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ABSTRACT

An abelian cover is a finite morphism X — Y of varieties which is the quotient map for
a generically faithful action of a finite abelian group G. Abelian covers with Y smooth
and X normal were studied in [R. Pardini, Abelian covers of algebraic varieties, J.
Reine Angew. Math. 417 (1991), 191-213; MR 1103912(92¢:14012)]. Here we study the
non-normal case, assuming that X and Y are S varieties that have at worst normal
crossings outside a subset of codimension greater than or equal to two. Special attention
is paid to the case of Zj-covers of surfaces, which is used in [V. Alexeev and R. Pardini,
Ezxplicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint
(2009), math.AG/arXiv:0901.4431] to construct explicitly compactifications of some
components of the moduli space of surfaces of general type.
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An abelian cover is a finite morphism X — Y of varieties which is the quotient map for a
generically faithful action of a finite abelian group G. This means that for every component Y;
of Y the G-action on the restricted cover X xy Y; — Y is faithful. The paper [Par91] contains
a comprehensive theory of such covers in the case when Y is smooth and X is normal. The
covers are described in terms of the building data consisting of branch divisors Dy, ,, ranging
over cyclic subgroups H; C G, and line bundles L, with x ranging over the character group of
G. This collection must satisfy the fundamental relations.

Here, we extend this theory to the case of singular varieties. Namely, we allow X and Y to be
varieties satisfying Serre’s condition S5 and having double crossing singularities in codimension 1,
which we abbreviate to gdc for ‘generically double crossings’ (see § 1.3 for the precise definition).
Our interest in this case lies in applications to the moduli theory. Such non-normal abelian
covers appear in our work [AP09] where we explicitly construct compactifications of moduli
spaces of some Campedelli and Burniat surfaces by adding stable surfaces on the boundary.
‘Stable surfaces’ here are in the sense of [KS88]: they have slc (semi log canonical) singularities
and an ample canonical class.
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V. ALEXEEV AND R. PARDINI

In this paper, we give a comprehensive treatment of the situation. In §1.3 we show that the
theory of standard covers of [Par91] has a very natural extension to the case when Y is still
smooth but X is possibly gdc. In § 1.4 we extend it to the case of normal base by an Ss-fication
trick. In §1.5 we prove that a cover with non-normal Y can be obtained by gluing a cover over
the normalization }7, and we spell out which additional data must be specified.

In §2 we study the singularities of covers. We determine the conditions for X to have slc
singularities, to be Cohen—Macaulay, and we determine the index of the canonical divisor in the
situations appearing in common applications.

In §3 we treat in detail the special case when the group G is Z5 and dim X =dim Y =2, as
in [AP09]. We restrict ourselves to the situation where the base Y is smooth or has two smooth
branches meeting transversally, and the components of branch divisors and the double locus are
smooth and have distinct tangent directions at the points of intersection, i.e. locally they look
like a collection of lines in the plane. In this situation, we give a complete classification of the
covers and the singularities of X. The answer is contained in nine tables. Some of these covers
appear on the boundary of moduli of Campedelli and Burniat surfaces, but the full list is longer.

Notations. G denotes a finite abelian group. We work with equidimensional varieties defined
over an algebraically closed field K whose characteristic does not divide the order of G. We
denote by G* the group Hom (G, K*) of characters of G, and we write it multiplicatively. The
abbreviations lc and slc stand for log canonical and semi log canonical (cf. § 2 for the definitions).
Also, X, C, etc. denote the normalization of X, C, etc. We use the additive and multiplicative
notation for line bundles and divisors interchangeably. Linear equivalence will be denoted by ~.

1. General structure of abelian covers

1.1 Setup

We recall some basic facts about Serre’s condition S; and the Sa-fication of a coherent sheaf. For
a comprehensive treatment, the reader may consult [Gro65, 5.9-11], where the latter appears
under the name ‘Z®-closure’.

All varieties below are assumed to be reduced, equidimensional, but possibly reducible. Let
F be a coherent sheaf on X all of whose associated components are irreducible components of X.
Then there exists a unique Sa-fication, or saturation in codimension 2, a coherent sheaf defined
by

So(F)(V) = lim FVnU).
UcCX,codim(X\U)>2
The sheaf So(F) is So, and F is Sy if and only if the map F — So(F) is an isomorphism.
In particular, for F = Ox one obtains the Sa-fication S2(X) — X, which is dominated by the
normalization of X.

On a normal variety X, an Se-sheaf is the same as a reflexive sheaf, satisfying F** = F,
see [Bou65]. Further, reflexive sheaves of rank one are the same as divisorial sheaves, isomorphic
to Ox (D) for some Weil divisor D (see e.g. [Rei80, Appendix to §1]). On a smooth (or factorial)
variety Weil divisors are the same as Cartier divisors, and rank-one Sy sheaves are the same as
invertible sheaves.

Let G be a finite abelian group. An abelian cover with Galois group G, or G-cover, is a finite
morphism X — Y of varieties which is the quotient map for a generically faithful action of a finite
abelian group G. This means that for every component Y; of Y the GG-action on the restricted
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cover X Xy Y; —Yj is faithful. An isomorphism of G-covers w1 : X1 — Y, and mo: Xo — Y is an
isomorphism ¢ : X| — X5 such that 71 = w9 0 ¢.
The G-action on X with X/G =Y is equivalent to a decomposition:

. Ox = @ Fx, F1=0y (1)
xEG*
where G acts on F, via the character x. If m is Galois then each F, has rank one: if y €Y is
a general closed point, then G acts freely on 7~ !(y), so it acts on Or-1(y) = D (Fx ®K(y)) as
the regular representation. Thus, F, ® K(y) is one-dimensional for every x. When the sheaves
Fy are locally free, it is customary to write Fy = L 1 with L, a line bundle.

LEMMA 1.1. (i) The sheaf Ox is Sy, for some n if and only if every F, is Sp.

(ii) If 7: X =Y is flat then X is CM (Cohen—Macaulay) if and only if Y is CM.
(iii) IfY is smooth and X is S then w is flat and X is CM.

Proof. (i) Part (i) is clear from the definition of depth.

(ii) The morphism 7 is flat if and only if every Oy-module F, is invertible. Then each F, is
CM if and only if Oy is CM.

(iii) On a smooth variety every divisorial sheaf is invertible, and so flat. Now part (ii)
applies. O

A G-cover m: X — Y, where X and Y are So varieties, is determined by its restriction to the
complement of a closed subset of codimension greater than or equal to two.

LEMMA 1.2. Let Y be an Sy variety, Yo CY an open subset with codim(Y\Yy) >2, and
mo : Xo — Yo a G-cover with Xy an Sy variety. Then there exist a unique Sy variety X and
a G-cover m: X — 'Y whose restriction to Yy is .

Proof. For the existence, we take Ox :=1i,0x,, where ¢:Yy — Y is the inclusion. Then Ox =
®XEG* Fy, where each F, is a rank-one Sp-sheaf. The algebra structure on Ox is defined as
follows. For an open set U C X and sections s € Fy(U), s’ € F,/(U), their product is

S‘UﬂXo : sl‘UﬁXo € fxx’(UmXO) :]:XX'(U)v

since codimy (U\U N Xp) >2 and F, is saturated in codimension 2. Thus, X := Specy, Ox is
an Sy variety with a finite morphism to Y. The G*-grading on Ox defines the G-action on X.
By construction, the eigenspace Fj for the trivial character is i,Oy, = Oy. Therefore, X/G =Y.

Uniqueness follows from the uniqueness of the Ss-fication. O

Given a G-cover m: X — Y and an irreducible subset S C Y, we define the inertia subgroup
Hg of S to be the subgroup of G consisting of the elements that fix 7~!(S) pointwise, or,
equivalently since G is abelian, that fix an irreducible component of 7~!(S) pointwise. The
branch locus Dy of 7 is the set of points of Y whose inertia subgroup is not trivial (notice that
we regard D, simply as a set, without giving it a scheme structure). If 7 is flat, then D, is a
divisor by [AK70, Theorem 6.8]. If F' is an irreducible divisor of Y such that X is generically
smooth along 7~ 1(F), then the natural representation 1) of Hr on the tangent space Tx r at
the generic point of an irreducible component R of 7~ 1(F) is faithful, and hence Hp is cyclic
(cf. [Par91, §1]). Notice that ¢ does not depend on the choice of the component R of 7=1(F),
since G is abelian.
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1.2 Standard covers

In this section we recall, in a form which is convenient for our later applications, the definition of
standard abelian covers, a class of flat abelian covers that can be constructed from a collection
of line bundles and effective divisors on the target variety (cf. [Par91, FP97]). The prototypical
example is the classical construction of a double cover of a variety Y from the data of an effective
divisor D on Y and a line bundle L such that 2L ~ D.

Let Y be a variety. A set of building data for a standard G-cover m: X — Y consists of the
following;:

— irreducible effective Cartier divisors Dy, ..., Dy (possibly not distinct);

— for each D; a pair (H;,1;), where H; is a cyclic subgroup of G of order m; and 1; is a
generator of the group of characters H;

— line bundles L,, for x € G*\{1}.

Moreover we assume that these data satisfy the so called fundamental relations:

V. X's Ly + Ly ~Lye + > e D, (2)
7

i
ax

where for a character x we write x|m, =1, with 0<a§<<m,~, and we define €§< V=

[(a§< + aic’)/m"]' Observe that E;,X, is equal either to 0 or to 1.

We call the divisors D;, together with the pairs (H;, 1;), the branch data of the cover.
An equivalent way of describing the branch data, and therefore the building data, is to give
for each pair (H,1), with H C G a cyclic subgroup and ¢ € H* a generator, the divisor
Dry = 3 (i(Ha )= (H,p)y Di- This is the notation used in [Par91].

Remark 1.3. If the group Pic(Y) has no m-torsion, where m = |G|, then the branch data
determine the building data by [Par91, Proposition 2.1]. In general, the branch data are enough
to determine the local geometry of the cover (cf. Proposition 1.6, (ii)).

Remark 1.4. When G =Zj, it is enough to associate with every divisor D; a non-zero element
gi € G, the generator of H;. Also, the definition of 5; 18 simpler: 5; v 18 equal to 1 if
X(9i) = x'(g9;) = —1 and it is equal to 0 otherwise.

We now explain how to construct a G-cover from a set of building data. Choose x1, ..., xs €
G* such that G* is the direct sum of the cyclic subgroups generated by the ;. Denote by d; the
order of x; and write L; := Ly, and aj :=a} . By [Par91, Proposition 2.1] for j =1,..., s there

exist isomorphisms:

o d;at
®j - L;-@d] —>Oy <Z Tjn J Dz) .

: %
%

Notice that the coefficients (djaz-) /m; in the above formula are integers. Using formulae (2.15)
of [Par91] and the isomorphisms ¢; above, one constructs for each pair x, x’ of non-trivial
characters an isomorphism

-1 1~ -1 ;
Pxx Ly ® Lx’ —>Lxx’ <_ZE;@X’Di>
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such that for every x, X/, X" € G* the following diagram commutes (we set L1 = Oy):

L@l @ Ly ——— L (=Y e /Di) © Ly

| )

L;1®L;,1X,,(— et D) —= L7, (=380, D)

X' 5x! xx'x"’ T XXX

where (5X NN xx N T 8 X NN E N and the maps are induced by the ¢, ,/ in the

obvious way. We denote by /‘xyx : L; l® Lx’ — LX;, the maps induced by composing ¢, with
the inclusion L;;, (_Zgic,x/Di) — L;;/. By the commutativity of (3), the collection of maps
defines on &£ := 0Oy ® EBX 21 Ly 1 a commutative and associative algebra structure compatible
with the G-action defined by letting G act trivially on L; = Oy and via the character x on Ly 1
for x # 1. We define X :=Spec & with the natural map 7: X — Y to be a standard G-cover
associated with the given set of building data. Notice that, since the L L are locally free, 7 is
flat and X is Sy if YV is.

