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Non-normal abelian covers

Valery Alexeev and Rita Pardini

Abstract

An abelian cover is a finite morphism X → Y of varieties which is the quotient map for
a generically faithful action of a finite abelian group G. Abelian covers with Y smooth
and X normal were studied in [R. Pardini, Abelian covers of algebraic varieties, J.
Reine Angew. Math. 417 (1991), 191–213; MR 1103912(92g:14012)]. Here we study the
non-normal case, assuming that X and Y are S2 varieties that have at worst normal
crossings outside a subset of codimension greater than or equal to two. Special attention
is paid to the case of Zr2-covers of surfaces, which is used in [V. Alexeev and R. Pardini,
Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint
(2009), math.AG/arXiv:0901.4431] to construct explicitly compactifications of some
components of the moduli space of surfaces of general type.
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Introduction

An abelian cover is a finite morphism X → Y of varieties which is the quotient map for a
generically faithful action of a finite abelian group G. This means that for every component Yi
of Y the G-action on the restricted cover X ×Y Yi→ Yi is faithful. The paper [Par91] contains
a comprehensive theory of such covers in the case when Y is smooth and X is normal. The
covers are described in terms of the building data consisting of branch divisors DHi,ψi ranging
over cyclic subgroups Hi ⊂G, and line bundles Lχ with χ ranging over the character group of
G. This collection must satisfy the fundamental relations.

Here, we extend this theory to the case of singular varieties. Namely, we allow X and Y to be
varieties satisfying Serre’s condition S2 and having double crossing singularities in codimension 1,
which we abbreviate to gdc for ‘generically double crossings’ (see § 1.3 for the precise definition).
Our interest in this case lies in applications to the moduli theory. Such non-normal abelian
covers appear in our work [AP09] where we explicitly construct compactifications of moduli
spaces of some Campedelli and Burniat surfaces by adding stable surfaces on the boundary.
‘Stable surfaces’ here are in the sense of [KS88]: they have slc (semi log canonical) singularities
and an ample canonical class.
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V. Alexeev and R. Pardini

In this paper, we give a comprehensive treatment of the situation. In § 1.3 we show that the
theory of standard covers of [Par91] has a very natural extension to the case when Y is still
smooth but X is possibly gdc. In § 1.4 we extend it to the case of normal base by an S2-fication
trick. In § 1.5 we prove that a cover with non-normal Y can be obtained by gluing a cover over
the normalization Ỹ , and we spell out which additional data must be specified.

In § 2 we study the singularities of covers. We determine the conditions for X to have slc
singularities, to be Cohen–Macaulay, and we determine the index of the canonical divisor in the
situations appearing in common applications.

In § 3 we treat in detail the special case when the group G is Zr2 and dimX = dim Y = 2, as
in [AP09]. We restrict ourselves to the situation where the base Y is smooth or has two smooth
branches meeting transversally, and the components of branch divisors and the double locus are
smooth and have distinct tangent directions at the points of intersection, i.e. locally they look
like a collection of lines in the plane. In this situation, we give a complete classification of the
covers and the singularities of X. The answer is contained in nine tables. Some of these covers
appear on the boundary of moduli of Campedelli and Burniat surfaces, but the full list is longer.

Notations. G denotes a finite abelian group. We work with equidimensional varieties defined
over an algebraically closed field K whose characteristic does not divide the order of G. We
denote by G∗ the group Hom(G,K∗) of characters of G, and we write it multiplicatively. The
abbreviations lc and slc stand for log canonical and semi log canonical (cf. § 2 for the definitions).
Also, X̃, C̃, etc. denote the normalization of X, C, etc. We use the additive and multiplicative
notation for line bundles and divisors interchangeably. Linear equivalence will be denoted by ∼.

1. General structure of abelian covers

1.1 Setup
We recall some basic facts about Serre’s condition S2 and the S2-fication of a coherent sheaf. For
a comprehensive treatment, the reader may consult [Gro65, 5.9–11], where the latter appears
under the name ‘Z(2)-closure’.

All varieties below are assumed to be reduced, equidimensional, but possibly reducible. Let
F be a coherent sheaf on X all of whose associated components are irreducible components of X.
Then there exists a unique S2-fication, or saturation in codimension 2, a coherent sheaf defined
by

S2(F)(V ) = lim−→
U⊂X,codim(X\U)>2

F(V ∩ U).

The sheaf S2(F) is S2, and F is S2 if and only if the map F → S2(F) is an isomorphism.
In particular, for F =OX one obtains the S2-fication S2(X)→X, which is dominated by the
normalization of X.

On a normal variety X, an S2-sheaf is the same as a reflexive sheaf, satisfying F∗∗ = F ,
see [Bou65]. Further, reflexive sheaves of rank one are the same as divisorial sheaves, isomorphic
to OX(D) for some Weil divisor D (see e.g. [Rei80, Appendix to § 1]). On a smooth (or factorial)
variety Weil divisors are the same as Cartier divisors, and rank-one S2 sheaves are the same as
invertible sheaves.

Let G be a finite abelian group. An abelian cover with Galois group G, or G-cover, is a finite
morphism X → Y of varieties which is the quotient map for a generically faithful action of a finite
abelian group G. This means that for every component Yi of Y the G-action on the restricted
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Non-normal abelian covers

cover X ×Y Yi→ Yi is faithful. An isomorphism of G-covers π1 :X1→ Y , and π2 :X2→ Y is an
isomorphism φ :X1→X2 such that π1 = π2 ◦ φ.

The G-action on X with X/G= Y is equivalent to a decomposition:

π∗OX =
⊕
χ∈G∗

Fχ, F1 =OY (1)

where G acts on Fχ via the character χ. If π is Galois then each Fχ has rank one: if y ∈ Y is
a general closed point, then G acts freely on π−1(y), so it acts on Oπ−1(y) =

⊕
χ(Fχ ⊗K(y)) as

the regular representation. Thus, Fχ ⊗K(y) is one-dimensional for every χ. When the sheaves
Fχ are locally free, it is customary to write Fχ = L−1

χ , with Lχ a line bundle.

Lemma 1.1. (i) The sheaf OX is Sn for some n if and only if every Fχ is Sn.

(ii) If π :X → Y is flat then X is CM (Cohen–Macaulay) if and only if Y is CM.

(iii) If Y is smooth and X is S2 then π is flat and X is CM.

Proof. (i) Part (i) is clear from the definition of depth.
(ii) The morphism π is flat if and only if every OY -module Fχ is invertible. Then each Fχ is

CM if and only if OY is CM.
(iii) On a smooth variety every divisorial sheaf is invertible, and so flat. Now part (ii)

applies. 2

A G-cover π :X → Y , where X and Y are S2 varieties, is determined by its restriction to the
complement of a closed subset of codimension greater than or equal to two.

Lemma 1.2. Let Y be an S2 variety, Y0 ⊆ Y an open subset with codim(Y \Y0) >2, and
π0 :X0→ Y0 a G-cover with X0 an S2 variety. Then there exist a unique S2 variety X and
a G-cover π :X → Y whose restriction to Y0 is π0.

Proof. For the existence, we take OX := i∗OX0 , where i : Y0→ Y is the inclusion. Then OX =⊕
χ∈G∗ Fχ, where each Fχ is a rank-one S2-sheaf. The algebra structure on OX is defined as

follows. For an open set U ⊂X and sections s ∈ Fχ(U), s′ ∈ Fχ′(U), their product is

s|U∩X0 · s′|U∩X0 ∈ Fχχ′(U ∩X0) = Fχχ′(U),

since codimU (U\U ∩X0) >2 and Fχ is saturated in codimension 2. Thus, X := SpecOY OX is
an S2 variety with a finite morphism to Y . The G∗-grading on OX defines the G-action on X.
By construction, the eigenspace F1 for the trivial character is i∗OY0 =OY . Therefore, X/G= Y .

Uniqueness follows from the uniqueness of the S2-fication. 2

Given a G-cover π :X → Y and an irreducible subset S ⊂ Y , we define the inertia subgroup
HS of S to be the subgroup of G consisting of the elements that fix π−1(S) pointwise, or,
equivalently since G is abelian, that fix an irreducible component of π−1(S) pointwise. The
branch locus Dπ of π is the set of points of Y whose inertia subgroup is not trivial (notice that
we regard Dπ simply as a set, without giving it a scheme structure). If π is flat, then Dπ is a
divisor by [AK70, Theorem 6.8]. If F is an irreducible divisor of Y such that X is generically
smooth along π−1(F ), then the natural representation ψ of HF on the tangent space TX,R at
the generic point of an irreducible component R of π−1(F ) is faithful, and hence HF is cyclic
(cf. [Par91, § 1]). Notice that ψ does not depend on the choice of the component R of π−1(F ),
since G is abelian.
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1.2 Standard covers

In this section we recall, in a form which is convenient for our later applications, the definition of
standard abelian covers, a class of flat abelian covers that can be constructed from a collection
of line bundles and effective divisors on the target variety (cf. [Par91, FP97]). The prototypical
example is the classical construction of a double cover of a variety Y from the data of an effective
divisor D on Y and a line bundle L such that 2L∼D.

Let Y be a variety. A set of building data for a standard G-cover π :X → Y consists of the
following:

– irreducible effective Cartier divisors D1, . . . , Dk (possibly not distinct);

– for each Di a pair (Hi, ψi), where Hi is a cyclic subgroup of G of order mi and ψi is a
generator of the group of characters H∗i ;

– line bundles Lχ, for χ ∈G∗\{1}.

