ ∈ C ; |µ| < rh} ∪
{
µ ∈ C \ {0} ; | argµ− π

2
| < π − 1/C

}
,

where 0 < r < 1/2, C > 0. (The corresponding region with | argµ + π
2
| ≤ π −

1/C , can be treated with a symmetry argument as in the end of Section 8, and this

argument will be given later.) It follows from (4.8) that here a2,3 6= 0 and ln Γ( 1
2
−i µ

h
)

is well defined, while Γ( 1
2

+ i µ
h

)−1 may have zeros. Consequently we use the reflection
identity to get

a1,4 =

√
2π

Γ( 1
2

+ i µ
h

)
h−i µ

h e
πµ
2h
− iπ

4 =
Γ( 1

2
− i µ

h
)√

2π
h−i µ

h e
πµ
2h
− iπ

4 2 cosh
( πµ

h

)
.

Now using (8.1) we get

F(µ; h) = e
−i µ

h
ln 1

h
−ln

Γ( 1
2
−i

µ
h

)
√

2π
+ πµ

2h
+ iπ

4
+ i

h
(S1,2+S3,4)

+ e
i
h

S1,2+π µ
h + e

i
h

S3,4+π µ
h

+ e
ln

Γ( 1
2
−i

µ
h√

2π
+i µ

h
ln 1

h
− iπ

4
+ πµ

2h
+ln 2 cosh πµ

h

= e
πµ
2h G(µ; h),
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where

G(µ; h) = e
i
h

(S1,2+S3,4)−i µ
h

ln i
h
−ln

Γ( 1
2
−i

µ
h

)
√

2π
+ iπ

4 + e
i
h

S1,2+π µ
2h + e

i
h

S3,4+π µ
2h

+ e
i µ

h
ln 1

h
+ln

Γ( 1
2
−i

µ
h

)
√

2π
− iπ

4 2 cosh
πµ

h
.

= a1 + a2 + a3 + a4, a4 = a4+ + a4− ,

(9.1)

where the terms are the same as in (8.3), although we shall now use different asymp-
totic approximations.

Again we introduce h times the real parts of the different exponents:

r1 = − Im S1,2 − Im S3,4 + (Imµ) ln
1

h
− h Re ln

Γ( 1
2
− i µ

h
)√

2π
,

r2 = − Im S1,2 +
π

2
Reµ,

r3 = − Im S3,4 +
π

2
Reµ,

r4± = −(Imµ) ln
1

h
+ h Re ln

Γ( 1
2
− i µ

h
)√

2π
± π Reµ.

As before, we have r2 + r3 = r1 + r4+ .
Again, we define the different curves Γ j,k by |a j | = |ak|, for j 6= k ∈ {1, 2, 3, 4±}

with the exception of ( j, k) = (2, 3) and ( j, k) = (4+, 4−). (The segment Γ4 is now

defined to be the segment of the positive imaginary axis joining 0 to the lower part of
S ′, provided that this lower part is not hidden in the forbidden region, in which case
we let Γ4 be empty). More explicitly, we get:

(9.2) (Imµ) ln
1

h
=





Im S3,4 ± π Reµ− π
2

Reµ + X on Γ3,4±

Im S1,2 ± π Reµ− π
2

Reµ + X on Γ2,4±

Im S1,2 + π
2

Reµ + X on Γ1,3,

Im S3,4 + π
2

Reµ + X on Γ1,2,
1
2
(Im S1,2 + Im S3,4) ± πµ

2
+ X, on Γ1,4± ,

with

(9.3) X = h Re ln
( Γ( 1

2
− i µ

h√
2π

)
.

The function X now differs from that of Section 8 by a term − π
2

Reµ. The definition
of Γ1,3 = Γ2,4+ , Γ1,2 = Γ3,4+ coincides with that in Section 8 in the overlap region.

We shall also define a set Γ j,4 for j = 1, 2, 3 as in the preceding section. To do so,
we check that

h
∣∣∣
∇ cosh πµ

h

cosh πµ
h

∣∣∣ ≪ ln
1

h
,
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if

(9.4) dist
(
µ,

h

π
cosh−1(0)

)
≫ h

ln 1
h

.

In this region, we also have

(9.5)
1

O(1) ln 1
h

≤
∣∣∣∣

a4

a4±

∣∣∣∣ ≤ O(1).

In the region (9.4) we can define Γ j,4 by |a j | = |a4|, and see that we get a curve

Imµ = γ j,4(Reµ),

with |γ ′
j,4| ≪ 1. Using (9.5), we also see that if we represent Γ j,4± by Imµ =

γ j,4±(Reµ), then

(γ j,4 − γ j,4±)(Reµ) = O(1)h
( ln ln

ln

)( 1

h

)
.

Actually the upper bound can here be improved to O(h)/ ln 1
h

. In analogy with Sec-
tion 8, we define a diamond shaped neighborhood of each zero µ j of a4 by

(9.6) D j =

{
µ ; |Reµ| + | Imµ− Imµ j | ≤

Ch

ln 1
h

}
,

The previously defined Γ j,4 can hit at most one of the Dν and if that happens, we add

that diamond to the set Γ j,4.
Now define the skeleton as before: S = S ′ ∪ Γ4, and as before we can describe the

regions of dominance: a4 dominates at distance ≫ h( ln ln
ln

)( 1
h

) below inf j=1,2,3 γ j,4± ,
for ±Reµ ≥ 0, intersected with the complement of the union of the diamonds.

The other a j dominate according to the earlier rules in their respective regions at
a distance ≫ h/ ln 1

h
from the skeleton.

Case 2: We now consider the case when µ belongs to the set

{µ ∈ C; |µ| < rh} ∪
{
µ ∈ C \ {0};

∣∣∣argµ +
π

2

∣∣∣ < π − 1

C

}
,

where 0 < r < 1
2
, C > 0. From (4.8), we get

a1,3 = −a2,4 = e
πµ
h

+i π
2 , a1,4 =

√
2π

Γ( 1
2

+ i µ
h

)
h−i µ

h e
πµ
2h
− iπ

4 ,

where a1,4 is non-vanishing, while

a2,3 =

√
2π

Γ( 1
2
− i µ

h
)

hi µ
h e

πµ
2h

+ iπ
4
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may have zeros, so we use the reflection identity to write

a2,3 =
Γ( 1

2
+ i µ

h
)√

2π
hi µ

h e
πµ
2h

+ iπ
4 2 cosh

πµ

h
.

We then use (8.1) to get F(µ; h) = e
πµ
2h G(µ; h), with G(µ; h) = a1 + a2 + a3 + a4 where

a1 = a1+ + a1− ,

a1± = exp
[ i

h
(S1,2 + S3,4) + ln

( Γ( 1
2

+ i µ
h

)√
2π

)
+ i
µ

h
ln h +

iπ

4
± πµ

h

]
,

a2 = exp
[ i

h
S1,2 +

πµ

2h

]
, a3 = exp

[ i

h
S3,4 +

πµ

2h

]
,

a4 = exp
[
− ln

( Γ( 1
2

+ i µ
h

)√
2π

)
− i

µ

h
ln h − iπ

4

]
.

Again, we introduce h times the real parts of the different exponents:

r1± = − Im S1,2 − Im S3,4 + (Imµ) ln
1

h
+ h Re ln

( Γ( 1
2

+ i µ
h

)√
2π

)
± π Reµ,

r2 = − Im S1,2 +
π

2
Reµ, r3 = − Im S3,4 +

π

2
Reµ,

r4 = −(Imµ) ln
1

h
− h Re ln

( Γ( 1
2

+ i µ
h

)√
2π

)
.

We shall now make the same symmetry transformations as in Section 8, to see that
the functions r1± , r2, r3, and r4 play the same role as r4± , r3, r2, and r1 respectively, in

the previously considered case:

• Add Im(S1,2 + S3,4) to each of the r j .
• Consider the r j as functions of µ.

Then we get

r̃1±(µ) = −(Imµ) ln
1

h
+ h Re ln

( Γ( 1
2
− i µ

h
)√

2π

)
± π Reµ,

r̃2(µ) = Im S3,4 +
π

2
Reµ, r̃3 = Im S1,2 +

π

2
Reµ,

r̃4 = Im S1,2 + Im S3,4 + (Imµ) ln
1

h
− h Re ln

( Γ( 1
2
− i µ

h
)√

2π

)
.

Thus apart from a change of sign in Im S1,2, Im S3,4, we see that (r̃1± , r̃2, r̃3, r̃4) has
the same properties as (r4± , r3, r2, r1) in the previously considered case.

Remark In the overlap region

D(0, rh) ∪
{
µ ; |µ| ≤ Ch, | argµ| ≤ π

2
− 1

C
, or | arg(−µ)| ≤ π

2
− 1

C

}
,
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where both cases apply, we notice that trivially r j = r j± + O(h) for ±Reµ ≥ 0, j =

1, 4, (and these estimates improve by (8.19) when |µ|/h increases). As in the remark

at the end of Section 8,the distance between the two skeletons, defined according to
Case 1 and Case 2, is therefore O(h/ ln 1

h
).

10 Eigenvalue Counting

In each of Cases 1 and 2 of Sections 8 and 9, we defined a skeleton S consisting of a
horizontal part S ′, possibly with a vertical part (Γ4 in Case 1 and Γ1 in Case 2) added.
We notice that the definitions in the two sections agree for each of Cases 1 and 2 in

the overlap regions for the two sections, and we saw in the remarks at the end of the
sections, that if we compare the skeletons for the two cases in the overlap region

{
|Reµ| > 1

C
| Imµ|

}
∪ D(0, rh),

then the distance between the corresponding skeletons is

O

( h

ln〈µ〉h
e−2π| Re µ|/h

)
, 〈µ〉h :=

√
h2 + |µ|2.

Now define the body by widening the skeleton:

B =

( ⋃
µ∈S ′

D
(
µ,

Ch

ln 1
〈µ〉h

))
∪ Bv ∪ Be.

Here Bv,Be may be empty and will now be defined. They are non-empty if S ′ stays
entirely in the admissible regions for one of the cases, and in order to fix the ideas, we
assume that this is Case 1, and S ′ does not intersect the negative imaginary half axis.

If so, we have a non-empty segment Γ4 in the imaginary axis, joining 0 to the closest
imaginary point of S ′. Recall that we have defined the diamonds D j around the zeros
of a4 in Γ4, by (8.15), and (9.6). We define Bv to be the union of Γ4 (in Case 1, and
Γ1 in Case 2) and the corresponding diamonds. (In Case 2 we do the corresponding

definition with 4 replaced by 1 and Γ1 is then the segment in the negative imaginary
axis, joining 0 to the closest part of S ′.) Thus Be is non-empty precisely when Γ4 or
Γ1 is. In Case 1, it is defined to be the set of points µ below S ′ at distance at most

Ch
ln ln

ln

( 1

〈µ〉h

)

from S ′ with C > 0 sufficiently large and with |Reµ| < h. Here the upper bound
h in the last estimate may be replaced by h/C0 for any fixed C0 > 0, and we could
decrease Be further by a more detailed discussion. In Case 2 we have the analogous

definition.
We next define what we mean by an admissible curve. It should be a piecewise

C1-curve γ : [a, b] → C without self-intersections, parametrized by arc-length. It is
tacitly assumed that we consider a family of such curves, which is uniformly bounded
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in the sense that we have uniform bounds on the number of jump discontinuities of
γ̇, the continuity of γ̇ between the discontinuities, and on the length b − a. It is also

required that γ(t) may belong to B only for t ∈ I j , j = 1, 2, . . . ,M, where I j are
disjoint intervals of length ≤ Ch/ ln 1

〈µ〉h
, for some µ = γ(t) ∈ I j , if γ(I j ) ∩ Be = ∅

and of length ≤ Ch ln ln
ln

( 1
〈µ〉h

) otherwise. We also assume that we have a uniform

bound on the number M of such intervals.
Assume for simplicity that a, b /∈

⋃
I j and let us partition [a, b] into intervals in

increasing order: [a, b] = J0 ∪ I1 ∪ J1 ∪ I2 ∪ · · · ∪ IM ∪ JM . For each Jk, let aν(k) be
the corresponding dominant term along γ( Jk). For simplicity we shall assume that

the image of γ is entirely contained in the admissible region for one of Cases 1 or 2,
so that ν(k) is either in {1, 2, 3, 4±} (Case 1), or in {1±, 2, 3, 4} (Case 2). Let

µk,e = µk+1,s = γ(tk+1) for some tk+1 ∈ Ik+1, k = 0, . . . ,M − 1,

and put µ0,s = γ(a), µM,e = γ(b). Then with a j = eiφ j/h, we have the following
theorem (see (8.3), (8.17), (9.1)).

