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Heterogeneous roughness in the form of streamwise aligned strips is known to generate
large scale secondary motions under turbulent flow conditions that can induce the
intriguing feature of larger flow rates above rough than smooth surface parts. The
hydrodynamical definition of a surface roughness includes a large scale separation between
the roughness height and the boundary layer thickness which is directly related to the
fact that the drag of a laminar flow is not altered by the presence of roughness. Existing
simplified approaches for direct numerical simulation of roughness strips do not fulfil
this requirement of an unmodified laminar base flow compared with a smooth wall
reference. It is shown that disturbances induced in a modified laminar base flow can
trigger large-scale motions with resemblance to turbulent secondary flow. We propose
a simple roughness model that allows us to capture the particular features of turbulent
secondary flow without impacting the laminar base flow. The roughness model is based
on the prescription of a spanwise slip length, a quantity that can directly be translated
into the Hama roughness function for a homogeneous rough surface. The heterogeneous
application of the slip-length boundary condition results in very good agreement with
existing experimental data in terms of the secondary flow topology. In addition, the
proposed modelling approach allows us to quantitatively evaluate the drag increasing
contribution of the secondary flow. Both the secondary flow itself and the related drag
increase reveal a very small dependence on the gradient of the transition between rough
and smooth surface parts only. Interestingly, the observed drag increase due to secondary
flows above the modelled roughness is significantly smaller than the one previously
reported for roughness resolving simulations. We hypothesise that this difference arises
from the fact that roughness resolving simulations cannot truly fulfil the requirement of
large scale separation.
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1. Introduction

Turbulent flows over walls with spatially varying roughness patterns are ubiquitous
in nature and technical applications alike (Colombini & Parker 1995; Bons 2002). In
particular, lateral (spanwise) inhomogeneity of the roughness distribution can lead to
the formation of secondary flows; i.e. non-zero mean values of the transverse velocity
components.

Hinze (1967, 1973) first studied flows through rectangular ducts with longitudinal
roughness strips. He noted that upwelling occurred over the low friction patches, and
explained these secondary flows by means of the balance of turbulent kinetic energy. In the
near-wall region fluid is transported out of regions where production exceeds dissipation
and into regions with production deficit, i.e. from the rough towards the smooth surface
regions. In consequence, low momentum fluid is transported from the wall towards the
channel centre above the smooth wall region generating what has later been referred to as
a low momentum pathway (LMP) in the literature (Mejia-Alvarez, Barros & Christensen
2013); i.e. the mean flow speed above the smooth patches is smaller than above the rough
ones. The direction of the secondary motion that generates this counter-intuitive mean
flow distribution has been repeatedly reproduced in later experiments with roughness strips
(Studerus 1982; Nezu & Nakagawa 1984; Wang & Cheng 2006; Wangsawijaya et al. 2020),
where the strongest secondary motions are found when the roughness strip spacing is of
the order of the boundary layer thickness.

In many literature studies the representation of heterogeneous surface roughness
through streamwise oriented roughness strips has been further simplified to two model
problems which are referred to as strip-type and ridge-type roughness (Colombini &
Parker 1995; Wang & Cheng 2006). The former is especially attractive for numerical
approaches and corresponds to longitudinal strips of laterally alternating wall shear stress
conditions (Anderson et al. 2015; Chung, Monty & Hutchins 2018). The latter, employed
in experiments and simulations, is given by a series of protruding longitudinal ridges, see
e.g. Vanderwel et al. (2019). While strip-type roughness assumes a large scale separation
between roughness height and boundary layer thickness and therefore negligible influence
of surface elevation differences between smooth and rough surface areas, ridge-type
roughness places the elevation of (deposition-type) roughness strips in the focus. The fact
that these two simplified surface configurations lead to different rotational directions of
the secondary flow and in consequence also to different LMP locations was repeatedly
addressed in the literature (Wang & Cheng 2006; Vanderwel & Ganapathisubramani 2015;
Hwang & Lee 2018). Based on roughness resolving direct numerical simulation (DNS) it
has recently been shown that rough surface strips can produce both types of secondary flow
depending on the relative roughness elevation (Stroh et al. 2020). The particular secondary
flow of (canonical) strip-type roughness is found for non-elevated roughness strips in this
case.

The secondary flow above strip-type roughness corresponds to the more intriguing
configuration with high momentum pathways (HMP) located over rough surface patches
and LMP over the smooth area, if the spanwise wavelength is less than or of the order
of the channel height (Chung et al. 2018). In order to study the underlying physical
mechanisms in detail, the simplified numerical treatment through prescribed shear stress
boundary conditions, as employed by Anderson et al. (2015) in large eddy simulation
(LES) and Chung et al. (2018) in DNS, is a sensible approach, since it avoids the need
to numerically resolve any roughness features and condenses the roughness effect in a
boundary condition. The reduced resolution requirements enable DNS or LES at higher
Reynolds numbers, required, for example, to numerically address the connection between
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secondary motions and very large-scale structures (Zampiron, Cameron & Nikora 2020)
through parametric studies in turbulent boundary layers. In addition, the use of a modified
wall boundary condition has the advantage that any blockage effects due to roughness
elevation are avoided.

As already pointed out by Chung et al. (2018), the prescription of a shear stress
distribution at the wall is a very strong simplification especially suited to study of the outer
flow behaviour. In the present work, we therefore suggest employing a slip-length approach
to model heterogeneous roughness. This combines the advantage and simplicity of the
shear stress boundary condition, i.e. no influence of protruding or recessed surface parts,
with a less intrusive modification of the flow field through the introduction of an artificial
boundary condition. In particular, the slip-length boundary condition can be formulated
in such a way that it impacts turbulent flow fields only. This is an important characteristic
of ‘proper’ roughness since the classical definition of rough surfaces includes the fact
that those surfaces do not influence the flow resistance of laminar flow (Nikuradse 1933;
Schlichting 1979).

Slip lengths (or protrusion heights) have been used as a model for textured surfaces
for the investigation of turbulent flow over drag reducing riblets (Bechert & Bartenwerfer
1989; Luchini, Manzo & Pozzi 1991) and for the modelling of superhydrophobic surfaces
(Min & Kim 2004). As discussed by Luchini (2013), slip lengths are also a natural
boundary condition for the modelling of rough surfaces. Multiple approaches exist to
estimate the tensor of slip lengths (also called mobility tensor) from a description of the
rough surface, typically by solving the Stokes equations near the wall (Kamrin, Bazant
& Stone 2010; Luchini 2013). The present study employs a simple slip-length approach
restricted to the prescription of a spanwise slip length to model strip-type roughness.

In order to clearly identify the turbulence driven flow field modifications for both types
of boundary conditions, the shear stress boundary condition is considered under laminar
flow conditions in addition. This allows us to identify whether the occurrence of secondary
flows can be traced back to a linear process triggered by small disturbances in the modified
laminar base flow. In the case of the slip-length boundary condition this laminar reference
case is the standard laminar channel flow.

Besides elucidating relevant differences in the two model approaches and the related
secondary motions, the present study aims at understanding the relevance of the spanwise
gradient in the boundary condition for the formation of secondary flow. On the one hand,
secondary flows are known to displace sediments in a riverbed in such a way that the
roughness distribution and secondary flow form a positive feedback loop (Studerus 1982;
Scherer et al. 2022), which suggests that an instantaneous jump between ‘rough’ and
‘smooth’ regions is not required. A similar conclusion can be drawn from the observation
of secondary flows over a damaged turbine blade (Mejia-Alvarez et al. 2013). On the other
hand, most available literature studies consider sharp jumps between low and high shear
stress regions.

