
THE EXPONENTIAL PREMIUM CALCULATION PRINCIPLE REVISITED

BY

MICHEL DENUIT

Universite Libre de Bruxelles, Bruxelles, Belgium

ABSTRACT

In this paper, it is shown how to approximate theoretical premium
calculation principles in order to make them useful in practice. The method
relies on stochastic extrema in moment spaces and is illustrated with the aid
of the exponential principle.
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1 INTRODUCTION

In actuarial practice, most insurance companies base their tariff on the
expected value principle, with a loading coefficient 9 > 0, say (for more
details about premium calculation principles, the interested reader is referred
e.g. to Goovaerts, De Vylder and Haezendonck (1984)); this is to say that
they require for the risk X an amount of premium (1 + 6)EX. The reason is,
of course, mathematical convenience but this is also often due to a shortage
of available statistical data. Against this principle, one can convincingly
argue that two risks with the same mean may appear very different whereas
the price list will give the same amount of premium for both of them. As an
example, think of the family of the normal distributions with fixed mean //0
and parameterized by the variance a2. The premium will be constant (and
equal to (1 +6)fj,o) but everybody agrees that the underlying danger will
strongly vary. One could therefore opt for the variance principle (with a
safety loading proportional to the variance of the risk X) or for the standard
deviation principle (with a safety loading proportional to the standard
deviation of X). But even risks with identical first two moments may appear
very different from the insurer's point of view. The skewness is also an
important parameter for the insurance company. This speaks in favour of a
premium calculation principle taking into account the whole probability
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distribution of the risk X to be covered, instead of only a few numerical
characteristics of it. Such principles exist in the actuarial literature (for
instance, the Orlicz principle, the Esscher principle or the risk adjusted
premium calculation principles introduced by Wang (1996) and recently
considered by Wang and Young (1998) and by Silva and Centeno (1998)). In
practical business, however, statistical data concerning the risks to be
covered are often so scarce that it is hopeless to determine a plausible
distribution for X. It is therefore important to construct premium
calculation principles which need as less information as possible. The
premium principles proposed here are based on the first moments, range and
mode. It tries to provide a compromise solution between those two
apparently conflicting goals.

The purpose of this paper is to show that theoretical premium calculation
principles can also be used in practice, at least if you agree to compute the
premium amount, not on the actual risk, but rather on a stochastic upper
bound for this risk in its moment space. The premium amount you get then
depends upon the mean, the variance, the skewness, the kurtosis, the range
and, possibly, the mode of the risk. We illustrate the technique on the zero
utility premium calculation principle with an exponential utility function
(i.e., on the so-called exponential premium principle). We derive simple
analytical lower and upper bounds for exponential premiums. Of course, the
ideas developed in the present paper (which theoretically reduce to the
derivation of bounds on the moment generating function of a random
variable X in a given moment space) can be applied to many other problems
in actuarial sciences, as well as in applied probability and economics.

We mention that the approach adopted here is very similar to the ideas
contained in Hiirlimann (1996). This author obtained simple analytical
lower and upper bounds for stop-loss premiums and ruin probabilities of
compound Poisson risks in case the mean, the variance, and the range of the
claim size distributions are known. The two approaches are complementary
since with Hurlimann's method, you get bounds on quantities of the
form E<f)(X) when </> is non-decreasing and/or convex while the methods
proposed here deals with quantities of the form Ecj)(X) with smoother
functions </> (namely, convex functions of degree s).