Theorem 10.1 Let γ be an admissible curve as above. Then

Re
1

2πi

∫

γ

G ′

G
dµ =

Re
1

2πh

((
φν(M)(µM,e) +

M−1∑

k=0

(φν(k)(µk,e) − φν(k+1)(µk+1,s)) − φ0(µ0,s)
)

+ O(1) + O

(
max ln ln

1

〈µk,e〉h

))
,

(10.1)

where the maximum is taken over all k with γ(Ik) ∩ Be 6= ∅, so if γ never meets Be, we
only have the remainder O(1).

Proof Notice that the first term of the right-hand side of (10.1) can also be written

Re
1

2πh

M∑

k=0

(
φν(k)(µk,e) − φν(k)(µk,s)

)
.

Consider an interval Jk. If we first assume ν(k) 6= 4± (if we are in Case 1), then for
t ∈ Jk:

(10.2) G(γ(t)) = bν(k)(γ(t))aν(k)(γ(t)), |bν(k)(γ(t)) − 1| < 1
2
.

Let µ̃k,s and µ̃k,e be the start and the end points of γ| Jk
, so that

µ̃k,s = µk,s + O

(
h

ln ln

ln

( 1

〈µk,s〉h

))
, µ̃k,e = µk,e + O

(
h

ln ln

ln

( 1

〈µk,e〉h

))
,
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with the ln ln
ln

improving to 1
ln

if the corresponding neighboring interval Ik does not
meet Be. Using (10.2), we see that

(10.3)
1

2πi

∫

γ| Jk

G ′

G
dµ = O(1) + φν(k)(µ̃k,e) − φν(k)(µ̃k,s).

In the case ν(k) = 4±, we know that a4 is dominating along γ| Jk
and (10.3) holds

with φν(k) replaced by h
i

ln a4. Now we also know that along γ| Jk
, we have

a4(γ(t)) = c(γ(t))aν(k)(γ(t)),

with

1
/(

C ln
1

〈µ〉h

)
≤ |c(γ(t))| ≤ C,

and with arg c(γ(t)) of bounded variation. It follows that the real part of the equation
(10.3) still holds in this case.

We next estimate the integral along γ|Ik
, and let us consider the worst case, when

γ(Ik) ∩ Be 6= ∅. Let

r = O

(
h

ln ln

ln

( 1

〈µ〉h

))

be such that γ(Ik) ⊂ D
(
µ̃k−1,e,

r
2

)
. On this disc, we write

(10.4) G(µ; h) = aν(k−1)(µ)bk(µ),

where bk is holomorphic, and

C ≥ |bk(µ̃k−1,e)| ≥ 1/
(

C ln
1

〈µ̃k−1,e〉h

)
,(10.5)

|bk(µ) ≤ exp O(1)
[ ln 1

〈µ〉h

h
h

ln ln

ln

( 1

〈µ〉h

)]
= exp O

(
ln ln

1

〈µ〉h

)
.

Using (10.5) and the elementary arguments recalled in the second part of Section 7,
we get

(10.6)
1

2πi

∫

γ|Ik

b ′
k

bk
dµ = O(1) ln ln

1

〈µ〉h
.

On the other hand,

(10.7)
1

2πi

∫

γ|Ik

a ′
ν(k−1)

aν(k−1)
dµ =

1

2πh
(φν(k−1)(µ̃k,s) − φν(k−1)(µ̃k−1,e)).
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Combining the real parts of (10.3), (10.4), (10.6), and (10.7), we get

Re
1

2πi

∫

γ

G ′

G
dµ = Re

(
φν(M)(µ̃M,e) +

M−1∑

k=0

(
φν(k)(µ̃k+1,s) − φν(k+1)(µ̃k+1,s)

)

− φν(0)(µ̃0,s)
)

+ O(1) ln ln
1

〈µ〉h
,

with the remainder improving to O(1) if we do not encounter Be. Now, µ̃M,e = µM,e,
µ̃0,s = µ0,s, and

µk,e = µk+1,s + O

(
h

ln ln

ln

( 1

〈µ〉h

))
,

with the last remainder improving to O
(

h/ ln 1
〈µ〉h

)
, if we avoid Be, and (10.1) fol-

lows.

We end this section by some rough estimates on the location of the skeleton and
the corresponding distribution of eigenvalues for the reduced operators constructed
in Sections 2 and 3. Our starting point is the reduced symbol in (2.5) and the corre-

sponding 1-dimensional symbol

(10.8) Q
(
τ , x, ξ, ǫ,

h2

ǫ
; h
)

= 〈q〉(τ , x, ξ) +O(ǫ) +
h2

ǫ
p2(τ , x, ξ) + hp̃1 + h2 p̃2 + · · · .

Here we shall take τ real (and eventually of the form h
(

k − k0

4

)
− S0

2π ). If z is the
original spectral parameter, we introduce the new spectral parameter w, by

z = g(τ ) + iǫw,

and we will work under the assumption h2 ≪ ǫ≪ h1/2.
Recall the microlocal normal form for Q near the branch point, given by Proposi-

tion 6.2 and in particular (6.6):

U−1QU = Kǫ,h2/ǫ(τ , I; h) + O(e−
1

Ch ), I =
1
2
(x ◦ hDx + hDx ◦ x),

where the leading symbol in Kǫ,h2/ǫ is kǫ,h2/ǫ(τ , ι) with ι = xξ, given in Proposition
6.1. Correspondingly, we replace w by the new spectral parameter µ, given by

(10.9) Kǫ,h2/ǫ(τ , µ; h) = w.

We next estimate the location of the skeleton in the µ-plane, and start with the
case |µ| ≥ Ch. Assume for simplicity that we are in Case 1: Imµ ≥ −C|Reµ|. We
will only be concerned with the horizontal part S ′ of the skeleton. When Reµ ≥ 0, it
is given by the curves Γ3,4+ = Γ1,2, Γ2,4+ = Γ1,3 in (8.5), where

X(µ) = Y (µ) +
π

2
Reµ, Y (µ) = (Reµ) arg

( µ
i

)
− Imµ + h Re O−

( h

µ

)
.
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Clearly X(µ) is uniformly Lipschitz continuous and for µ > 0, we get

X(µ) = h Re O−
( h

µ

)
.

According to (5.5), we have Re O−
(

h
µ

)
= O(e−2|µ|/h).

When ǫ = 0, h2/ǫ = 0, we know that the leading part of Q in (10.8) is real-valued
(assuming that 〈q〉 is real for simplicity), so it follows in this case that when µ is real,
then Im S j,k = O(h). Since S j,k depends holomorphically on µ, we conclude that in
general Im S j,k(µ) = O(ǫ + h2/ǫ), µ ∈ R. Now combine this with (8.5), the estimate

X(µ) = O(he−2π|µ|/h) and Proposition B.1 to conclude that in the region |µ| ≥ Ch,
Reµ ≥ 0, the horizontal part S ′ of the spectrum is given by the union of two curves
of the form Imµ = f (Reµ), with f ′ satisfying (B.17), and further,

(10.10) | f (x)| ≤ C
(
ǫ +

h2

ǫ

)
max

(
1

ln 1
|x|
,

1

ln 1
(ǫ+h2/ǫ)

)
.

In the left half-plane, we recall that S ′ has a more complicated structure. Assume,
to fix the ideas, that ReµA ≤ 0. Then S ′ is the union of the curves (defined in (8.6)):

Γ1,3 : Imµ = γ1,3(Reµ) ⇔ (Imµ) ln
1

|µ| = Im S1,2 + (X − π Reµ) + π Reµ

Γ3,4− : Imµ = γ3,4−(Reµ) ⇔ (Imµ) ln
1

|µ| = Im S3,4 + (X − π Reµ) − π Reµ,

in the region ReµA ≤ Reµ ≤ 0. Here γ3,4−(Reµ) ≤ γ1,3(Reµ) and the two curves
cross at µA. In the region Reµ ≤ ReµA S ′ is given by

Γ1,4− : Imµ = γ1,4−(Reµ) ⇔ (Imµ) ln
1

|µ| =
1

2
(Im S1,2 +Im S3,4)+(X−π Reµ),

and this curve also contains µA.

When µ < 0, we have

X − π Reµ = h Re O−
( h

µ

)
= hO(e−2π|µ|/h),

so again f := γ1,4− satisfies (10.10), while

γ̃3,4−(Reµ) := Im S3,4 + (X − π Reµ) ≤ γ3,4−(Reµ) ≤ γ1,3(Reµ)

≤ Im S1,2 + (X − π Reµ) =: γ̃1,3(Reµ),

for ReµA ≤ Reµ ≤ 0, where f = γ̃1,3, γ̃3,4− satisfy (10.10).
In the region |µ| ≤ Ch the horizontal part of the spectrum is a union of curves

Γ j,k given in (9.2) and (9.3). Here the new function X is uniformly Lipschitz and
O(h), so the skeleton is here contained in a region

| Imµ| ≤ O(1)
(ǫ + h2/ǫ)

ln 1
h

.
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The overall conclusion is that the skeleton is contained in a region

(10.11) | Imµ| ≤ O(1)
(
ǫ +

h2

ǫ

)
max

(
1

ln 1
〈Re µ〉h

,
1

ln 1
ǫ+h2/ǫ

)
,

where we recall that 〈Reµ〉h = (h2 + (Reµ)2)1/2.
We end this section by establishing a simplified statement to be used in Theo-

rem 1.1. We shall simply remove a small rectangle around µ = 0 where we have seen

that the description of the spectrum is more intricate.
Start by recalling the definition of µA, µB prior to (8.14). For instance µA is the

intersection of the curves

A : − 2π Reµ = Im S1,2 − Im S3,4,

Γ1,4− : Imµ = γ1,4−(Reµ),

where f = γ1,4− satisfies (10.10). Using that Im S1,2 and Im S3,4 are O(ǫ + h2/ǫ +

| Imµ|), we get

ReµA = O
(
ǫ +

h2

ǫ
+ | ImµA|

)
,

ImµA = O

(
ǫ +

h2

ǫ

)
max

( 1

| ln |ReµA||
,

1

| ln(ǫ + h2

ǫ )|

)
,

implying,

ReµA = O

(
ǫ +

h2

ǫ

)
, ImµA =

O(ǫ + h2

ǫ )

| ln(ǫ + h2

ǫ )|
.

We have of course the same estimates for µB.
Choose C > 0 sufficiently large so that the “black box”

B = [−a, a] + i[−b, b], with a = C
(
ǫ +

h2

ǫ

)
, b = C

(ǫ + h2

ǫ )

| ln(ǫ + h2

ǫ )|
,

contains µA, µB. Then we have the following.