The slip-length and shear stress boundary conditions along with the employed numerical
method are introduced in § 2. Section 3 addresses the effect of the shear stress boundary
condition in laminar flows. The application of a spanwise-varying boundary condition
results in a velocity distribution with large spanwise gradients. It is shown that the
introduction of a small disturbance in this laminar base flow results in the generation of
large scale flow structures with resemblance to turbulent secondary flow. Consecutively,
the shear stress boundary condition is analysed under turbulent flow conditions in § 4.
We reproduce the results previously reported by Chung et al. (2018) and discuss those
in light of the laminar flow observations of § 3, including the difference between sudden
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Figure 1. A sketch of the channel with piecewise constant, spanwise variable roughness. For both SSBC and
SLBC cases, the displayed shading is used to identify smooth and rough surface patches. In case of SSBC the
grey shading indicates enhanced wall shear stress, in case of SLBC the grey patch corresponds to a region with
spanwise slip.

Reτ s/δ Grid resolution lx ly lz �z+ �y+ �z+

180 hom., 0.25, 0.5, 1 256 × 193 × 128 8δ 2δ 4δ 5.625 1.001 · · · 3.513 5.625
180 0.75, 1.5, 3 256 × 193 × 384 8δ 2δ 12δ 5.625 1.001 · · · 3.513 5.625
180 2, 4, 5, 8, 10, 16 256 × 193 × (128s/δ) 8δ 2δ 4s 5.625 1.001 · · · 3.513 5.625
540 — 768 × 451 × 384 8δ 2δ 4δ 5.625 1.003 · · · 5.741 5.625

Table 1. Grid properties.

and gradual changes of the boundary condition. Section 5 first presents a short discussion
about the possibility and limits of using a spanwise slip length as roughness model in
general before its particular application as a model for streamwise aligned roughness strips
is addressed. A discussion of important differences between the two numerical modelling
approaches for roughness strips is presented in § 6 before we conclude with final remarks
in § 7.

2. Procedure

2.1. Numerical set-up
We consider the turbulent flow within a doubly periodic channel as sketched in figure 1 by
means of DNS. Streamwise, wall-normal and spanwise directions are denoted through x,
y and z, whereas u, v and w are the respective velocity components. While most aspects
of the present numerical experiment are standard for this flow geometry, the peculiarity
of the present work is the wall boundary condition with a spanwise inhomogeneity,
which is described in detail in § 2.2. For the time being, it is sufficient to know that the
wall boundary condition, applied symmetrically to both walls, periodically varies in the
spanwise direction with a period 2s.

The DNS in this work are performed using the open-source solver XCompact3D
(Laizet & Lamballais 2009; Laizet & Li 2010; Bartholomew et al. 2020), which adopts
sixth-order compact finite differences for computing spatial derivatives. In the streamwise
and spanwise directions, the mesh is homogeneous; in the wall-normal direction stretching
is used to refine the mesh towards the wall such that the first node is placed at y+ = 1. The
discretisation parameters for all simulations are given in tables 1 and 2.

All turbulent properties denoted with 〈·〉 are averaged along directions of statistical
homogeneity, namely the x-direction and time, for a time interval given in table 2.
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Moreover, all available symmetries of the problem are exploited in computing 〈·〉, i.e. the
symmetry about the channel centreplane (y = δ) and the statistical periodicity of the flow
above the likewise periodic wall boundary condition. Therefore, besides its dependency on
y, 〈·〉 depends upon z only through the relative position −1 ≤ z/s ≤ 1 above the spanwise
periodic boundary condition. Additionally, φ denotes quantities that are also averaged in
the spanwise direction, e.g. ū( y) = 1

2

∫ 1
−1〈u〉( y, z/s) d(z/s).

The flow is advanced in time with an explicit third-order Runge–Kutta scheme and
driven by a constant pressure gradient (CPG), so that the average wall shear stress
τw = ρuτ

2, where ρ is the fluid density and uτ , the average friction velocity, is also
prescribed. This amounts to prescribing the friction Reynolds number Reτ = δuτ /ν, where
δ is the channel half-height and ν the kinematic viscosity of the fluid. Analogous to
field quantities, local uτ and local τw are phase averaged and a function of z/s. The
non-dimensionalisation in viscous units, denoted through a +-sign is based on uτ unless
stated otherwise (e.g. 〈u〉+ = 〈u〉/uτ ).

2.2. Considered boundary conditions
Two kinds of boundary conditions are employed to model strip-type roughness: a shear
stress boundary condition (SSBC) and a slip-length boundary condition (SLBC). As can
be seen in figure 1, we consider spanwise alternating strips of width s.

The SSBC, already adopted e.g. by Chung, Monty & Ooi (2014); Chung et al. (2018),
prescribes a fixed wall-normal (instantaneous) derivative of the streamwise velocity.
Naturally, a high wall shear stress is associated with rough wall regions, while a low wall
shear stress represents a smooth wall. The boundary conditions on bottom (y = 0) and top
(y = 2δ) wall are defined by

∂u
∂y

∣∣∣∣
y=0

= − ∂u
∂y

∣∣∣∣
y=2δ

= τw(z)
ν

= uτ (z)2ρ

ν
, (2.1)

where τw can be varied depending on the spanwise location z. At both walls
impermeability v = 0 holds and a free-slip boundary condition ∂w/∂y = 0 is applied for
the spanwise velocity component. We confirm the statement of Chung et al. (2018) that
the alternative use of a no-slip condition for w does not significantly affect the results.
The spanwise profile of τw(z) is directly imposed with SSBC, thus particular care needs
to be taken so that its mean value τw matches the prescribed pressure gradient. Since only
Neumann boundary conditions are imposed for u at the wall, the mean velocity profile
becomes undefined up to a constant additive value and so does the flow rate. A unique
solution 〈ũ〉( y, z/s) is found without losing generality by constraining the flow rate to a
constant arbitrary value, chosen here to be zero. Henceforth, the streamwise velocity is
plotted relative to the mean velocity at the wall, i.e. 〈u〉( y, z/s) = 〈ũ〉( y, z/s) − ¯̃u( y = 0).

A piecewise constant boundary condition with periodicity 2s is considered, as also
employed by Chung et al. (2018). In the present study, we prescribe

τw(z) =
(

1 − sign cos
(πz

s

)) τh − τl

2
+ τl, τh = 3

2
τ̄, τl = 1

2
τ̄, τ̄ = Re2

τ ν
2ρ

δ2 , (2.2)

i.e. strips of width s, a shear stress ratio of 3 and where z = 0 is the centre of the low shear
stress region. In addition, a sigmoid transition of the patch interfaces between high (τh)

945 A14-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

53
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.536


Simulation of turbulent flow over roughness strips

and low (τl) wall shear stress is defined by

τw(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τh − τl

1 + exp
(

4
z − s/2

�

) + τl, for z ∈ [0, s],

τh − τl

1 + exp
(

4
−z − s/2

�

) + τl, for z ∈ [−s, 0),

(2.3)

for z ∈ [−s, s]; the function may be periodically repeated as needed. This formulation
is used to investigate the influence of a gradual change in wall shear stress on the flow.
The parameter � describes the transition length, with larger values resulting in a less
steep transition between τh and τl. For � → ∞, (2.2) is recovered. While the transition
function is not differentiable at whole-number multiples of s, the exponential decay of
the derivatives ensures that this is negligible in a numerical context. When the influence
of the prescribed wall shear stress distribution on the obtained results is discussed in
the following sections, the actual distribution of τw is included in the lower part of the
corresponding figures for reference, see e.g. figure 3 or figure 7.

The SLBC employs a spanwise-varying slip length for the spanwise velocity component
as a numerical model for roughness strips. A slip length (Navier 1823) relates the wall
slip velocity with the wall-normal velocity gradient at the wall. It can be understood as
the distance between a virtual wall, where no slip is thought to apply, and the actual wall,
which then has a non-zero velocity. For spanwise slip the boundary conditions are given
by

wy=0 = ls,w(z)
∂w
∂y

∣∣∣∣
y=0

, wy=2δ = −ls,w(z)
∂w
∂y

∣∣∣∣
y=2δ

, (2.4a,b)

where ls,w(z) denotes the spanwise slip length, which is the quantity that can vary along
the spanwise direction. We note that a slip in streamwise direction can be inserted in
an analogous way with ls,u as streamwise slip length. It was confirmed that the present
implementation of the slip lengths reproduces the data presented in Min & Kim (2004).