Moreover we assume that these data satisfy the so called fundamental relations:

∀χ, χ′, Lχ + Lχ′ ∼ Lχχ′ +
∑
i

εiχ,χ′Di, (2)

where for a character χ we write χ|Hi = ψ
aiχ
i , with 0 6 aiχ <mi, and we define εiχ,χ′ :=

[(aiχ + aiχ′)/mi]. Observe that εiχ,χ′ is equal either to 0 or to 1.

We call the divisors Di, together with the pairs (Hi, ψi), the branch data of the cover.
An equivalent way of describing the branch data, and therefore the building data, is to give
for each pair (H, ψ), with H ⊂G a cyclic subgroup and ψ ∈H∗ a generator, the divisor
DH,ψ =

∑
{i|(Hi,ψi)=(H,ψ)} Di. This is the notation used in [Par91].

Remark 1.3. If the group Pic(Y ) has no m-torsion, where m= |G|, then the branch data
determine the building data by [Par91, Proposition 2.1]. In general, the branch data are enough
to determine the local geometry of the cover (cf. Proposition 1.6, (ii)).

Remark 1.4. When G= Zr2, it is enough to associate with every divisor Di a non-zero element
gi ∈G, the generator of Hi. Also, the definition of εiχ,χ′ is simpler: εiχ,χ′ is equal to 1 if
χ(gi) = χ′(gi) =−1 and it is equal to 0 otherwise.

We now explain how to construct a G-cover from a set of building data. Choose χ1, . . . , χs ∈
G∗ such that G∗ is the direct sum of the cyclic subgroups generated by the χj . Denote by dj the
order of χj and write Lj := Lχj and aij := aiχj . By [Par91, Proposition 2.1] for j = 1, . . . , s there
exist isomorphisms:

ϕj : L⊗djj
∼−→OY

(∑
i

dja
i
j

mi
Di

)
.

Notice that the coefficients (djaij)/mi in the above formula are integers. Using formulae (2.15)
of [Par91] and the isomorphisms ϕj above, one constructs for each pair χ, χ′ of non-trivial
characters an isomorphism

ϕχ,χ′ : L−1
χ ⊗ L−1

χ′
∼−→L−1

χχ′

(
−
∑

εiχ,χ′Di

)
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such that for every χ, χ′, χ′′ ∈G∗ the following diagram commutes (we set L1 =OY ):

L−1
χ ⊗ L−1

χ′ ⊗ L
−1
χ′′

//

��

L−1
χχ′(−

∑
i ε
i
χ,χ′Di)⊗ L−1

χ′′

��
L−1
χ ⊗ L−1

χ′χ′′(−
∑

i ε
i
χ′,χ′′Di) // L−1

χχ′χ′′(−
∑

i δ
i
χ,χ′,χ′′Di)

(3)

where δiχ,χ′,χ′′ = εiχχ′,χ′′ + εiχ,χ′ = εiχ,χ′χ′′ + εiχ′,χ′′ and the maps are induced by the ϕχ,χ′ in the
obvious way. We denote by µχ,χ′ : L−1

χ ⊗ L−1
χ′ → L−1

χχ′ the maps induced by composing ϕχ,χ′ with
the inclusion L−1

χχ′(−
∑
εiχ,χ′Di) ↪→ L−1

χχ′ . By the commutativity of (3), the collection of maps µχ,χ′
defines on E :=OY ⊕

⊕
χ6=1 L

−1
χ a commutative and associative algebra structure compatible

with the G-action defined by letting G act trivially on L1 =OY and via the character χ on L−1
χ

for χ 6= 1. We define X := Spec E with the natural map π :X → Y to be a standard G-cover
associated with the given set of building data. Notice that, since the L−1

χ are locally free, π is
flat and X is S2 if Y is.

X can be described locally above a point y ∈ Y as follows. Up to shrinking Y , we may
assume that all the Lχ are trivial and that the Di are defined by equations σi. If we denote by
zχ a coordinate on L−1

χ , χ ∈G∗\{1}, then X is given inside the vector bundle V (
⊕

χ6=1 L
−1
χ )∼=

Y ×Km−1 by the following set of equations:

zχzχ′ = cχ,χ′Πk
1σ

εi
χ,χ′
i zχχ′ , χ, χ′ ∈G∗\{1}, (4)

where the cχ,χ′ are nowhere vanishing regular functions and for χ= 1 we set zχ = 1. For
1 6= χ ∈G∗, denote by d the order of χ and write χ|Hi = ψaii , with 0 6 ai <mi := |Hi|. Eliminating
between the equations in (4), one gets

zdχ = bχΠk
1σ

(dai/mi)
i , (5)

where bχ is a nowhere-vanishing function. It follows immediately that X is a variety: indeed,
using the decomposition of π∗OX into G-eigenspaces, we may assume that a nilpotent element is
locally of the form fzχ for some character χ and some regular function f . Then by (5), (fzχ)k = 0
for some k only if f = 0. Using the local equations in (4), one can also show the following lemma.

Lemma 1.5. Use the notation as above. Let π :X → Y be a standard G-cover and y ∈ Y be a
point. Then the inertia subgroup Hy of y is equal to

∑
{i|y∈Di} Hi.

Proof. Since the question is local on Y , we may assume that X is given by the equations in (4).
Let x ∈X be a point lying above y. Then by (5) the coordinate zχ(x) does not vanish if and
only if χ|Hi = 1 for every i such that y ∈Di. Since an element g ∈G fixes x if and only if for
every χ ∈G∗ such that χ(g) 6= 1 the coordinate zχ(x) vanishes, this remark proves the claim. 2

Given a set of building data, the construction of the standard G-cover π :X → Y depends
of course on the choice of the characters χ1, . . . χs and of the isomorphisms ϕj . Assume that
χ′1, . . . χ

′
t are another set of characters of G such that G∗ is the direct sum of the cyclic subgroups

generated by the χ′l. Let d′l be the order of χ′l, i= 1, . . . , t; then by (5) the multiplication maps

induce for l = 1, . . . , t isomorphisms ϕ′l : L⊗d
′
l

χ′l

∼−→OY (
∑

i((klb
i
l)/mi)Di), where 0 6 bil <mi and

χ′l|Hi = ψ
bil
i . By the associativity and commutativity of the multiplication, the algebra structure

defined on OY ⊕
⊕

χ6=1 L
−1
χ by the ϕ′l is the same as that induced by the ϕj . Hence it is enough

to analyze to what extent the isomorphism class of π depends on the ϕj .
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Proposition 1.6. (i) (Global case.) If H0(O∗Y ) = K∗, then the building data determine π :X →
Y up to isomorphism of G-covers.

(ii) In general, given two standard covers πi :Xi→ Y , i= 1, 2, with the same building data,
there exists an étale cover Y ′→ Y such that, after base change with Y ′→ Y , π1 and π2 give
isomorphic G-covers.

Proof. (ii) We use the notation introduced above. Let E , E ′ be two OY -algebra structures on
OY ⊕

⊕
χ6=1 L

−1
χ given by isomorphisms ϕj , respectively ϕ′j . The isomorphisms ϕj , ϕ′j differ

by an automorphism of L⊗djj , namely by multiplication by an element kj ∈H0(O∗Y ). This
automorphism is induced by an automorphism of Lj if and only if kj has a djth root hj ∈H0(O∗Y ).
So, up to taking an étale cover, one can assume that the roots hj exist. By [Par91, (2.15)], the
hj can be used to define, for all χ ∈G∗\{1}, automorphisms ψχ of L−1

χ that commute with
the isomorphisms ϕχ,χ′ and ϕ′χ,χ′ .

To prove statement (i), just observe that if H0(O∗Y ) = K∗ no base change is necessary to
construct the isomorphism above. 2

Remark 1.7. Let π :X → Y be a G-cover with branch data Di, (Gi, ψi), let y ∈ Y , and let σi be
local equations for Di near y. Combining Proposition 1.6 with the local equations in (4), we see
that, up to passing to an étale cover of (Y, y), X is defined locally near y by the equations

zχzχ′ =
k∏
i=1

σ
εi
χ,χ′
i zχχ′ , χ, χ′ ∈G∗\{1}. (6)

1.3 Covers of smooth varieties
Here we find conditions for a G-cover of a smooth variety to be standard. We keep the notation
of the previous section.

Definition 1.8. Let Y be a smooth variety and let π :X → Y be a standard G-cover with
building data Lχ, Di, (Hi, ψi). By Lemma 1.5, the branch locus Dπ of π is the support of the
divisor

∑
i Di.

We define the Hurwitz divisor of π as the Q-divisor D :=
∑

i((mi − 1)/mi)Di. Notice that
the support of D is equal to Dπ.

We say that a variety is dc (has double crossings) if every point is either smooth or analytically
isomorphic to xy = 0. We say that a variety is gdc (has generically double crossings) if it is dc
outside a closed subset of codimension greater than or equal to two.

The following result generalizes the main result of [Par91].

Theorem 1.9. Let π :X → Y be a G-cover such that Y is smooth and X is S2. Then the
following hold.

(i) The variety X is normal if and only if π is standard and every component of the Hurwitz
divisor D has multiplicity less than one.