Proposition 10.2 The number of eigenvalues in B is O( ǫ
h

+ h
ǫ )| ln(ǫ + h2

ǫ )|. The
eigenvalues outside B are exponentially close to Γ1,4− ∪ Γ1,2 ∪ Γ1,3. More precisely
introduce

E1,4− = {µ ∈ Γ1,4− \ B ; a1 + a4− = 0, Reµ < 0},
E1,2 = {µ ∈ Γ1,2 \ B ; a1 + a2 = 0, Reµ > 0},
E1,3 = {µ ∈ Γ1,3 \ B ; a1 + a3 = 0, Reµ > 0}.

Then there is a bijection b (possibly after a slight modification of B) between the set of
eigenvalues outside B and E1,4− ∪ E1,2 ∪ E1,3, such that

b(µ) − µ = O(e−π| Re µ|/hh/| ln |µ||).
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Proof We may first notice that we can replace the index 4− by 4 without changing
the validity of the statement of the proposition, since a4 − a4− = O(e−2π| Re µ|/h),

Reµ ≪ −h. In view of (10.11), we know that there are no eigenvalues outside B

with |Reµ| ≤ a and the discussion in Section 8 then shows that the eigenvalues
outside B have to be exponentially close to Γ1,4 ∪ Γ1,2 ∪ Γ1,3 and that there is a
bijection b as stated. To estimate the number of eigenvalues inside B, we simply

apply Theorem 10.1. with γ a rectangular contour containing B but contained in 2B

and working directly with a4 instead of a4± .

Consider E1,4− of the preceding proposition. In view of (8.3), it is given by the
quantization condition

(10.12) S1,2 + S3,4 + 2µ(ln(−µ)− 1) +
πh

2
+ 2hiO−

( h

µ

)
= 2π

(
k +

1

2

)
h, k ∈ Z.

Here we recall from the beginning of Section 5, that the term O−( h
µ ) is ∼ C1

h
µ +

C2( h
µ )2 + · · · , as h

µ → 0. We also know that if α = (ǫ, h2/ǫ) denote the small

additional parameters in the problem, then S j,k ∼ ∑∞
0 Sνj,k(µ, α)hν , for ( j, k) =

(1, 2), (3, 4), where Sνj,k are smooth in α and analytic in τ . Hence the condition

(10.12) takes the form b1,4−(µ, α; h) = 2π(k + 1
2
)h, where

(10.13) b1,4−(µ, α; h) ∼
∞∑

ν=0

bν1,4−(µ, α)hν ,

in the space of bounded holomorphic functions defined in the truncated sector:

Reµ ≤ −Ch, | Imµ| ≤ 1

C
(−Reµ),

with

(10.14)
b0

1,4−(µ, α) − 2µ ln(−µ), b1
1,4− holomorphic

in a full neighborhood of µ = 0, α = 0,

and

(10.15) bν1,4−(µ, α) = O(µ1−ν), ν ≥ 2.

Notice that the singularity structure (10.13), (10.14), and (10.15) of b1,4− is essen-
tially unchanged if we replace µ by µ̃ = a(µ, α; h)(µ + hd(µ, α; h)), where a, d are
classical symbols of order 0 in h with coefficients that are analytic near µ = 0, α = 0
and with a elliptic, Re a > 0, | Im a| ≪ Re a.

On the other hand, in the region Reµ < −1/C , C ≫ 0, we know (and that was
done for instance in [14, §4]), that the eigenvalues sit on a curve and are given by a
Bohr–Sommerfeld condition

b̃(µ, α; h) = 2π
(

k +
1

2

)
h, k ∈ Z,
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where b̃ is a classical analytic symbol of order 0: b̃ ∼∑∞
0 b̃ν(µ, α)hν , and where

b̃0(µ, α) =

∫

γext(µ,α)

ξ dx.

Here γext(µ, α) denotes a closed loop in the energy surface Q0(µ, α, x, ξ) = w, with

w and µ related by (10.9), that can be obtained from the real energy curve we get by

taking µ real and putting α = 0. Clearly b̃ = b1,4− , so our discussion gives detailed
description about how one can push the standard WKB-construction to the limit
|µ| ≫ h in the region Reµ < 0.

The same discussion applies to E1,2, E1,3. We get the conditions

b1,2(µ, α; h) = 2πkh and b1,3(µ, α; h) = 2πkh,

respectively, where b j,k, ( j, k) = (1, 2), (1, 3) are defined in the truncated sector
Reµ ≥ Ch, | Imµ| ≤ Reµ/C , and bνj,k have the analogous properties to those in
(10.14), (10.15), for ν ≥ 1, while the first part of (10.14) should be replaced by the
condition that

b0
j,k(µ, α) − µ lnµ is holomorphic near µ = 0, α = 0.

Then b0
1,2 is the action along a closed loop inside the appropriate complex energy

curve, that can be obtained by deformation from the case µ > 0, α = 0 where we
take the left real component, close to the left loop in the ∞-shaped set K0,0. For b0

3,4

we deform from the right real component.

11 Justification by Means of a Global Grushin Problem

11.1 One Dimensional Grushin Problems

We may assume here without loss of generality, that 〈q〉 is real-valued. Then we
know that f in (6.7) satisfies f (w; h) ∼ ∑∞

0 fk(w; h), where f0 is real-valued when
ǫ, h2/ǫ = 0, τ ∈ R. Recall that f and fk depend analytically on τ and smoothly on

ǫ, h2/ǫ.
Also recall that the spectrum of Q is localized to the region (6.4):

| Im w| = O(h + ǫ + h2/ǫ)

(as follows from the more refined estimate (10.11)), and in view of (6.8): f (w; h) =

−µ, it follows that µ is localized to a domain of the same type.

We shall now introduce three different Grushin problems for Q − w in the spirit
of [13, 31]. Let χ ∈ C∞

0 ((neigh(0, 0),R2)) be equal to one near (0, 0). We realize

χ as an h-pseudodifferential operator, that we also denote by χ, using a Gaussian
resolution of the identity (see [17, §3] and [27]), so that our calculus errors will be
exponentially small rather than just O(h∞). Assume, in order to fix the ideas, that the
support of ∇χ is a thin annulus around (0, 0), containing the points α j , j = 1, . . . , 4
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(see Section 6). Recall the definition of g j in (6.10). Let g∗j be the corresponding
functions defined for Q∗ − w, depending anti-holomorphically on w. Define

R
j
+u = (−1) j(u| i

h
[Q∗, χ]g∗j )W j

.

Here W j is a small neighborhood of α j and (u|v)W j
= (χ ju|v) where χ j ∈ C∞

0 (W j)
is equal to 1 near α j , and we also let χ j denote the corresponding Gaussian quan-

tization. We may normalize the choice of g∗j so that R
j
+g j = 1. Expanding the

commutator, we see that the definition of R j
+u (up to an exponentially small error)

is independent of the choice of χ, provided that u is a microlocal null-solution of
Q − w.

Assume for simplicity that χ is real-valued and that the corresponding quantiza-

tion is selfadjoint. Put R
j
−u− = (−1) ju−i/h[Q, χ]g j .

Our first Grushin problem is directly adapted to the derivation of the quantization
condition (6.18) in Section 6. It is the form

(11.1) (Q − w)u + R−u− = v, R+u = v+,

with R+ = R4
+ : L2

θ ′ → C, R− = R1
− : C → L2

θ ′ . Using Section 6 we see as in [13]
and [31, §5] that it is well posed for w in some fixed complex neighborhood of 0 with
a solution of the form

(11.2) u = Ev + E+v+, u− = E−v + E−+v+.

Here we get

E−+v+ = ihv+(c2,3e2πi(θ1+θ2)+ i
h

(S3,4+S1,2) + c2,4e2πiθ2+ i
h

S1,2 − c1,3e2πiθ1+ i
h

S3,4 − c1,4),

where the parenthesis is the same as in the quantization condition (6.18). As usual,
we read off the approximate eigenvalues as the zeros of E−+.

The drawback with this first Grushin problem is that the solution operator (11.2)

will grow exponentially when µ > 0. This can be seen either directly from the explicit
formulae for a j,k and the slightly less explicit expression for c j,k, or from the fact that
forµ > 0, we have approximately a double well problem and with R+ we prescribe the
solution u in (11.1) in one of the wells, and hence u will in general be exponentially

large in the other well. Of course, we will have to accept some exponential growth
with a rate O(| Im w|+ ǫ+ h2/ǫ) but certainly would like to avoid exponential growth
with a fixed rate when µ is real.

It seems impossible to cover a full neighborhood of w = 0 with a single Grushin

problem whose solution operator does not exhibit exponential growth in some re-
gion, so we shall use two Grushin problems where one will be nice roughly in the
upper half-plane and the other in the lower half-plane.

The second Grushin problem is designed to cover the region Imµ ≥ 0 with some

margin. It is of the form (11.1) with

(11.3) R+u = (R2
+u,R4

+u), R−u− = R1
−u1

− + R3
−u3

−,
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so that R+ = L2
θ ′ → C2, R− : C2 → L2

θ ′ . For the corresponding model problem for
P0 − µ in Section 4, we get (cf. (4.6) and (4.8)):

(11.4)

(
u1

u3

)
= U

(
u2

u4

)
,

(11.5) U =

(
u1,2 u1,4

u3,2 u3,4

)
= Γ

( 1

2
− i

µ

h

)
h−i µ

h

√
2π

(
e
π
2
µ
h

+i π
4 e−

π
2
µ
h
−i π

4

e−
π
2
µ
h
−i π

4 e
π
2
µ
h

+iπ4

)
.

This is basically the approach of [13, §4] and as there, we see by direct calculation or
by a more general normalization argument that U (µ) is unitary when µ is real. We

also see that U is uniformly bounded in any disc D(0,Ch) for

Imµ ≥ − Ch

ln 1
h

.

For µ outside an angle around −i[0,+∞[ with |µ| ≫ h, we apply Stirling’s for-
mula (5.2) and get

u j,k = exp
( iµ

h
− iµ

h
ln(−iµ) ±

( π
2

µ

h
+ i
π

4

)
+ O−

( h

µ

))

with the + sign valid for u1,2, u3,4, and the − sign for u1,4, u3,2. As in Section 8, we get

|u j,k| = exp
(
−1

h

(
1 + ln

1

|µ|
)

Imµ +
Reµ

h

(
arg
( µ

i

)
± π

2

)
+ Re O−

( h

µ

))
.

We now also assume that |µ| ≤ C−1 ≪ 1, so that ln(|µ|−1) ≫ 1. We shall estimate
the exponent from above. When Reµ ≥ 0, the worst exponent is the one with +π/2
in the middle term and we approximate

1

h
Reµ

(
arg
( µ

i

)
+
π

2

)
=

1

h
(Reµ)(argµ) ∼ 1

h

(Reµ)(Imµ)

|µ| ,

which is dominated by the first term and hence

(11.6) |u j,k| ≤ exp
(
−1

h

(
ln

1

|µ| + O(1)
)

Imµ
)
,

when Reµ ≥ 0. When Reµ ≤ 0, the worst case is the one with −π/2 in the middle

term and we approximate

1

h
Reµ

(
arg
( µ

i

)
− π

2

)
=

−Reµ

h
(π − argµ) ∼ 1

h

|Reµ|(Imµ)

|µ| ,

leading to (11.6) also in this case. We conclude that U is bounded in a domain of the
form

(11.7)
{
µ ; Imµ ≥ − Ch

ln 1
h+|µ|

}
.