Following the suggestion by Luchini (2013) we employ a spanwise slip length to model
the drag increasing effect of small roughness on the turbulent flow field. Especially from
research on turbulent drag reduction via riblets, it is established knowledge that the change
in drag is related to the difference �l = ls,u − ls,w between the streamwise and spanwise
slip lengths, so that drag is reduced when �l is positive. In this context, the slip length
is typically referred to as the ‘protrusion height’ and �l for streamwise and spanwise
flow can be used to predict the achievable drag reduction rate for small riblets (Bechert
& Bartenwerfer 1989; Luchini et al. 1991). In contrast, an increase of the spanwise slip
length leads to enhanced near-wall turbulence and thus drag increase (Min & Kim 2004;
Fukagata, Kasagi & Koumoutsakos 2006; Busse & Sandham 2012; Gómez-de Segura &
García-Mayoral 2020). In § 5, we employ ls,u = 0 and ls,w > 0 (and therefore a negative
�l) as a simple model for a rough surface. Standard no-slip (u = 0) and impermeability
(v = 0) conditions are applied for the streamwise and wall-normal velocity components
at both walls. The boundary condition is discussed for a homogeneous rough surface
before ls,w > 0 is prescribed as a function of z in order to model strip-type roughness.
The coordinates are again chosen in such a way that z = 0 is at the centre of a low shear
stress patch which corresponds to a patch with standard no-slip conditions for w. The
present formulation ensures that the boundary condition does not have any influence on
laminar flow conditions but leads to enhanced drag for turbulent flow only. Note that under
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CPG conditions this drag enhancement corresponds to a reduction of the flow rate. Again,
a piecewise constant slip length and a sigmoid transition between patches are considered;
the definitions are analogous to (2.2) and (2.3).

Different from the SSBC, the use of a spanwise slip length to define roughness regions
does not cause an undefined flow rate. Therefore, it is possible to evaluate the relative
change of the bulk velocity Ub with respect to a standard no-slip channel at the same
pressure gradient. This change in Ub can be used to evaluate the corresponding overall
drag increase through the modification of the skin-friction coefficient Cf = 2uτ

2/Ub
2.

3. Heterogeneous shear-stress boundary condition in laminar flow

In this section, the effect of the SSBC on a fully developed laminar channel flow is
addressed in order to verify whether aspects of the occurrence and character of secondary
flows are visible in this simplified setting and can be traced back to the properties of the
laminar solution. In particular, we will first utilise the laminar solution to assess the effect
of the smoothness of the transition between strips of high and low shear stress on the
streamwise velocity profile. Then, the emergence of a secondary flow is observed in the
linear response of the laminar base profile with SSBC boundary condition to a specific
small disturbance.

A laminar, steady, fully developed parallel flow along a channel of constant cross-section
is described by the streamwise momentum equation:

ν

(
∂2u
∂y2 + ∂2u

∂z2

)
= − 1

ρ

dp
dx

, (3.1)

where the pressure gradient dp/dx is constant and independent of y and z. Without loss
of generality, dp/dx = −1 and δ = 1 are assumed. This is a Stokes flow in the two
dimensions y ∈ [0, 2δ] and z ∈ [−∞, ∞] with 2s-periodicity in z.

How much the smoothness of the transition region between strips of τh and τl influences
the streamwise velocity profile can be easily assessed by exploiting the linearity of (3.1),
which allows us to express the Stokes solution as sum of elemental solutions. The periodic
SSBC boundary condition can thus be transformed into Fourier space and the Stokes
problem can be solved for each separate spanwise wavenumber κ , knowing that high
wavenumber content relates to a steep transition.

We consider an SSBC with piecewise constant shear stress with periodicity 2s, i.e.

τw(z) = 1 + 1
2

sign
(

sin
(π

s
z
))

, z ∈ (−s, s). (3.2)

Its Fourier transform is given by

τw(z) = 1 + 2
π

∞∑
n=0

sin((2n + 1)zπ
s )

2n + 1
, (3.3)

which is displayed in figure 2. Thanks to the linearity of equation (3.1), the solution is
given as

u( y, z) = −( y − 1)2

2
− 2

∞∑
n=0

sin(κz) cosh(κ( y − 1))

sκ2 sinh(κ)
(3.4)

(with κ = (2n + 1)(π/s)). It is clearly visible that lower wavenumbers in the boundary
condition dominate the solution. In fact, their contribution to the solution scales as κ−2
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Figure 2. Model boundary condition τw (dashed, (3.2)), and (solid) Fourier expansion of τw (3.3), truncated
after 10 elements.
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Figure 3. Isolines of the laminar streamwise velocity for (a) s/δ = 0.25 and (b) s/δ = 1 for τh = 3τl. The
colour code refers to different transitions between τh and τl: stepwise (solid black lines) and sigmoid with
�/s = 0.5 (dashed red lines). The upper part of the figure shows equidistant isolines (in arbitrary units), the
lower part depicts the prescribed spanwise distribution of τw.

at the wall and as κ−2 exp(−κ) at the centreline. This means that higher wavenumbers
not only contribute less to the solution, but that their contribution is limited to a thinner
and thinner layer in the vicinity of the wall. Therefore, we can conclude that the details of
the transition region for a given patch size play a secondary role in determining the flow
solution, particularly farther from the wall, since these details are contained only in the
high wavenumber part of the spectrum.

The solution of (3.4) also indicates that increasing the patch size s, which corresponds
to a decrease of the lowest allowed wavenumber for n = 0, yields an overall larger velocity
difference between the regions of high and low wall shear stress. In the s → ∞ limit,
the parabolic velocity profile is recovered everywhere; while the absolute values of the
velocity tend to ±∞.

The first two main results of this section are visualised in figure 3, which shows the
solution of the Stokes problem for different transition functions at different patch sizes.
(The spanwise coordinate of the figure has been translated to match the remaining figures
of this paper.) First, it can be seen that the spanwise inhomogeneous boundary condition
affects the longitudinal flow in the channel centre for large patch sizes only, here, s/δ = 1
(i.e. larger base wavelengths). For s/δ = 0.25 the depicted isolines of u (referred to as
isovels in the following) do not reveal any variation in spanwise direction for y/δ > 0.2.
With increasing strip width, the presence of HMP over the low stress region thus becomes
more pronounced and is present up to larger wall distances. In addition, figure 3 includes
results generated with either a sharp (solid black lines, (2.2)) or a smooth transition (dashed
red lines, (2.3)) from high stress to low stress in the boundary condition. It is clearly
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Figure 4. (a) Initial disturbance and its shape functions. (b) Temporal evolution of the initial disturbance at t =
0, tuτ /δ = 0.0127 and tuτ /δ = 0.0254; isosurfaces of w = const. = 1/4 max(w(x, y, t = 0)). The isosurfaces
are displayed as viewed by an observer moving with constant x velocity to avoid overlap.

visible that these different boundary conditions have only minor influence on the resulting
momentum distribution under laminar flow conditions.