(ii) Assume that π is standard. Then X is gdc if and only if every component of D has
multiplicity less than or equal to one.

(iii) Assume that X is gdc. Then π is standard if and only if for every irreducible divisor F of
Y such that X is singular above F one has HF = Zs2 for some s.
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In the case G= Zr2, which is of special interest to us because of the applications in [AP09],
Theorem 1.9 reads as follows.

Corollary 1.10. Let π :X → Y be a Zr2-cover such that Y is smooth and X is S2. Then the

following hold.

(i) The variety X is normal if and only if π is standard and every component of D has

multiplicity less than one.

(ii) The variety X is gdc if and only if π is standard and every component of D has multiplicity

less than or equal to one.

Remark 1.11. Let π :X → Y be a standard G-cover with Y smooth and X gdc and let F be
a component of the branch divisor Dπ. By Lemma 1.5, we have HF =

∑
{i|Di=F} Hi. The pairs

(subgroup, character) corresponding to F can be determined as follows.

– Assume that F has multiplicity less than one in the Hurwitz divisor D. Then there is
precisely one index i with Di = F . In this case, Hi =HF and the character ψi is given by
the action of Hi on the tangent space to X at the generic point of an irreducible component
of π−1(F ) (cf. [Par91], §§ 1 and 2).

– Assume that F has multiplicity equal to one inD. Then there are precisely two indices i1 and
i2 such that Di1 =Di2 = F and Hi1 and Hi2 have order two. Hence, either HF =Hi1 =Hi2

or HF =Hi1 ⊕Hi2 . In the latter case the proof of Theorem 1.9 shows that Hi1 and Hi2 are
generated by the elements of HF that interchange the two branches of X at a general point
of π−1(F ).

Proof of Theorem 1.9 Statement (i) is [Par91, Theorem 2.1 and Corollary 3.1].

Therefore, consider the non-normal case. The cover π is flat since Y is smooth and X is S2,
and hence we write, as usual, π∗OX =OY ⊕

⊕
χ6=1 L

−1
χ . The cover is standard if and only if

there exist branch data Di, (Hi, ψi) such that for every χ, χ′ ∈G∗\{1} the zero divisor of the
multiplication map µχ,χ′ : L−1

χ ⊗ L−1
χ′ → L−1

χχ′ is equal to
∑

i ε
i
χ,χ′Di, where the εiχ,χ′ are defined

in § 1.2.

Notice that X, being S2, is non-normal if and only if it is singular in codimension 1. Fix a
component F of D such that X is singular above F . Write H :=HF . The cover π factors as
X →X/H → Y , and F is not contained in the branch locus of the map X/H → Y ; hence X/H
is generically smooth over F . It follows that there is an element of H that exchanges the two
branches of X at a general point of π−1(F ).

Let X̃ →X be the normalization, let πν : X̃ → Y be the induced G-cover, let (H ′, ψ′) be the
pair (subgroup, character) corresponding to F for the cover πν , and let m′ be the order of H ′ (if
πν is not branched on F , we take H ′ and ψ′ to be trivial). Since the normalization map X̃ →X

is G-equivariant, we have a short exact sequence:

0→H ′→H → Z2→ 0. (7)

We consider the H-covers p :X → Z :=X/H and pν : X̃ → X̃/H = Z, and we study the
algebras A := p∗OX,F ′ and Aν := pν∗OX̃,F ′ , where F ′ is an irreducible component of the inverse
image of F in Z. We denote by t ∈ OZ,F ′ a local parameter.
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We distinguish three cases.

Case (a): |H|= 2.
In this case H ′ = {0}, and X is given locally by z2 = at2, where a ∈ O∗Z,F ′ .

Case (b): H is cyclic of order 2m′ > 4.
Let ψ ∈H∗ be a generator that restricts to ψ′ on H ′. The algebra Aν is generated by elements

z, w such that
zm
′
= atw, w2 = b (8)

where a, b ∈ O∗Z,F ′ and H acts on z via the character ψ and on w via the character ψm
′
. The

eigenspace corresponding to ψj is generated by zj := zj for 0 6 j < m′, and by zj := wzj−m
′

for
m′ 6 j < 2m′. Since the inclusion A⊂Aν is G-equivariant, A is generated by elements of the
form tajzj for suitable aj > 0.

Since H fixes p−1(F ′) pointwise, by the argument in the proof of Lemma 1.5 A is contained
in the subalgebra B of Aν generated by

1, zm
′
= tw, zj , 1 6 j 6 2m′ − 1, j 6=m′.

The algebra B is also generated by z1 = z, zm′+1 = wz, with the only relation bz2
1 = z2

m′+1; hence
Spec B is gdc and the map Spec B → SpecA is an isomorphism. So A= B.

Case (c): H is not cyclic.
In this case m′ is even and H ∼=H ′ × Z2. We denote by ψ ∈H∗ a character that restricts to

ψ′ on H ′ and by φ the character such that H ′ = ker φ. Aν is generated by z, w such that

zm
′
= at, w2 = b, (9)

where a, b ∈ O∗Z,F ′ and H acts on z via the character ψ and on w via the character φ. Arguing
as in the previous case, one checks that A is generated by

1, z1 := z, . . . , zm
′−1, tw, zm′+1 := zw, . . . , zm

′−1w.

The algebra A can also be generated by z1, zm′+1 with the only relation bz2
1 = z2

m′+1.
For χ1, χ2 ∈G∗\{1}, denote by εχ1,χ2 the order of vanishing on F of the multiplication map

µχ1,χ2 : L−1
χ1
⊗ L−1

χ2
→ L−1

χ1χ2
. Using the above analysis and arguing as in the proof of [Par91,

Theorem 2.1], one obtains the following rules, up to exchanging χ1 and χ2.

Case (a). In this case we have:
εχ1,χ2 = 2 if χ1, χ2 /∈H⊥; and
εχ1,χ2 = 0 otherwise.

Case (b). For i= 1, 2, write χi|H = ψαim
′+βi , where αi = 0 or 1 and 0 6 βi <m′. Then we have:

εχ1,χ2 = 2 if α1 = α2 = 1, β1 = β2 = 0;
εχ1,χ2 = 1 if α1 = 1, β1 = 0, β2 > 0; and
εχ1,χ2 = [(β1 + β2 − 1)/m′] in the remaining cases.

Case (c). For i= 1, 2, write χi|H = φαiψβi ,where αi = 0 or 1 and 0 6 βi <m′. Then we have:
εχ1,χ2 = 2 if α1 = α2 = 1, β1 = β2 = 0;
εχ1,χ2 = 1 if α1 = 1, β1 = 0, β2 > 0; and
εχ1,χ2 = [(β1 + β2)/m′] in the remaining cases.

In the above analysis the group Zs2 appears in case (a) and case (c) for m′ = 2. In case (a),
the cover π is standard: F appears twice among the branch data, both times with label H.
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In case (c), π is standard for m′ = 2: F appears twice among the branch data, with labels H1

and H2 corresponding to the subgroups of order two of H distinct from H ′. Moreover, it is not
difficult to check that in case (b) and in case (c) for m′ 6= 2 the cover is not standard. So we have
proven (iii) and also that every component of the Hurwitz divisor D of a standard gdc cover has
multiplicity less than or equal to one.

Vice versa, assume that π is standard and F appears in D with multiplicity less than or equal
to one. If the multiplicity is less than one then the cover is normal over F . If the multiplicity is
equal to 1, then F appears twice among the branch data, and the corresponding subgroups H1

and H2 have order two. If H1 =H2, then the cover is given over the generic point of F by the
equation z2 = ut2, with u a unit, so it is gdc. If H1 6=H2, then the cover is given by the equations
z2
1 = at, z2

2 = bt, with a and b units. These equations are equivalent to az2
2 = bz2

1 , so the cover is
gdc. This completes the proof of (ii). 2

1.4 Covers of normal varieties
Let π :X → Y be a G-cover such that Y is normal and X is S2. Let Y0 be the non-singular
locus of Y . Then the restriction π0 :X0→ Y0 is a G-cover, and by Lemma 1.2 π is the unique
S2-extension of π0 to Y . Thus the theory in the normal case is the immediate extension of the
non-singular case. We record the following changes.

(i) The sheaves Fχ are no longer invertible but they are S2, i.e. in this case reflexive, divisorial
sheaves. The multiplication maps are

Fχ ×Fχ′ →Fχ ⊗Fχ′ → (Fχ ⊗Fχ′)∗∗→Fχχ′ .

(ii) The branch divisors Dg are Weil divisors.

Otherwise, the same fundamental relations between Fχ and Dg must hold.
One has to be careful that the morphism π may be not flat; indeed, it is flat if and only if all

Fχ are invertible. Also, for a singular Y the branch locus may have non-divisorial components.

Example 1.12. Let X = A2 = Spec k[x, y], G= Z2 acting by x 7→ −x, y 7→ −y, and let Y be
the quotient Spec k[x2, xy, y2], a quadratic cone. Then π is ramified only over the vertex P of
the cone. The divisors Dg are zero. The eigensheaves are F1 =OY and F−1, and the divisorial
sheaf corresponding to a line ` through the vertex. F−1 is also isomorphic to the OY -submodule
of OX generated by x and y.

The fundamental relation in this case is 2F−1 = 0.