As a consequence, we get the following.
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Proposition 11.1 The problem (11.1) with R± given by (11.3) is microlocally well
posed (with errors O(e−1/(Ch))) for |µ| small with µ in D(0, h

4
) or away from a small

conic neighborhood of iR−. If we write the solution as in (11.2), then for µ as in (11.7),
we have

(11.8) h‖E‖, ‖E±‖, |E−+| = O(1) exp
C

h

(
| Imµ| + ǫ +

h2

ǫ

)
.

Let us also compute E−+. Near the branching point, we recall that we have the

relation (6.11) for null-solutions to P − z, equal to u jg j near α j . To determine E−+,
we consider (11.1) with v = 0, so that u j = v+

j for j = 2, 4. We then want to express
u j , j = 1, 3 in terms of u2, u4. We can do this using (11.4), (11.5) above and redo
some of the work in Section 6, but it is easier to to use the work already done and

“solve” (6.11). We get

(
u1

u3

)
=

(
c1,3

c2,3
c1,4 − c1,3c2,4

c2,3
1

c2,3
− c2,4

c2,3

)(
u2

u4

)
.

Notice that u−
1 , u−

3 in our Grushin problem (with v = 0) are the discontinuities we
obtain at α1, α3 when trying to extend a null-solution near (0, 0) with prescribed
u = v+

j g j near α j , j = 2, 4, to a global null-solution near K0,0. We get

(
u−

1

u−
3

)
= E−+

(
v+

2

v+
4

)
=

(
e2πieθ2 − c1,3

c2,3

c1,3c2,4

c2,3
− c1,4

− 1
c2,3

e2πieθ1 +
c2,4

c2,3

)(
v+

2

v+
4

)
,

where

(11.9) 2πθ̃1 = 2πθ1 + 1
h

S3,4, 2πθ̃2 = 2πθ2 + 1
h

S1,2.

It follows that

det E−+ =
1

c2,3
(e2πi(eθ1+eθ2)c2,3 + c2,4e2πieθ2 − c1,3e2πieθ1 − c1,4)

= e2πi(eθ1+eθ2) +
c2,4

c2,3
e2πieθ2 − c1,3

c2,3
e2πieθ1 − c1,4

c2,3
.

(11.10)

From the middle expression, we see that this determinant is equal to the expression
in the quantization condition (6.18) times a non-vanishing factor.

The third problem is designed to cover the region Imµ ≤ 0. It is of the form
(11.1) with

(11.11) R+u = (R1
+u,R3

+u), R−u− = R2
−u2

− + R4
−u4

−.

For the corresponding model problem for P0 −µ in Section 4 we get (cf. (4.6), (4.8)):

(
u2

u4

)
= V

(
u1

u3

)
= U−1

(
u1

u3

)
,
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with U as in (11.4), unitary for real µ, so that V (µ) = U (µ)∗. Thus from (11.6) we
see that the matrix elements v j,k satisfy

|v j,k| ≤ exp
1

h

(
ln

1

|µ| + O(1)
)

Imµ,

and V is bounded in a domain of the form

(11.12)
{
µ ; Imµ ≤ Ch

ln 1
h+|µ|

}
.

Proposition 11.2 The problem (11.1) with R± given by (11.11) is microlocally well

posed (with errors O(e−1/(Ch))) for |µ| small with µ in D(0, h/4) or away from a small
conic neighborhood of iR+. If we write the solution as in (11.2), then for µ as in (11.12),
we have the estimate (11.8).

We now compute the corresponding E−+, so we put v = 0 in (11.1) and repeat the

arguments above. Near the branching point u is a null-solution, and is u jg j near α j ,
now with v+

j = u j , j = 1, 3. By “solving” (6.11), we express u2, u4 in terms of u1, u3

and find

(
u2

u4

)
=




c2,4

c1,4
c2,3 −

c1,3c2,4

c1,4
1

c1,4
− c1,3

c1,4



(

v+
1

v+
3

)
.

We then get

(
u2

u4

)
= E−+

(
v+

1

v+
3

)
=




c2,4

c1,4
− e−2πieθ2 c2,3 −

c1,3c2,4

c1,4

− 1

c1,4

c1,3

c2,4
+ e−2πieθ1



(

v+
1

v+
3

)
,

and

det E−+ =
e−2πi(eθ1+eθ2)

c1,4
(c2,3e2πi(eθ1+eθ2) + c2,4e2πieθ2 − c1,3e2πieθ1 − c1,4)

=
c2,3

c1,4
+

c2,4

c1,4
e−2πieθ1 − c1,3

c1,4
e−2πieθ2 − e−2πi(eθ1+eθ2).

(11.13)

11.2 The Global Grushin Problem

We first explain what the natural range will be for ǫ. Our global Grushin problem
will be built from a direct sum of problems for the operators P̂ǫ − z in (2.3). These

operators can be written

(11.14) g
(

h
(

k − k0

4

)
− S0

2π

)
+ iǫQ

(
h
(

k − k0

4

)
, x, hDx, ǫ,

h2

ǫ
; h
)
,
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where Q is the operator appearing earlier in this section and in Section 6.
Clearly, we add conditions R± only for such k for which

wk =
z − g(h(k − k0

4
) − S0

h
)

iǫ

is close to the spectrum of Q, i.e., for which

(11.15) | Im wk| ≤ O

(
ǫ +

h2

ǫ

)
,

(cf. (6.4)), assuming for simplicity that 〈q〉 is real-valued. Then according to (11.8)
we can expect that our Grushin problem will have an inverse E with norm ‖E‖ =

O(1)eC( ǫ
h

+ h
ǫ ).

Now we cannot expect to have a complete decomposition into a direct sum of
operators (11.14), but Proposition 3.3 shows that it is possible up to an error

O(1) exp(−1/(C(ǫ + h))).

Thus in order to absorb the error by a standard perturbation argument, we need

eC( ǫ
h

+ h
ǫ )− 1

C(ǫ+h) ≪ 1, which would follow from

(11.16)
1

ǫ + h
≫ ǫ

h
+

h

ǫ
,

or equivalently ǫ3 + h3 ≪ ǫh. Here we already know that h3 ≪ ǫh, since we assume
h2/ǫ≪ 1, so the new constraint is ǫ2 ≪ h. From now on we work in the range

h2 ≪ ǫ≪ h1/2.

Since g is real-valued with g ′ 6= 0, it follows from (6.4) (or (6.5) in the general
case, when 〈q〉 is not assumed to be real) that the operators (11.14) have disjoint
spectra. When (11.15) is never satisfied for any k, it is straightforward to see that z is

not in the spectrum of our original operator Pǫ. Assume now that (11.15) holds for

(at most) one k = k̃. Let R(ek)
± be the corresponding operators R± defined earlier in

this section. Using the notation of Proposition 2.1, we define

R+u = R(ek)
+ ((e

i
h

AU−1e−
ǫ
h

Gu|eek− k0
4
− S0

2πh

)L2(S1)),

R−u− = e
ǫ
h

GU e−
i
h

A(eek− k0
4
− S0

2πh

⊗ R(ek)
− u−),

for u ∈ L2(M), u− ∈ C. Here ek(t) = eikt .
Repeating the arguments from [14, §6], (see also [15]), we see that we get a well

posed problem with

(11.17) E−+(z) = E(ek)
−+(z) + O(e

−1
C(ǫ+h) ).
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Here E(ek)
−+ is the E−+ of the approximate 1-dimensional Grushin problem treated in

either Proposition 11.1 or 11.2, depending on the sign of the corresponding parame-
ter Imµ.

In the expressions (11.10) and (11.13), we have the term e±2πi(eθ1+eθ2), where θ̃ j

are given by (11.9). We see that Im θ̃ j = O( ǫh
+

h
ǫ ), so e±2πi(eθ1+eθ2) = eO( ǫ

h
+ h
ǫ ). We

conclude from this and (11.16) that the remainder in (11.17) is O(e−
1

C(ǫ+h) ) times the

dominating term in the expression for E(ek)
−+ in (11.10), or (11.13) respectively. This

implies that if we pass to the µ-variable (for k = k̃) and define the skeleton as in
Sections 8, 9 and the corresponding body B as in the beginning of Section 10, then the

zeros of det E−+ are confined to B and Theorem 10.1 still applies to give the number
of eigenvalues (in the µ-plane) inside an admissible curve.

12 Improved Parameter Range for Barrier Top Resonances in the
Resonant Case

We start the discussion in this section with the following general observation. Let Pǫ
be a smooth family of operators, satisfying all the assumptions of the introduction,
and in particular (1.9). In Proposition 2.1 we have seen that the operator Pǫ=0 can be
reduced by successive averaging procedures to

(12.1) P̂ǫ=0 = g(hDt ) + hp1(hDt , x, hDx)

+ h2 p2(hDt , x, hDx) + · · · , t ∈ S1, τ , x, ξ ≈ 0.

Proposition 12.1 Assume that the subprincipal symbol of Pǫ=0 vanishes and that the
spectrum of Pǫ=0 clusters into bands of size ≤ O(1)hN0 , for some integer N0 ≥ 2. Then
p j(τ , x, ξ) = p j(τ ) are independent of (x, ξ) for 1 ≤ j ≤ N0 − 1 in (12.1).

Proof Since the subprincipal symbol vanishes, we already know that p1 = 0. Sup-
pose that the conclusion of the proposition does not hold and let N1 ∈ {2, 3, . . . ,
N0 − 1} be the smallest N with pN(τ0, x, ξ) non-constant for some τ0 ≈ 0. Take a
family of Gaussian quasimodes eα(x), α = (αx, αξ) ∈ neigh(0,R2) with

‖eα‖ = 1, pw
N1

(τ0, x, hDx)eα = pN1
(τ0, α)(α)eα + O(h1/2) in L2.

See [5] for the standard construction of such quasimodes. Then put

fα,h = (2π)−1/2e
i
h

(h(k− k0
4

)− S0
2π )t eα(x),

with k = k(h) such that h(k(h) − k0/4) − S0/2π → τ0, so that

P̃w
0 fα,k = g

(
h
(

k− k0

4

)
− S0

2π

)
+hN1 pN1

(
h
(

k− k0

4

)
− S0

2π
, α
)

fα,k +O(hN1+ 1
2 ) in L2.

Hence, since we are dealing with selfadjoint operators,

dist
(

g
(

h
(

k − k0

4

)
− S0

2π

)
+ hN1 pN1

(
h
(

k − k0

4

)
− S0

2π
, α
)
, σ(P0)

)
≤ O(hN1+ 1

2 ),
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and varying α, so that the values pN1
(h(k − k0

4
) − S0

2π , α) fill up a whole interval, we
get a contradiction to the clustering assumption.

Remark Proposition 12.1 remains to hold in the case described in [14, §4], where the

operator Pǫ=0 is conjugated into a normal form in a neighborhood of a Lagrangian
torus, rather than near a closed Hp-trajectory.

From now on we shall assume that Pǫ=0 satisfies the assumptions of Proposi-
tion 12.1. Let us now switch on ǫ. An application of Proposition 2.1 together with

Proposition 12.1 then shows that microlocally, near a closed Hp-trajectory, Pǫ can be
reduced to the form

(12.2) P̂ǫ = g(hDt ) + ǫ
(

i〈q〉(hDt , x, hDx) + O(ǫ) + O

( hN0

ǫ

)
+ hp̃1 + · · ·

)
.