In the following, the linear response of a laminar flow to infinitesimal perturbations is
studied at Reτ = 180 with SSBC boundary condition τh/τl = 3 and s/δ = 1. The intention
of this numerical experiment is to assess whether the linear response to such perturbation
contains features that resemble the secondary flows which occur for the same boundary
conditions and turbulent flow. A comprehensive analysis of the linear transient growth
of optimal perturbations (Schmid & Henningson 2001) is out of the scope of the present
manuscript. Instead, we limit the consideration to a simple class of perturbations, which
represents an extremely simplified model of spanwise velocity fluctuations as they may
occur in the vicinity of a wall of a turbulent channel. An initial perturbation is added
to the streamwise base flow u( y, z) defined by (3.4) and shown in figure 3(b). This
spanwise-homogeneous initial perturbation is prescribed as a spanwise velocity of the
form

w(x, y, t = 0) = c uτ wx(x)wy( y), (3.5)

where c = 10−10 is a constant determining the amplitude of the perturbation, while wx(x)
and wy( y) are streamwise and spanwise shape functions, respectively. These are defined
as

wx(x) = (x/δ − μx) exp
(

−(x/δ − μx)
2

2σ 2
x

)
,

wy( y) = 1
y/δ

σy
√

2π exp
(

−(ln(1 − |y/δ − 1|) − μy)
2

2σ 2
y

)
, (3.6a,b)

which resemble a normal and a log-normal distribution, respectively, so that the
disturbance is localised in space, has zero streamwise average 〈w〉x, is symmetric about
the channel centre and fulfils the boundary conditions. The coefficients in (3.6a,b) are
μx = 4δ, σx = σy = 0.2 and μy = ln(0.08) + σ 2

y , i.e. the disturbance is centred about
x/δ = 4 and y/δ = 0.08. These parameters result in the initial disturbance distribution
shown in figure 4.

Applied to a flow with homogeneous wall boundary condition, for which the mean
velocity profile is u = u( y), the initial disturbance would only be sheared apart due to
the effect of mean shear du/dy while retaining the spanwise homogeneity, and eventually
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Figure 5. The dominant mode after tuτ /δ = 1.27, the pointwise cross-stream velocity of this mode grows
exponentially.

vanish by viscosity without the generation of additional velocity components. On the
other hand, the spanwise inhomogeneity of the velocity profile u = u( y, z) over the
SSBC strips will deform the original spanwise alignment of the disturbance, since its
convection speed will generally be larger in region of τl, as shown in figure 4(b). The
loss of spanwise homogeneity, which is largest across the interface between strips, causes
∂w/∂z to become non-zero and thus implies the generation of further velocity components
via continuity and yields a linear exponential growth of the disturbance. The linearity
has been tested by progressive reduction of the c constant, which showed an invariant
solution once rescaled with the norm of the initial disturbance. If the flow is averaged
in the streamwise direction during this exponential growth phase, the velocity field
(shown in figure 5) exhibits non-zero streamwise-average velocity components 〈v〉 and
〈w〉 compatible with the secondary flows occurring in a turbulent channel. Region of
upwelling motions are located above strips of τl, while downwelling fluid is found over
regions of τh. This mechanism, that involves the shearing of spanwise velocity fluctuations
and the consequent effect of continuity, is likely to occur also in fully developed turbulent
channel flows and to be a contributor to the generation of secondary motions above strips
of SSBC, as it will be discussed also in § 4. Qualitatively similar results are achieved for a
number of different disturbances (not shown here), such as different wall-normal locations,
asymmetric shape functions wy(x) or non-zero streamwise mean 〈w(x)〉x. The result also
generalises to other spanwise wavelengths s.

4. Heterogeneous SSBC in turbulent flow

We now employ the same SSBC as used in § 3 to a turbulent channel flow. The SSBC with
the sharp jump from low to high stress values corresponds to the configuration studied by
Chung et al. (2018). The main results of that study have been replicated and are discussed
in comparison with the laminar result of the previous section in the following.

In contrast to the unperturbed laminar flow conditions, a vortical secondary flow is
observed for turbulent flow conditions after averaging the resulting instantaneous velocity
fields in time, streamwise direction and phase. This vortical motion induces downwelling
over the patches with high shear stress and upwelling over patches with low shear stress.
The corresponding results are visualised in figure 6(a) for s/δ = 1. The secondary flow
resembles the large-scale flow structures generated in the perturbed laminar flow at the
same s/δ (cf. figure 5)

Opposite to the unperturbed laminar flow, a HMP is present over the high stress (rough)
region, whereas a LMP is found over the low stress (smooth) region. For larger s/δ, a
different distribution of streamwise mean velocity is found, as can be seen in figure 6(c).
The secondary motion has the same rotational direction as in the case of s/δ = 1.
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Isovels (〈u〉) – 〈u〉(0))/uτ (a,c) Reynolds stress〈v′w′〉)+ (b,d )
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Figure 6. (a,c) Time- and phase-averaged streamwise velocity contours in the channel cross-section, centred
on the low shear stress region, for (a,b) s/δ = 1 and (c,d) s/δ = 4. Here τh = 3τl, Reτ = 180, piecewise
constant shear stress. The secondary flow [〈v〉, 〈w〉]/uτ in the plane is indicated with streamlines, with equally
scaled width among the plots. (b,d) In-plane Reynolds stress 〈v′w′〉+.

However, the flow conditions at the channel centreline reveal a HMP over the low stress
region and a LMP over the high stress region. In particular, above the high stress region the
downward motion of the secondary flow is located in a clearly pronounced LMP visualised
through upward bulging isovels (isolines of longitudinal mean velocity).

Comparing the bulging of isovels between unperturbed laminar and turbulent flow
conditions at the same s/δ = 1 (cf. figures 3b and 6a) reveals that the location of HMP
and LMP differs between laminar and turbulent flow conditions, the difference obviously
being caused by the secondary flow. In turbulent flow with heterogeneous SSBC, the
secondary flow motion counteracts the tendency of the longitudinal flow to follow the
path of lower resistance. This results in the flow phenomenon that the turbulent flow rate
above the low stress (smooth) surface patches is smaller than the one over high stress
(rough) patches, which is in agreement with the original experimental results by Hinze
(1967). The consideration of Hinze (1967, 1973), that local overproduction of turbulent
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kinetic energy (TKE) is linked to the presence of secondary motions, also holds true for
the present data. In the near-wall region the secondary motion carries fluid from high TKE
regions (above the ‘rough’ patches) to low TKE ones.

For the present case of SSBC with s/δ = 1 (figure 6a), the downward bulging isovels
of the laminar flow (figure 3b) are straightened by the secondary flow near the wall
(z = 0, y/δ ≈ 0.05) while the bulging direction is reversed at larger wall distance (z =
0, y/δ ≈ 0.2). In the direct vicinity of the wall the distribution of the mean streamwise
velocity is prescribed by the boundary condition, such that lower streamwise velocity
prevails above the high shear region, similar to the laminar case (see zoomed in region
of figure 6a). For larger s/δ, the secondary flow also counteracts the laminar velocity
distribution, but its visible impact is limited to a central region above the low shear stress
strip. The upwelling in this region induces a local HMP above the intersection between
high and low shear stress clearly visible around y/δ ≈ 0.6, z/s ≈ ±0.4 in figure 6(c).
Note that the isovels are very dense directly above the high shear stress region, indicating
the anticipated large velocity gradients. As a direct consequence of the SSBC (see § 3),
the simulations produce artificially large wall velocity differences where the difference
〈u〉( y = 0, z = 0) − 〈u〉( y = 0, z = −s) between patches increases with s. For s/δ = 4,
this difference is approximately 10.9uτ ; for s/δ = 8 it increases to 20.8uτ and is thus
larger than the bulk mean velocity in a standard turbulent channel flow at the same Reτ .
It is thus not surprising that the secondary flow is not able to invert the isovel bulging for
large strip widths. As noted before, the reference velocity in the figure is chosen such that
ū(0) = 0. Therefore, the colour scale for (〈u〉 − 〈u〉(0))/uτ in figure 6 contains negative
values. Those are limited to the direct vicinity of the high shear stress region and can thus
only be identified in the enlargement provided for figure 6(a).

It is interesting to note that, contrary to turbulent secondary flows in non-circular ducts
(or as observed over streamwise ridges), the secondary motions obtained with SSBC do
not enhance but counteract the local curvature of the isolines of the streamwise velocity
of the corresponding laminar flow. A possible explanation of this observation might be
the mechanism described in § 3, where it was shown that near-wall spanwise perturbations
in the laminar base flow with spanwise gradients of the (streamwise) velocity can induce
large-scale vortical motions even in a linearised setting. This suggests that the secondary
flow structures might not require the existence of the complex nonlinear scale interaction
of turbulent flows for their initial generation.