1.5 Covers of non-normal varieties
Now we assume that Y is a non-normal gdc and S2 variety. Let C be the divisorial part of the
singular locus of Y , let ν : Ỹ → Y be the normalization, let C ′ be the inverse image of C in Ỹ ,
and let C̃ ′→ C ′ be the normalization. Since Y is gdc, there is a biregular involution ι on C̃ ′

induced by the degree two map C̃ ′→ C ′→ C. (If the components of Y are smooth, then C̃ ′ is a
union of several pairs of varieties, exchanged by the involution ι. In general, some components
of C̃ map to themselves.) Consider a commutative diagram:

X ′ //

��

X

��
Ỹ // Y
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where X and X ′ are gdc and S2 varieties, the vertical arrows are G-covers, X ′→ Ỹ is a cover as
in the previous section, and X ′→X is a birational morphism.

We denote by B, B′ the preimages of C, C ′ in X, X ′, and by B̃′ the normalization of B′.

B̃′
//

��

j 66 B′ //

��

� p

  AA
AA

AA
AA

B � o

��??
??

??
??

��

X ′ //

��

X

��

C̃ ′
//ι 66 C ′ //� o

  @@
@@

@@
@@

C � o

��>>
>>

>>
>>

Ỹ
ν // Y

(10)

We first give two constructions for the coverX → Y starting withX ′→ Ỹ and the appropriate
data for the double locus. One construction proceeds by S2-fication of the ‘nice’ part. The second
one is by a gluing procedure, and the result is very convenient for computing the invariants of
X. Finally, we show that indeed every X → Y comes from these constructions.

Theorem 1.13. Suppose we are given:

(i) Y , Ỹ , C ′, (C̃ ′, ι);

(ii) a G-cover X ′→ Ỹ , with X ′ an S2 and gdc variety.

Let B′→ C ′ be the induced cover and let B̃′→B′ be its normalization.

Then X ′ can be glued to a cover X → Y with X gdc and S2 if and only if it is generically

smooth along B′, and there exists an involution j : B̃′→ B̃′ that covers the involution ι : C̃ ′→ C̃ ′

and commutes with the action of G on B̃′.

Proof by S2-fication. Assume that X exists. Then the map B̃′→X induces an involution j as
required. In addition, if X ′ were not generically smooth along a component F of B′, then X
would have generically at least three branches along the image of F . Thus these two conditions
on X ′ are necessary for the existence of X.

Next we show that they are also sufficient. We start by identifying the ‘bad locus’. It includes
the singular locus of Ỹ , the intersection of branch divisors between themselves and with C ′.
The image of this bad locus in Y has codimension greater than or equal to two. Let Y0 be its
complement, and restrict all varieties and covers to Y0.

The condition that the involution j commutes with the G-action implies that for any
irreducible component F of B′ the subgroup H of elements of G that fix F pointwise is the
same as the subgroup of elements that fix jF pointwise. Since X ′ is generically smooth along
B′, one has (cf. [Par91, § 1]) H = Zn for some n and, working étale locally, H acts locally by
(x, x2, . . . , xn) 7→ (ξx, x2, . . . , xn) near F and by (y, y2, . . . , yn) 7→ (ξay, y2, . . . , yn) near jF for
some primitive root ξn = 1 and (a, n) = 1. Here yi = j∗xi, i= 2, . . . , n.

We glue X ′0 along B0 := B̃′0/j =B′0/ι to obtain a variety X0 with a finite morphism to Y0.
The G-action extends to X0, because j commutes with the G-action, and is of the type (smooth)
× (compatible action of curves), where ‘compatible’ means that, working étale locally, Zn acts
on xy = 0 by x 7→ ξx, y 7→ ξay.
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Over the double locus we have K[x, y]/(xy) and the ring of Zn-invariants is K[u, v]/(uv),
where u= xn and v = yn. Thus, X0 has only normal crossings and X0→ Y0 is a G-cover.

Finally, we apply Lemma 1.2 to obtain an S2 and gdc cover X → Y by taking S2-fication. 2

Proof by explicit gluing. We obtain X by gluing X ′ along the involution j : B̃′→ B̃′, i.e. as the
pushout of the following commutative diagram.

B̃′
//

��

B̃′/j O
B̃′

O
B̃′/j

oo

X ′ OX′

OO

Since all varieties are affine over Y , OX is the fiber product of the corresponding diagram
of OY -algebras, in which we identify sheaves with their pushforwards on Y . We can rewrite this
fiber product diagram by saying that OX is the kernel in the exact sequence

0→OX →OX′ ⊕OB̃′/j
β−−→O

B̃′
.

Further, we have

0→O
B̃′/j
→O

B̃′
→A→ 0,

whereA is the alternating part (if char K 6= 2 thenO
B̃′

=O
B̃′/j
⊕A), and the image of β contains

O
B̃′/j

. Hence, we have induced exact sequences

0→OX →OX′
α−−→A, 0→OX →OX′

α−−→ im α→ 0. (11)

The variety X thus defined is S2 by the next Lemma 1.16, since im α is a subsheaf of A and
so obviously does not have embedded primes. It is gdc again by looking in codimension 1 as in
the previous proof. The G-action on X ′ descends to a G-action on X since j commutes with
the G-action on B̃′ and by construction the subalgebra of G-invariants is the algebra of Ỹ glued
along C̃ ′/ι, i.e. OY . 2

The varieties X obtained in the two proofs coincide, since they both have finite morphisms
to Y , they are both S2, and they coincide over an open subset Y0 ⊂ Y with codim(Y \Y0) >2.

Warning 1.14. It may happen that there is no covering involution of B′ but only of its
normalization B̃′. Then the double locus of X is obtained from B̃′/j by some additional gluing in
codimension 1 (codimension 2 for X). As a consequence, branches of X may not be S2. However,
the variety X is S2. Multiple examples of this phenomenon are contained in [AP09, § 5.4].

On the other hand, the involution j need not be unique. For instance, if g ∈G has order two,
then jg is another involution satisfying the assumptions for gluing. The next example shows that
gluing via different involutions can give rise to non-isomorphic covers.

Example 1.15. Let Y = {u2 − wv2 = 0} ⊂ Au,v,w. The normalization of Y is the map Ỹ = A2
s,t→

Y defined by u= st, v = t, w = s2. Here C = {u= v = 0}, C̃ ′ = C ′ = {t= 0} and the involution ι
of C̃ ′ is given by s 7→ −s.

Let X ′ = {ε2 = 1} ⊂ A3
s,t,ε and let p :X ′→ Ỹ be the trivial Z2 cover, given by the projection

on the coordinates s, t. The Z2-action is ε 7→ −ε and B′ = B̃′ = {t= 0, ε2 = 1}. There are two
involutions of B̃′ that lift ι, namely j1 := (s, ε) 7→ (−s, ε) and j2 := (s, ε) 7→ (−s,−ε). The cover
X1→ Y obtained by gluing via j1 is obviously the trivial Z2-cover.
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We describe the cover X2→ Y obtained by gluing via j2 following the second proof of
Theorem 1.13. The map B̃′→ B̃′/j2 corresponds to the inclusion K[sε]→K[s, ε]/(ε2 − 1) and
the map B̃′→X ′ corresponds to the surjection K[s, t, ε]→K[s, ε]/(ε2 − 1). The fiber product of
these two ring maps can be identified with R := K[s, t, εt]/(ε2 − 1)⊂K[s, t, ε]/(ε2 − 1). The map
R→K[x, y, z]/(x2 − y2) defined by s 7→ z, t 7→ x, εt 7→ y is an isomorphism, and hence X2 is the
union of two copies of A2 glued along a line. The cover X2→ Y is given by (x, y, z) 7→ (x, yz, z2),
and the Z2-action on X is given by (x, y, z) 7→ (x,−y,−z). Thus (0, 0, 0) ∈ Y is the only branch
point. Hence the ramification locus of a standard G-cover has always pure codimension 1, but
this not true for the G-covers obtained from a standard cover by gluing, and the analogue of
Lemma 1.5 does not hold.

Lemma 1.16. Using the notations as given in the second proof by gluing, assume that X ′ is Sn
for some n> 2. Then X is Sn if and only if im α is Sn−1.

Proof. We use the cohomological interpretation of depth using local cohomology [Har67,
3.8] (alternatively and equivalently one can use Exti(OX,Z/mX,Z , •)). A sheaf E satisfies
Sn if and only if for every irreducible subvariety Z ⊂ Y one has H i

Z(E) = 0 for all i <
min(n, codim Z). Looking at the long exact sequence of cohomologies corresponding to the short
exact sequence (11), we get H i

Z(OX) =H i−1
Z (im α) for all i <min(n, codim Z). The statement

now follows. 2

We spell out Theorem 1.13 in a special case, which is of interest to us because of the
applications in [AP09].

Example 1.17. Take G= Zr2. For simplicity of exposition, we assume that Y = Y1 ∪ Y2 is the
gdc union of two smooth projective surfaces that intersect along a smooth rational curve C,
but all our considerations generalize straightforwardly to the case of a gdc surface with smooth
components whose double locus is a union of smooth rational curves.