X can be described locally above a point y € Y as follows. Up to shrinking Y, we may
assume that all the L, are trivial and that the D; are defined by equations o;. If we denote by
zy a coordinate on L, x € G*\{1}, then X is given inside the vector bundle V(D1 L) =
Y x K™~! by the following set of equations:

el
2o = oo Y zge, XX € G\ {1}, (4)
where the ¢, . are nowhere vanishing regular functions and for xy =1 we set z, =1. For
1 # x € G*, denote by d the order of x and write x|g, = ¥{", with 0 < a; < m; := |H,|. Eliminating
between the equations in (4), one gets

Z —b Hk‘ (dal/ml), (5)

where b, is a nowhere-vanishing function. It follows immediately that X is a variety: indeed,
using the decomposition of m,Ox into G-eigenspaces, we may assume that a nilpotent element is
locally of the form fz, for some character xy and some regular function f. Then by (5), (f zx)k' =0
for some k only if f = 0. Using the local equations in (4), one can also show the following lemma.

LEMMA 1.5. Use the notation as above. Let m: X —Y be a standard G-cover and y €Y be a
point. Then the inertia subgroup H, of y is equal to Z{i|y€Di} H;.

Proof. Since the question is local on Y, we may assume that X is given by the equations in (4).
Let x € X be a point lying above y. Then by (5) the coordinate z,(x) does not vanish if and
only if x|g, =1 for every i such that y € D;. Since an element g € G fixes z if and only if for
every x € G* such that x(g) # 1 the coordinate z,(z) vanishes, this remark proves the claim. O

Given a set of building data, the construction of the standard G-cover 7w : X — Y depends
of course on the choice of the characters x1,...xs and of the isomorphisms ¢;. Assume that
X}, - - - X; are another set of characters of G such that G* is the direct sum of the cyclic subgroups
generated by the xj. Let d; be the order of x;, =1, ...,t; then by (5) the multiplication maps
induce for l=1,...,t isomorphisms ¢ : L®,dl%(’)y(z ((kbt)/mi)D;), where 0 < b} < m; and

X1
X)lH, = ;" bi By the ass001at1v1ty and commutatwlty of the multiplication, the algebra structure
defined on Oy @ @xsﬁl Lx by the ¢} is the same as that induced by the ¢;. Hence it is enough
to analyze to what extent the isomorphism class of = depends on the ¢;.
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PROPOSITION 1.6. (i) (Global case.) If H*(0%) = K*, then the building data determine 7: X —
Y up to isomorphism of G-covers.

(ii) In general, given two standard covers m; : X; — Y, i =1, 2, with the same building data,
there exists an étale cover Y’ —Y such that, after base change with Y — Y, m and o give
isomorphic G-covers.

Proof. (i) We use the notation introduced above. Let £, £ be two Oy-algebra structures on
Oy & D, .1 Ly ! given by isomorphisms ¢;, respectively ¢;. The isomorphisms ¢;, ¢} differ
by an automorphism of L?dj, namely by multiplication by an element k; € H°(0%). This
automorphism is induced by an automorphism of L; if and only if k; has a d;jth root h; € H 0((9;).
So, up to taking an étale cover, one can assume that the roots h; exist. By [Par91, (2.15)], the
hj can be used to define, for all x € G*\{1}, automorphisms ¢, of L} 1 that commute with
the isomorphisms ¢, v and ¢/ ..

To prove statement (i), just observe that if H°(O})=K* no base change is necessary to

construct the isomorphism above. O

Remark 1.7. Let m: X — Y be a G-cover with branch data D;, (G;, ¥;), let y € Y, and let o; be
local equations for D; near y. Combining Proposition 1.6 with the local equations in (4), we see
that, up to passing to an étale cover of (Y, y), X is defined locally near y by the equations

k

e,
22y = H 0. 2y Xo X € GH\{1}. (6)
i=1

1.3 Covers of smooth varieties

Here we find conditions for a G-cover of a smooth variety to be standard. We keep the notation
of the previous section.

DEFINITION 1.8. Let Y be a smooth variety and let 7: X — Y be a standard G-cover with
building data L,, D;, (H;, ;). By Lemma 1.5, the branch locus D of 7 is the support of the
divisor ), D;.

We define the Hurwitz divisor of 7 as the Q-divisor D :=)",((m; — 1)/m;)D;. Notice that
the support of D is equal to D,.

We say that a variety is dc (has double crossings) if every point is either smooth or analytically
isomorphic to zy = 0. We say that a variety is gdc (has generically double crossings) if it is dc
outside a closed subset of codimension greater than or equal to two.

The following result generalizes the main result of [Par91].

THEOREM 1.9. Let m: X —Y be a G-cover such that Y is smooth and X is So. Then the
following hold.

(i) The variety X is normal if and only if 7 is standard and every component of the Hurwitz
divisor D has multiplicity less than one.

(ii) Assume that 7 is standard. Then X is gdc if and only if every component of D has
multiplicity less than or equal to one.

(iii) Assume that X is gdc. Then 7 is standard if and only if for every irreducible divisor F' of
Y such that X is singular above F' one has Hp = Z3 for some s.
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In the case G = Zj, which is of special interest to us because of the applications in [AP09],
Theorem 1.9 reads as follows.

COROLLARY 1.10. Let m: X — Y be a Zjy-cover such that Y is smooth and X is Se. Then the
following hold.

(i) The variety X is normal if and only if 7 is standard and every component of D has
multiplicity less than one.

(ii) The variety X is gdc if and only if 7 is standard and every component of D has multiplicity
less than or equal to one.

Remark 1.11. Let mw: X — Y be a standard G-cover with Y smooth and X gdc and let F' be
a component of the branch divisor D,. By Lemma 1.5, we have Hp = Z{i‘Di:F} H;. The pairs
(subgroup, character) corresponding to F' can be determined as follows.

— Assume that F' has multiplicity less than one in the Hurwitz divisor D. Then there is
precisely one index ¢ with D; = F'. In this case, H; = Hr and the character 1; is given by
the action of H; on the tangent space to X at the generic point of an irreducible component
of 7~ 1(F) (cf. [Par91], §§1 and 2).

— Assume that F' has multiplicity equal to one in D. Then there are precisely two indices i1 and
19 such that D;, = D,, = F and H;, and H;, have order two. Hence, either Hp = H;, = H;,
or Hp = H;, ® H;,. In the latter case the proof of Theorem 1.9 shows that H;, and H;, are
generated by the elements of Hp that interchange the two branches of X at a general point
of 77 1(F).

Proof of Theorem 1.9 Statement (i) is [Par91, Theorem 2.1 and Corollary 3.1].

Therefore, consider the non-normal case. The cover 7 is flat since Y is smooth and X is S5,
and hence we write, as usual, m.0x = Oy & @X £1 Ly L. The cover is standard if and only if
there exist branch data D;, (H;, ;) such that for every x, x' € G*\{1} the zero divisor of the
multiplication map py /@ Ly l® L;,l — L;;, is equal to » ; 6;‘(7X,Di, where the ‘E;,x’ are defined

in §1.2.

Notice that X, being So, is non-normal if and only if it is singular in codimension 1. Fix a
component F' of D such that X is singular above F'. Write H := Hp. The cover 7 factors as
X — X/H — Y, and F is not contained in the branch locus of the map X/H — Y; hence X/H
is generically smooth over F'. It follows that there is an element of H that exchanges the two
branches of X at a general point of 7= (F).

Let X — X be the normalization, let 7 : X — Y be the induced G-cover, let (H',¢') be the
pair (subgroup, character) corresponding to F' for the cover 7, and let m’ be the order of H' (if
7 is not branched on F, we take H' and v/ to be trivial). Since the normalization map X — X
is G-equivariant, we have a short exact sequence:

0—-H — H—Zy— 0. (7)
We consider the H-covers p: X — Z:= X/H and p”:)~(—>)N(/H:Z, and we study the

algebras A :=p,Ox pr and A” :=p{O¢ ., where F "is an irreducible component of the inverse
image of F'in Z. We denote by ¢t € Oz r a local parameter.
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We distinguish three cases.

Case (a): |H| = 2.
In this case H = {0}, and X is given locally by 2% = at?, where a € O} ..

Case (b): H is cyclic of order 2m’ > 4.
Let 1) € H* be a generator that restricts to ¢/’ on H'. The algebra A" is generated by elements

z, w such that

m/

2" =atw, w?=b (8)
where a, b € (’)*27 m and H acts on z via the character ¢ and on w via the character wm/. The
eigenspace corresponding to 17 is generated by zj = 2J for 0 < j < m/, and by zj = w23~ for
m’ < j < 2m’. Since the inclusion A C AY is G-equivariant, A is generated by elements of the
form t% z; for suitable a; > 0.

Since H fixes p~!(F’) pointwise, by the argument in the proof of Lemma 1.5 A is contained
in the subalgebra B of A” generated by

m

1,2 =tw,z, 1<j<2m’ —1, j#m'

The algebra B is also generated by 21 = 2, z,v41 = wz, with the only relation bz? = z72n, 415 hence
Spec B is gdc and the map Spec B — Spec A is an isomorphism. So A = B.

Case (c): H is not cyclic.
In this case m’ is even and H = H' x Zs. We denote by ¢ € H* a character that restricts to
1’ on H' and by ¢ the character such that H' = ker ¢. A" is generated by z, w such that

2™ =at, w?=b, 9)

where a, b € O7 , and H acts on z via the character v and on w via the character ¢. Arguing
as in the previous case, one checks that A is generated by

/I —
Lzii=2,...,2" L tw, zppgq i= 2w, ..., 2™ tw.

The algebra A can also be generated by 21, 2,41 with the only relation bz? = zfn, 41

For x1, x2 € G*\{1}, denote by &y, 1, the order of vanishing on F' of the multiplication map
Hoytxe 3L>:11 ® L;j — L;11x2' Using the above analysis and arguing as in the proof of [Par91,
Theorem 2.1], one obtains the following rules, up to exchanging x; and ya.

Case (a). In this case we have:
Exine =2 if X1, X2 ¢ HL; and
Ex1,x2 = 0 otherwise.
Case (b). For i =1, 2, write y;|g = Y™ B where a; = 0 or 1 and 0 < 8; < m/. Then we have:
Exixe =21 a1 =az=1, 51 =2 =0;
Exixe = Lifag =1,61 =0, 82 >0; and
Exixe = [(B1 + B2 — 1)/m/] in the remaining cases.
Case (c). For i = 1,2, write x;|zr = ¢“9% where o; = 0 or 1 and 0 < 8; < m’. Then we have:
Exixe =21 a1 =az=1, 05 =2 =0;
Exinxe = Lif a1 =1,381 =0, 32 > 0; and
Exixe = [(B1 + f2)/m'] in the remaining cases.
In the above analysis the group Z§ appears in case (a) and case (¢) for m’ = 2. In case (a),
the cover 7 is standard: F' appears twice among the branch data, both times with label H.
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In case (c), 7 is standard for m’ = 2: F' appears twice among the branch data, with labels H;
and Hy corresponding to the subgroups of order two of H distinct from H’. Moreover, it is not
difficult to check that in case (b) and in case (c) for m’ # 2 the cover is not standard. So we have
proven (iii) and also that every component of the Hurwitz divisor D of a standard gdc cover has
multiplicity less than or equal to one.

Vice versa, assume that 7 is standard and F' appears in D with multiplicity less than or equal
to one. If the multiplicity is less than one then the cover is normal over F. If the multiplicity is
equal to 1, then F' appears twice among the branch data, and the corresponding subgroups H;
and Hs have order two. If Hy = H», then the cover is given over the generic point of F' by the
equation z? = ut?, with u a unit, so it is gdc. If Hy # Ho, then the cover is given by the equations
2? = at, z2 = bt, with a and b units. These equations are equivalent to az2 = bz?, so the cover is

gdc. This completes the proof of (ii). O

1.4 Covers of normal varieties

Let m: X —Y be a G-cover such that Y is normal and X is S3. Let Yy be the non-singular
locus of Y. Then the restriction g : Xg — Yy is a G-cover, and by Lemma 1.2 7 is the unique
So-extension of mg to Y. Thus the theory in the normal case is the immediate extension of the
non-singular case. We record the following changes.