It follows therefore that in the results of [14, Theorems 6.4, 6.7] we can replace the

exponent 2 by the exponent N0 in the parameter range for ǫ. Thus for the study of
the spectrum of Pǫ in a region where |Re z| < 1/O(1) and |Im z/ǫ− F0| ≤ 1/O(1),
when F0 is a non-critical value or a non-degenerate maximum or minimum of Re〈q〉
along p−1(0), it suffices to assume that

(12.3) hN0 ≪ ǫ ≤ hδ,

for some δ > 0. In the case when F0 is a saddle point value of Re〈q〉, from Theo-
rem 1.1 we get the condition

(12.4) hN0 ≪ ǫ≪ h1/2.

Indeed, in the latter case we still have Proposition 3.3 and the decoupling condition
analogous to (11.16) becomes ǫ3 + hN0+1 ≪ ǫh, which is fulfilled by (12.4).

We shall now apply these observations to improve the result of [14, Proposition
7.1], giving a description of the individual barrier top resonances of the semiclassical
Schrödinger operator in the resonant case. Before doing so, and also for the future
use in Section 13, we shall first briefly recall the general setup in [14, §7], as well as

in [15, §5].
As in [14, 15], let us consider

(12.5) P = −h2
∆ + V (x), P(x, ξ) = ξ2 + V (x), (x, ξ) ∈ T∗R2,

where V satisfies the general assumptions of [14, §7], allowing us to define the reso-
nances of P in the lower half-plane inside some fixed neighborhood of E0 > 0, where
V (0) = E0, V ′(0) = 0, V ′′(0) < 0. As in [14,15], we assume that {(0, 0)} is the only

trapped HP-trajectory in P−1(E0). After a linear symplectic change of coordinates,
we may write

(12.6) P(x, ξ) − E0 =

2∑

j=1

λ j

2
(ξ2

j − x2
j ) + p3(x) + p4(x) + · · · , (x, ξ) → 0,
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where λ j > 0 and p j(x) is a homogeneous polynomial of degree j ≥ 3. Recall further
from [14] that the study of resonances of P near E0 can be reduced to an eigenvalue

problem for P after applying some variant of the method of complex scaling, and that

near x = 0 this simply amounts to working in the new real coordinates (x̃, ξ̃), given

by x = eiπ/4x̃, ξ = e−iπ/4ξ̃.
Performing the scaling and dropping the tildes from the notation, we see that the

problem reduces to studying the eigenvalues close to 0 of the operator i(P−E0), now

elliptic outside a small neighborhood of (0, 0), with symbol

(12.7) P(x, ξ) = p(x, ξ) + ie
3iπ
4 p3(x) + ieiπp4(x) + ie

5iπ
4 p5(x) + · · · ,

where

(12.8) p(x, ξ) =

2∑

j=1

λ j

2
(x2

j + ξ2
j ).

Here we continue to write P to denote the scaled operator.

We assume that λ j > 0 in (12.7) are rationally dependent,

(12.9) ∃k0
= (k0

1, k
0
2) ∈ Z2 \ {0}, k0

1λ1 + k0
2λ2 = 0,

which implies that the Hp-flow is periodic.
As in [14, 15], we are interested in eigenvalues E of P with |E| ∼ ǫ2, 0 < ǫ ≪ 1.

After a rescaling x = ǫx̃ and dropping the tildes over the new variables, we get an

operator Pǫ =
1
ǫ2 P that we view as an h̃-pseudodifferential operator with the symbol

Pǫ(x, ξ) =
1
ǫ2 P(ǫ(x, ξ)) = p(x, ξ) + iǫe3πi/4 p3(x) − iǫ2 p4(x) + O(ǫ3).

Here h̃ = h/ǫ2. Now the spectrum of Pǫ=0 is that of the harmonic oscillator, and
hence it clusters into sets of diameter 0 and separation of order h. An application of

Proposition 12.1 shows that all the p j in (12.1) are constant. Moreover, since in this
case all the eigenvalues depend linearly on h, we see from the proof that the p j have
to vanish. It follows from (12.3) that in the zone corresponding to non-critical values
F0 or non-degenerate maxima or minima, the range of energies that we get is

h2N0/(1+2N0) ≪ |E − E0| ≤ h2δ/(1+2δ),

for all N0 = 2, 3, . . . and all δ > 0. When F0 corresponds to a branching level, we get
from (12.4)

h2N0/(1+2N0) ≤ |E − E0| ≤ h1/2.

We summarize the discussion above in the following proposition, which is an im-
provement of [14, Proposition 7.3]. Clearly, in a similar fashion, we also obtain an
improvement of [15, Theorem 5.1].
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Proposition 12.2 Assume that the principal symbol P(x, ξ) in (12.5) has an asymp-
totic expansion (12.6), and assume that (12.9) holds. Assume furthermore that the func-

tion 〈p3〉, defined as the average of p3 along the Hamilton flow of p in (12.8) does not
vanish identically. Then the resonances of the operator P in the domain

(12.10) {z ∈ C; h2N0/(1+2N0) ≪ |z − E0| ≤ hδ}

\
⋃{

z ∈ C ;
∣∣Re z − E0 − A |Im z|3/2

∣∣ < η |Im z|3/2}
,

where η > 0, δ > 0, and N0 = 2, 3, . . . are arbitrary but fixed, are given by

∼ E0 − i
(

h(k1 − α/4) + ǫ3
∞∑

j=0

h jǫ−2 jr j

( h

ǫ2

(
k − k0

4

)
− S

2π
, ǫ,

hN0

ǫ1+2N0

))
,

with

r0 = ie3πi/4〈p3〉(ξ) + O

(
ǫ +

hN0

ǫ1+2N0

)
, r j = O(1), j ≥ 1.

We have k = (k1, k2) ∈ Z2, S = (S1, S2) with S1 = 2π, and α = (α1, α2) ∈ Z2 is fixed,
and we choose ǫ > 0 with |E − E0| ∼ ǫ2. The union in (12.10) is taken over the set of

critical values of 〈p3〉, restricted to p−1(1), with A varying over this set.

Remark If 〈p3〉 restricted to p−1(1) has precisely one non-degenerate saddle point
with the critical value A, then the results of the present paper apply and give a de-
scription of the individual resonances in a half-cubic neighborhood of the curve

Re z = E0 + A |Im z|3/2
. In the following section, we shall consider explicit exam-

ples of homogeneous polynomials for which the assumptions of Theorem 1.1 are
satisfied.

13 Examples in the Barrier Top Case

This section is devoted to a study of examples of potentials of the Schrödinger oper-
ator (12.5) to which Theorem 1.1 is applicable.

Let us recall from (12.7) that we are interested in eigenvalues close to 0 of the

operator P, elliptic outside a small neighborhood of (0, 0) with symbol

(13.1) P(x, ξ) = p(x, ξ) + ie
3πi
4 p3(x) + ieiπp4(x) + · · · ,

where the harmonic oscillator p(x, ξ) has been defined in (12.8). As before, we make
the resonant assumption (12.9).

Consider first a general perturbation of p of the form of a linear combination of
terms xαξβ with |α| + |β| = m, for some m ∈ {3, 4, 5, . . .}. Recall from [14] how to

compute the corresponding trajectory average 〈xαξβ〉: basically we use action-angle
coordinates, but to start with, we can do things a little more easily by introducing

z j = x j + iξ j ∈ C,
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and noticing that along an Hp-trajectory we get in the z1, z2 coordinates:

z j(t) = e−iλ jt z j(0).

Then write x j(t) = Re z j(t), ξ j(t) = Im z j(t), so that

x(t)αξ(t)β =

2∏

j=1

((Re z j(t))α j (Im z j(t))β j )

=
1

2|α|+|β|i|β|

2∏

j=1

((z j (0)e−iλ jt + z j(0)eiλ jt )α j (z j(0)e−iλ jt − z j(0)eiλ j t )β j ).

(13.2)

Then expand the product by means of the binomial theorem. The time average is
equal to the time-independent term and since this average is constant along each

trajectory we shall replace the symbols z j(0) simply by z j .

In this section we consider the case when λ1 = λ2 = 1, m = 4, β = 0. (In [14] we
noticed that in this case the average will vanish when m = 3 and in [15] we made a
more refined study of that case taking into account one more term in the perturbative

expansion.) This means that we take p3(x) = 0, and for simplicity we also assume
that pm = 0 for all odd m in (13.1), so that we can concentrate on the perturbation
−i p4 in (13.1). Performing a rescaling as described in the previous section, with ǫ
replaced by ǫ1/2, (i.e., setting x = ǫ1/2x̃ rather than x = ǫx̃), we get

(13.3) p(x, ξ) − iǫp4(x) − ǫ2 p6(x) + iǫ3 p8(x) + ǫ4 p10(x) + · · · ,

and here, as before, we choose ǫ of the same order of magnitude as the modulus of

the eigenvalues for the operator P(x, hD) which we want to study.

Now we continue the calculations of trajectory averages using (13.2). We have

〈x4
1〉 =

1

24
〈(z1 + z1)4〉 =

1

24
〈z4

1 + 4z3
1z1 + 6z2

1z2
1 + 4z1z3

1 + z4
1〉

=
6

16
〈z2

1z2
1〉 =

3

8
|z1|4 (=

3

8
(x2

1 + ξ2
1)2).

In the same way, we get 〈x4
2〉 =

3
8
|z2|4.

Next look at the averages of mixed terms:

〈x3
1x2〉 =

1

24
〈(z1 + z1)3(z2 + z2)〉 =

1

24
〈(z3

1 + 3z2
1z1 + 3z1z2

1 + z3
1)(z2 + z2)〉

=
3

16
(|z1|2z1z2 + |z1|2z1z2) =

3

8
|z1|2 Re(z1z2),

〈x1x3
2〉 =

3

8
|z2|2 Re(z2z1),
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〈x2
1x2

2〉 =
1

24
〈(z2

1 + 2z1z1 + z2
1)(z2

2 + 2z2z2 + z2
2)〉

=
1

24
(z2

1z2
2 + 4|z1|2|z2|2 + z2

1z2
2)

=
1

8
Re(z2

1z2
2) +

1

4
|z1|2|z2|2.

Notice that our averages are invariant under the anti-symplectic involution

j : (x, ξ) 7→ (x,−ξ).

This is necessarily the case since we stay in the framework of ordinary Schrödinger
operators (without magnetic fields) whose symbols have this invariance.

Now write our results in the action angle variables (ρ j , θ j), given by

z j =
√

2ρ je
−iθ j ,

so that 1
2
|z j |2 =

1
2
(x2

j + ξ2
j ) = ρ j :

〈x4
1〉 =

3

2
ρ2

1, 〈x4
2〉 =

3

2
ρ2

2,

〈x3
1x2〉 =

3

2
ρ

3/2
1 ρ

1/2
2 cos(θ1 − θ2), 〈x1x3

2〉 =
3

2
ρ

1/2
1 ρ

3/2
2 cos(θ2 − θ1),

〈x2
1x2

2〉 = ρ1ρ2 +
1

2
ρ1ρ2 cos 2(θ1 − θ2).

It follows from the Hamilton equations that ρ j and θ := θ1 − θ2 are constant along

every Hp-trajectory. The involution j can also be described as (z1, z2) 7→ (z1, z2), and
hence in action-angle variables as (ρ1, ρ2, θ1, θ2) 7→ (ρ1, ρ2,−θ1,−θ2).

We shall study our averages as functions on the abstract symplectic manifold

Σ = p−1(1)/ exp RHp.