We have Ỹ = Y1 t Y2, and hence an S2 and gdc G-cover X ′→ Ỹ is the disjoint union of S2

and gdc covers πi :X ′i→ Yi, i= 1, 2. By Corollary 1.10, the covers πi are standard. We denote
by D

(i)
1 , . . . , D

(i)
ri , g(i)

1 , . . . , g
(i)
ri the branch data of πi, i= 1, 2. We write C̃ ′ = C ′ = C ′1 t C ′2,

B′ =B′1 tB′2 and B̃′ = B̃′1 t B̃′2. We denote by γi the generator of subgroup HC′i
. An involution

j of B̃′ as in Theorem 1.13 exists if and only if there is an isomorphism B̃′1→ B̃′2 compatible
with the G-action. This is equivalent to the following conditions.

(i) One has γ1 = γ2 =: γ.

(ii) For y ∈ C, denote by m
(1)
y,h the intersection multiplicity at y of D(1)

h with C = C1, h=

1, . . . , r1 and by m(2)
y,s the intersection multiplicity at y of D(2)

s with C = C2, s= 1, . . . , r2.
Then ∑

h

m
(1)
y,tg

1
h =

∑
s

m(2)
y,sg

2
s mod γ, ∀y ∈ C.

Indeed, condition (i) follows immediately by the fact that j commutes with the action of
G. In addition, by the normalization algorithm of [Par91, § 3] condition (ii) is equivalent to
requiring that the branch data of the normalizations B̃′1→ C and B̃′2→ C of the G/〈γ〉-coverings
of C = C1 = C2 induced by π1 and π2 are the same. Since C is smooth rational, the branch data
are enough to determine the building data (cf. Remark 1.3). Since C is projective, the building
data determine the cover up to isomorphism by Proposition 1.6.
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Assume that the gluing conditions are satisfied. Giving an involution of B̃′ that commutes
with the G action is the same as giving an isomorphism of G-covers α : B̃′1→ B̃′2. Then any
other such map α′ is equal to αg for some g ∈G and the automorphism of X ′ =X ′1 tX ′2 defined
by x 7→ x if x ∈X ′1 and x 7→ gx if x ∈X ′2 induces an isomorphism of the cover of Y obtained by
gluing via α with the one obtained by gluing via α′. Hence in this case all the possible involutions
give isomorphic covers.

Theorem 1.18 (The reverse). Vice versa, every G-cover X → Y with gdc S2 varieties X, Y is
obtained via the gluing construction of Theorem 1.13.

Proof. Given X → Y and the normalization Ỹ → Y , let X ′′ be the fiber product X ′′ =X ×Y Ỹ .
We define X ′ as X ′ := S2(X ′′red)→X ′′red→X ′′. Thus, X ′ is S2 by definition, and it maps to Ỹ .
By the universality of taking the reduced part and S2-fication, there is an induced G-action on
X ′. By the universal property of G-quotients, we also have a morphism X ′/G→ Y . We claim
that it is an isomorphism.

It is enough to check this in codimension 1 over the double locus. We claim that generically
over the double locus of Y , the cover is (smooth) × (admissible action of curves), where
‘admissible’ means that, working étale locally, X is given by xy = 0, and the action is x 7→ ξx,
y 7→ ξay for some primitive root ξn = 1 and (a, n) = 1. Indeed, let HF be the subgroup of elements
that restrict to the identity on an irreducible component F of the double locus of X. Then on
the normalization on both branches we have the same subgroup for the preimages F ′ and jF ′.
Since generically F ′, jF ′ are smooth, HF = Zn for some n> 1 (note that one possibly has n= 1).

Thus, étale locally the morphism X → Y can be written as

(smooth)×K[u, v]/(uv)→K[x, y]/(xy), u 7→ xn, v 7→ yn,

where G acts as x 7→ ξx, y 7→ ξay, ξn = 1, (a, n) = 1. By computation, we get that X ′′ corresponds
to (smooth) ×K[x, y]/(xy, yn)⊕K[x, y]/(xy, xn), and X ′ to K[x]⊕K[y]. The quotient X ′/G is
then K[u]⊕K[v], i.e. Ỹ .

This proves that φ :X ′/G→ Ỹ is an isomorphism outside a closed subset of codimension
greater than or equal to two. Since both are finite over Y and S2, φ is an isomorphism. 2

2. Singularities of covers

2.1 The canonical divisor and slc singularities
Let Z be a variety, let Bj , j = 1, . . . , n, be effective Weil divisors on X, possibly reducible, and
let bj be rational numbers with 0 6 bj 6 1. Set B =

∑
j bjBj .

Definition 2.1. Assume that Z is a normal variety. Then Z has a canonical Weil divisor KZ

defined up to linear equivalence. The pair (Z, B) is called log canonical if the following apply.

(i) The divisor KZ +B is Q-Cartier, i.e. some positive multiple is a Cartier divisor.

(ii) Every prime divisor of Z has multiplicity less than or equal to one in B and for every
proper birational morphism h : Z ′→ Z with normal Z ′, in the natural formula

KZ′ + h−1
∗ B = h∗(KZ +B) +

∑
aiEi

one has ai >−1. Here, Ei are the irreducible exceptional divisors of h, the pull back h∗ is defined
by extending Q-linearly the pullback on Cartier divisors, and h−1

∗ B =
∑
bjh
−1
∗ Bj is the strict
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preimage of B. The coefficients ai are called discrepancies. For the non-exceptional divisors,
already appearing on Z, one defines a(Bj) =−bj .

If char K = 0, then Z has a resolution of singularities h : Z ′→ Z such that Supp(h−1
∗ B) ∪ Ei

is a normal crossing divisor; then it is sufficient to check the condition ai >−1 for this morphism
h only.

Definition 2.2. A pair (Z, B) is called semi log canonical if the following apply.

(i) The variety Z satisfies Serre’s condition S2.

(ii) The variety Z is gdc, and no divisor Bj contains any component of the double locus of Z.

(iii) Some multiple of the Weil Q-divisor KZ +B, well defined thanks to the previous condition,
is Cartier.

(iv) Denoting by ν : Z̃→ Z the normalization, the pair (Z̃, (double locus) + ν−1
∗ B) is log

canonical.

Lemma 2.3. Let f :X → Y be a finite morphism of degree d between equidimensional S2

varieties. Assume that either char K = 0 or f is Galois and char K does not divide d.

Let Y0 be an open subset and denote by f0 :X0→ Y0 the induced cover. Assume that the
following are true.

– One has codim(Y \Y0) > 2 and both X0 and Y0 are dc.

– There exist effective Q-divisors BX of X and BY of Y , not containing any component of
the double locus, such that (f0)∗(KY0 +BY0) = (KX0 +BX0), where BY0 is the restriction
of BY to Y0 and BX0 is the restriction of BX to X0.

Then the following hold.

(i) The divisor KY +BY is Q-Cartier if and only if KX +BX is also Q-Cartier.

(ii) The pair (Y, BY ) is slc if and only if the pair (X, BX) is also slc.

Proof. (i) Let i :X0→X be the inclusion map. If the sheaf L=OY (N(KY +BY )) is invertible
then we have a homomorphism

OX(N(KX +BX)) = i∗(OX0(N(KX0 +BX0)))→ f∗L

which is an isomorphism outside codimension 2. Hence it must be an isomorphism by the
S2 condition. Similarly, if the sheaf L′ =OX(N(KX +BX)) is invertible, then the sheaf L=
OY (Nd(KY +BY )) is isomorphic to the norm of L′, so is invertible.

(ii) Assume first that X and Y are normal. In this case the statement, due to Shokurov, is
very well known. We recall the proof because usually it is only stated and proved in characteristic
zero. Let hY : Y ′→ Y be some partial resolution with normal Y ′, X ′ be the normalization of
X ×Y Y ′, and let hX :X ′→X, f ′ :X ′→ Y ′ be the induced maps.

Pick an irreducible divisor E on Y ′, and let F be an irreducible divisor on X ′ over it. By our
condition on char K, the field extension K(F )/K(E) is separable, and if πX , πY are uniformizing
parameters in the discrete valuation rings OX′,F and OY ′,E , then one has πY = u · πeX for a unit
u and some integer e dividing d and hence coprime to char K.

Then the Riemann–Hurwitz formula applies and says that generically along E and F one has
(f ′)∗(KY ′ + E) =KX′ + F . Comparing this to the identity (f ′)∗h∗Y (KY +BY ) = h∗X(KX +BX)
and the definition of the log discrepancy, one obtains that 1 + aF = e(1 + aE). Thus, aF >
−1 ⇐⇒ aE >−1. This proves that (X, BX) is lc if and only if (Y, BY ) is lc.
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Now consider the general gdc case. Let νX : X̃ →X be the normalization. We have

K
X̃

+BX̃ := ν∗X(KX +BX) =K
X̃

+ ν−1
X∗B

X + (double locus),

and similarly for Y . Thus, the double loci appear in the divisors BX̃ , BỸ with coefficient 1. By the
Riemann–Hurwitz formula again, for the normalizations we still have f̃∗(K

Ỹ
+BỸ ) =K

X̃
+BX̃ .

We finish by applying the normal case. 2

We now extend Definition 1.8 of the Hurwitz divisor to the case of a gdc base Y .

Definition 2.4. Let π :X → Y be a G-cover of S2 and gdc varieties. For a prime Weil divisor
F ⊂ Y , we define ρF ∈Q as follows.

– If F is contained in the double locus of Y , then ρF = 0.
– If F is not contained in the double locus of Y , but π−1(F ) is contained in the double locus

of X, then ρF = 1.
– If F is not contained in the double locus of Y , π−1(F ) is not contained in the double locus

of X and m is the ramification order of π at F , then ρF = (m− 1)/m.