(i) The sheaves F, are no longer invertible but they are Sy, i.e. in this case reflexive, divisorial
sheaves. The multiplication maps are

Fy xFy = Fy@Fy — (FX & ‘FX’)** — Frx'-
(ii) The branch divisors D, are Weil divisors.

Otherwise, the same fundamental relations between F, and D, must hold.

One has to be careful that the morphism 7 may be not flat; indeed, it is flat if and only if all
F are invertible. Also, for a singular ¥ the branch locus may have non-divisorial components.

Ezample 1.12. Let X = A% = Spec klz,y], G =Zy acting by 2+ —z, y+— —y, and let Y be
the quotient Spec k[x2, 2y, y?], a quadratic cone. Then 7 is ramified only over the vertex P of
the cone. The divisors D, are zero. The eigensheaves are 7 = Oy and F_1, and the divisorial
sheaf corresponding to a line ¢ through the vertex. F_; is also isomorphic to the Oy-submodule
of Ox generated by x and y.

The fundamental relation in this case is 2F_1 = 0.

1.5 Covers of non-normal varieties

Now we assume that Y is a non-normal gdc and 3 variety. Let C' be the divisorial part of the
singular locus of Y, let v: Y —Y be the normalization, let C’ be the inverse image of C' in Y
and let C' — C' be the normalization. Since Y is gdc, there is a biregular involution ¢ on c
induced by the degree two map C'—C' —C. (If the components of Y are smooth, then C'is a
union of several pairs of varieties, exchanged by the involution ¢. In general, some components
of C' map to themselves.) Consider a commutative diagram:

X —X

R

y —>Y
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where X and X’ are gdc and Sy varieties, the vertical arrows are G-covers, X’ — Y is a cover as
in the previous section, and X’ — X is a birational morphism.

We denote by B, B’ the preimages of C, C’ in X, X, and by B’ the normalization of B’

jC”g B\
X' X
(10)
C

Y

Y

We first give two constructions for the cover X — Y starting with X’ — Y and the appropriate
data for the double locus. One construction proceeds by Ss-fication of the ‘nice’ part. The second
one is by a gluing procedure, and the result is very convenient for computing the invariants of
X. Finally, we show that indeed every X — Y comes from these constructions.

THEOREM 1.13. Suppose we are given:
(i) Y. Y, ¢ (C,0);
(ii) a G-cover X' —Y, with X' an S, and gdc variety.

Let B' — C' be the induced cover and let B' — B’ be its normalization.
Then X' can be glued to a cover X — Y with X gdc and Sy if and only if it is genencally

smooth along B', and there exists an involution j : B’ — B’ that covers the involution ¢ : C' — C"
and commutes with the action of G on B'.

Proof by Sa-fication. Assume that X exists. Then the map B’ — X induces an involution j as
required. In addition, if X’ were not generically smooth along a component F of B’, then X
would have generically at least three branches along the image of F. Thus these two conditions
on X' are necessary for the existence of X.

Next we show that they are also sufficient. We start by identifying the ‘bad locus’. It includes
the singular locus of Y, the intersection of branch divisors between themselves and with C’.
The image of this bad locus in Y has codimension greater than or equal to two. Let Yy be its
complement, and restrict all varieties and covers to Yj.

The condition that the involution j commutes with the G-action implies that for any
irreducible component F' of B’ the subgroup H of elements of G that fix F' pointwise is the
same as the subgroup of elements that fix jF pointwise. Since X’ is generically smooth along
B’, one has (cf. [Par91, §1]) H = Z,, for some n and, working étale locally, H acts locally by
(x, 22, ...,2n) — (§x,z2,...,2y) near F and by (y,y2, ..., Yn) — (£%Y, y2, . .., yn) near jF for
some primitive root £” =1 and (a,n) = 1. Here y; = j*z;, i =2,...,n.

We glue X{, along By := By /j = B{/t to obtain a variety X, with a finite morphism to Yj.
The G-action extends to Xy, because j commutes with the G-action, and is of the type (smooth)
x (compatible action of curves), where ‘compatible’ means that, working étale locally, Z,, acts
on zy =0 by x+— &x, y — .
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Over the double locus we have K|z, y]/(xy) and the ring of Z,-invariants is K[u, v]/(uv),
where v = z" and v = ¢". Thus, Xy has only normal crossings and Xy — Yj is a G-cover.

Finally, we apply Lemma 1.2 to obtain an Ss and gdc cover X — Y by taking So-fication. O

Proof by explicit gluing. We obtain X by gluing X’ along the involution j : B — /Bv’, i.e. as the
pushout of the following commutative diagram.

B — DB/ O ~— Oy
X’ Ox

Since all varieties are affine over Y, Ox is the fiber product of the corresponding diagram
of Oy-algebras, in which we identify sheaves with their pushforwards on Y. We can rewrite this
fiber product diagram by saying that Ox is the kernel in the exact sequence

O—>OX—>OX/€BO§/j —B—>
Further, we have
O—>(9~,/A—>(9~,—>.A—>O
where A is the alternating part (if char K # 2 then Oz = O ;@ A), and the image of # contains
O /i Hence, we have induced exact sequences
0—-0x —0x A 0—-0x—0Ox ——ima— 0. (11)

The variety X thus defined is Se by the next Lemma 1.16, since im « is a subsheaf of A and
so obviously does not have embedded primes. It is gdc again by looking in codimension 1 as in
the previous proof. The G-action on X’ descends to a G-action on X since j commutes with
the G-action on B’ and by construction the subalgebra of G-invariants is the algebra of Y glued
along C’/L7 ie. Oy. O

The varieties X obtained in the two proofs coincide, since they both have finite morphisms
to Y, they are both Sa, and they coincide over an open subset Yy C Y with codim(Y'\Yp) >2.

Warning 1.14. It may happen that there is no covering involution of B’ but only of its
normalization B’. Then the double locus of X is obtained from B’/j by some additional gluing in
codimension 1 (codimension 2 for X). As a consequence, branches of X may not be Sy. However,
the variety X is So. Multiple examples of this phenomenon are contained in [AP09, §5.4].

On the other hand, the involution j need not be unique. For instance, if g € G has order two,
then jg is another involution satisfying the assumptions for gluing. The next example shows that
gluing via different involutions can give rise to non-isomorphic covers.

Ezample 1.15. Let Y = {u?® — wv? = 0} C Ay . The normalization of Y is the map Y = Ait —
Y defined by u = st,v =t, w = s%. Here C' = {u=v =0}, C'=C'= {t =0} and the involution ¢
of C" is given by s+— —s.

Let X' ={e?=1} C A3, andlet p: X' — Y be the trivial Zy cover, given by the projection
on the coordinates s, t. The Zs-action is € — —e and B’ = B = {t=0,€?=1}. There are two
involutions of B’ that lift ¢, namely j; := (s,€)— (—s,€) and jo :=(s,€) — (—s, —¢). The cover
X1 — Y obtained by gluing via j; is obviously the trivial Zo-cover.
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We describe the cover X2 — Y obtained by gluing via ja following the second proof of
Theorem 1.13. The map B’ — B'/js corresponds to the inclusion K[se] — K[s, €] /(€ — 1) and
the map B’ — X' corresponds to the surjection K[s, t, ] — K|s, €] /(e2 — 1). The fiber product of
these two ring maps can be identified with R :=K[s, ¢, et]/(¢> — 1) C K|[s, t, €]/(¢> — 1). The map
R — Kz, y, z]/(2? — y?) defined by s+ z, t — x, et + y is an isomorphism, and hence X5 is the
union of two copies of A? glued along a line. The cover Xy — Y is given by (x, y, 2) — (z, yz, %),
and the Zy-action on X is given by (z, vy, 2) — (z, —y, —z). Thus (0, 0,0) € Y is the only branch
point. Hence the ramification locus of a standard G-cover has always pure codimension 1, but
this not true for the G-covers obtained from a standard cover by gluing, and the analogue of
Lemma 1.5 does not hold.

LEMMA 1.16. Using the notations as given in the second proof by gluing, assume that X' is S,
for some n > 2. Then X is S, if and only if im « is S, 1.

Proof. We use the cohomological interpretation of depth using local cohomology [Har67,
3.8] (alternatively and equivalently one can use Ext'(Oxz/mx.z,e)). A sheaf £ satisfies
S, if and only if for every irreducible subvariety Z CY one has HL(E)=0 for all i<
min(n, codim Z). Looking at the long exact sequence of cohomologies corresponding to the short
exact sequence (11), we get Hy(Ox) = H}, '(im @) for all i < min(n, codim Z). The statement
now follows. a

We spell out Theorem 1.13 in a special case, which is of interest to us because of the
applications in [AP09].

Example 1.17. Take G =Zi. For simplicity of exposition, we assume that ¥ =Y; UY5 is the
gdc union of two smooth projective surfaces that intersect along a smooth rational curve C,
but all our considerations generalize straightforwardly to the case of a gdc surface with smooth
components whose double locus is a union of smooth rational curves.

We have Y = Y7 UY5, and hence an Sy and gdc G-cover X' — Y is the disjoint union of S5
and gdc covers m; : X! —Y;, i=1,2. By Corollary 1.10, the covers 7; are standard. We denote

by D(i) ) Dg), ggl), - ,g,@ the branch data of m;, i=1,2. We write C' = ' = crucy,

B'=B| U 32 and B’ = B U B’ We denote by ~; the generator of subgroup HC/ An involution

j of B’ as in Theorem 1.13 exists if and only if there is an isomorphism B’ — B’ compatible
with the G-action. This is equivalent to the following conditions.

(i) One has 1 =2 =: 7.

(ii) For y € C, denote by m( ) the intersection multiplicity at y of D( ) with C = Ci, h=

1,...,71 and by mé,g the 1ntersect10n multiplicity at y of Dg ) with € = Cy,s=1,...,19

Then
Zm h—Zm Jg? mod v, VyeC.

Indeed, condition (i) follows immediately by the fact that j commutes with the action of
G. In addition, by the normalization algorithm of [Par91, §3] condition (ii) is equivalent to
requiring that the branch data of the normalizations B} — C and B — C' of the G /[y)-coverings
of C'= (1 = (5 induced by 7 and 7o are the same. Since C' is smooth rational, the branch data
are enough to determine the building data (cf. Remark 1.3). Since C' is projective, the building
data determine the cover up to isomorphism by Proposition 1.6.
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Assume that the gluing conditions are satisfied. Giving an involution of J B that commutes
with the G action is the same as giving an isomorphism of G-covers a: B} — B). Then any
other such map o is equal to ayg for some g € G and the automorphism of X’ = X7 U X/ defined
by z+— z if z € X| and z — gz if 2 € X} induces an isomorphism of the cover of Y obtained by
gluing via o with the one obtained by gluing via /. Hence in this case all the possible involutions
give isomorphic covers.

THEOREM 1.18 (The reverse). Vice versa, every G-cover X — Y with gdc Sy varieties X, Y is
obtained via the gluing construction of Theorem 1.13.

Proof. Given X — Y and the normalization Y — Y, let X” be the fiber product X” = X xy Y.
We define X" as X' := Sy(X[/ ) — X/, — X". Thus, X" is Sy by definition, and it maps to Y.
By the universality of taking the reduced part and Ss-fication, there is an induced G-action on
X'. By the universal property of G-quotients, we also have a morphism X'/G — Y. We claim
that it is an isomorphism.

