ON THE SOLUTION OF THE DIFFERENTIAL EQUATION, ETC.

Putting =0 and dividing by a, we find that the point of
intersection of the normals at P and ¢ is given by

(y-y)(2a+3bx +...)=1.

Patting «’ and 4 both zero, this gives in the limit
1
¥y=35,"
Now, according to Newton’s treatment, the radius of curvature
is given by

1
whence o~ =p,

gle

1
"2
and it follows that y = p according to this definition.

The Newtonian method treats the circle of curvature at P as
the limiting position of a circle fouching the curve at 2 and passing
through a point € which ultimately coincides with P.

This method is a little less general than the definition of the
_circle of curvature as the limiting position of a circle through three
consecutive points. But itis a necessary condition for the existence
of a circle of curvature that the circle through three points of a
curve should tend to a unique limiting position, whatever be the
law according to which the points approach coincidence, and this
covers the case, contemplated in the Newtonian method, in which
two of the points coincide before the third point coincides with
them.

Personally, I have always regarded it as pure * fudge ” to treat
the definition quoted by Dr M‘Whan as equivalent to that based
on considerations of the circle through three consecutive points of
a curve. If such an assumption can be justified on any grounds, I
should be interested to hear of them ; meanwhile I have my doubts.

G. H. Bryan.

On the Solutions of the Differential Equation

dmx az da
——"—+P1 &F 4+ ... +P,,__1 E

P,x=0.
dit Tl

The following is a direct proof that any n + 1 particular integrals
of the differential equation

z,+Pix, +Px, s+.. . +P,_ ity + P,e=0,
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MATHEMATICAL NOTES.

where
_dx
T, = a—tTi
and P, P, ... P, are functions of ¢ alone, are connected by a linear
relation.
Let us take n =3, and it will be seen that the same method will
apply to any value of », and let x, v, z, « be four particular

integrals.
We have
2+ Piag+ Py, + Py =0,
Ys+ iyt Poy, + Poy =0,
23+ Py 23+ Py 2z, + Py 2=0,
Uy + Py + Pou, + P =0,
whence
’ x, ®, T
Ys Y ¥ Y =0 (A)
’ % % 7 2
w, wy U, u |
For brevity write
x vy =
© Y % = U, ete.
Ly Yo %%
aU vy ®
Then il R b, ete.

T Yy 2
are well known ; and the determinant (A) at once gives
2. Q + .(i_):..i_ z di +u .d__l.]= 0
2dt TV ds TR G tde

dX dY az av

and clearly Ilwﬁ-ylw +21W+uld—t =0
dX
P e =0
x a1 +
dX
E3W+ ........................... =0

But (A) also gives us
e X+y V+2,Z24u,U=0;
and, identically, o X+yy Y +2, Z+u, U=0,

s X+ Y+ =0,
2 X+y Y+.oveninns =0.
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dX dY dZ ﬂ
Hence dt _dt _dt _dr

a b ¢
where a, b, ¢, d are constants,
and since 2 X+yY+2Z+ulU=0,
we have ax +by+cz+du=0,

whieh is the result required.
J. E. A. STEGGALL.

On the Solutions of P — +Qu 0.

d tz
(Suggested in discussion at a meeting of the Society).
The following note gives a proof of the theorem that if x, y, 2

are any three values of u which satisfy the differential equation

ft" +P(d7?+Q=O, then {x+my+n2=0 where [, m, n are con-

stants. If the dots denote differentiation with respect to ¢, we have

£+ Px+Qu=0, y+Py+Qy=0 and 2+Pz+Qz=0.

Hence x Yy % =0, (1)
€ y =

Now z, y, 2 are functions of ¢, and therefore the locus of the
point (2, ¥, ) is a curve in space. Equation (1) is the condition
that the osculating plane at (x, ¥, 2) should pass through the origin.
But if the osculating plane at any point of a curve passes through
a fixed point, the curve is a plane curve lying in a plane through
the point. Therefore the point (z, ¥, 2) liesin a plane through the
origin or lx+my+nz=0,

R. J. T. BeL.
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