We define the Hurwitz divisor D of π to be the Q-divisor
∑

F ρFF .
Notice that if X → Y is a standard G-cover with X gdc this definition coincides with

Definition 1.8 by Theorem 1.9.

Note that D does not contain any components of the double locus of Y .

Proposition 2.5. Let π :X → Y be a G-cover as in Definition 2.4 and let D be the Hurwitz
divisor of π, let X ′→ Ỹ be the corresponding S2 and gdc G-cover (cf. § 1.5). Then the following
hold.

(i) The divisor KX is Q-Cartier if and only if KY +D is also Q-Cartier, and then KX =
π∗(KY +D).

(ii) The variety X is slc if and only if the pair (Y, D) is also slc.

Proof. Recall that |G| and char K are coprime by assumption. So Lemma 2.3 applies and we
may assume that Y is dc. We need to show that KX = π∗(KY +D). This is equivalent to the
following equality for the cover π̃ : X̃ → Ỹ , where X̃ is the normalization of X ′ (and of X):

K
X̃

+ (double locus) = π̃∗(K
Ỹ

+ (double locus) + ν∗D).

In view of Definition 2.4 the formula follows easily by the usual Hurwitz formula. 2

2.2 Cohen–Macaulay covers
By Lemma 1.1, a G-cover over a smooth base is CM. Here, we give a partial generalization of
this case to the case of a non-normal base. We use the notations of Theorem 1.13 and the exact
sequence (11).

Proposition 2.6. Assume that X ′ is CM (for example, Ỹ is smooth). Then X is CM if and
only if the sheaf im α is CM.

Proof. The proof is immediate by Lemma 1.16. 2

Using Proposition 2.6 it is not hard to give examples of abelian covers X → Y such that Y
is CM and gdc, and X is gdc and S2 but not CM.
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Example 2.7. We take G= Z2 and assume char K 6= 2; for any prime p one can construct similar
examples with G= Zp and char K 6= p.

Let Y = Y1 ∪ Y2 be the union of two copies of P3 glued transversally along a plane C. Let
L1 and L2 be distinct lines on C, and for i= 1, 2 let Di ⊂ Yi be a quadric that restricts to
2Li on C. For a generic choice, Di is a quadric cone with vertex yi ∈ Li, and the points y1, y2

and y3 := L1 ∩ L2 are distinct. Let X ′i→ Yi be the double cover of Yi branched on Di, and let
X ′ =X ′1 tX ′2. Then X ′ is Gorenstein, and it has an ordinary double point over y1 and y2 and no
other singularity. Write C ′ = C ′1 t C ′2 and B′ =B′1 tB′2; then B′i is the union of two copies of C ′i
glued transversally along Li and B̃′→ C ′ is the trivial Z2-cover. Hence there exists an involution
j of B̃′ that commutes with the Z2-action, and by Theorem 1.13 X ′ can be glued to an S2 and
gdc cover X → Y . The dc locus of X is the complement of the preimage of L1 ∪ L2.

In the exact sequence (11) each term splits under the G-action and the maps are compatible
with the splitting, so we get two exact sequences, one for each character of G. Since A=OC ⊕OC
and Z2 acts on A by switching the two summands, the sequence for the non-trivial character is

0→F−→OY1(−1)⊕OY2(−1) α−−−−→OC ,

where F− (respectively A−) is the antiinvariant summand of OX (respectively of A). By
definition, the map OYi(−1)→OC factorizes as OYi(−1)→OC(−Li)→OC . Hence, im α−

coincides with Iy3OC , the maximal ideal of y3 in C, and therefore it is not S2. It follows by
Proposition 2.6 that X is not CM over y3.

Let ȳ ∈ L1 be a point distinct from y3; in a neighborhood of ȳ we have (D1 +D2) ∩ Y2 = L1,
and thus D1 +D2 is not Q-Cartier. Since Y is Gorenstein, it follows that 2KY +D1 +D2 is not
Q-Cartier either, and hence KX is not Q-Cartier by Proposition 2.5.

2.3 Cartier index of KX

All the statements in this section are étale local, so we often pass to a smaller neighborhood of
a point without explicit mention of the fact.

For convenience, we write ‘KX ’ to denote the divisorial sheaf ωX (recall that X is
Gorenstein in codimension 1 and S2). We also use the additive notation D1 +D2 for the sheaf
(OX(D1)⊗OX(D1))∗∗.

2.3.1 Standard covers with Y normal. We consider the following situation.

– Suppose that Y is a normal variety and C is a reduced effective divisor on Y such that
KY + C is Cartier.

– Suppose that π :X → Y is a standard gdc G-cover (so X is automatically S2 by Lemma 1.1).
We assume that X is generically smooth over C, and we denote by B the preimage of C in
X. Therefore, B is also a reduced effective divisor.

Let D be the Hurwitz divisor of π; then we have

KX +B = π∗(KY +D + C).

Thus, if d is the exponent of G, then the divisor d(KY +D + C) is Cartier (recall that the
divisors Di are Cartier by the definition of a standard cover in § 1.2), and thus d(KX +B) is
also Cartier.

Fix a point y ∈ Y ; the purpose of this section is to compute the Cartier index of KX +B at
a point x ∈X such that π(x) = y. Here we are interested mainly in the case B = 0, but the case
of a pair is needed in the next section to treat the case Y non-normal.
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In order to state our result we need some notation. We label the branch data Di, (Hi, ψi),
i= 1, . . . , k, in such a way that Di ⊆ C if and only if i6 p. Since the question is local on Y
we may assume that y ∈Di for every i. Consider the map G :=⊕Hi→G. By Lemma 1.5, the
image of this map is the inertia subgroup Hy; we denote by N the kernel. We let χ ∈G∗ be the
character ψp+1 · · · ψk.
Reminder. Since the group G is finite abelian, the map G∗→H∗y is surjective. Hence the character
χ is the pullback of a character of Hy if and only if it is the pullback of a character of G.

Proposition 2.8. Notation and assumptions are as given previously.

The Cartier index of KX +B at x is equal to the order of N/(N ∩ ker χ).

In particular, KX +B is Cartier if and only if χ is the pullback of a character χ ∈G∗.

Proof. Since the question is local, we may assume that the line bundles Lχ, OY (Di) and
OY (KY + C) are trivial. The map X →X/Hy is étale. Hence, up to replacing Y by X/Hy,
we may assume that Hy =G, or, equivalently, that π−1(y) = {x}. We denote by u1, . . . , uk local
equations of D1, . . . , Dk near y. By Remark 1.7, up to passing to an étale cover of Y we may
assume that X is given by

zχzχ′ = Πk
1u

εi
χ,χ′
i zχχ′ , χ, χ′ ∈G∗\{1}. (12)

The equations:

zm1
1 = u1, . . . zmkk = uk (13)

define inside Y ×Kk a G-cover X → Y (G acts on zi via the character ψi), the maximal totally
ramified cover of Y with branch data Di, (Hi, ψi) (here we regard Hi as a subgroup of G). Since
Y is gdc by assumption and X → Y and X → Y have the same Hurwitz divisor, X is also gdc
by Theorem 1.9.

For every χ ∈G∗, write χ= ψ
a1
χ

1 · · · ψ
akχ
k , with 0 6 aχi <mi for i= 1, . . . , k; then setting

zχ = z
a1
χ

1 · · · z
akχ
k defines a map p :X →X which is the quotient map for the action of the kernel

N of G→G. The map p is unramified in codimension 1 and p−1(x) consists of just one point x.

Denote by B the preimage of C (and of B) in X; observe that KY +D + C pulls back to
KX +B on X and to KX +B on X. If τ is a generator of OY (KY + C) then OX(KX +B) is
generated by the residue σ on X of the rational differential form:

(zm1−1
1 · · · zmp−1

p )dz1 ∧ · · · ∧ dzk ∧ τ
(zm1

1 − u1) · · · (zmkk − uk)
.

Thus OX(KX +B) is invertible and G acts on the local generator σ via the character χ. Set
Z :=X/(N ∩ ker χ). The map X → Z is unramified in codimension 1 and σ descends on Z to a
generator of OZ(KZ +BZ), where BZ is the image of B. The map Z→X is a cyclic cover with
Galois group N/(N ∩ ker χ) with the following properties.

– It is unramified in codimension 1 and the preimage of x consists only of one point.

– The pullback of OX(KX +B) is a line bundle on which the Galois group acts via a primitive
character.

It follows that Z→X is a canonical cover and that the Cartier index of KX +B at x is equal
to [N :N ∩ ker χ]. 2
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Corollary 2.9. Let π :X → Y be a standard abelian with X and Y gdc and Y Gorenstein,
let y ∈ Y and let x ∈X be a point such that π(x) = y. Then X is Gorenstein at x if and only if
the character χ descends to a character χ of Hy.

Proof. The variety X is Cohen–Macaulay by Lemma 1.1 and KX is Cartier by Proposition 2.8. 2

Remark 2.10. Corollary 2.9 is proven in [Iac06] under the assumption that X is normal and Y
is smooth.

2.3.2 The case Y non-normal. Here we consider the problem of determining the Cartier
index of KX at a point x ∈X of a G-cover X → Y with Y non-normal of Cartier index 1. The
situation is much more complicated than in the case Y normal and we are able to give only a
partial answer that is, however, sufficient for the applications in [AP09]. The main difficulty is
that one does not know how to write down an analogue of the maximal totally ramified cover
used in the proof of Proposition 2.8.