It is enough to check this in codimension 1 over the double locus. We claim that generically
over the double locus of Y, the cover is (smooth) x (admissible action of curves), where
‘admissible’ means that, working étale locally, X is given by xy =0, and the action is x — &x,
y +— &% for some primitive root {™ = 1 and (a, n) = 1. Indeed, let Hr be the subgroup of elements
that restrict to the identity on an irreducible component F' of the double locus of X. Then on
the normalization on both branches we have the same subgroup for the preimages F’ and jF’.
Since generically F”, jF' are smooth, Hr = Z,, for some n > 1 (note that one possibly has n =1).

Thus, étale locally the morphism X — Y can be written as
(smooth) x K[u, v]/(uv) — K|z, y]/(zy), u— a2, v—1y",
where G acts as x — &z, y — &%, £" =1, (a, n) = 1. By computation, we get that X" corresponds

to (smooth) x K[z, y]/(zy, y") ® Kz, y]/(xy, ™), and X’ to K[z] & K][y]. The quotient X'/G is

then Ku] & Kv], i.e. Y.

This proves that ¢: X'/G — Y is an isomorphism outside a closed subset of codimension
greater than or equal to two. Since both are finite over Y and So, ¢ is an isomorphism. O

2. Singularities of covers

2.1 The canonical divisor and slc singularities

Let Z be a variety, let B;, j =1, ..., n, be effective Weil divisors on X, possibly reducible, and
let b; be rational numbers with 0 < b; < 1. Set B = Zj b;B;.

DEFINITION 2.1. Assume that Z is a normal variety. Then Z has a canonical Weil divisor K
defined up to linear equivalence. The pair (Z, B) is called log canonical if the following apply.

(i) The divisor Kz + B is Q-Cartier, i.e. some positive multiple is a Cartier divisor.

(ii) Every prime divisor of Z has multiplicity less than or equal to one in B and for every
proper birational morphism h : Z' — Z with normal Z’, in the natural formula

Ky +h'B=h*(Kz+B)+ Y _ aE;

one has a; > —1. Here, E; are the irreducible exceptional divisors of h, the pull back h* is defined
by extending Q-linearly the pullback on Cartier divisors, and h;'B =3 bjhy 1Bj is the strict
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preimage of B. The coefficients a; are called discrepancies. For the non-exceptional divisors,
already appearing on Z, one defines a(Bj) = —b;.

If char K = 0, then Z has a resolution of singularities h : Z’ — Z such that Supp(h;!B) U E;
is a normal crossing divisor; then it is sufficient to check the condition a; > —1 for this morphism
h only.

DEFINITION 2.2. A pair (Z, B) is called semi log canonical if the following apply.

(i) The variety Z satisfies Serre’s condition Ss.
(ii) The variety Z is gdc, and no divisor B; contains any component of the double locus of Z.
(iii) Some multiple of the Weil Q-divisor Kz + B, well defined thanks to the previous condition,
is Cartier.
(iv) Denoting by v:Z — Z the normalization, the pair (Z, (double locus) + v *B) is log
canonical.

LEMMA 2.3. Let f: X —Y be a finite morphism of degree d between equidimensional So
varieties. Assume that either char K =0 or f is Galois and char K does not divide d.

Let Yy be an open subset and denote by fy: Xo — Yy the induced cover. Assume that the
following are true.

— One has codim(Y'\Yp) > 2 and both Xy and Yy are dc.

— There exist effective Q-divisors BX of X and BY of Y, not containing any component of
the double locus, such that (fy)*(Ky, + BY0) = (Kx, + BX°), where BY° is the restriction
of BY toY, and BX¢ is the restriction of BX to Xj.

Then the following hold.

(i) The divisor Ky + BY is Q-Cartier if and only if Kx + B is also Q-Cartier.
(ii) The pair (Y, BY) is slc if and only if the pair (X, BYX) is also slc.

Proof. (i) Let i : Xg — X be the inclusion map. If the sheaf L = Oy (N(Ky + BY)) is invertible
then we have a homomorphism

Ox(N(Kx + BY)) = ix(Ox, (N (Kx, + B*))) — f*L

which is an isomorphism outside codimension 2. Hence it must be an isomorphism by the
Sy condition. Similarly, if the sheaf L' = Ox(N(Kx + BX)) is invertible, then the sheaf L =
Oy (Nd(Ky + BY)) is isomorphic to the norm of L', so is invertible.

(ii) Assume first that X and Y are normal. In this case the statement, due to Shokurov, is
very well known. We recall the proof because usually it is only stated and proved in characteristic
zero. Let hy : Y’ —Y be some partial resolution with normal Y’, X’ be the normalization of
X xyY' and let hx : X' — X, f/: X’ — Y’ be the induced maps.

Pick an irreducible divisor E on Y”, and let F be an irreducible divisor on X’ over it. By our
condition on char K, the field extension K(F')/K(F) is separable, and if mx, my are uniformizing
parameters in the discrete valuation rings Ox r and Oy’ g, then one has my = u - 7% for a unit
u and some integer e dividing d and hence coprime to char K.

Then the Riemann—Hurwitz formula applies and says that generically along £ and F' one has
(f)*(Ky' + E) = Kx/ + F. Comparing this to the identity (f')*h} (Ky + BY) = h%(Kx + BY)
and the definition of the log discrepancy, one obtains that 1+ ap =e(l +ag). Thus, ap >
—1 <= ag > —1. This proves that (X, BX) is lc if and only if (Y, BY) is lc.
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Now consider the general gdc case. Let vx : X — X be the normalization. We have

K

X+BX =vi(Kx + BY)=K5

P vxLBX + (double locus),

and similarly for Y. Thus, the double loci appear in the divisors BX BY with coefficient 1. By the

Riemann-Hurwitz formula again, for the normalizations we still have f* (K3 + BY) K+ BX.
We finish by applying the normal case. O

We now extend Definition 1.8 of the Hurwitz divisor to the case of a gdc base Y.

DEFINITION 2.4. Let m: X — Y be a G-cover of So and gdc varieties. For a prime Weil divisor
F CY, we define pr € Q as follows.
— If F' is contained in the double locus of Y, then pr =0.

— If F is not contained in the double locus of Y, but 77! (F) is contained in the double locus
of X, then pp =1.

— If F is not contained in the double locus of Y, #~!(F) is not contained in the double locus
of X and m is the ramification order of 7 at F, then pp = (m — 1)/m.

We define the Hurwitz divisor D of 7 to be the Q-divisor ), prF.
Notice that if X — Y is a standard G-cover with X gdc this definition coincides with

Definition 1.8 by Theorem 1.9.

Note that D does not contain any components of the double locus of Y.

PROPOSITION 2.5. Let m: X —Y be a G-cover as in Definition 2.4 and let D be the Hurwitz
divisor of 7, let X' —Y be the corresponding So and gdc G-cover (cf. § 1.5). Then the following
hold.

(i) The divisor Kx is Q-Cartier if and only if Ky + D is also Q-Cartier, and then Kx =
’7T *(K vy + D)
(ii) The variety X is slc if and only if the pair (Y, D) is also slc.
Proof. Recall that |G| and char K are coprime by assumption. So Lemma 2.3 applies and we

may assume that Y is dc. We need to show that Kx = n*(Ky + D). This is equivalent to the
following equality for the cover 7 : X — Y where X is the normalization of X’ (and of X):

K ¢ + (double locus) = 7*(Kg + (double locus) + v*D).

In view of Definition 2.4 the formula follows easily by the usual Hurwitz formula. O

2.2 Cohen—Macaulay covers

By Lemma 1.1, a G-cover over a smooth base is CM. Here, we give a partial generalization of
this case to the case of a non-normal base. We use the notations of Theorem 1.13 and the exact
sequence (11).

PROPOSITION 2.6. Assume that X' is CM (for example, Y is smooth). Then X is CM if and
only if the sheaf im « is CM.

Proof. The proof is immediate by Lemma 1.16. a

Using Proposition 2.6 it is not hard to give examples of abelian covers X — Y such that Y
is CM and gdc, and X is gdc and Se but not CM.
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Example 2.7. We take G = Zs and assume char K # 2; for any prime p one can construct similar
examples with G = Z,, and char K # p.

Let Y =Y; UY5 be the union of two copies of P3 glued transversally along a plane C. Let
L1 and Lo be distinct lines on C, and for i =1,2 let D; CY; be a quadric that restricts to
2L; on C. For a generic choice, D; is a quadric cone with vertex y; € L;, and the points y1, yo
and y3 := L1 N Lo are distinct. Let X{ —Y; be the double cover of Y; branched on D;, and let
X' = X] U XJ. Then X’ is Gorenstein, and it has an ordinary double point over y; and y2 and no
other singularity. Write C' = C] U C% and B’ = B/ U B}; then B is the union of two copies of C!
glued transversally along L; and B’ — (' is the trivial Zo-cover. Hence there exists an involution
j of B’ that commutes with the Zs-action, and by Theorem 1.13 X’ can be glued to an Sy and
gdc cover X — Y. The dc locus of X is the complement of the preimage of L1 U Lo.

In the exact sequence (11) each term splits under the G-action and the maps are compatible
with the splitting, so we get two exact sequences, one for each character of G. Since A = O¢ ® O¢
and Zg acts on A by switching the two summands, the sequence for the non-trivial character is

0— F_ = Oy (=1) @ Oy, (—1) =— Ok,
where F_ (respectively A7) is the antiinvariant summand of Ox (respectively of A). By
definition, the map Oy,(—1) — O¢ factorizes as Oy, (—1) — Oc(—L;) — O¢c. Hence, im a~
coincides with Z,,O¢, the maximal ideal of y3 in C, and therefore it is not Ss. It follows by
Proposition 2.6 that X is not CM over ys.

Let y € Ly be a point distinct from ys; in a neighborhood of § we have (D1 + D2) NYs = Ly,
and thus D + D5 is not Q-Cartier. Since Y is Gorenstein, it follows that 2Ky + D1 + D5 is not
Q-Cartier either, and hence Kx is not Q-Cartier by Proposition 2.5.

2.3 Cartier index of Kx

All the statements in this section are étale local, so we often pass to a smaller neighborhood of
a point without explicit mention of the fact.

For convenience, we write ‘Kx’ to denote the divisorial sheaf wyx (recall that X is
Gorenstein in codimension 1 and S3). We also use the additive notation Dj + Dy for the sheaf

(Ox(D1) ® Ox(D1))™.
2.3.1 Standard covers with Y normal. We consider the following situation.
— Suppose that Y is a normal variety and C is a reduced effective divisor on Y such that
Ky + C' is Cartier.

— Suppose that 7: X — Y is a standard gdc G-cover (so X is automatically So by Lemma 1.1).
We assume that X is generically smooth over C', and we denote by B the preimage of C' in
X. Therefore, B is also a reduced effective divisor.

Let D be the Hurwitz divisor of 7; then we have
Kx +B=7n"(Ky +D+C).

Thus, if d is the exponent of G, then the divisor d(Ky + D + C) is Cartier (recall that the
divisors D; are Cartier by the definition of a standard cover in §1.2), and thus d(Kx + B) is
also Cartier.

Fix a point y € Y; the purpose of this section is to compute the Cartier index of Kx + B at
a point x € X such that m(z) = y. Here we are interested mainly in the case B =0, but the case
of a pair is needed in the next section to treat the case Y non-normal.
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In order to state our result we need some notation. We label the branch data D;, (H;, 1),
1=1,...,k, in such a way that D; C C if and only if 7 < p. Since the question is local on Y
we may assume that y € D; for every i. Consider the map G := ®H; — G. By Lemma 1.5, the
image of this map is the inertia subgroup Hy; we denote by N the kernel. We let € G be the
character ¢, 1 - - - .

Reminder. Since the group G is finite abelian, the map G* — Hy is surjective. Hence the character
X is the pullback of a character of H, if and only if it is the pullback of a character of G.