2 EXPONENTIAL PREMIUM PRINCIPLE

Consider an insurance company with initial wealth w and with a utility
function «(.). The company covers a risk X. The amount of premium n(X) is
determined following the adoption of an economic decision principle. We
assume here that the insurance company sets its price for coverage TT(X) as
the solution of the equation

+ n(X)-X)=u(w). (2.1)
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Condition (2.1) expresses that the premium n(X) is fair in terms of utility:
the right-hand side of (2.1) represents the utility of not issuing the contract;
the left-hand side of (2.1) represents the expected utility of the insurer
assuming the random financial loss X. Therefore (2.1) means that the
expected utility of wealth with the contract is equal to the utility without the
contract. Putting w = 0 and normalizing the utility function u, we get the
so-called zero utility principle: the premium ir(X) calculated according to
this principle is the root of the equation

Eu(ir(X) - X) = 0 (2.2)

which can be interpreted as an equality between the expected utility of the
income n(X) - X and the utility of not accepting the risk. Despite of its
intuitive justification, such a principle is difficult to apply in practical
business, since the equation (2.2) determining n(X) has no explicit solution
in general. However, if we assume that the moment generating function of X
exists and that the utility function of the insurance company is of the form

u{x) = 1 - e~cx, x>0, (2.3)

for some positive constant c, then (2.2) admits an explicit solution and the
premium n(X) can be expressed as

ir(X) =-\nEecX. (2.4)

The constant c involved in (2.3) is equal to —— In —« and measures the risk
ax ax

aversion of the insurance company; the exponential utility function (2.3)
yields a constant risk aversion. But even formula (2.4) will not convince the
practitioner of adopting the exponential premium calculation principle and
of forsaking his good old expected value principle. Indeed, in order to
compute TT(X), the underlying distribution of X has to be completely known,
or at least to be assumed. Therefore, there is a need of approximations for
(2.4) if you desire to use such a formula in practice.

3 5-CONVEX APPROXIMATIONS

The idea used here is as follows: Denuit, De Vylder and Lefevre (1999)
(see also Denuit and Lefevre (1997) and Denuit, Lefevre and Shaked
(1998)) showed that in a given moment space, i.e. among all the risks with
common range and first moments, it is possible to determine a minimum
and a maximum with respect to some stochastic order relation (for more
details about stochastic order relations, the interested reader is referred
e.g. to Goovaerts, Kaas, Van Heerwaarden and Bauwelincks (1990), Kaas,
Van Heerwaarden and Goovaerts (1994) and Shaked and Shanthikumar
(1994)). More precisely, let i be a positive integer and consider the class
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Bs = Bs([O,b]; /ii, fj,2, •••, /4s-i) of all the risks X with upper bound b and
such that EXk — ^ for k = 1, 2, ..., 5— 1. Let us define the partial order
relation -<s-cx among elements in Bs as

X <s-cx Y & Eu{X) < Eu{Y) for all u G Us-cx (3.1)

for which the expectations exist, where Us-cx is the closure (in the topology
of the pointwise convergence) of the class

M},
where M^ denotes the s-th derivative of the function u. It is worth
mentioning that the functions in Us-cx are usually referred to as convex
functions of degree s (see, e.g., Roberts and Varberg (1973)). The classes
C\s

k=xUk~cx have been extensively used in economics (see, e.g., Levy (1992)),
as well as in actuarial sciences by Kaas and Hesselager (1995) in order to
define the so-called stop-loss order of degree s — 1.

It is then possible to determine in Bs two discrete risks X^L an<^ ^mL
say, with a probability distribution relying only on the upper bound b, and
the sequence of moments (/xi, y,2, ..., /As-i) denning Bs, such that

4 1 ±s-cx X <s_cx X<± V i e Bs. (3.2)

Explicit expressions of these extrema for s — 1 to 5 are obtained from the
theory given in Denuit, De Vylder and Lefevre (1999); they are listed in
Tables 1 and 3.