We consider the following setup:

– we assume that Y = Y1 ∪ · · · ∪ Yt, where Yi is irreducible for i= 1, . . . , t, is a gdc and S2

variety; Ỹ = Ỹ1 t · · · t Ỹt→ Y is the normalization;

– we assume that π :X → Y is an S2 and gdc G-cover obtained by gluing a cover X ′ =
X ′1 t · · · tX ′t→ Ỹ such that X ′i→ Ỹi is standard for every i;

– we assume that y ∈ Y and x ∈X are points such that π(x) = y; we assume that y lies on
every component of the branch locus of π.

We denote by Di, (Hi, ψi), i= 1, . . . , k the branch data of the standard cover X ′→ Ỹ , and
we assume that Di is contained in the preimage C ′ of the double locus of Y if and only if i6 p.
Consider the map G :=⊕Hi→G. As in the case Y normal, we denote by χ ∈G∗ the character
ψp+1 · · · ψk. Then we have the following proposition.

Proposition 2.11. In the above setup, if KX is Cartier, then the following are true.

(i) The divisor KY +D is Q-Cartier.

(ii) The character χ is the pullback of a character χ ∈G∗.

Proof. (i) Part (i) follows immediately by Proposition 2.5.
(ii) For every i= 1, . . . , t, denote by C ′i ⊂ Ỹi (respectively B′i ⊂X ′i) the preimage of the

double locus of Y in Ỹi (respectively in X ′i). Let χ ∈G∗ be the character via which G acts on
OX(KX)⊗K(x) at x. Let x′i ∈X ′i be a point that maps to x and let yi be the image of x′i in Ỹi.
Since KX pulls back to KX′i

+B′i on X ′i, the inertia subgroup Hyi acts on OX′i(KX′i
+B′i)⊗K(x′i)

via the restriction of χ. Set Gyi :=
⊕
{j|yi∈Dj} Hj and let χyi be the restriction of χ to Gyi ; the

map Gyi →Hyi is a surjection by Lemma 1.5. By the proof of Proposition 2.8, χ pulls back on
Gyi to χyi . Since G=

∑
{y′∈Ỹ |y′ 7→y} Gy′ , it follows that χ pulls back to χ on G. 2

We now prove a partial converse of Proposition 2.11. Assume that for every component Ỹi of
Ỹ the map Ỹ → Y induces a homeomorphism Ỹi→ Yi onto its image (this is always true up to
an étale cover). Then we associate to (Y, y) an incidence graph ΓY,y as follows.

– The vertices of ΓY,y are indexed by the branches of (Y, y).

– The edges are indexed by the components of the double locus C of Y .
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– The edge corresponding to a component F of C connects the vertices corresponding to the
two branches of Y through F .

Proposition 2.12. In the above setup, assume the following:

(i) the graph ΓY,y is a tree;

(ii) the divisor KY is Cartier and there exists m such that m(KY +D) is Cartier and
(m, char K) = 1;

(iii) the character χ is the pullback of a character χ ∈G∗.

Then KX is Cartier.

Proof. Let C ′i ⊂ Ỹi the restriction of the double locus C ′ of Ỹ and let B′i ⊂X ′i be the preimage
of C ′i. Let yi ∈ Ỹi be the only point that maps to y ∈ Y ; let Gyi and χi be defined as in the proof
of Proposition 2.11.

By assumption (iii), the divisor KX′i
+B′i is Cartier by Proposition 2.8. By the following

Lemma 2.13, up to replacing (Y, y) by an étale neighborhood we may assume that for i=
1, . . . , t the sheaf OX′i(KX′i

+B′i) is trivial and has a generator σi on which G acts via χ. By
Proposition 2.5, there exists a local generator τ of OX(mKX) near x. For every i, by Lemma
2.13, τ pulls back on X ′i to hiσmi where hi is a nowhere vanishing regular function on Ỹi. Up to
passing to an étale cover of Y we may assume that hi has an mth root fi for every i. Hence we
may replace σi by fiσi and assume that τ pulls back to σmi for every i.

Now let U ⊂X be an open set such that U is dc and the complement of U has codimension
greater than one. Let F be an irreducible component of the double locus C of Y and let Ya,
Yb be the components of Y that contain F . Choose an irreducible component E of the inverse
image of F in U . It makes sense to compare σa and σb along E, since they both restrict to local
generators of OE(KE). Since σma = σmb , there exists ζ ∈ µm such that σa = ζσb along E. Since
G acts on σa and σb via the same character χ and G acts transitively on the components of
the preimage of F , ζF := ζ depends only on F . Hence {ζF } represents a class in H1(ΓY,y, µm).
Since ΓY,y is a tree, we can find λi ∈ µm such that the local generators λiσi glue to give a local
generator σ of OX(KX) on which G acts via χ. 2

We complete the proof of Proposition 2.12 by proving the following lemma.

Lemma 2.13. Let Z→W be a standard G-cover with building data Lχ, Di, (Hi, ψi).
Let w ∈W be a point and let H be the inertia subgroup of w. Let L be a G-linearized line

bundle of Z, let z ∈ Z be a point that maps to w, and let φ ∈H∗ be the character via which H
acts on L⊗K(z). Then we have the following.

(i) Let χ ∈G∗ be such that χ|H = φ; then, up to replacing W by an étale neighborhood of w,
there exists a generator σ of L such that G acts on σ via the character χ.

(ii) The generator σ is uniquely determined by χ up to multiplication by a nowhere vanishing
regular function of W .

Proof. (ii) Assume that σ, σ′ are generators of L on which G acts via the character χ. Then
f := σ/σ′ is a regular H-invariant function on Z, so it is a function on W .

(i) We break the proof into three steps.

Step 1: the case H =G. Let s be a generator of L near z. The group H acts on the vector
space V of local sections of L spanned by the elements h∗s, h ∈H; V is finite-dimensional, and
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decomposes under the G-action as a direct sum of eigenspaces. Since s(z) 6= 0 and s ∈ V , there
exists an eigenvector σ ∈ V such that σ(z) 6= 0. Since G acts on L⊗K(z) via χ, σ belongs to the
eigenspace corresponding to χ.

Step 2: the case in which G=H ⊕N for some N . Consider the factorization Z→ Z ′ := Z/N →
W . The map Z ′→W is an H-cover such that the preimage of w consists of one point z′ ∈ Z ′.
The subgroup N acts freely on Z, and hence L descends to an H-linearized line bundle L′ on
Z ′. Then by Step 1 there exists a local generator σ′ of L′ near z′ such that H acts on σ′ via φ.
Pulling back to Z we get a generator τ of L on which H acts via φ and N acts trivially.

Denote by φ′ the restriction of χ to N , so that χ= (φ, φ′). Consider the factorization
Z→ Z ′′ := Z/H →W . The map Z ′′→W is a étale N -cover. Hence there exists a
nowhere-vanishing function f on Z ′′ such that N acts on f via the character φ. Thus G acts on
σ := fτ via the character χ.

Step 3: the general case. Choose a finite abelian groupN with a surjective mapG0 :=H ⊕N →G
that extends the inclusion H →G, and let T be the kernel of G0→G. By Proposition 1.6, up to
replacing W by an étale neighborhood of w, we may also assume (cf. (4)) that Z→W is given
inside W ×Kk by the equations

yχyχ′ = Πk
1u

εi
χ,χ′
i yχχ′ , χ, χ′ ∈G∗\{1}, (14)

where ui is a local equation for Di, i= 1, . . . , k. The branch data for Z can be interpreted in
an obvious way as branch data for a G0-cover. Letting Z0→W be the G0-cover given by the
equations analogous to (14), we have Z = Z0/T by construction. Let L0 be the pullback of L to
Z0; L0 has a natural G0-linearization and H is a direct summand of G0, and hence by Step 2
there exists a generator σ0 of L0 on which G0 acts via the character χ0 of G0 induced by χ.
Since T acts freely on Z0 and T ⊂ ker χ0 by construction, σ0 descends to a generator σ of L on
Z on which G acts via χ. 2

3. Semi log canonical Zr
2-covers of surfaces

3.1 Setup
In this section we make a detailed study of Zr2-covers of surfaces. We use freely the notation
introduced in § 1.4. In particular, we refer the reader to the commutative diagram (10) and
Theorem 1.13.

The situation that we consider is the following.

– The surface Y is a gdc surface with smooth irreducible components Y1, . . . , Yt. The
irreducible components F1, . . . , Fs of the double curve C of Y are smooth, Y is dc at
the smooth points of C, and it is analytically isomorphic to the cone over a cycle of rational
curves at the singular points of C. In particular, Y is Gorenstein.

– The group G= Zr2 and π :X → Y is a G-cover with X gdc and S2, obtained as in
Theorem 1.13 by gluing a cover X ′→ Ỹ = Y1 t · · · t Yt such that for every i= 1, . . . , t
the restricted cover πi :X ′i→ Yi is standard with building data Li,χ, Di,ji .

– The Di,ji and the components of the double curve C ′ are ‘lines’ of Y , namely they are
smooth and meet pairwise transversally.

– The intersection points of the support of the Hurwitz divisor D of π with the double curve
C of Y are smooth points of C.