ProposiTION 2.8. Notation and assumptions are as given previously.
The Cartier index of Kx + B at x is equal to the order of N/(N Nker).
In particular, Kx + B is Cartier if and only if Y is the pullback of a character x € G*.

Proof. Since the question is local, we may assume that the line bundles L,, Oy(D;) and
Oy (Ky + C) are trivial. The map X — X/H, is étale. Hence, up to replacing Y by X/H,,
we may assume that H, = G, or, equivalently, that 7! (y) = {x}. We denote by u, . . ., uj local
equations of D1, ..., D near y. By Remark 1.7, up to passing to an étale cover of Y we may
assume that X is given by
Ei ’
2z =, 20, x, X € G\ {1} (12)
The equations:
2=y, .zt =y (13)
define inside Y x K¥ a G-cover X — Y (G acts on z; via the character v;), the mazimal totally
ramified cover of Y with branch data D;, (H;, v;) (here we regard H; as a subgroup of @G). Since
Y is gdc by assumption and X — Y and X — Y have the same Hurwitz divisor, X is also gdc
by Theorem 1.9.
1 k
For every x € G*, write x = wix e 1/1,3", with 0 <aX <m; for i=1,..., k; then setting

1 k —
2y = zf" ‘e ZZX defines a map p: X — X which is the quotient map for the action of the kernel

N of G — G. The map p is unramified in codimension 1 and p~!(z) consists of just one point Z.

Denote by B the preimage of C' (and of B) in X; observe that Ky + D + C pulls back to
Kx + B on X and to K+ B on X. If 7 is a generator of Oy (Ky + C) then Ox(K+ + B) is
generated by the residue o on X of the rational differential form:

(z{nl_l-'-Z?p_l)dzlA'--AdzkAT
(21" —wa) -+ (" — w)

Thus O (K + B) is invertible and G acts on the local generator o via the character Y. Set
Z =X /(N Nnkery). The map X — Z is unramified in . codimension 1 and o descends on Z to a
generator of Oz (K + Byz), where By is the image of B. The map Z — X is a cyclic cover with
Galois group N/(NN Nker ) with the following properties.
— It is unramified in codimension 1 and the preimage of x consists only of one point.
— The pullback of Ox (K x + B) is a line bundle on which the Galois group acts via a primitive
character.

It follows that Z — X is a canonical cover and that the Cartier index of Kx + B at z is equal
to [N : N Nker x]. O
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COROLLARY 2.9. Let m: X — Y be a standard abelian with X and Y gdc and Y Gorenstein,
let y €Y and let x € X be a point such that w(x) =y. Then X is Gorenstein at x if and only if
the character X descends to a character x of H,.

Proof. The variety X is Cohen—-Macaulay by Lemma 1.1 and Kx is Cartier by Proposition 2.8. O

Remark 2.10. Corollary 2.9 is proven in [lac06] under the assumption that X is normal and Y
is smooth.

2.3.2 The case Y non-normal. Here we consider the problem of determining the Cartier
index of Kx at a point x € X of a G-cover X — Y with Y non-normal of Cartier index 1. The
situation is much more complicated than in the case Y normal and we are able to give only a
partial answer that is, however, sufficient for the applications in [AP09]. The main difficulty is
that one does not know how to write down an analogue of the maximal totally ramified cover
used in the proof of Proposition 2.8.

We consider the following setup:
— we assume that Y =Y; U---UY}, where Y; is irreducible for i =1,...,¢, is a gdc and S3
variety; Y =Y, U---UY; — Y is the normalization;

— we assume that 7: X — Y is an Sy and gdc G-cover obtained by gluing a cover X' =
XU uX/— Y such that X! — Y; is standard for every i;

— we assume that y € Y and = € X are points such that 7(z) = y; we assume that y lies on
every component of the branch locus of .

We denote by D;, (H;,v;), i =1,...,k the branch data of the standard cover X’ — Y, and
we assume that D; is contained in the preimage C” of the double locus of Y if and only if 7 < p.
Consider the map G := ®@H; — G. As in the case Y normal, we denote by Y € G the character
Yp+1 - - - Y. Then we have the following proposition.

ProOPOSITION 2.11. In the above setup, if Kx is Cartier, then the following are true.

(i) The divisor Ky + D is Q-Cartier.
(ii) The character X is the pullback of a character x € G*.

Proof. (i) Part (i) follows immediately by Proposition 2.5.

(ii) For every i=1,...,t, denote by C!C Y; (respectively B) C X!) the preimage of the
double locus of Y in Y; (respectively in X/). Let x € G* be the character via which G acts on
Ox(Kx)®K(z) at z. Let 2} € X/ be a point that maps to = and let y; be the image of z in Y;.
Since Kx pulls back to Kx/ + B;j on X, the inertia subgroup Hy, acts on Ox/(Kx; + B;) @ K(7)
via the restriction of x. Set Gy, := @{ﬂy ep,y Hj and let X, be the restriction of X to Gy,; the

map G,, — H,, is a surjection by Lemma 1.5. By the proof of Proposition 2.8, x pulls back on
Gy, to Xy Since G = Z{y eV |y oy} Gy/, it follows that y pulls back to ¥ on G. O

We now prove a partial converse of Proposition 2.11. Assume that for every component Y of
Y the map Y — Y induces a homeomorphism Y — Y, onto its image (this is always true up to
an étale cover). Then we associate to (Y, y) an incidence graph I'y, as follows.

— The vertices of I'y,, are indexed by the branches of (Y, y).
— The edges are indexed by the components of the double locus C of Y.
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— The edge corresponding to a component F' of C' connects the vertices corresponding to the
two branches of Y through F'.

PROPOSITION 2.12. In the above setup, assume the following:
(i) the graph Ty, is a tree;
(ii) the divisor Ky is Cartier and there exists m such that m(Ky + D) is Cartier and
(m, char K) = 1;
(iii) the character Y is the pullback of a character x € G*.
Then K x is Cartier.

Proof. Let C! C Y; the restriction of the double locus C’ of Y and let B! C X/ be the preimage
of Cl. Let y; € Y; be the only point that maps to y € Y; let éyi and y; be defined as in the proof
of Proposition 2.11.

By assumption (iii), the divisor Kyx/ + Bj is Cartier by Proposition 2.8. By the following
Lemma 2.13, up to replacing (Y, y) byZ an étale neighborhood we may assume that for ¢ =
1,...,t the sheaf Ox/(Kys + B}) is trivial and has a generator o; on which G acts via x. By
Proposition 2.5, there exists a local generator 7 of Ox(mKx) near x. For every i, by Lemma
2.13, 7 pulls back on X/ to h;o]" where h; is a nowhere vanishing regular function on )71 Up to
passing to an étale cover of Y we may assume that h; has an mth root f; for every . Hence we
may replace o; by f;o; and assume that 7 pulls back to 0" for every .

Now let U C X be an open set such that U is dc and the complement of U has codimension
greater than one. Let F' be an irreducible component of the double locus C' of Y and let Y,
Y3 be the components of Y that contain F'. Choose an irreducible component E of the inverse
image of F' in U. It makes sense to compare o, and o3 along F, since they both restrict to local
generators of Op(Kg). Since o' = o}, there exists ( € u,, such that o, = (o} along E. Since
G acts on g, and o, via the same character y and G acts transitively on the components of
the preimage of F, (g :=( depends only on F. Hence {(r} represents a class in H'(Ty,y, tm).
Since I'y,, is a tree, we can find A; € i, such that the local generators \;o; glue to give a local
generator o of Ox(Kx) on which G acts via x. O

We complete the proof of Proposition 2.12 by proving the following lemma.

LEMMA 2.13. Let Z — W be a standard G-cover with building data L., D;, (H;, ;).

Let w € W be a point and let H be the inertia subgroup of w. Let L be a G-linearized line
bundle of Z, let z € Z be a point that maps to w, and let ¢ € H* be the character via which H
acts on L ® K(z). Then we have the following.

(i) Let x € G* be such that x|g = ¢; then, up to replacing W by an étale neighborhood of w,
there exists a generator o of L such that G acts on o via the character x.

(ii) The generator o is uniquely determined by x up to multiplication by a nowhere vanishing
regular function of W.

Proof. (ii) Assume that o, ¢’ are generators of L on which G acts via the character y. Then
f:=0/0" is a regular H-invariant function on Z, so it is a function on W.

(i) We break the proof into three steps.

Step 1: the case H=G. Let s be a generator of L near z. The group H acts on the vector
space V of local sections of L spanned by the elements h,s, h € H; V is finite-dimensional, and
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decomposes under the G-action as a direct sum of eigenspaces. Since s(z) # 0 and s € V, there
exists an eigenvector o € V such that o(z) # 0. Since G acts on L ® K(z) via x, o belongs to the
eigenspace corresponding to x.

Step 2: the case in which G =H & N for some N. Consider the factorization Z — Z' := Z/N —
W. The map Z' — W is an H-cover such that the preimage of w consists of one point 2’ € Z’.
The subgroup N acts freely on Z, and hence L descends to an H-linearized line bundle L’ on
Z'. Then by Step 1 there exists a local generator o’ of L’ near 2’ such that H acts on ¢’ via ¢.
Pulling back to Z we get a generator 7 of L on which H acts via ¢ and N acts trivially.

Denote by ¢’ the restriction of x to N, so that x = (¢, ¢’). Consider the factorization
Z—27"-=Z/H—W. The map Z"—W 1is a étale N-cover. Hence there exists a
nowhere-vanishing function f on Z” such that N acts on f via the character ¢. Thus G acts on
o := fr via the character x.

Step 3: the general case. Choose a finite abelian group N with a surjective map Go:= H & N — G
that extends the inclusion H — G, and let T" be the kernel of Go — G. By Proposition 1.6, up to
replacing W by an étale neighborhood of w, we may also assume (cf. (4)) that Z — W is given
inside W x K* by the equations

e = 50 Y g, XX € G\{13, (14)
where u; is a local equation for D;, i =1, ..., k. The branch data for Z can be interpreted in
an obvious way as branch data for a Gg-cover. Letting Zyg — W be the Gg-cover given by the
equations analogous to (14), we have Z = Zy/T by construction. Let Ly be the pullback of L to
Zy; Lo has a natural Gy-linearization and H is a direct summand of Gg, and hence by Step 2
there exists a generator oy of Ly on which Gy acts via the character xg of Gg induced by x.
Since T acts freely on Zy and T C ker x¢o by construction, og descends to a generator o of L on
Z on which G acts via x. O

3. Semi log canonical Zj}-covers of surfaces

3.1 Setup

In this section we make a detailed study of Zj-covers of surfaces. We use freely the notation
introduced in §1.4. In particular, we refer the reader to the commutative diagram (10) and
Theorem 1.13.

The situation that we consider is the following.
— The surface Y is a gdc surface with smooth irreducible components Yi,...,Y;. The
irreducible components Fi, ..., Fs of the double curve C' of Y are smooth, Y is dc at

the smooth points of C', and it is analytically isomorphic to the cone over a cycle of rational
curves at the singular points of C'. In particular, Y is Gorenstein.

— The group G=Z; and 7: X —-Y is a G-cover with X gdc and S», obtained as in
Theorem 1.13 by gluing a cover X’ —Y =Y, L---UY; such that for every i =1,...,¢
the restricted cover m; : X! —Y; is standard with building data Li, D,

— The D, ;, and the components of the double curve C’ are ‘lines’ of Y, namely they are
smooth and meet pairwise transversally.

— The intersection points of the support of the Hurwitz divisor D of m with the double curve
C of Y are smooth points of C.
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— The divisor Ky + D (or, equivalently, D, since Y is Gorenstein) is 2-Cartier and the pair
(Y, D) is slc, so that by Proposition 2.5 X is slc and K is 2-Cartier. Recall that, since we
assume that the components of v*D and of C’ are lines, the pair (Y, D) is slc if and only if
on Y the divisor v*D + C has components of multiplicity less than or equal to one and has
multiplicity less than or equal to two at every point.