The cross-stream motion is oriented from the high to the low shear stress region near the
wall. Under laminar flow conditions these regions correspond to low and high streamwise
velocity, respectively (see figure 3b). The turbulent secondary motion is thus expected
to reduce the spanwise gradients of 〈u〉 near the wall compared with the laminar case, as
indicated by the straightened isovels in this region. The related redistribution of streamwise
momentum can induce a reversal of the isovel curvature (in the turbulent flow compared
with its laminar counterpart) at larger wall distance (y/δ > 0.5) as observed for s/δ = 1
and above the low shear stress region for s/δ = 4.

Secondary motions above roughness strips are usually categorised as secondary motions
of Prandtl’s second kind (Wang & Cheng 2006). In the following, we discuss to which
extent the secondary motions in turbulent flow over SSBC are in agreement with the
original descriptions by Prandtl for this flow phenomenon. The driving mechanism of
turbulent secondary flows originally proposed by Prandtl (1926) is based on the hypothesis
that turbulent velocity fluctuations along isovels are larger than normal to their orientation.
For isovels with inclined orientation in the present coordinate system, this suggests the
presence of a correlation between v and w. For curved isovels, this motion along the isovel
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Figure 7. Time- and phase-averaged streamwise velocity contours in the channel cross-section, centred on the
low shear stress region, for the different transitions with τh = 3τl, Reτ = 180 and s/δ = 1. The secondary flow
[〈v〉, 〈w〉]/uτ in the plane is indicated with vectors, with equally scaled length among the plots. The prescribed
wall shear stress as a function of the spanwise coordinate z is shown below each panel; (a) �/s = 0, (b)
�/s = 1/16, (c) �/s = 1/8, (d) �/s = 1/4.

induces forces directed to the convex side of the isovels. These forces, which are only
present under turbulent flow conditions, increase with increasing curvature and induce a
net transport of mean streamwise momentum (Prandtl 1926).

Figure 6(b,d) shows the spatial distribution of 〈v′w′〉 for s/δ = 1 and s/δ = 4. Indeed,
the correlation of v and w fluctuations is overall in very good agreement with the direction
of the isovels depicted in figure 6(a,c). The enlargement provided for the near-wall region
around the step change in boundary condition for figure 6(a) allows us to better identify the
local isovel shape near the wall. In both cases a negative slope of the isoline corresponds
to 〈v′w′〉 < 0, i.e. a negative correlation between v′ and w′, and vice versa. The hypothesis
of Prandtl that in-plane velocity fluctuations are largest along isovels is thus confirmed
for the present data. Also, the isovel curvature largely agrees with the direction of the
secondary motion. However, we note that the distribution of 〈v′w′〉 is not in qualitative
agreement with the one observed in DNS of immersed boundary method (IBM) resolved
roughness strips (see figure 8 of Schäfer et al. (2022) and the Appendix). We will return
to the discussion of 〈v′w′〉 in comparison with the SLBC in § 5.2.

Finally, we address the influence of gradual vs sudden transition of the boundary
condition for turbulent flow. It was shown in § 3 that a gradual instead of a step-change
transition between high and low stress regions does not alter the laminar flow field
except for the very near-wall region. Figure 7 shows a y–z cross-section of the
phase-averaged mean flow quantities for turbulent flow conditions at s/δ = 1 and different
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Figure 8. Isolines of the time- and phase-averaged streamwise velocity for (a) s/δ = 1 and (b) s/δ = 4 at
τh = 3τl. The colour code refers to different transitions between τh and τl: stepwise (solid black lines) and
sigmoid with �/s = 1/4 (dashed red lines).

sigmoid transitions. For �/s = 1/16, 1/8, 1/4, a very similar secondary flow to the case
of the piecewise constant reference case is observed. The secondary flow magnitude is
slightly reduced for gradual wall shear stress changes. This also reflects in the bulging
of the isovels, which are shown in direct comparison for �/s = 0 and �/s = 1/4 for
strip width s/δ = 1 and s/δ = 4 in figure 8. The dashed red line corresponds to the
gradual change in the boundary condition. This sigmoid transition apparently leads to
a slightly reduced spanwise inhomogeneity of the mean flow field, especially visible
for s/δ = 4, which is in agreement with the presence of a slightly weaker secondary
motion. However, the overall impact of the gradual change in boundary condition is
very small.

5. Spanwise slip-length boundary condition in turbulent flow

5.1. Modelling homogeneous roughness
As introduced in § 2.2, we employ a transversal slip length to model the effect of a
rough surface on a turbulent flow field. It has been established that a transversal slip
increases near-wall turbulence and thus skin-friction drag; while a longitudinal slip leads
to drag reduction (Min & Kim 2004). Fukagata et al. (2006) and Busse & Sandham
(2012) suggested a relation between the dimensionless spanwise slip length and the
resulting drag increase. Assuming only minor modifications to the shape of the turbulent
velocity profile due to the imposed boundary condition, the corresponding reduction of
U+

b can be translated into the Hama roughness function �U+, which is widely used
to characterise turbulent flow over rough surfaces. Figure 9(a) shows the correlation
proposed by Fukagata et al. (2006) translated into �U+ for the present CPG conditions in
comparison with simulation results. They are in excellent agreement. As noted by Fukagata
et al. (2006), the observed changes in �U+ are almost independent of Reynolds number,
which we confirmed with additional simulations at Reτ = 540 (not shown here). For a
rough surface, �U+ is expected to increase with Reynolds number. Therefore, it should
be noted that simulations with constant l+s at different Reynolds number do not mimic the
Reynolds number dependence of real rough surfaces. For such a study the prescription of
a Reynolds number dependent l+s,w would be required. In figure 9(a) it can be seen that
the relationship between �U+ and the spanwise slip length is nonlinear. This saturation
effect was previously reported by Gómez-de Segura & García-Mayoral (2020) and is in
agreement with the finding of Luchini (2013) that this type of boundary condition is
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Figure 9. (a) Relative velocity deficit �U+ = 〈u〉+|δ − 〈u〉+|δ,NSBC for Reτ = 180 and (solid line)
Relationship suggested by Fukagata et al. (2006), adapted. (b) Relative change in skin-friction coefficient Cf
compared with the no-slip reference case (denoted by index 0) at the same Reτ evaluated for Reτ = 180 and
Reτ = 540.

suited for the representation of small roughness only. Nevertheless, a roughness function
of the present order of magnitude corresponds to a significant drag increase. The related
increase of Cf under CPG conditions is of the order of 50 % for l+s,w ≈ 10 (�U+ ≈ 3) at
Reτ = 180, as shown in figure 9(b). An increase in Reynolds number leads to a smaller
change in skin-friction drag coefficient for a fixed �U+, as discussed by Gatti & Quadrio
(2016). This is confirmed for the present boundary condition at Reτ = 540 where l+s,w ≈ 10
corresponds to a drag increase of approximately 45 %.

The prescription of a spanwise slip length can thus reproduce the mean velocity profile
of a turbulent flow over rough surfaces with roughness functions of the order of �U+ < 4
(Fukagata et al. 2006). We note that the spanwise slip length has no direct relation to the
roughness topography and cannot reproduce the specific flow signatures of a roughness
sublayer (Chung et al. 2021), which is also the case for other roughness models employed
in DNS, see e.g. Busse & Sandham (2012). While a SLBC based roughness model has the
advantage of replicating the roughness effect of not influencing the drag of laminar flows,
the model requires a priori knowledge about the main flow direction as slip is prescribed
for the transversal velocity component only.