Using the (z1, z2)-coordinates, we have p−1(1) : 1
2
(|z1|2 + |z2|2) = 1, and the equiva-

lence relation induced by the Hp-flow is: (z1, z2) ∼ (w1,w2) if and only if

(w1,w2) = (eit z1, e
it z2)

for some t ∈ R. Thus we see that Σ can be identified with the complex projective

space P(C2). It is well known that this space is diffeomorphic to S2. Indeed, P(C2) can
be identified with the 1-point compactification C∪{∞} via the map (z1, z2) 7→ z1/z2

and the one point compactification can be identified with the Riemann sphere.
Thus Σ can be parametrized by (ρ1, ρ2, θ) with ρ j ≥ 0, ρ1 + ρ2 = 1, θ ∈ R/2πZ,

with the convention that all the (1, 0, θ) denote the same point and similarly for
(0, 1, θ). The involution j induces the anti-symplectic involution

j : Σ ∋ (ρ1, ρ2, θ) 7→ (ρ1, ρ2,−θ).
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Notice that the set of fixed points of j is given by all points with θ = 0 or θ = π. These
points form a (great) circle on Σ and can also be described as the set of trajectories

in p−1(1) whose x-space projections hit the boundary of the potential well {x ∈ R2 ;
|x| = 1}.

We consider perturbations of the form

(13.4) q(x) =
2
3
a(x4

1 + x4
2) + bx2

1x2
2 + 2

3
c(x3

1x2 + x1x3
2).

Then on Σ we get with ρ = ρ1, so that ρ2 = 1 − ρ:

〈q〉 = a(ρ2
1 + ρ2

2) + bρ1ρ2 + b
2
ρ1ρ2 cos(2θ) + c(ρ

1
2

1 ρ
3
2

2 + ρ
3
2

1 ρ
1
2

2 ) cos θ

= a(ρ2 + (1 − ρ)2) + bρ(1 − ρ)(1 + 1
2

cos(2θ))

+ c(ρ
1
2 (1 − ρ)

3
2 + ρ

3
2 (1 − ρ)

1
2 ) cos θ

= a + (b − 2a)ρ(1 − ρ) + b
2
ρ(1 − ρ) cos(2θ) + cρ1/2(1 − ρ)1/2 cos θ

= a + ( b
2
− 2a)ρ(1 − ρ) + bρ(1 − ρ) cos2 θ + cρ

1
2 (1 − ρ)

1
2 cos θ,

where we used that ρ1/2(1 − ρ)3/2 + ρ3/2(1 − ρ)1/2 = ρ1/2(1 − ρ)1/2.

We are interested in the critical points of this function on Σ, and the values
ρ = 0, 1 will have to be treated separately. In particular we are interested in the
number of saddle points. If we have only one saddle point we will be able to apply
the results of this paper. This is still the case if there are two saddle points provided

that the corresponding critical values are different. We will also encounter the case of
two saddle points S1, S2 away from the equator and then necessarily with j(S1) = S2.
In that case the critical vales will be equal and the results of this paper will not apply
directly. We plan to return to that case in a future paper, where the role of symmetries

will be studied.
Put d =

b
2
− 2a, g = ρ1/2(1 − ρ)

1
2 , y = cos θ. Then, 〈q〉 = a + dg2 + bg2 y2 + cg y.

Notice that y = cos θ is critical precisely when θ = 0, π and that y ∈ [−1, 1]. When
y 6= ±1, we may treat g as an independent variable. The same observation is valid

for g(ρ) ∈]0, 1
2
]. It is non-critical in [0, 1

2
[ i.e., for ρ 6= 1

2
. (As already mentioned, the

value g = 0, corresponding to ρ = 0, 1, will require a different treatment.)
In order to avoid various degenerations, we shall assume d 6= 0, When c 6= 0, we

have b 6= 0, b + d 6= 0.

Case 1 Critical points with

(13.5) θ 6= 0, π, ρ 6= 0, 1
2
, 1.

Here both y and g can be treated as independent variables and the critical points are
determined by 2bg2 y + cg = 0 and 2dg + 2bg y2 + cy = 0. This can also be written

g(2bg y + c) = 0 and 2dg + y(2bg y + c) = 0. Under the assumption (13.5) we have
g 6= 0, so we get 2bg y + c = 0 and 2dg = 0. This is in contradiction with the
assumption that d 6= 0, so we conclude that there are no critical points away from
the union of the vertical circle given by θ ∈ {0, π} and the horizontal circle: ρ = 1/2.
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Case 2 Critical points on the horizontal circle away from the vertical one:

(13.6) θ 6= 0, π, ρ =
1
2
.

Then g = 1/2 and this is a critical value, so we only have to look for critical points
with respect to y, leading to

2b( 1
2
)2 y + c 1

2
= 0, y = − c

b
.

Recall that |y| < 1 under the assumption (13.6), so we reach the conclusion that

if
∣∣ c

b

∣∣ < 1, then there are two distinct critical points in the region (13.6), given by
ρ =

1
2
, cos θ = − c

b
, and otherwise there are no such points. (In the remaining

degenerate case b = c = 0 the whole horizontal circle is critical.)
We also study the nature of the critical points, by computing the hessian of 〈q〉

with respect to ρ, y. Using that g ′( 1
2
) = 0, g ′ ′( 1

2
) = −2, we get at both points

∂2
y〈q〉 =

b
2
, ∂y∂ρ〈q〉 = 0, ∂2

ρ〈q〉 = −2d.

So both critical points are of signature (b,−d) where the first component corre-

sponds to the horizontal (θ) direction. (We use the convention that a signature de-
scribed by (α, β) is given by (sign(α), sign(β)).)

Case 3 Critical points on the vertical circle away from the horizontal one and from the

poles ρ = 0, 1:

θ ∈ {0, π}, ρ 6∈ {0, 1
2
, 1}.

For θ = 0, we have y = 1 and we look for critical points of g 7→ (d+b)g2 +cg, leading

to g = − c
2(b+d)

. Hence we get two critical points in this region if −1 < c
b+d

< 0. and
otherwise no point on this half of the vertical circle. (In the degenerate case b+d = 0,
c = 0 the whole vertical circle is critical.)

For θ = π, we have y = −1 and we look for critical points of g 7→ (d + b)g2 − cg,

leading to g =
c

2(b+d)
, so we get two critical points in this case if 0 < c

b+d
< 1, and

otherwise no critical points on this half of the vertical circle. We will see shortly that
we have critical points at the poles when c = 0.

In both subcases, we get by a straight forward calculation:

〈q〉 ′′gg = 2(b + d), 〈q〉 ′′gθ = 0, 〈q〉 ′′θθ =
c2

2(b + d)2
d,

so the signature is (d + b, d) where the first component refers to the direction of the
vertical circle through the critical point.

Case 4 The two points of intersection of the two circles: Here ρ =
1
2

and θ ∈ {0, π}.

Here both g and y are critical, so our intersection points are both critical. By straight
forward calculation, we get for C f : θ = 0, ρ =

1
2

〈q〉 ′′θθ = − 1
2
(b + c), 〈q〉 ′′θρ = 0, 1

2
〈q〉 ′′ρρ = −c − b − d,
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and for Cb : θ = π, ρ =
1
2

〈q〉 ′′θθ =
1
2
(−b + c), 〈q〉 ′′θρ = 0, 1

2
〈q〉 ′′ρρ = c − b − d.

In particular, the signature is

{
(−c − b − d,−b − c) when θ = 0,

(c − b − d, c − b) when θ = π.

Also notice that

(13.7) 〈q〉(C f ) = a +
d + b

4
+

c

2
, 〈q〉(Cb) = a +

d + b

4
− c

2
.

Case 5 It remains to study the “poles”, given by ρ = 0, 1. Here the ρ, θ coordinates
degenerate and we return to the z-coordinates. Using that Re(z2

1z2
2) = 2(Re z1z2)2 −

|z1|2|z2|2, we get

〈q〉 =
a
4
(|z1|2 + |z2|2)2 +

(
b
8
− a

2

)
|z1|2|z2|2 + b

4
(Re z1z2)2 + c

4
(|z1|2 + |z2|2) Re(z1z2).

Make the change of variables ζ j = z j/
√

2 and restrict to the energy surface p−1(1),
which now becomes |ζ1|2 + |ζ2|2 = 1. Then we get

〈q〉 = a + d|ζ1|2|ζ2|2 + b(Re(ζ1ζ2))2 + c Re(ζ1ζ2),

again with d =
b
2
− 2a.

Recall that we work on the projective space, described as the 3-sphere |ζ1|2+|ζ2|2 =

1 modulo the action of the rotations t 7→ (eitζ1, e
itζ2). Consider the case ρ = 0.

Correspondingly, we can choose the point (ζ0
1 , ζ

0
2 ) = (0, 1). The Hp-integral curve

through that point is t 7→ (0, e−it ) and locally, we can identify Σ with the transversal
hypersurface H in the 3-sphere which is given by Im ζ2 = 0. Thus ζ2 = 1 − w with

w ∈ neigh(0,R), and we get w = 1 − (1 − |ζ1|2)1/2 =
1
2
|ζ1|2 + O(|ζ1|4). We can use

the real and imaginary parts of ζ1 as local coordinates on H. Then on H, we get the
Taylor expansion 〈q〉 = a + d|ζ1|2 + b(Re ζ1)2 + c Re ζ1 + O(|ζ1|3).

We conclude that the “pole” ρ = 0 is a critical point if and only if c = 0 and when
this point is critical, the signature is (d+b, d), where the first component corresponds
to the direction of the (vertical) circle through the pole. By symmetry in the indices
1, 2, we have the identical conclusion for the opposite pole, given by ρ = 1. Notice

finally that this case together with Case 3 give a complete description of the critical
points on the vertical circle away from the crossings with the horizontal one.

We observe that the critical points away from the intersection of the two circles

are non-degenerate and keep constant signatures under small perturbations of the
parameters (except in the degenerate cases c = b = 0 and c = b + d = 0). These
critical points can only be killed or born by passing through one of the two crossing
points. This happens in the following four cases.
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Case 1 c
b

= −1: The critical points on the horizontal circle coalesce into the cross-
ing point θ = 0, ρ =

1
2
. When c/b goes from −1 + ǫ to −1− ǫ, the two critical points

disappear and the signature at θ = 0, ρ =
1
2

goes from (−d,−bǫ) to (−d, bǫ)

Case 2 c
b

= 1. The two critical points on the horizontal great circle coalesce into

the crossing point θ = π, ρ =
1
2
. When c

b
goes from 1 − ǫ to 1 + ǫ, the signature of

that crossing point goes from (−d,−bǫ) to (−d, bǫ).

Case 3 c
b+d

= −1: The two critical points on the vertical circle coalesce into the
crossing point θ = 0, ρ =

1
2
. When c

b+d
goes from −1 + ǫ to −1 − ǫ, the signature of

that crossing point goes from (cǫ, d) to (−cǫ, d).

Case 4 c
b+d

= 1: The two critical points on the vertical circle coalesce into the
crossing point θ = π, ρ =

1
2
. When c

b+d
goes from 1− ǫ to 1 + ǫ, the signature of that

crossing point goes from (−cǫ, d) to (cǫ, d).

In the following, we may assume in order to fix the ideas that d > 0. In the b, c-

plane, we define the following open sets, separated from each other by the 4 lines
c = ±b, c = ±(b + d), where all the critical points will be non-degenerate:

A : b > 0, −b < c < b.
B+ : max(b,−b) < c < b + d.
B− : −(b + d) < c < min(b,−b).
C+ : c > max(b + d,−b).
C−: c < min(b,−b − d).
D : b < 0, max(b,−b − d) < c < min(−b, b + d).

E+ : max(b + d,−b − d) < c < −b.
E− : b < c < min(−b − d, b + d).
F : b < −d, b + d < c < −b − d.

Then the earlier discussion gives the location and the signature of the critical
points in each of the cases. Let C f denote the “forward” crossing point of the two
circles, given by ρ =

1
2
, θ = 0. Similarly let Cb denote the “backward” crossing point,

given by ρ =
1
2
, θ = π.