— For every y € Y that is singular for C, label the components Y7, ..., Y; of Y containing y in
such a way that, for every ¢ =1, ..., q, the surfaces Y; and Y;;1 meet along an irreducible
curve F; containing y (the indices are taken modulo ¢) and let g; € G be the generator of
the inertia subgroup of F;. By Theorem 1.13, for every ¢ we have g;—1 = g;+1 mod g;. We
assume that the natural map (g;) ® (gi+1) — Hy is an isomorphism for every i =1, ..., q.
These conditions imply that the fibre of X — Y over y consists of 2" /| H,| points. At each of
these points X is analytically isomorphic to the cone over a cycle of ¢ smooth rational curves.

All the above assumptions are satisfied in the cases considered in [AP09].

3.2 Numerical invariants
Here we assume that the surface Y is projective.
By Proposition 2.5, Kg( can be computed as follows:

K% = 2"(Ky +v"D + (double locus))? = Z 2" (Ky, + Dly, + (double locus)|y;)?. (15)

(2

To compute the cohomology of Ox, we are going to write down explicitly in the above
situation the sequences (11) in the second proof of Theorem 1.13 (as usual we push forward to Y
all the sheaves). Since all the maps are G-equivariant, the sequences (11) split as sums of exact
sequences:

0—F,— @5:1[/2‘_,; Ay, 0= F — @leL;; > (ima), — 0, (16)
where x varies in G* and G acts in F,, A, and (im «), via x.

To describe the sheaves A, and (im «),, we need to introduce some more notation. Given a
component F; of C' we denote by g; € G' the generator of the inertia subgroup of F; and by Y5,
and Y3, the two components of Y that contain F;. We denote by Ej (respectively Ej ,,, Ep,) the

preimages of Fj in X (respectively X (’ll, X l/n) and by E; the common normalization of Ej, £,
Epp, (cf. Example 1.17). In the commutative diagram

E)

SN

El 0 —— Ej<— Eip,

N

F

the maps to F; are G/{g;)-covers and the remaining maps are finite and birational. The cover
E; o, — Fj is standard and its building data can be recovered from those of X, L’” — Yy, as follows.

— We identify (G /g;))* with (g;)* C G*, and for every x € (g;)* we restrict L to Fy.
— For every Dj' with g; # gi, we label each point of Df'|, with the image of g; in G /fgi).
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The same can be done of course for Ej;, — Fj. Let y € F} be a point such that v*D has multiplicity
one at the points of Y that map to y (since we assume that 2D is Cartier, the multiplicity of
v*D is the same at all points lying over y). Recall that by assumption Y is dc at y; denote by
a1 a2 the elements of G associated to the two branch lines of X (’ll — Y, containing y and by
By,1, By,2 the elements of G associated to the two branch lines of X {)l — Y}, containing y. We have
ay1 + ay2=Fy1+ By2 modulo g; (cf. Example 1.17). Then Ej,, is singular over y if and only
if a1 and a2 are both different from g;, namely if and only if there exists a character x with
x(g1) =1 and x(o1,y) = x(a2,) = —1. For each x € G* and [ such that x(g;) =1 we denote by
A the set of points y € F] such that x(aq,y) = x(ag,y) = —1, and we take A;, to be the empty
set if x(g1) # 1. We define By, in a similar way by considering the cover Ej;, — Fj. We have the
following lemma.

LEMMA 3.1. For x € (g;)* denote by M, fxl the eigensheaf of OE corresponding to x. Then the
maps E — Ej 4, and E — Ky, induce isomorphisms:

L\ ®@Or =M (-Ay), L, ©Or=M_(-By,).

Proof. The lemma follows by the normalization algorithm of [Par91, § 3]. O

Let Ny := A;, N By and let Ty be the set of points y such that C'is singular at y and x|g,
is trivial. We are now ready to describe (im @),

PROPOSITION 3.2. For every x € G*\{1}, there is an exact sequence:

0— (ima)y — @{l\x(gz)zl}Ml,}l(_th) — O, —0.

Proof. In our setup, the map B’ — (' is the disjoint union of two copies of B= ([ E — i Fi
that are switched by the involution j. So by Lemma 3.1 the first sequence in (16) can be rewritten
as:

0— Fy = @i Liy = Dpapa)-n Moy (17)
In addition, if F; is a component of C' contained in Y,, and Y;,, then again by Lemma 3.1 the

image of the map L;z}x & Lbfx — fol is equal to fol(—Ni), so we have an exact sequence:

0— (ima), — @{Z|X(9l):1}M,j;(—Nj<) —Cy — 0, (18)

where the cokernel C, is concentrated on the set 7). Using the description of the singularities of
X at these points given in §3.1, one checks that Cy has length 1 at points y such that x|g, is
trivial and it is 0 elsewhere, so Cy = Or, . O

Remark 3.3. Let y € C be a smooth point, let F be the irreducible component of C that
contains y, and let Y7, Y5 be the two components of Y that contain F. Let H the subgroup
of G generated by the inertia subgroups of F' and of the components of D that contain y. Of
course, one has H C H,, but in the present setup equality actually holds. Indeed, if x € H Lisa
non-trivial character, then by Proposition 3.2 the second sequence in (16) can be written near y
as 0 — Fy — Oy; @ Oy, X Op — 0, where oy is given by (fi1, f2) — (fi — f2)|r. By Lemma 1.5,
there exist z; € Oy;, i =1, 2, that correspond to functions on X/ that do not vanish at any point
of 771(y). Up to multiplying, say, z; by a nowhere-vanishing regular function on Y; we can
arrange that z, := 21 — 29 € F,.. Hence z, corresponds to a function on X that is non-zero near
77 1(y) and on which G acts via the character y. It follows that G/H acts freely on 7~ 1(y),
i.e. that H = H,.
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FIGURE 1. The Z3-cover of Example 3.5.

We say that a point y € C' is relevant if and only if either it is singular for C or there
exists [, x with x(g;) =1 such that y € N>l(. Observe that, in view of the assumptions of 3.1, by
Proposition 2.12 and by the description of singularities of § 3.4 the set of relevant points can be
described intrinsically as the set of points of C' over which X is Gorenstein but not dc.

COROLLARY 3.4. Let Rel be the set of relevant points and let B = Ll E, be the normalization
of the double locus B of X. Then

X(0x) =x(Ox) = x(05) + > _ [G: H,).
yE€Rel

Proof. The claim follows immediately by Proposition 3.2, by (16) and by the fact that for x =1
one has the exact sequence

0— (ima) — &0 — Or — 0,

where T is the set of singular points of C. O

We close this section by computing the numerical invariants of two of the degenerations of
Burniat surfaces described in [AP09].

Ezample 3.5. Let G =73, let g1, g2, g3 be the non-zero elements of G, and for i =1,2,3 let
Xi € G* be the non-zero character such that x;(g;) = 1. Let Y1 = P! x P!, Y5 = P2, and let Y be
the surface obtained by gluing Y; and Y5 along a smooth rational curve C' which is of type (1, 1)
on Y7 and is a line on Y3. Fix three distinct points y1, y2,y3 € C. For i = 1,2, 3, let Dy ; C Y7 be
the union of a fibre and a section through y;_1 and let Dy ; C Y5 be a pair of lines through ;41
(the index j varies in Z3). In Figure 1, Y] is represented on the left and Y5 on the right, the curve
C is shown as a solid dashed line, light gray lines correspond to D; 1, black lines correspond to
D; 5, and medium gray lines correspond to D; 3.

Fori=1, 2, welet m; : X] —Y; be the standard G-cover with branch data D; j, gj, 7 =1, 2, 3.
Solving (2), we get Li; = Opiypi(1,1) and Lo = Op2(2), j =1,2,3, where L;jl denotes the
subsheaf of OX{ corresponding to the character x;. Notice that the line bundles L;]-l have no
cohomology, and hence, in particular, x(O X{) =x(O Xé) =1.

By [Par91, §3], for i =1, 2 the normalization of the cover of C' induced by 7; is the trivial
G-cover. So, by Theorem 1.13, we can glue X{ U X, — Y UY; to a cover m: X — Y. By (15)
we have

K% =4(Ky, + 2(D11+ D12 + D1 3) + C)? + 4(Ky, + (Do + Do + D) + C)? =2+ 4=6.
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N
A

FIGURE 2. The Z2-cover of Example 3.6.

The curve C' is smooth and the points yi,y2 and y3 are relevant points with Hy, =G, so
Corollary 3.4 gives:

x(Ox) = x(Ox;) + x(Ox;) — x(Op)
+[G:Hy |+ [G:Hy)+[G:Hy]=1+1-4+1+1+1=1

For x =1, we have an isomorphism (im a)); = O¢. Hence (im «); has no cohomology in degree
1> 0, and the exact sequence

0— Oy — 0Oy, ®0y, — (ima); =0¢c — 0

implies that hi(Oy)=0 for i >0. Next we compute the cohomology of the sheaves Fy- By
Proposition 3.2, for j =1, 2, 3 we have (im a),, = Oc(—y;). Hence (16) gives an exact sequence:
0— Fy, — Ly @ Ly — Oc(—y;) — 0.

Therefore h'(Fy,) = h*(Fy,;) =0 for j = 1,2, 3, and thus h! (Ox) = h*(Ox) =0.
Example 3.6. Let Y =Y; U---UYg be the union of six copies of P? glued in a cycle along lines
as shown in Figure 2.

As in the previous example, let G = Z3, and for i € Zg let 7; : X! — Y; be the G-cover branched
on the lines pictured with three shades of gray in Figure 2. For every i, two of the sheaves L;
are Oy, (2), and the remaining one is Oy, (1). Hence the L ; have no cohomology, and x(X/) = 1.
It’s easy to check using Theorem 1.13 that the cover X LJ--- U X{ —Y; U+ - - U Ys can be glued
to a G-cover w: X — Y. The normalization B — C of the induced cover of the double curve C
is the disjoint union of six smooth rational curves, each mapping two-to-one onto a component
of C. The only relevant point is the singular point y of C. So, applying (15) and Corollary 3.4,
we get
Let F1, ..., Fg be the irreducible components of C. For xy =1, as in the proof of Corollary 3.4
we have an exact sequence,

0— (ima); — @16:10Fl — K(y) — 0,

which gives h*((im «)1) = 0 for i > 0. By Proposition 3.2, for x # 0 the sheaf (im «),, is isomorphic
to the direct sum of two copies of Op1, and hence it has no higher cohomology. So by (16) we
have hi(F,) =0 for i > 0, and therefore h!(Ox) = h?(Ox) = 0.

3.3 Singularities: the case Y smooth.

We wish to describe the singularities of a Zj-cover m: X — Y as in §3.1. Since the question is
local, we fix y € Y and we study X locally above Y in the étale topology. By the assumptions
in § 3.1, the singularities of X over a point y € Y lying on ¢ > 2 components of Y are degenerate
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TABLE 1. One, two, three, and four reduced lines.

No. |H| Relations ¢ Singularity

0.1 1 none 1 smooth

1.1 2 none 1 smooth

21 4 none 1 smooth

2.2 2 12 1 A

3.1 8 none 1 A

3.2 4 12 1 Ag

33 4 123 2 1(1,1)

34 2 12,13 1 Dy

41 16 none 1 elliptic, F? = —4
42 8 12 1 elliptic, F? = -2
43 8 123 2 Thooo, F?=—4
44 8 1234 1 elliptic, F? = —8
4.5 4 12 13 1 elliptic, F? = —1
46 4 12 34 1 elliptic, F? = —4
47 4 12134 2 Thooo, F?=-3
48 2 121314 1 elliptic, F?2 = -2

cusps such that the exceptional divisor of its minimal semiresolution is a cycle of ¢ rational
curves (cf. [KS88, Definition 4.20]). So it is enough to analyze two cases.

— The surface Y is smooth.