Let B*s = <S*([0,b];m - unim; /xi, fi2, ••-, fJ-s-i) be the class of all the
risks X with a unique mode m, with upper bound b and such that
EXk = iik for k = 1, 2, ..., s — 1. It is possible to find in B* two risks X^*
and Xmlx, say, with a probability distribution relying only on the upper
bound b, the mode m, and the sequence of moments (/xi, /X2, ..., fa-i)
defining B*s, such that

Let us point out that, since B* c Bs, the extrema in (3.3) are more accurate
than those in (3.2) in the sense that

y(s) J yW* anA y(s)* ; y(.v)
^ m i n Zls-cx -*min <*I1U AmiK —5-cx ^ m a x -

Explicit expressions of these improved extrema can be obtained from the
theory given in Denuit, De Vylder and Lefevre (1999) and are now discrete
mixtures of uniform distributions; they are listed in Tables 2 and 4 for s = 1
to 5, where Unif [a,0\, a,/?GR, stands for the uniform distribution over

the interval [min(a,/3), max(a,/3)], ZJLi/'iUnif [a,-,/?,-], 0 </?,• < 1, a/,/3,- G R,
i=l,2, ..., k, represents a mixture of the distributions Unif [a,•, /3,-], with
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respective weights /?,, i.e., a random variable with distribution function

Y!l=\P>Fi{x) where

'0 if x < min(a,-,/3,),

if x £ [min(a,-,/?,-), max(a,-,/?,)],
max(a,-, /?,-) — min(a,-, /?,•

.1 if x > max(o!,-,/?i),

and where the following symbols are used:

and

Ay = (7 + 1Vy -

with the convention that /xo = 1-

TABLE 1

PROBABILITY DISTRIBUTION OF X^n e B.,([0,fe];/ii, /i2, —,

Support points Probability masses

1 0 1

2 //, 1

3 0 ^

M2 - M?)

r -̂

M4 ~ M2M3 + y
P+ =-

- y (
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TABLE 2

P R O B A B I L I T Y D I S T R I B U T I O N O F X,*'* € #*( [0 , b\, m — u n i m ; / i i , ^ 2 , •••, / i«-1) W H E R E f i , z± A N D p+ A R E

THOSE FROM TABLE I, WITH THE p,j's SUBSTITUTED FOR THE /7,/s

Distributions

Unif [0,m]

Unif [m,/i|]

l Unif [0,m] + ̂ -Unif [m, fi2lfn]

[m,r+] + fl - ^ ' . " ) Unif [m,r_]
\ r+ — r_/

(1 -/>+ -/;^)Unif [0, m] +/i+Unif [w, f+] +p_Unif [m, L]

TABLE 3

PROBABILITY DISTRIBUTION OF XmL 6 B.,([0,ft];/*i, ;i2, ..., /J ,_I)

Support points Probability masses

1 ft 1

2 0
ft

b T
b\i\ — ii2 (ft — fi

b

0 1 - P i

(ll} — ft/J2)(/<3 — 2ft/i2 -

p2 = •
ft(/ij — 2ft/J2 + ft2/i| )

- (ft+ z+);;.| -fftr.

1 - / ; , -p.
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TABLE 4

PROBABILITY DISTRIBUTION OF X^"X e B*([0,ft]; m - unim; y,x, / j 2 , ..., ft-i) WHERE pi, p2, z± AND p±
ARE THOSE FROM TABLE 3, WITH THE / I / s SUBSTITUTED FOR THE / i / S

Distribution

Unif [m, b]

,m]+^Unif [m,b]

3 {h'M) U n i f L ^ ' H + ^ ^ Unif [m,b)

4 (1 -Pi -/52)Unif [0,m]+j5,Unif L , ^ 3 f W l +/)2Unif [m,

5 ^4 Unif [m,z+] +

4 PRACTICAL EXPONENTIAL PREMIUM PRINCIPLE

Let (ji\, [i2, ••-, Mv-i) be the 5 — 1 first moments of a risk X to be covered,
X assumed to be valued in [0,6], b e R + . Since the function x t-^exp(cx)
belongs to Us-cx for all s when c > 0, we get from (3.1) together with (3.2) that

7T(41) < V(X) < 7T(41). (4.1)

Moreover, if X possesses a unique mode m, we get from (3.1) together with
(3.3) that

T T ( J S ) < TT(X) < 7 r ( ^ t ) . (4-2)

Explicit expressions of the bounds (4.1) and (4.2) on ir(X) are listed in
Tables 5, 6, 7 and 8. Let us point out that

so that the expected value principle (with 6 = 0) can be seen as an
approximation of the exponential principle.