5.2. Modelling heterogeneous roughness
In order to model alternating strips of rough and smooth surfaces, the SLBC is applied
in the same configuration as in § 4; i.e. Reτ = 180, s/δ = 0.25, 1, 4. We choose a slip
length of ls,w = 0.05δ (l+s,w = 9), which corresponds to a roughness function of �U+ ≈ 3
for a homogeneously rough surface at Reτ = 180. The resulting velocity profiles for the
heterogeneous case are presented in figure 10. The left column of plots is scaled with
the global friction velocity uτ , which is defined by the prescribed pressure gradient.
Since the pressure gradient is equal in all considered cases, the plots in this column
allow us to deduce statements on the flow rate in a given section of the inhomogeneous
channel. The plots in the right column are scaled with the local friction velocity uτ (z),
which makes it possible to compare local flow conditions with the homogeneous reference
cases.

For s � δ, the change in the boundary condition only affects the near-wall region;
Townsend’s outer layer similarity hypothesis holds (Townsend 1976). For y > s, the mean
velocity profiles at different z positions collapse when scaled with the global friction
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Figure 10. Velocity profile for different z positions, scaled with (a,c,e) the mean friction velocity uτ and
(b,d, f ) the local friction velocity uτ (z). (a,b) s/δ = 0.25, (c,d) s/δ = 1, (e, f ) s/δ = 4.

velocity uτ̄ (figure 10a), suggesting spanwise homogeneity. The velocity profile in the
outer layer falls between the limiting homogeneous cases. For s � δ, the flow in each
patch centre is barely affected by the change in the boundary condition. Above the two
patches the flow conditions are relatively independent from each other. As a consequence,
the local velocity profile agrees well with the respective homogeneous cases when scaled
with the local friction velocity (which is higher in the ls,w > 0 region), see figure 10( f ).
This suggests that the flow above the patches is in near equilibrium with the respective
boundary condition which is not the case for the narrower strips, see figure 10(b,d). Since
scaling the velocity profile with the local friction velocity uτ (z) represents normalisation
with the actual near-wall gradients of these profiles, the observed near-wall collapse of the
profiles is expected.
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As indicated in figure 10(e), the no-slip region provides a preferred pathway to the flow
for s � δ due to the (relatively) lower skin friction. Therefore, a HMP is located above the
no-slip region; i.e. the blue curve is located above the red one. For s ≈ δ, the opposite is
observed, and the blue curve is located below the red one in figure 10(c). The redistribution
of momentum due to the secondary motion obviously dominates over the effect of locally
lower skin-friction drag and a LMP is located over the no-slip region.

The corresponding mean momentum distribution and secondary flow are presented in
figure 11. As expected, for s/δ = 0.25, the secondary motions are restricted to a region
close to the wall. For s = δ, the secondary vortices expand towards the channel centre and
give rise to a high momentum pathway over the rough region. For s/δ = 4, the secondary
motions and the corresponding momentum transport is restricted to an approximately
square region centred at the patch interface, giving rise to a weak local HMP on the rough
side of the interface and a weak local LMP on the no-slip side. Such a configuration
was also observed experimentally by Wangsawijaya et al. (2020), but has to the authors’
knowledge not been reproduced in published simulations to date. The orientation and size
of the secondary vortices observed in the cited experiments are correctly represented by
the SLBC in all cases. In contrast, the SSBC exaggerates the difference between LMP and
HMP for s � δ, and predicts a larger lateral extent of the secondary flow structure (cf.
§ 4).

The spatial distribution of the Reynolds stress component 〈v′w′〉 is shown in
figure 11(b,d, f ). It clearly differs from the SSBC case (see figure 6) and is in better
qualitative agreement with DNS results in which streamwise aligned roughness strips are
resolved based on an IBM approach or modelled through a parametric forcing approach
(PFA) (Schäfer et al. 2022). In particular, the qualitative agreement is achieved for the case
of non-protruding roughness strips (cf. figure 8c,k in Schäfer et al. (2022) vs figure 11b).
Note that the spanwise wavelengths are different: Schäfer et al. (2022) present results for
s/δ = 0.5. Therefore, the Appendix contains a direct comparison of SSBC and SLBC at
s/δ = 0.5 with the IBM resolved reference data.

Figure 12(a) presents the secondary flow and the momentum distribution for the case
of a sigmoid transition of the w slip length. The secondary flow is weaker than in the
piecewise constant case (cf. figure 11c) while orientation and size of the secondary vortices
are unchanged. The HMP also keeps its location over the rough patch. Figure 12(b)
compares the isovels of the two transition types. It can be seen that HMP and LMP are
slightly less pronounced for the sigmoid transition, which is in agreement with a weaker
secondary flow. In addition, it is apparent that Ub is reduced in case of the sigmoid
transition. This follows from the nonlinear relation (saturation effect) between the slip
length and the flow rate decrease (see figure 9); while the average slip length is kept
constant, areas with half as much slip length lead to more than half as much drag increase,
so the ‘average skin-friction coefficient’ increases.

The global skin-friction coefficient is not only governed by the relationship between
Cf and ls,w, but also by additional contributions from the secondary flow. In order to
quantify the latter, we assume that the skin-friction coefficient in flows with roughness
strips but without any secondary motion can be computed based on the limiting case of two
non-interacting channel parts (one smooth and one rough) that are both driven by the same
pressure gradient (same uτ ). The identical pressure gradient in both channel parts ensures
that no spanwise pressure gradient is generated, which in turn could drive a spanwise mean
flow. The resulting flow rate for these two channel parts will naturally differ and the mean
flow rate between the channels is given by Ub = (Ub,rough + Ub,smooth)/2. The definition
of the skin-friction coefficient Cf = 2uτ

2/U2
b then yields an expected global skin friction
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Figure 11. Spanwise variable, piecewise constant w slip length for different patch sizes. Contours:
time-averaged streamwise velocity in the y − z plane. The secondary flow [〈v〉, 〈w〉]/uτ in the plane is indicated
with vectors, with equally scaled length among each column of plots. The z limits are chosen to enable
comparison with the experiments of Wangsawijaya et al. (2020): figure 8(c,e,g). (b,d, f ) Reynolds stress
〈v′w′〉+; (a,b) s/δ = 0.25, (c,d) s/δ = 1, (e, f ) s/δ = 4.

coefficient of

Cf =
(

1
2

(
1√

Cf ,rough
+ 1√

Cf ,smooth

))−2

, (5.1)

which is the (p = −1/2) power mean of the local skin-friction coefficients. The obtained
value in comparison with the computed Cf for different s/δ is is displayed in figure 13(a) in
which Cf of the smooth and rough homogeneous reference cases are also included. For the
limiting case of small patches, (5.1) correctly predicts the global skin-friction coefficient.
For patch sizes s/δ ≈ 1, the pronounced secondary flow is expected to increase the global
skin-friction coefficient which is indeed the case. For very large patches s/δ � 1, the
secondary flow occupies only a small part of the channel (at the interface between the
patches) and has thus little influence on Cf , so (5.1) holds again. The drag increase due
to the presence of secondary motion (that is, the observed drag increase in relation to
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Figure 12. (a) Secondary flow and isovels for of the sigmoid transition with s/δ = 1, ls,w = 0.05, the vectors
are scaled as in figure 11. (b) Isovels for the same parameters, but different transition types. The transition
between rough and smooth patches is distinguished using line styles: stepwise (solid black lines) and sigmoid
with �/s = 1/4 (dashed red lines) and the corresponding distribution of ls,w is shown in the lower parts of the
figures.
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Figure 13. (a) Skin-friction coefficient Cf as a function of the strip width s/δ with stepwise change of the
boundary condition and l+s,w,max = 9 in the rough patch. Cf for the standard smooth wall, the homogeneous
rough case with l+s,w = 9 and the prediction based on (5.1) are included for reference. (b) Estimation of the
contribution of the secondary flow on the drag increase in case of the smooth transition between patches.
Reτ = 180 for all cases.

the prediction (5.1)) for piecewise constant boundary conditions is 2.9 % and 3.5 % for
s/δ = 1 and s/δ = 4, respectively.