— The surface Y = Y7 U Y5 dc and 7 is obtained by gluing standard covers m; : XZ( —Y;,i=1,2.

Remark 3.7. All the singularities listed in Tables 1-9, actually occur on some stable surface of
general type. To give examples of the singularities that appear when the base Y of the cover

is smooth, one can take G =75, 2 <r <4, a set of generators g1, ..., gy of G, k <4, and lines
L1, ..., Ly through a point y € P? such that the pair (P?, (L +---+ L;)/2) is lc. If g =g;,
define D,, = L;, where D) is a general curve of even degree, and for g # 1, g1, ..., gx let Dy be

a general curve of odd degree. The divisors D, so defined are the branch data for a G-cover
X — P? (the relations in (2) are easily seen have a solution in this case). By Proposition 2.5,
the surface X is slc and it is of general type as soon as the degree of the Hurwitz divisor D is
greater than 6. There is only one point z € X mapping to y; all the singularities (X, z) with
|H| > 4 listed in Tables 1-3 can be realized in this way (for the definition of H, see below). The
singularities with |H| =2 can be obtained by taking a double cover X — P2, branched on the
sum of k lines through y and a general curve of degree d such that d + k is even and greater
than or equal to 8.

Since all the curves in the construction are general, the singularities of X\{z} are at most
Aj points.

Similar constructions, slightly more involved, can be used to realize the singularities of
Tables 4-9.

We study the case Y smooth in this section, and the case Y reducible in § 3.4.

1075

https://doi.org/10.1112/50010437X11007482 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X11007482

V. ALEXEEV AND R. PARDINI

TABLE 2. Double line + zero, one, or two reduced lines.

No. |H| Relations ¢ Singularity X C;—Cx—Cy X%
2’1 4 none 1 semismooth 2(1.1) 2A—-A—>A de
2.2 2 12 1 semismooth 2(0.1) 2A —-A—A dc
31 8 none 1 semismooth 2(2.1) 2A— A 2LA de
32 4 12 1 semismooth 2(1.1) 2A —A 25 A  de
33 4 13 1 semismooth (2.1) A 2LASA pinch
¥4 4 123 2 (3.1)/Zy  2(22) 2A—A—A de
35 2 1213 1 semismooth (L1) A-25A—A  pinch
41 16 none 1 deg.cusp(2) 2(3.1) 2I's—Ty 2N de
42 8 12 1 deg.cusp(2) 2(2.1) 2Ty —Ts—25A de
43 8 13 1 degcusp(l) (3.1) To—A—25A  de
44 8 34 1 deg.cusp(6) 2(3.2) 2y, —T9— A de
45 8 123 2 (41)/Z,  2(32) 2A—-A2A de
46 8 134 2 (41)/Zy  (31) Ty-25Ty—A  pinch
47 8 1234 1 deg.cusp(2) 2(3.3) 2y, —>Ty— A dc
Y8 4 1213 1 degcusp(l) (21) To—A25A  de
49 4 13 14 1 deg.cusp(3) (3.2) Ty—A—-A dc
4’10 4 12 34 1 deg.cusp(2) 2(2.2) 2I'y—Ty— A de
411 4 13 24 1 deg.cusp(l) (3.3) TIy—A—-A dc
412 4 12134 2 (42)/Z,  (21) Ty-25Ty—A  pinch
413 4 13124 2 (43)/Z,  (32) A-2A—-A  pinch
414 4 12334 2 (44)/Zy  2(34) 2A—>A—A de
4’15 2 121314 1 deg.ccusp(l) (22) TIy—A—-A dc
TABLE 3. Two double lines.
No. |H| Relations ¢ Singularity X Cz—Cx—Cy X"
4”1 16  none 1 deg.cusp(4) 4(2.1) 4I'y—Ty 22,7, dc
2 8 12 1 deg.cusp(4) 4(1.1) 4Ty —Ty 21T, de
3 8 13 1 degcusp(2) 2(2.1) 20y —Ty 25T, de
4 8 123 2 (4"1))Z,  2(21) 2Ty 2,75 2.7, pinch
5 8 1234 1 deg.cusp(4) 4(2.2) 4@y —T4—T, de
6 4 1213 1 deg.cusp(2) 2(1.1) 20 —Ty 25T, de
7 4 1234 1 deg.cusp(4) 4(0.1) 4@y —T4—Ty dc
4”8 4 13 24 1 deg.cusp(2) 2(2.2) 2y —T9—Ty dc
79 4 12134 2 (4"2)/Z,  2(1.1) 2y, 2Ty T pinch
710 4 13124 2 (4"3)/Zy  (21) Ty 25Ty T pinch
4”11 2 121314 1 deg.cusp(2) 2(0.1) 2y —T9—T dc
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TABLE 4. C not in the branch locus, zero, or two, or four reduced lines.

No. |H| Relations ¢ x Singularity X Cg—Cx —Cy X
E0.I 1  none 1 0 de 0.1)U0.1) 2A—A—A de
E2.1 2 12 1 0 de (LU (L1) 2A—A25A de
E41 8 1234 1 273 degcusp(d) 2(2.1)L2(2.1) 205 U205 —»Ty =225 A de
E42 4 12 34 1 2772 deg.cusp(4) 2(22)LU2(2.2) 205U2T —Ty— A dc
E43 4 1324 1 272 degcusp(2) (21)U(21)  TolUTDy—Ty 225 A de
E44 2 121314 1 2771 degeusp(2) (22)U(22) ToUTy;—Ty—A de

TABLE 5. C not in the branch locus, a double line + two reduced lines.

No. |H| Relations ¢ x Singularity X Cg—Cx—Cy X
E41 8 1234 1 273 degcusp(6) 4(1.1)U2(2.1) 4Da U205 — D 22,1y  de
E4'.2 4 12 34 1 2772 deg.cusp(6) 4(0.1)L2(2.2) 4@5 L2l —Tg— Iy dc
E4'.3 4 13 24 1 2772 deg.cusp(3) 2(1.1)U(2.1) 20 Uy —TI'y 122, Iy dc
E44 2 121314 1 2771 degcusp(3) 2(0.1)U(2.2) 205UTy —T5—Ty dc
TABLE 6. C not in the branch locus, two pairs of double lines.
No. |H| Relations ¢ x Singularity X Cg—Cx—Cy X
E4’1 8 1234 1 2773 degcusp(8) 4(1.1)U4(1.1) AToUdly —Tg =22 po ge
E4"2 4 12 34 1 2772 deg.cusp(8) 4(0.1)U4(0.1) 4@y U4l —Tg—T3 dc
E4"3 4 13 24 1 2772 deg.cusp(4) 2(1.1)L2(1.1) 205 L20 — 1Ty L, I's dc
E4"4 2 121314 1 2771 degcusp(4) 2(0.1)U2(0.1) 205 U2T —Ty — T3 dc
We let (D1, ¢1), - - ., (Dg, gr) be the branch data of 7. We may assume that y € D; for every i.

So, by the condition that D is slc, we have k < 4 and no three of the D; coincide. Whenever the
D; are not all distinct, we assume D; = Ds.

All the possible cases are listed in Tables 1-3. The first digit in the label given to each case
is equal to the number k of components through y, followed by ’ if D1 = D and by " if Dy = Dy
and D3 = Dy (obviously this case occurs only for k=4). So, for instance, a label of the form
3'.m, where m is any positive integer, means that y belongs to three components of D, two of
which coincide.

The entries in the columns have the following meanings.

— The column marked |H| contains the order of the subgroup H the subgroup generated by
g1y -. -9k

— The column marked Relations contains the relations between g1, . .., gi. For instance, 123
means g1 + g2 + g3 =0.

— Singularity. The notations are mostly standard: %(1, 1) denotes a cyclic singularity A2/Z,
with weights 1,1. T59292 denotes an arrangement consisting of four disjoint —2-curves
G1,...,G4 and of a smooth rational curve F' intersecting each of the G; transversely at
one point. The self-intersection F? is given in the table. In the non-normal case (Tables 2
and 3) we use the notations of [KS88], where Kollar and Shepherd-Barron classified all
slc surface singularities over C. We work in any characteristic not equal to 2, but only
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TABLE 7. C in the branch locus, zero, or two, or four reduced lines.

No. |H| Relations Y Singularity X Cg—Cx —Cy X
RO.1 none 1 0 dc (1.1)u(1.1) AUA—-A—=A dc
R21 4 12 10 de 21)U(21) AUA—-A-2A de
R23 2 1201 2 0 (R2.1)/Zs (22)U(22)  AUA—-A—SA de
R2.2 4 012 same as R2.1

R41 16 1234 1 2% degcusp(4)  2(3.1)U2(3.1) 2MaU2Ty —Ty =24 A dc
R42 8 123401 2 0 (R4.1)/Zs 232)L(3.1) 2AUT, —Dy 225 A de
R43 8 1234012 1 273 degcusp(4)  2(3.3)U2(3.3) 20,U2T5 —Ty— A de
R44 8 1234013 1 273 degcusp(2)  (3.1)U(3.1)  ToUTy—Ty—25A de
R45 8 1234 1 273 degecusp(12) 2(32)U2(3.2) 205 U2T5 —Ty— A de
R46 4 123401 2 0 (R4.5)/Zs 2(3.4)L(3.2) 2AUTy =Ty —A de
RA7 4 1234013 1 272 degcusp(6)  (3.2)U(3.2) TaUly—Ty—A de
R4.8 8 13 24 same as R4.4

R4 4 132401 2 0 (R4.8)/Zs 32)U(3.2) AUA—AZ2SA de
RA10 4 1324012 1 272 degcusp(2) (3.3)U(3.3) ToUly—Ty—A de
R4.11 4 1213 14 same as R4.7

R412 2 12131401 2 0 (R4.11)/Z3  (34)U(3.4) AUA—A de
R4.13 16 01234 same as R4.1

R414 8 12034 1 2773 degcusp(8)  2(3.2)U2(3.3) 2MoU2Ty —Ty—A de
R4.15 8 13 024 same as R4.4

R4.16 8 123 04 same as R4.2

R417 4 1213014 1 272 degcusp(d)  (3.2)U(3.3) ToUly—Ty—A de
R4.18 4 1213401 2 0 (R4.14)/Zy  2(34)U(3.3) 2AUTy —»Ty—A de
R4.19 4 13 124 01 same as R4.9

the singularities from the list in [KS88] appear. The notation ‘deg.cusp(k)’ means a
degenerate cusp (cf. [KS88, Definition 4.20]) such that the exceptional divisor in the minimal
semiresolution has k components.

— The column marked ¢ contains the index of x € X. It is equal to 1 if all the relations have
even length and it is equal to 2 otherwise (cf. Proposition 2.8).

— The column marked X describes the normalization of X (the entries refer to the cases in
Table 1).

— The column marked C'y — Cx — Cy describes the inverse image in X of the double curve
Cx of X and Cy is the image of C'x in Y. The symbol A denotes the germ of a smooth
curve, and T’y is the seminormal curve obtained by gluing k& copies of A at one point.
The notation I'y —=% , ' means that the map restricts to a degree a; map on the ith
component of 'y (we do not specify the a; when they are all equal to 1).

— The column marked X5 describes the minimal semiresolution of X. We write ‘d¢’ when
X* has only normal crossings and ‘pinch’ if it has also pinch points.

THEOREM 3.8. The singularities of slc covers m: X — Y with smooth Y are listed in Tables 1-3.

Since all these singularities can be studied in a similar way, we just explain the method and
work out two cases as an illustration. We start with some general remarks.

(i) We always assume G = H. Indeed, the cover m factors as X —— X/H —-Y. By
Lemma 1.5, the map m is étale near y, while for every z € m; '(y) the fiber 7, '(2) consists
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only of one point. Since G acts transitively on each fiber of m, it is enough to describe the
singularity of X above any point z € 7 Yz).