A : Signature at C f : (−,−)
Signature at Cb: (−,−)
Away from the crossings:
On the horizontal circle: Two critical points with signature (+,−)

On the vertical circle: Two critical points with signature (+,+)

B+ : Signature at C f : (−,−)
Signature at Cb: (−,+)

Away from the crossings:
On the horizontal circle: No critical points
On the vertical circle: Two critical points with signature (+,+)
Here 〈q〉(Cb) is smaller than 〈q〉(C f ) but larger than the two other critical

values.
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c

b

c = b

c = b + d

c = −b

c = −(b + d)

C+

A

B+

D

E+F

E−

C−

B−

Figure 6: When the parameters are in the regions B+, B−, E+, and E−, we have precisely one

saddle point, and therefore the results of the present paper apply. In the cases C+ and C− there

are no saddle points at all, while in the case D there two saddle points. The corresponding

critical values of 〈q〉 are separated provided that we assume that c 6= 0.

B− : Signature at C f : (−,+)
Signature at Cb: (−,−)

Away from the crossings:
On the horizontal circle: No critical points
On the vertical circle: Two critical points with signature (+,+).
Here 〈q〉(C f ) is smaller than 〈q〉(Cb) but larger than the two other critical

values.

C+ : Signature at C f : (−,−)
Signature at Cb: (+,+)

Away from the crossings:
On the horizontal circle: No critical points
On the vertical circle: No critical points
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C− : Signature at C f : (+,+)
Signature at Cb: (−,−)

Away from the crossings:
On the horizontal circle: No critical points
On the vertical circle: No critical points

D : Signature at C f : (−,+)
Signature at Cb: (−,+)

Away from the crossings:
On the horizontal circle: Two critical points with signature (−,−)
On the vertical circle: Two critical points with signature (+,+)
Here 〈q〉(C f ), 〈q〉(Cb) are larger than the values at the critical points on

the vertical circle and smaller than the values at the critical points on the
horizontal circle. From (13.7) we also know that 〈q〉(C f ) − 〈q〉(Cb) = c.

E+ : Signature at C f : (−,+)
Signature at Cb: (+,+)
Away from the crossings:

On the horizontal circle: Two critical points with signature (−,−).
On the vertical circle: No critical points.
In this case 〈q〉(C f ) is larger than 〈q〉(Cb) but smaller than the two other
critical values.

E− : Signature at C f : (+,+)
Signature at Cb: (−,+)
Away from the crossings:

On the horizontal circle: Two critical points with signature (−,−).
On the vertical circle: No critical points.
In this case 〈q〉(Cb) is larger than 〈q〉(C f ) but smaller than the two other
critical values.

F : Signature at C f : (+,+)
Signature at Cb: (+,+)

Away from the crossings:
On the horizontal circle: Two critical points with signature (−,−).
On the vertical circle: Two critical points with signature (−,+).

In cases B+,B−, E+, E− we have precisely one saddle point (necessarily) situated
on the vertical circle which is the fixed point set of j. In these cases, the results of this

paper apply. The results also apply in case D, provided that we assume that c 6= 0 in
order to separate the two saddle point values. In these cases it is easy to understand
the structure and the shape of the level sets 〈q〉 = C . In particular, we see that when
we let C be a saddle point value, we get a connected “∞” shaped set (and no “circular”

components on which 〈q〉 is non-critical everywhere).

In case F, we have two saddle points situated on the vertical circle symmetrically

with respect to the horizontal circle. Since we have chosen to use perturbations which
are symmetric under permutation of x1, x2, the function 〈q〉 is invariant under the
map ρ 7→ 1 − ρ, so the critical values are necessarily equal. Here we can break the
symmetry by adding a small multiple of, for instance, x4

1 so that we still have precisely
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two saddle points, but with different critical values. Then the results of our paper
apply.

In case A, we have two saddle points on the horizontal circle. They are of course
exchanged by application of j and this symmetry remains under perturbations within
the class of Schrödinger operators without magnetic field. We hope to analyze this
case in a future work.

We shall next compute the ǫ2-contribution to the averaging of the principal sym-
bol p(x, ξ) − iǫp4(x) − ǫ2 p6(x) + O(ǫ3) appearing in (13.3), by applying the calcula-
tions of the end of Section 8, with q = −p4(x),= −p6(x), and T = 2π. Recall from
there that we have the averaged symbol

(13.8) pǫ|ΛǫG
≃ p + iǫ〈q〉 + ǫ2(〈r〉 − 1

2
C(q, q)) + O(ǫ3),

where C(q1, q2) and Cor(q1, q2) were defined in (8.28), (8.26).
A simple calculation gives

{zα, zβ}, {zα, zβ} = 0, {zα, zβ} = 2i
( α1β1

|z1|2
+
α2β2

|z2|2
)

zαzβ .

More generally,

{zαzeα, zβz
eβ} = 2i

( σ(α̃1, α1; β̃1, β1)

|z1|2
+
σ(α̃2, α2; β̃2, β2)

|z2|2
)

zα+βzeα+eβ ,

where σ denotes the symplectic form, viewed as an alternate bilinear form on T∗R2×
T∗R2. Hence

Cor(zαzeα, zβz
eβ ; s) = 2i

( σ(α̃1, α1; β̃1, β1)

|z1|2
+
σ(α̃2, α2; β̃2, β2)

|z2|2
)

zα+βzeα+eβeis(|eα|−|α|),

when |α̃|−|α| = |β|−|β̃|, and Cor(zαzeα, zβz
eβ ; s) = 0 otherwise. If a = (a1, a2), b =

(b1, b2) ∈ N2 with |a| = |b| = 4 we get, by multinomial expansion,

Cor(xa, xb) =
1

28
Cor((z + z)a, (z + z)b; s)

=
1

28

∑

α+eα=a
β+eβ=b

(
a

α

)(
b

β

)
Cor(zαzeα, zβz

eβ ; s)

=
2i

28

∑

α+eα=a
β+eβ=b

|eα|−|α|=|β|−|eβ|

(
a

α

)(
b

β

)( σ(α̃1, α1; β̃1, β1)

|z1|2
+
σ(α̃2, α2; β̃2, β2)

|z2|2
)
×

× zα+βzeα+eβeis(|eα|−|α|).

(13.9)

When calculating this kind of expressions, it is useful to observe that the relations

|α| + |α̃| = |β| + |β̃| = 4, |α̃| − |α| = |β| − |β̃| imply |β̃| = |α|, |β| = |α̃|.
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We have the Fourier series expansion

1[0,2π[(s)(s − π) =

∑

k∈Z\{0}

i

k
eisk.

Combining this with (13.9) and the Parseval identity, we get

C(xa, xb)

=
1

2π

∫ 2π

0

(s − π) Cor(xa, xb; s)

=
2

28

∑

α+eα=a
β+eβ=b

|eα|−|α|=|β|−|eβ|
|eα|−|α|6=0

(
a
α

)(
b
β

)

|α̃| − |α|
( σ(α̃1, α1; β̃1, β1)

|z1|2
+
σ(α̃2, α2; β̃2, β2)

|z2|2
)

zα+βzeα+eβ

Using this formula we get after a few days of simple but tedious calculations:

C(x4
1 + x4

2, x
4
1 + x4

2) = −17

16
(|z1|6 + |z2|6),(13.10)

C(x4
1 + x4

2, x
2
1x2

2) = − 3

26
(3|z|2(z2

1z2
2 + z2

1z2
2) + 16|z1|2|z2|2),

C(x4
1 + x4

2, x
3
1x2 + x1x3

2) =
1

27

(
2(z3

1z3
2 + z3

1z3
2) − (51(|z1|4 + |z2|4)

+ 36|z1|2|z2|2)(z1z2 + z1z2)
)
,

C(x2
1x2

2, x
2
1x2

2) = − 1

26
|z|2(9|z1|2|z2|2 + 8(z2

1z2
2 + z2

1z2
2)),

C(x2
1x2

2, x
3
1x2 + x1x3

2) = − 1

28

(
(17(|z1|4 + |z2|4)

+ 90|z1|2|z2|2)(z1z2 + z1z2) + 12(z3
1z3

2 + z3
1z3

2)
)
,

C(x3
1x2 + x1x3

2, x
3
1x2 + x1x3

2) = − 1

28

(
17(|z1|6 + |z2|6) + 153|z1|2|z2|2|z|2

+ 51|z|2(z2
1z2

2 + z2
1z2

2)
)
.

Now recall that q is given by (13.4), so that by (13.8), we have

pǫ|ΛǫG
≃ p + iǫ(〈q〉 + iǫ f (r, a, b, c) + O(ǫ2)) =: p + iǫq̃ǫ,

f (r, a, b, c) = −〈r〉 +
1

2

( 4

9
a2C(x4

1 + x4
2, x

4
1 + x4

2) + b2C(x2
1x2

2, x
2
1x2

2)

+
4

9
c2C(x3

1x2 + x1x3
2, x

3
1x2 + x1x3

2) +
4ab

3
C(x4

1 + x4
2, x

2
1x2

2)

+
8ac

9
C(x4

1 + x4
2, x

3
1x2 + x1x3

2) +
4bc

3
C(x2

1x2
2, x

3
1x2 + x1x3

2)
)

+ O(ǫ2).

(13.11)
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According to (12.2) our reduced 1-dimensional operator has the symbol

Qǫ = q̃ǫ + O

(
h +

hN0

ǫ

)
.

Put qs = sQǫ + (1 − s)〈q〉. If we assume that ǫ≫ h, then we get according to (8.22):

(13.12)

∫

γ1(Qǫ)

ξ dx −
∫

γ1(〈q〉)

ξ dx = −iǫ

∫

γ1(〈q〉)

[ f (r, a, b, c)](x(t),ξ(t))
ρc

dt + O(ǫ2 + h),

where we recall that
∫
γ1(〈q〉)

ξ dx is the (real) action along a loop in 〈q〉 = Const =

〈q〉(ρc) starting and ending at the saddle point ρc, and that
∫
γ(Qǫ)

ξ dx is the corre-

sponding perturbed action for Qǫ. From (13.10), we see that C(x4
1 + x4

2, x
4
1 + x4

2) is
minimal precisely on the horizontal circle ρ = 1/2. In the cases B±, E±, D the saddle

points belong to {C f ,Cb} situated on that circle. Since 〈q〉 is invariant under reflec-
tion in that circle, either the loop γ1(〈q〉) is entirely in the upper or lower hemisphere
intersecting the equator only at ρc (and this happens in the cases B± and for one
of the saddles in case D) or γ1(〈q〉) intersects the equator at one more point and is

symmetric around the equator (and this happens in the cases E± and for one of the
saddles in case D). In both cases we see that

∫

γ1(〈q〉)

[
C(x4

1 + x4
2, x

4
1 + x4

2)
] (x(t),ξ(t))

ρc
dt > 0.

Taking into account the form of f in (13.11), we conclude that for every r the in-
tegral in the left-hand side of (13.12) is 6= 0 except for (a, b, c) in a set of measure
0. For (a, b, c) outside that exceptional set, we conclude from the discussion at the
end of Section 8 that the spectrum of the one dimensional localized operators has a

genuinely two-dimensional structure.