As discussed before, a continuous change of ls,w in spanwise direction (sigmoid
transition) results in a global increase of the skin-friction coefficient due to the saturation
effect of the employed boundary condition. An integral version of (5.1) can be employed
to compute the related global skin-friction coefficient without the effect of secondary flow.
A comparison with the DNS results of sigmoid ls,w transition reveals a drag increase of
2.0 % for s/δ = 1 due to the secondary flow. This procedure is visualised in figure 13(b).
The drag increase thus appears to correlate with the strength of the secondary flow. It is,
however, significantly smaller than the drag increase caused by the presence of ‘roughness’
alone (as computed using (5.1)), which is 20.8 % and 24.6 % for piecewise constant and
sigmoid transition of the prescribed spanwise slip length, respectively.

945 A14-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

53
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.536


Simulation of turbulent flow over roughness strips

We note that the definition of a percentage drag increase is not unambiguous for an
internal flow with rough or structured surface. In the present data evaluation the channel
half-height δ is a fixed geometrical property. This is in line with the inherent assumption
for strip-type roughness of a large scale separation between the roughness height and the
boundary layer thickness. However, if this scale separation does not hold, the influence of
an effective channel height has to be taken into account as discussed in e.g. Schäfer et al.
(2022).

For a direct comparison with the Cf -changes presented in Schäfer et al. (2022) we note
that both Reynolds number and roughness function are larger than in the present case
while the strip width is smaller. In addition, (5.1) was not applied in this case. Instead, the
arithmetic mean of Cf for smooth and rough walls was used as reference. Irrespective of
the reference definition, i.e. as arithmetic mean or according to (5.1), the data of Schäfer
et al. (2022) indicate a much higher contribution of the secondary flow to drag increase
than the present data. At the same time the isovel curvature due to the secondary flow is
similar for the present data and non-protruding roughness strips of Schäfer et al. (2022)
(see their figure 5(c,j,k) or the Appendix). We suspect that this difference is related to drag
effects on the protruding lateral sides of the smooth surface patches that were introduced
in the IBM resolved and PFA modelled roughness DNS (Stroh et al. 2020; Schäfer et al.
2022). Those effects should disappear for large scale separation between the roughness
length scale and the channel half-height (boundary layer thickness), which cannot be
achieved with roughness resolving DNS. However, this scale separation is a likely property
of engineering or environmental rough wall flows and can be realised experimentally. In
fact, recent wind tunnel experiments with rough surface strips carried out in our laboratory
indicate a smaller global drag increase when surface elevation differences between rough
and smooth wall strips are minimised (von Deyn et al. 2022).

6. Differences between SLBC and SSBC

As shown in the preceding sections, the SLBC is able to predict the effect of heterogeneous
surface roughness in the form of streamwise oriented strips on a turbulent flow field. While
providing the same numerical simplicity as the SSBC approach, i.e. no need for increased
resolution for the rough region and the simplicity of a change in boundary condition only,
the slip-length concept allows us to better capture the impact of heterogeneous roughness
on near-wall turbulence properties.

From a global perspective, the first advantage of SLBC is the fact that it does not impact
a laminar flow field. This is an important property since we expect a laminar flow not to
be modified by the presence of roughness (in contrast to blockage effects related to larger
surface structures). Therefore, the model allows us to directly investigate the influence of
roughness on the turbulent flow field without the presence of any overlaying artefacts. In
addition, the SLBC approach allows us to quantitatively evaluate the drag increase due to
the presence of secondary flow, which is not possible with SSBC due to the unphysical
flow rate (see Chung et al. (2018) for details).

The evaluation of the drag increase due to secondary flow for roughness strips with
SLBC based on (5.1) assumes that in the absence of secondary flow there is no spanwise
variation in wall shear stress. In fact for s/δ = 16 the wall shear stress (or uτ ) is identical
in the smooth and rough surface regions at sufficiently large distance from the interface
between the two. The increased wall shear stress over the rough surface region is thus a
consequence of the secondary motion which leads to an increase of the global Cf compared
with the prediction of (5.1), as shown in figure 13. In contrast, for SSBC the wall shear
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stress difference between smooth and rough surface regions is prescribed. Therefore, the
wall shear stress distributions for SLBC and SSBC differ for very wide roughness strips.

In terms of secondary motion, the spatial extent of these large-scale motions in the
case of wide strips (s/δ = 4) appears to be correctly captured with SLBC (see figure 11e)
while it is overpredicted with SSBC (see figure 6c) when compared with experimental
literature results (see figure 8c of Wangsawijaya et al. 2020). This is likely to be related to
the artificially large velocity differences near the wall between high and low shear stress
regions in case of SSBC. As discussed in § 3, such a system is sensitive to spanwise
disturbances under laminar flow conditions which can induce large-scale motions similar
to the observed turbulent secondary motions. Therefore, the overprediction of the spanwise
extent of the secondary flow in the case of SSBC is probably related to this instability
mechanism and thus an artefact of the boundary condition.

For more narrow strips, the spatial extend of the secondary motion and its impact on
the mean flow field are more similar for SSBC and SLBC (see figure 6(a) and 11(c) for
s/δ = 1 or the Appendix for s/δ = 0.5). However, the related distributions of 〈v′w′〉 reveal
significant differences in the near-wall region (sees figure 6b and 11d) where the SLBC
shows qualitatively better agreement with roughness resolving DNS reference data (see
the Appendix).

Finally, we note one interesting observation: for both boundary conditions investigated
in the present study, a variation of s/δ (also beyond the presented parameter range) was
never found to induce a reversal of the secondary motion or the occurrence of tertiary
vortical structures. However, such phenomena were reported for increased strip width
in the case of alternating slip and no-slip boundary conditions (Stroh et al. 2016) as
well as for ridge-type roughness (Medjnoun, Vanderwel & Ganapathisubramani 2020).
The difference of the presently investigated boundary conditions compared with those
studies is given by the fact that SSBC and SLBC both induce a spanwise variation of one
velocity component only. SSBC induces a spanwise variation for the streamwise velocity
component, while the heterogeneous SLBC is applied to the spanwise component only.
The reason for the apparent insensitivity towards variations in s/δ might be related to
this fact. This hypothesis, however, remains to be investigated in future studies. In the
SLBC setting the introduction of an additional streamwise slip length might be suited to
study this effect. The combination of streamwise and spanwise slip length can be imagined
to represent the configuration of small streamwise ridges following the virtual origin
framework (Gómez-de Segura & García-Mayoral 2020). Unlike the SLBC considered
here, one has to keep in mind that the introduction of a streamwise slip length leads to
a configuration in which the ‘modelled roughness’ also modifies a laminar flow field – a
fact that also holds true for ridge-type roughness.

7. Summary and concluding remarks

The flow over laterally inhomogeneous rough surfaces is studied by means of DNS in
which two different models for the inhomogeneous surface condition are applied. Both
models have the advantage that the resolution of individual roughness elements is not
required, but the roughness effect is contained in an effective boundary condition instead
such that the influence of the roughness height is eliminated. The first model, SSBC, was
previously used in the literature (Chung et al. 2014, 2018). It prescribes the wall shear
stress such that a high wall shear stress region represents e.g. a streamwise aligned strip
of rough surface which is flanked by smooth surface strips of lower wall shear stress.
The second model, SLBC, based on a slip-length approach, has also been formulated
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in the literature before (Min & Kim 2004; Fukagata et al. 2006; Busse & Sandham
2012) and is known to induce drag increase. However, to the authors’ knowledge it
was previously never employed to model inhomogeneous rough surfaces. This model
introduces a slip length for the spanwise velocity component which can also be interpreted
in terms of different protrusion heights (or virtual origins) for the streamwise and spanwise
velocity components (Luchini et al. 1991). In the present study a spanwise slip length
is prescribed on ‘rough’ surface parts along with no-slip and impermeability conditions
for the streamwise and wall-normal velocity components. The fact that this SLBC solely
acts on the spanwise velocity component yields the advantage of influencing turbulent
flow fields only, a property that is associated with hydraulically rough surfaces since the
pioneering work of Nikuradse (Nikuradse 1933; Schlichting 1979). It is shown that the
relation between spanwise slip length and the Hama roughness function �U+ can be
predicted based on available literature correlations (Fukagata et al. 2006). The roughness
function achievable with the present SLBC is limited to �U+ < 4.