(ii) The cover X is normal at x if and only if [D] = 0. It is non-singular at = if and only if
either k =1 or k=2, D1 # Da, g1 # g2. Assume that X is not normal, and let F' be an irreducible
divisor that appears in D with multiplicity one. This means that, say, F' = D; and F = D,. The
normalization of X along F' is a G-cover of Y with branch data (D;, g;), for i # 1,2, and, if
g1+ 92 #0, (F, g1+ g2) (cf. [Par9l, §3]).

(iii) The cover X is said to be simple if the set {g1, ..., gr} is a basis of |H| (for instance, X
is simple if the g; are all equal). In this case, X is a complete intersection, and it is very easy to
write down equations for it (see Case 4’.1 below).

(iv) The double curve C'x maps onto the divisors that appear in D with multiplicity equal to
one. Since for a semismooth surface the double curve is locally irreducible, X is never semismooth
in the cases 4”. In addition, if X is semismooth then the pullback C's of Cx to the normalization
is smooth. Using this remark, it is easy to check that X is never semismooth in the cases 4’, either.

(v) Inorder to compute the minimal semiresolution X*', we consider the blow up Y S>YofY
at y, pull back X and normalize along the exceptional curve F to get a cover X Y. The branch
locus of X — Y is supported on a de divisor and, by construction, the singularities of X are only
of type 1, 2 or 3. Looking at the tables, one sees that either X is semismooth or it has points of
type 2.2 or 3.4 (cf. Table 1). In the former case, X is the minimal semiresolution. In the latter
case, blowing up Y at the non-semismooth points and takillg bise change and normaliAzation

along the exceptional divisor, one gets a semismooth cover X — Y. The semiresolution X — X
is minimal, except in cases 4”.5, 4”.10. In these cases the minimal semiresolution X is obtained

by contracting the inverse image in X of the exceptional curve of the blow up Y —Y.

Next we analyze in detail two cases.

Case 4'.1. By remark (ii) above, the normalization X is an H-cover with branch data
(D1, 91+ 92), (D3, g3) and (D4, g4). Hence g1 acts on X without fixed points and X is the
disjoint union of two copies of the cover (3.1). We choose local parameters u, v on Y such that
D1 = Dy is given by u =0, D3 is defined by v =0 and D4 by u+ v =0.

The cover X is defined étale locally above y by the following equations:

d=u, Z=u, Z2=v, 23=(u+0). (19)

In particular, X is a complete intersection (see remark (iii) above). The element g; acts on z; as
multiplication by (—1)%. The double curve Cy is the inverse image of u = 0, hence it is defined
by z1 = 20 =0, 23 = £2z4 and the map Cx — D; is given by 23 — zg, so Cx is isomorphic to I's,
with each component mapping 2-to-1 to Dy ~ A. The curve C5 is the inverse image of D; in X ,
so it has two connected components, each isomorphic to I'e, that are glued together in the map
X — X.

To compute the minimal semiresolution, consider the blow up Y Y of Y at y and the cover
X — Y obtained by pulling back X — Y and normalizing along the exceptional curve E. The
branch data for X are (E,g14+ 92493+ 9g4) and, for i =1,...,4, (D;, g;), where ~ indicates
the strict transform. The cover is singular precisely above 13\1 = l/j\z, and it is easy, using the
local equations, to check that it is dc there. Hence X is the minimal semiresolution of X. The
exceptional divisor is the inverse image F' of F in X. Applying the normalization algorithm to
the restricted cover F' — FE, one sees that the normalization F of F is the union of two smooth

1081

https://doi.org/10.1112/50010437X11007482 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X11007482

V. ALEXEEV AND R. PARDINI

rational curves I} and F5. The map F — F identifies the two points of F; that lie over the point
E N D) with the corresponding two points of Fy. Hence X is the minimal semiresolution of X
and the singularity is a degenerate cusp solved by a cycle of two rational curves.

Case 4'.5. As in the previous case, X and C < can be computed by the normalization algorithm.
One obtains that X is the disjoint union of two copies of (3.2) and Cg is the disjoint union
of two copies of A. This singularity is the quotient of a cover Xy of type (4'.1) by the element
go '= g1 + g2 + g3. Since this element has odd length, the index ¢ of X at x is equal to 2.

Since the only fixed point of gg on X is z := 7~ !(y), the double curve Cy is the quotient of
the double curve Cyx, of Xy. The two components of Cx, are identified by go, and thus Cx is
irreducible and maps two-to-one onto D;.

To compute the minimal semiresolution, again we blow up Y —Yat y and consider the cover
XY obtained by pull back and normalization along the exceptional curve E. As usual, we
denote by F' the strict transform on Y of a curve F of Y. The branch data for X are (Dl, 1),
(DQ, 92), (Dg, g1+ g2), (D4, g4) and (E, g4). Hence X has normal crossings over Dy, it has four
Aj points over the point 3 := D4 N E, and it is smooth elsewhere (cf. Tables 1 and 2). We blow
up at g aAnd trft\ke again pull back and normalization al/o\ng the exceptional curve F>. We obtain

a cover X — Y which is dc over the strict transform l/?\l of l/j\l and has no other singularity, so

X — X is a semismooth resolution. Let FE1 denote the strict transform on Y of the exceptional
curve E of the first blow up. Arguing as in Case 4’.1, one sees that the inverse image of E is the
union of two smooth rational curves F{ and Fj that intersect transversely precisely at one point
of the double curve, and the inverse image of Ey consists of four disjoint curves FJ, ..., Fy. All

these curves pull back to —2 curves on the normalization of X and, up to relabeling, F}', FZ, F}
and F' 12, F23, F24 form two disjoint A3 configurations. Hence X is the minimal semiresolution of X.

In the notation of [KS88, Definition 4.26], X is obtained by gluing two copies of (A, A) along A.

3.4 Singularities: the case Y reducible

Here we repeat the local analysis of the previous section for the case in which Y =Y, UY5 is
dc, keeping as far as possible the same notations. So we fix y € C, where C' is the double curve
of Y, and describe X locally over y. We assume that X — Y is obtained by gluing standard
covers m; : X; — Y;, i =1, 2, such that y lies on all the components of the Hurwitz divisor D. We
let (D1,¢1),- .-, (Dg, gr) be the union of the branch data of 7m; and 7y such that D; is distinct
from the double curve C of Y (hence D = (Dy + - - -+ Dy)/2). We denote by go the generator
of the inertia subgroup of C for m and 2. By Remark 3.3, the inertia subgroup H, is equal to
H:={go, 91, .- -, gk), S0 up to an étale cover we may assume that G = H and that 7~ (y) = {z}.

Since D is Q-Cartier, there are the same number of D; on Y7 and on Ys. We order them so
that all components on Y] come first. Recall that k& < 4 by the assumption that (Y, D) is slc. The
cases in the tables are labeled E (‘étale’) if go =0 and R (‘ramified’) if gy # 0. The first digit of
the label is the number k of branch lines through y. It is followed by ’ if Dy = Dy and by ” if
Dy = Dy and D3 = D,. For instance, in the cases E4'.m the map 7 is generically étale over C
and there are four branch lines D1, ..., Dy with D1 = Do, and D3 # Dy.

The singularities that we get here are non-normal, and as in [KS88, Theorems 4.21, 4.23] they
turn out to be either semismooth or degenerate cusps in the Gorenstein case and Zo-quotients
of these otherwise.
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The tables here contain the same columns as those of § 3.3 plus an extra one, denoted x: this is
the contribution of y in the formula for x(Ox) of Corollary 3.4 (recall |G| = 2"). By Propositions
2.11 and 2.12 the index ¢ is equal to 1 if all relations have even length when reduced modulo gg
and it is equal to 2 otherwise.

THEOREM 3.9. The singularities of slc covers w: X — Y where Y is the dc union of two smooth
surfaces are given in Tables 4-9.

The analysis of the singularities in the reducible case is similar to the case Y smooth. One
blows up Y at the point y and takes pull back and normalization of X along the exceptional
divisor. Repeating this process, if necessary, one obtains a semiresolution Xg — X. If Xg is not
minimal, then the minimal semiresolution X* — X is obtained by blowing down the —1-curves
of Xo.

As the computations are all similar, we work out a only a couple of cases to show the method.

Case R4'.1. The normalization X is equal to X1 X! U Xé, where X/ X! is the normalization of X!. The
branch data of X1 — Y7 are (D1, g1 + gg) (Do, 90), so X is étale locally the disjoint union of
four copies of the cover (2.1). Also, X} = X, X} is étale locally the disjoint union of two copies (3.1).

The image Cy of the double curve C'x is equal to C'U D;. The preimage in )/(v{ of Cy is the

disjoint union of four copies of I'y. The preimage of Cy in X/ is equal to two copies of I'y. Hence
Cg =4Iy U 2I'9. Each component of C'; maps two-to-one onto its image. The map C'y — Cx
identifies in pairs the four components of the preimage of D; and the eight components of the
preimage of C. Hence Cx is I'g, with two components mapping two-to-one onto D; and four
components mapping two-to-one onto C.

To compute the semiresolution, blow up y € Y to get Y - Y. Let FEy CY; and E3 CY; be the
irreducible components of the exceptional divisor. Let 7 : X — Y be the G-cover obtained from
X — Y by taking pull back and normalizing along F; and Es. Denoting by the strict transform on
Y, the branch data of 7 are (E\1, go + g1 + g2), (F2, g0 + g3 + 94 = g0 + g1 + 92), (D1.91), (D2 =
Dl, 92), (Dg, g3) and (D47 g4), (C, go)- Hence X is de by the tables of §3.3, and it is therefore
the semiresolution X*" of X. The preimage of F} is the union of four smooth rational curves
meeting in pairs over the point F1 N Dy. The preimage of F» is the disjoint union of two rational
curves, which together with the components of the preimage of F; form a cycle of six rational
curves. The singularity 2 € X is Gorenstein by Proposition 2.12, and hence it is ‘deg.cusp(6)’.

Case R4'.2. This is a Zs-quotient of R4’.2, and it is not Gorenstein by Proposition 2.11. The
normalization X is equal to X1 X/ U Xé, where X/ X/ is the normalization of X!. The branch data of
)7{ — Y are (D1, go + 92), (Do, go), so X{ is étale locally the disjoint union of two copies of the
cover (2.1). The image Cy of the double curve Cx is equal to C'U D;. The preimage in )?/1 of Cy
is the disjoint union of two copies of I'y. The preimage of Cy in )?é is I'y. Hence C'g = 21" U T,
Each component of C's maps two-to-one onto its image in Cy. The map C's — Cx glues to itself
each of the two components of the preimage of Dy, and it identifies in pairs the four components
of the preimage of C. Hence Cx is I'y4, with two components mapping one-to-one onto D; and
two components mapping two-to-one onto C.

To compute the semiresolution, blow up y € Y to get Y — Y. Let B4 CY7 and By C Y3 be the
irreducible components of the exceptional divisor. Let 7 : X — Y be the G-cover obtained from
X — Y by taking pull back and normalizing along E1 and Es. Denoting by the strict transform
on Y the branch data of 7 are (El gg) (EQ, go+9g3+gs= gg) (Dl, g1 = ) (DQ = Dl, gg)

1083

https://doi.org/10.1112/50010437X11007482 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X11007482

V. ALEXEEV AND R. PARDINI

(b\g,gg), (1/3\4, g4) and (é, go). By the tables of §3.3, X has two pinch points over the point
l/)\l N EFp and is at most dc elsewhere; hence it is equal to the minimal semires/\olution X5, The
preimage of Ej is a pair of smooth rational curves meeting over the point E1 N D;. The preimage
of E is a smooth rational curve, meeting each component of the preimage of £y at a point lying

over CNE;=CnN E,.

In the notation of [KS88, Definition 4.26], X*®" is a chain consisting of copy of (A4, 2A) (namely
the second component of X*') in the middle and two copies of (A, 2A) with A pinched at the
ends.
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