For each value of s, we thus get a margin W X ^ ) , 7r(Xmax) for the

premium ir(X) in terms of the range and the first s — 1 moments of X. We

even find a more accurate margin vr(X ĵn*), 7r(Xmax) for ir(X) when X is

known to have a unimodal density. In practice, the modus operandi should be
as follows: the actuary computes the bounds ^ ( X ^ J and 7r(Xmax) on the
basis of the knowledge of X he has at his disposal. If he charges an amount
of premium of ^(XmLx), the latter includes a positive safety loading.
Moreover, the maximal error is given either by TT(ASX) — Tt{X^^) or by
^(Zmax) — Tr(-Vnin)- The main advantage of this method lies in the fact that it
only requires the knowledge of the mean, the variance, the skewness, the
kurtosis, and possibly, of the mode (for s = 5). The amount of premium
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charged takes all these characteristics into account. It seems therefore to be
an interesting compromise solution between theory and practice. It can also
be used as a measure of the underlying danger. The actuary can calculate the
aforementioned margins and verify whether the amount of premium he
determined (with the help of the expected value principle, for instance) seems
reasonable.

TABLE 5

LOWER BOUNDS ON it(X)

2 JI,

. f 2 2 / '
- 1 I U 2 — Mi Mi i CM2

3 - m < LH exp

c \ fi2 M2 V Ml

4 -ln< I 1 I exp(cr_) H exp(tr+)

1
5 -ln{(l — p+ — /?_) +/)+exp(c/+) +/>- exp(c<_)}

TABLE 6

IMPROVED LOWER BOUNDS ON -K(X)

2 -ln< — ^ ^ (exp(cm) - exp(c/ii)

3 ! i n / ^ J l ^ i (exp(em) - 1) + . t '"} — fexp(Cm) - expf c ^

4

5 -lni ^ - ^ ( e x p ( e m ) - 1) + ̂  / + (exp(cf+) -exp(cm)) +—p—— (cxp(cL) -exp(cm))

TABLE 7

UPPER BOUNDS ON TT(X)

. 1 \b-
2 l

3
- M i

4 -ln{(l-/>, -p2)+/'iexp(cM:' /*-) + p2exp(cft)
c I V M2 t>f*J

5 -ln{p+exp(cz+)+/>_exp(cz_)
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TABLE 8

IMPROVED UPPER BOUNDS ON -n(X)

2 - ln< (exp(cm) — 1) + -—— (exp(cb) — exp(cm)) >
c [ ban bc(b — m) J

3 Ifc { -^H — — } (exp(-) - exF '

-(exp(ci) -exp(cra))
(b- (it)2 + fi2 -p.2 c{b-m)

4 1,.. f' ~Pi ~h, , N , , , : f*2-bp.i ( , ^ (J^-bfi:

+P2 ,h _ m^ (exp(cfc) - exp(cw))

-In \ , P+_ - , (exp(cm) - exp(cz+)) + ^ , (exp(cm) - exp(cz_))

+ ~P+~J'(exp(cb) - exp(cm))

5. NUMERICAL ILLUSTRATION

Let ^([O,^]) be the class of all the possible moment sequences, i.e. the class
of all the vectors (fi\, H2, ..., Hs-\) G R*"1 such that there exists a random
variable X valued in [0, b] satisfying

EXk = Hk for k= 1, 2, ..., j - 1.