Heterogeneous rough surfaces in the form of streamwise aligned roughness strips lead
to the formation of secondary flows of Prandtl’s second kind in turbulent flows. Since
the work of Hinze (1967, 1973) it has been known that the secondary flow structures can
lead to a pronounced redistribution of the streamwise momentum resulting in a flow field
with larger flow rates above the rough than the smooth surface patches. Both modelling
approaches addressed in the present study can capture this phenomenon in general. While
the Reynolds stresses of the SLBC case resemble those of roughness resolving DNS
with slightly recessed roughness strips, artificially large spanwise mean velocity gradients
induced through SSBC lead to unphysical near-wall turbulence properties in this case. For
both boundary conditions, the present results confirm the original hypothesis of Prandtl
(1926), suggesting a prioritised turbulent motion in the direction parallel to isovels. This
agreement between the isovel orientation and the sign of 〈v′w′〉+ holds true even in case
of SSBC, where the extreme spanwise velocity gradients do not resemble realistic flow
conditions.

These large spanwise gradients of streamwise velocity are a consequence of SSBC that
is also present under laminar flow conditions. The resulting laminar flow field is shown
to amplify small spanwise disturbances in such way that large-scale vortical motions with
resemblance to the turbulent secondary flows emerge. This flow instability is likely to be
the driving mechanism that induces the large lateral extent of secondary flow structures for
SSBC in the case of a large structure wavelength (here s/δ = 4), which is neither observed
in experiments nor in the present DNS with SLBC. Therefore, numerical roughness
models should be checked with respect to their impact on laminar flow conditions and
potential artefacts that may arise therefrom.

The obtained results show that the spanwise gradient of the boundary condition has a
small effect on the turbulent secondary flow only, irrespective of the employed roughness
modelling approach. This leads to the conclusion that spanwise gradients in the boundary
condition are not a critical issue as far as the formation of secondary flows is concerned.
Sharp jumps of the boundary conditions can thus be avoided, which is an interesting aspect
for numerical codes in which spatial derivatives are based on spectral discretisation. On
the other hand, the impact of gradual roughness transitions that might occur in technical
applications can be investigated with the simplification of step-like changes.

An additional advantage of SLBC is the fact that it allows us to quantitatively deduce
the drag increase caused by the secondary flow. This drag increase amounts to a few
per cent for the investigated cases only and is approximately one order of magnitude
smaller than the roughness effect itself, a result that differs from previous findings obtained
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with roughness resolving DNS (Stroh et al. 2020) which show a significantly larger relative
drag increase for roughness strips. We hypothesise that this difference reflects the inherent
property of strip-type roughness, namely a negligible surface elevation of the rough or
smooth surface parts compared with the boundary layer thickness. Such scale separation
cannot be achieved with roughness resolving DNS. We therefore consider the SLBC an
appropriate setting to numerically investigate the interplay between strip-type roughness
and (very-)large-scale motions in turbulent boundary layers. This is likely to be relevant in
the meteorology context where the relative roughness height (compared with the boundary
layer thickness) is of the order of 10−3 and smaller (Anderson et al. 2015) such that local
deflections on protruding surface parts are expected to be negligible.

The fact that the SLBC acts on turbulence only also makes it a suitable set-up to further
investigate the relevance of secondary flows for large-scale heterogeneous roughness in
technical applications (Bons 2002). These typically combine a streamwise and spanwise
inhomogeneity of the surface roughness condition such that an additional development
length scale of the secondary flow might become relevant. However, we note that both
boundary conditions discussed in this paper require the a priori definition of the mean
flow direction. While this requirement is easily satisfied for generic wall-bounded shear
flows, its fulfilment can probably not be achieved for complex unsteady flow scenarios.
Further modelling efforts will thus be required to enable the prediction of secondary flows
of Prandtl’s second kind under complex flow conditions.
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Appendix. Comparison between SSBC, SLBC and resolved roughness

In this appendix, we compare cases from both SSBC and SLBC with literature data, in
particular the IBM resolved roughness published in the database of Schäfer et al. (2022)
for s/δ = 0.5. Different cases of roughness elevation are considered in Stroh et al. (2020)
and revisited in Schäfer et al. (2022), the one shown here corresponds to non-protruding
roughness strips (h = 1.7k̄, where h is the height of the smooth wall measured from the
lowest point of the roughness and k̄ is the meltdown height of the roughness).

Note that the height of the wall (both in the rough and smooth regions) reduces
the effective height of the channel, unlike in the SSBC/SLBC cases. These reference
simulations are performed at Reτ = 540, and the (homogeneous) roughness has a
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Simulation of turbulent flow over roughness strips
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Figure 14. Comparison of SSBC and SLBC with reference data in form of IBM resolved roughness from
Schäfer et al. (2022). All cases at s/δ = 0.5; the simulations are arranged in columns. s/δ = 0.5. (a–c) Mean
streamwise velocity (〈u〉+ respectively (〈u〉 − ū( y = 0))+ for SSBC), secondary flow (vectors, same scaling in
viscous units), (d–f ) 〈u′w′〉+, (g–i) 〈v′w′〉+.

significantly higher effect on �U+ than in the present DNS. This combination results in a
larger ū( y = δ) for the SLBC case compared with the IBM simulation (cf. figure 14b,c).
For SSBC (figure 14a) the difference between maximum and minimum streamwise
velocity is of a similar order of magnitude.

Figure 14 shows the corresponding Reynolds stress component 〈v′w′〉. It can clearly be
seen that the SLBC case is in better qualitative agreement with the roughness resolving
IBM simulation than the SSBC case. The absolute values also match reasonably well,
with the notable exception of the rough–smooth interface (figure 14(i), z/b = ±1/2,
y/δ = 0.1). Here, spanwise moving fluid in the troughs of the (resolved) roughness is
deflected upwards, so a strong correlation between w′ and v′ matches the expectations.
Such a deflection effect may also exist for SLBC (spanwise moving fluid at y = 0 cannot
continue into the no-slip region) and a characteristic peak at the (z/b = ±1/2, y/δ = 0)
location is also present (figure 14h), although much weaker. This reduced maximum
intensity of 〈v′w′〉 is related to the fact that the SLBC imposes a boundary condition that
this homogeneous in streamwise direction such that the dispersive stress contribution to
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〈v′w′〉 that is present for resolved roughness cannot be captured by definition. For the
SSBC model the near-wall behaviour of 〈v′w′〉 carries opposite signs compared with the
one for resolved roughness. This difference is directly related to the employed boundary
condition and correlates well with the downward bulging isovels observed in the very
near-wall region of figure 14(a) as discussed in § 4. We note that in the case of the resolved
roughness the sign of 〈v′w′〉 at larger wall distances above the smooth region (y/δ > 0.3,
−0.5 < z/b < 0.5 in figure 14g) is not in agreement with the direction of the isovel
bulging in the sense of the original proposal by Prandtl as discussed in the manuscript.
This difference indicates that the main driving mechanism of the secondary flow might
be located over the rough surface patches and at their corners where the largest absolute
values of 〈v′w′〉 are found. In addition this observation might also be related to the fact that
protruding surface parts (which are absent for SSBC and SLBC) are known to introduce a
strong turbulent transport term into the kinetic energy budget (Hwang & Lee 2018).

The database provided along with the present manuscript allows us to compare a number
of different statistical flow quantities for the two discussed roughness models with the
roughness resolving IBM case or PFA model case discussed in Schäfer et al. (2022).
Figure 14(g–i) shows the distribution of 〈u′w′〉+ as an example, again demonstrating the
better agreement of SLBC with the resolved data.
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