A Proof of Proposition 6.2

To get a complete normal form we shall do further conjugations with analytic pseu-
dodifferential operators of order 0 in such a way that the complete symbol also be-
comes a function of τ , ǫ, h2/ǫ and xξ. Moreover, we need to do so with errors that are

O(e−1/(Ch)) (rather than merely O(h∞) as in [14]. Here Q is not a classical analytic
symbol but it has a holomorphic realization and becomes a classical analytic symbol,
if we allow some of the h-dependence to appear as an independent parameter in the
coefficients of the h-asymptotic expansion. Thus, our starting point will be a symbol

of the form

(A.1) Q = Q0(τ , xξ, ǫ, h2/ǫ) + hQ1(τ , x, ξ, ǫ, h2/ǫ; h),

where Q1 is holomorphic and O(1) in some fixed complex neighborhood of τ = 0,
x = ξ = 0.

We define the ρ-quasi-norm as above, but now it is important that we work in the
Weyl quantization. We then associate an analytic symbol a with the infinite order
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differential operator A = Opa(x, ξ,Dx,ξ ; h) as in (3.3). From the definition, we verify
the following metaplectic invariance property. If κ : C2n → C2n is an affine linear

canonical transformation and κ∗, κ∗ denote the usual operations of pull-back and
push-forward of functions on C2n, then κ∗Opaκ

∗ = Opκ∗a. This implies that if we
define our quasi-norms with the help of a family of opens sets Ωt which are invariant
under κ, then |||κ∗a|||ρ = |||a|||ρ.

In the case of (A.1), we shall let Ωt be of the form |x|2 + |ξ|2 ≤ r(t) for a suitable
r(t), and we observe that these balls are invariant under exp isHxξ when s is real. After
applying the inverse function of Q0(τ , · , ǫ, h2/ǫ) to our operator, we may assume that
the principal symbol of Q is xξ, so (A.1) simplifies to

(A.2) Q = xξ + hQ1(τ , x, ξ, ǫ, h2/ǫ; h)

with a new Q1 having the same properties as the previous one.

Using the same letters for operators and their symbols, we let Q0 =
1
2
(xhD + hDx)

be the quantization of xξ. Notice that exp(2πQ0/h) = −1, so exp(2π adQ0
/h) = 1.

If B is an analytic h-pseudodifferential operator of order 0, we put

〈B〉 =
1

2π

∫ 2π

0

etQ0/hBe−tQ0/h dt,

and notice that on the symbol level,

〈B〉 =
1

2π

∫ 2π

0

B ◦ exp itHxξ dt.

Also notice that [Q0, 〈B〉] = 0. Choosing the ρ-quasi-norms as above, we further
have that |||〈B〉|||ρ ≤ |||B|||ρ.

The equation, adQ0
A = B − 〈B〉 has the solution

A =
1

h

∫
k(t)etQ0/hBe−tQ0/h dt =

1

h

∫
k(t)etQ0/h(B − 〈B〉)e−tQ0/h dt,

where k(t) is the function with support in [−π, π] which is affine on [−π, 0[, ]0, π]
with k(±π) = 0, k(±0) = ∓ 1

2
. We have |||A|||ρ ≤ C||| 1

h
(B − 〈B〉)|||ρ.

As in Section 3, we see that the map A 7→ AdA(Q) has the differential

(A.3) δA 7→ adδA Q0 + K̃(A, δA),

where

(A.4) |||K̃(A, δA)|||ρ ≤ Cρ(h + |||A|||ρ)|||δA|||ρ,

under the assumption that |||A|||ρ = O(1).
Now return to (A.2). After a first conjugation, we may reduce ourselves to the case

when Q1 − 〈Q1〉 is O(h), so that |||Q1 − 〈Q1〉|||ρ ≤ Ch, for some C > 0, when ρ ≤
ρ0 > 0. We look for A such that AdA Q commutes with Q0, and we try A =

∑∞
0 A j
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with convergence in some ρ-quasi-norm. Start by solving [A0,Q0] + hQ1 = h〈Q1〉,
with |||A0|||ρ ≤ C|||Q1 − 〈Q1〉|||ρ ≤ O(h). From (A.3) and (A.4) we get AdA0

Q0 =

Q0 + h〈Q1〉 + hQ2,

|||Q2|||ρ ≤ h−1Cρ(h + C|||Q1 − 〈Q1〉|||ρ)|||Q1 − 〈Q1〉|||ρ
≤ Cρ(1 + C2)|||Q1 − 〈Q1〉|||ρ
≤ 1

4
|||Q1 − 〈Q1〉|||ρ,

where the last estimate holds for 0 ≤ ρ ≤ ρ0, with ρ0 > 0 small enough. Choose A1

with

[A1,Q0] + hQ2 = h〈Q2〉, |||A1|||ρ ≤ C|||Q2 − 〈Q2〉|||ρ ≤
C

2
|||Q1 − 〈Q1〉|||ρ.

Then AdA0+A1
Q = Q0 + h〈Q1〉 + h〈Q2〉 + hQ3, with |||Q3|||ρ ≤ 2−2|||Q1 − 〈Q1〉|||ρ.

Iterating the procedure, we get A j with |||A j |||ρ ≤ C2− j |||Q1 − 〈Q1〉|||ρ, such that if

A =
∑∞

0 A j , then

AdA Q = Q0 + h〈Q1〉 + h〈Q2〉 + · · · , |||〈Q j〉|||ρ ≤ 2− j |||Q1 − 〈Q1〉|||ρ.

The previous discussion shows how to find U so that modulo an error O(e−1/(Ch)),

U−1QU commutes with xhDx. Moreover U−1QU is a classical analytic pseudodif-
ferential operator (after allowing h as an independent parameter in the coefficients
in the asymptotic expansions). Put x = es and work near x = r for some fixed small
r > 0. Then xhDx = hDs and since the class of analytic pseudodifferential operators

is conserved under analytic changes of variables, we know that

U−1QU = Kǫ,h2/ǫ(τ , s, hDs; h),

where K is an analytic symbol. But [K, hDs] = 0, so K = Kǫ,h2/ǫ(τ , hDs; h) and
returning to the x-coordinates, we get the representation (6.6).

B Study of Γ j,k

For simplicity, we restrict the attention to the right half-plane, Reµ ≥ 0 and pick one
of the equations in (8.5) that we write

(B.1) (Imµ) ln
1

|µ| = F(µ),

where F(µ) is uniformly Lipschitz in a neighborhood of 0. As we have already ob-
served,

(B.2) ∂Im µ

(
Imµ ln

1

|µ|
)

= ln
1

|µ| −
( Imµ

|µ|
) 2

≫ 1,
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so (B.1) determines a curve of the form

Imµ = f (Reµ), where f ′(Reµ) = O

( 1

ln 1/|(Reµ, f (Reµ))|
)
≪ 1.

We want to express f in terms of F(Reµ) up to small errors.

Let us first compare the solution µ of (B.1) with the solution µ̃ of the simplified
equation

(B.3) Im µ̃ ln
1

|µ̃| = F(Reµ), with Re µ̃ = Reµ.

Using that F(µ) − F(Reµ) = O(Imµ) together with (B.2), we see that

(B.4) Imµ− Im µ̃ = O

( Imµ

ln 1
|µ|

)
, so Imµ ∼ Im µ̃, ln

1

|µ| ∼ ln
1

|µ̃| .

With this estimate in mind, we now concentrate on the simplified equation (B.3),
and we drop the tildes for simplicity.

Assume first that we are in the region

(B.5) | Imµ| ≤ O(Reµ).

Then

ln
1

|µ| = ln
( 1

x

)(
1 + O

(( y

x

) 2 1

ln 1/x

))
,

where we write µ = x + i y. Thus, if µ = µ̃ solves (B.3) and (B.5) holds, then we first
see that

y ∼ F(x)

ln 1
x

,

and then that

(B.6) y =
F(x)

ln 1
x

(
1 + O(1)

( F(x)

x ln 1
x

) 2 1

ln 1
x

))
.

So, if we assume

(B.7) |F(x)| ≤ O(1)x ln
1

x
,

then we are in the region (B.5), and the solution µ = µ̃ = x + i y of (B.3) takes the

form (B.6). Combining with (B.4), we get under the assumption (B.7),

f (x) =

(
1 +

O(1)

ln 1
x

) F(x)

ln 1
x

.
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We next consider the region x ≪ |y| ≪ 1 and assume for simplicity that we have
y > 0. Then

ln
1

|µ| = ln
( 1

y

)(
1 + O(1)

( x

y

) 2 1

ln 1
y

)
,

and (B.3) takes the form

(B.8) y
(

ln
1

y

)(
1 + O(1)

( x

y

) 2 1

ln 1
y

)
= F(x).

Consider first the simplified problem

(B.9) y ln
1

y
= z.

With Y = ln(1/y), Z = ln(1/z) (both ≫ 1) we get

(B.10) Y − ln Y = Z

Try the approximate solution Y0 = Z + ln Z. Then by a simple calculation,

Y0 − ln Y0 = Z + O

( ln Z

Z

)
.

Since the derivative of the left-hand side in (B.10) is close to 1, we see that the solution

Y of that equation is of the form Y = Y0 + O((ln Z)/Z);

Y = Z +
(

1 + O

( 1

Z

))
ln Z.

Hence the solution of (B.9) is of the form

(B.11) y =

(
1 + O

( ln ln 1
z

ln 1
z

)) z

ln 1
z

.

If we replace z by F(x), we get the order of magnitude of the solution to (B.8):

(B.12) y ∼ F(x)

ln 1
F(x)

,

and the assumption that x ≪ y reads:

(B.13)
F(x)

ln 1
F(x)

≫ x.

The earlier arguments show that this condition is equivalent to

(B.14) F(x) ≫ x ln
1

x
,
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which indeed is complementary to (B.7). Using (B.12), we get

( x

y

) 2 1

ln 1
y

≤ O(1)
( x ln 1

F(x)

F(x)

) 2 1

ln
ln 1/F

F

≤ O(1)
( x ln 1

F(x)

F(x)

) 2 1

ln 1
F(x)

,

where we notice that
x ln 1

F

F
≪ 1,

by (B.13). Hence (B.8) gives

(B.15) y ln
1

y
=

(
1 + O(1)

( x ln 1/F(x)

F(x)

) 2 1

ln 1/F(x)

)
F(x),

and applying (B.11) with z equal to the right-hand side of (B.15), we get

y =

(
1 + O(1)

ln ln 1/F

ln 1/F

) (1 + O(1)
( x ln 1/F

F

) 2 1
ln 1/F

)
F(x)

(
ln 1

F
+ O(1)

( x ln 1/F
F

) 2 1
ln 1/F

) ,

which simplifies to

(B.16) y =

(
1 + O(1)

ln ln 1/F

ln 1/F

) F(x)

ln 1/F(x)
.

Recall that here µ̃ = x+ i y in the simplified equation. To get the corresponding result
for (B.1), we apply (B.1) and conclude that (B.16) holds for µ = x + i y solving (B.1),

under the equivalent conditions (B.13), (B.14), and assuming also 0 ≤ F(x) ≪ 1,
0 ≤ x ≪ 1.

Summing up, we have proved the following.

Proposition B.1 Let F be a uniformly Lipschitz function with |F| ≪ 1, defined in a
neighborhood of 0 ∈ C. Let µ = x + i f (x) be the solution of (B.1). Then for small x, we
have

(B.17) | f ′(x)| ≤ O(1)/ ln(1/|x + i f (x)|).

Further,

f (x) =

(
1 +

O(1)

ln(1/|x|)
) F(x)

ln(1/|x|) , when |F(x)| ≤ O(1)|x| ln(1/|x|),

f (x) =

(
1 + O(1)

ln ln(1/|F(x)|)
ln(1/|F(x)|)

) F(x)

ln(1/|F(x)|) , when |F(x)| ≫ |x| ln(1/|x|),
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[4] Y. Colin de Verdière and S. Vũ Ngo. c, Singular Bohr-Sommerfeld rules for 2D integrable systems.
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