For more details about the sets Vs([a,b]) for a , i g R , the interested reader is
referred e.g. to De Vylder (1996). Moreover, let V°s([0,b]) be the topological
interior of Vs([0,b]). Denuit, De Vylder and Lefevre (1999) provided the
following expressions for £>°([0,6]):

2 4

( 2 ^ ) 2 3 ( ^ ) 2

where a1 = /X2 — /if.
In order to illustrate the method proposed in this paper, we compute the

bounds on the exponential premiums for risks with moments {\i\, /X2) in
^([O)^])- More precisely, we first fix the mean /xi, 0 < \x\ < b (so that the
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premium computed using the expected value principle remains unchanged)
and then, we let M2 vary in such a way that (MI,M2) S V3([0,b]), i.e.

M2 = A*f + -/xi(6 — Mi), y = 1, 2, . . . , « - 1.

We then assume that the risk X possesses a unique mode m in [0,b]. This
leads to new conditions on M2- Indeed, from the theory developed in Denuit,
De Vylder and Lefevre (1999), we must have that (fl\,[l2)&'D3([—m,b—m]),
i.e. that

Mi < h < Ai + {b - m - Ai)(Ai +m),

or, equivalently, in terms of the initial moment M2, that

-(Ai +2m/ii) < /J,2 < x(Ai +2m/i] + (b - m - Ai)(Ai + w))-

The results are plotted in Figure 1, with 6 = 12, n = 50, c = 5, MI = 5,
m ~ 5. The continuous lines stand for 7r(A^in) and ^(A^ic), while the
dotted lines represent TT(X^*) and ir(XJi]^). These four quantities are
functions of M2 with M2 satisfying both (MI, ^2) 6 X>3([0, 6]) and
(Ai> A2) ^ ^3([~m> ^ ~ w])- I n o u r example, ^2 varies from 25 to 60 in
order to satisfy the first condition, and from 25 to 31.6 in order to fulfill the
second one. Therefore, Figure 1 is drawn for HI ranging from 25 to 31.6. The
margins are moderately accurate and it is clearly seen that a premium of the
form (1 + 0)(j,{ (with 6 = 20%, say) as provided by the expected value
principle may be inappropriate for large values of ^2-

We then fix (/xi,/x2) in ^([O,^]) so that (Ai, A?) e V°3([-m, b - m\) and
we let M3 vary in such a way that (1x1,^2,^3) € ^(b), i.e.

_2

M3 = — (a2- n\) - 2n\

b — Mi Mi

for 7 = 1,2, ..., n — 1. We then assume that X possesses a unimodal density
with mode m E [0,b], so that M3 has to satisfy

+ — (a2 - A?) - 2Ai + 3MIM2 ) < M3( 3wiM2 +
4 V Mi

~41 / ~4

< - I 3mM2 + (b — m — {JL\)d2 — : — 2A? + 3AiM2
4 \ b — m — Mi

The results are plotted in Figure 2 for b — 12, n = 50, c = 5, MI = 5, AM = 5,
M2 = 28. The continuous lines stand for 7r(A^in) and 7r(Amax), while the
dotted lines represent TT(X^J*) and Tr(A'ia^). These four quantities are
functions of M3 with M3 satisfying both (MI>M2>M3) G £>4([0, b}) and
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(p,i,p,2,p.3)£T>li([—m, b — tn]). In our example, m varies from 156.8 to
189.714 in order to satisfy the first condition, and from 162.8 to 164.375 in
order to fulfill the second one. Therefore, Figure 2 is drawn for m ranging
from 162.8 to 164.375. Again, we see that the loading coefficient 9 has to be
high enough: a value of 9 < 10% seems clearly unrealistic and the picture
argues in favour of a value of at least 30%.

FIGURE 1: Bounds ^(xf;^) and 7r(X,(,f!x) on -IT(X) (continuous lines) as well as v(X^J*) and •
(dotted lines) as functions of ^2 ranging from 25 to 31.6.

FIGURE 2: Bounds 7r(XIIlin) and x(X;nL) on ir(X) (continuous lines) as well as 7rp
(dotted lines) as functions of /t3 ranging from 162.8 to 164.375.

^I*) and
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