1070

https://doi.org/10.1112/S0010437X11007482 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007482


Non-normal abelian covers

– The divisor KY +D (or, equivalently, D, since Y is Gorenstein) is 2-Cartier and the pair
(Y, D) is slc, so that by Proposition 2.5 X is slc and KX is 2-Cartier. Recall that, since we
assume that the components of ν∗D and of C ′ are lines, the pair (Y, D) is slc if and only if
on Ỹ the divisor ν∗D + C has components of multiplicity less than or equal to one and has
multiplicity less than or equal to two at every point.

– For every y ∈ Y that is singular for C, label the components Y1, . . . , Yq of Y containing y in
such a way that, for every i= 1, . . . , q, the surfaces Yi and Yi+1 meet along an irreducible
curve Fi containing y (the indices are taken modulo q) and let gi ∈G be the generator of
the inertia subgroup of Fi. By Theorem 1.13, for every i we have gi−1 = gi+1 mod gi. We
assume that the natural map 〈gi〉 ⊕ 〈gi+1〉 −→Hy is an isomorphism for every i= 1, . . . , q.
These conditions imply that the fibre of X → Y over y consists of 2r/|Hy| points. At each of
these points X is analytically isomorphic to the cone over a cycle of q smooth rational curves.

All the above assumptions are satisfied in the cases considered in [AP09].

3.2 Numerical invariants

Here we assume that the surface Y is projective.
By Proposition 2.5, K2

X can be computed as follows:

K2
X = 2r(K

Ỹ
+ ν∗D + (double locus))2 =

∑
i

2r(KYi +D|Yi + (double locus)|Yi)2. (15)

To compute the cohomology of OX , we are going to write down explicitly in the above
situation the sequences (11) in the second proof of Theorem 1.13 (as usual we push forward to Y
all the sheaves). Since all the maps are G-equivariant, the sequences (11) split as sums of exact
sequences:

0→Fχ→⊕ti=1L
−1
i,χ

α−−→Aχ, 0→Fχ→⊕ti=1L
−1
i,χ

α−−→ (im α)χ→ 0, (16)

where χ varies in G∗ and G acts in Fχ, Aχ and (im α)χ via χ.
To describe the sheaves Aχ and (im α)χ, we need to introduce some more notation. Given a

component Fl of C we denote by gl ∈G the generator of the inertia subgroup of Fl and by Yal
and Ybl the two components of Y that contain Fl. We denote by El (respectively El,al , El,bl) the
preimages of Fl in X (respectively X ′al , X

′
bl

) and by Ẽl the common normalization of El, El,al ,
El,bl (cf. Example 1.17). In the commutative diagram

Ẽl

~~||
||

||
||

  BB
BB

BB
BB

��
El,al

!!CC
CC

CC
CC

// El

��

El,bl

}}{{
{{

{{
{{

oo

Fl

the maps to Fl are G/〈gl〉-covers and the remaining maps are finite and birational. The cover
El,al → Fl is standard and its building data can be recovered from those of X ′al → Yal as follows.

– We identify (G/〈gl〉)∗ with 〈gl〉⊥ ⊆G∗, and for every χ ∈ 〈gl〉⊥ we restrict Lalχ to Fl.

– For every Dal
j with gj 6= gl, we label each point of Dal

j |Fl with the image of gj in G/〈gl〉.
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The same can be done of course for El,bl → Fl. Let y ∈ Fl be a point such that ν∗D has multiplicity
one at the points of Ỹ that map to y (since we assume that 2D is Cartier, the multiplicity of
ν∗D is the same at all points lying over y). Recall that by assumption Y is dc at y; denote by
αy,1 αy,2 the elements of G associated to the two branch lines of X ′al → Yal containing y and by
βy,1, βy,2 the elements of G associated to the two branch lines of X ′bl → Ybl containing y. We have
αy,1 + αy,2 = βy,1 + βy,2 modulo gl (cf. Example 1.17). Then El,al is singular over y if and only
if αy,1 and αy,2 are both different from gl, namely if and only if there exists a character χ with
χ(gl) = 1 and χ(α1,y) = χ(α2,y) =−1. For each χ ∈G∗ and l such that χ(gl) = 1 we denote by
Al,χ the set of points y ∈ Fl such that χ(α1,y) = χ(α2,y) =−1, and we take Al,χ to be the empty
set if χ(gl) 6= 1. We define Bl,χ in a similar way by considering the cover El,bl → Fl. We have the
following lemma.

Lemma 3.1. For χ ∈ 〈gl〉⊥ denote by M−1
l,χ the eigensheaf of O

Ẽl
corresponding to χ. Then the

maps Ẽl→ El,al and Ẽl→ El,bl induce isomorphisms:

L−1
al,χ
⊗OFl ∼=M−1

l,χ (−Al,χ), L−1
bl,χ
⊗OFl ∼=M−1

l,χ (−Bl,χ).

Proof. The lemma follows by the normalization algorithm of [Par91, § 3]. 2

Let Nl,χ :=Al,χ ∩Bl,χ and let Tχ be the set of points y such that C is singular at y and χ|Hy
is trivial. We are now ready to describe (im α)χ.

Proposition 3.2. For every χ ∈G∗\{1}, there is an exact sequence:

0→ (im α)χ −→⊕{l|χ(gl)=1}M
−1
l,χ (−Nl,χ)−→OTχ → 0.

Proof. In our setup, the map B̃′→ C̃ ′ is the disjoint union of two copies of B̃ =
⊔s
l=1 Ẽl→

⊔s
l=1 Fl

that are switched by the involution j. So by Lemma 3.1 the first sequence in (16) can be rewritten
as:

0→Fχ→⊕ti=1L
−1
i,χ→⊕{l|χ(gl)=1}M

−1
l,χ . (17)

In addition, if Fl is a component of C contained in Yal and Ybl , then again by Lemma 3.1 the
image of the map L−1

al,χ
⊕ L−1

bl,χ
→M−1

l,χ is equal to M−1
l,χ (−N l

χ), so we have an exact sequence:

0→ (im α)χ→⊕{l|χ(gl)=1}M
−1
l,χ (−N l

χ)→Cχ→ 0, (18)

where the cokernel Cχ is concentrated on the set Tχ. Using the description of the singularities of
X at these points given in § 3.1, one checks that Cχ has length 1 at points y such that χ|Hy is
trivial and it is 0 elsewhere, so Cχ =OTχ . 2

Remark 3.3. Let y ∈ C be a smooth point, let F be the irreducible component of C that
contains y, and let Y1, Y2 be the two components of Y that contain F . Let H the subgroup
of G generated by the inertia subgroups of F and of the components of D that contain y. Of
course, one has H ⊆Hy, but in the present setup equality actually holds. Indeed, if χ ∈H⊥ is a
non-trivial character, then by Proposition 3.2 the second sequence in (16) can be written near y
as 0→Fχ→OY1 ⊕OY2

αχ→OF → 0, where αχ is given by (f1, f2) 7→ (f1 − f2)|F . By Lemma 1.5,
there exist zi ∈ OYi , i= 1, 2, that correspond to functions on X ′i that do not vanish at any point
of π−1(y). Up to multiplying, say, z1 by a nowhere-vanishing regular function on Y1 we can
arrange that zχ := z1 − z2 ∈ Fχ. Hence zχ corresponds to a function on X that is non-zero near
π−1(y) and on which G acts via the character χ. It follows that G/H acts freely on π−1(y),
i.e. that H =Hy.
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Figure 1. The Z2
2-cover of Example 3.5.

We say that a point y ∈ C is relevant if and only if either it is singular for C or there
exists l, χ with χ(gl) = 1 such that y ∈N l

χ. Observe that, in view of the assumptions of 3.1, by
Proposition 2.12 and by the description of singularities of § 3.4 the set of relevant points can be
described intrinsically as the set of points of C over which X is Gorenstein but not dc.

Corollary 3.4. Let Rel be the set of relevant points and let B̃ =
⊔s
l=1 Ẽl be the normalization

of the double locus B of X. Then

χ(OX) = χ(OX′)− χ(O
B̃

) +
∑
y∈Rel

[G :Hy].

Proof. The claim follows immediately by Proposition 3.2, by (16) and by the fact that for χ= 1
one has the exact sequence

0→ (im α)1→⊕sl=1OFl →OT → 0,

where T is the set of singular points of C. 2

We close this section by computing the numerical invariants of two of the degenerations of
Burniat surfaces described in [AP09].

Example 3.5. Let G= Z2
2, let g1, g2, g3 be the non-zero elements of G, and for i= 1, 2, 3 let

χi ∈G∗ be the non-zero character such that χi(gi) = 1. Let Y1 = P1 × P1, Y2 = P2, and let Y be
the surface obtained by gluing Y1 and Y2 along a smooth rational curve C which is of type (1, 1)
on Y1 and is a line on Y2. Fix three distinct points y1, y2, y3 ∈ C. For i= 1, 2, 3, let D1,j ⊂ Y1 be
the union of a fibre and a section through yj−1 and let D2,j ⊂ Y2 be a pair of lines through yj+1

(the index j varies in Z3). In Figure 1, Y1 is represented on the left and Y2 on the right, the curve
C is shown as a solid dashed line, light gray lines correspond to Di,1, black lines correspond to
Di,2, and medium gray lines correspond to Di,3.

For i= 1, 2, we let πi :X ′i→ Yi be the standard G-cover with branch data Di,j , gj , j = 1, 2, 3.
Solving (2), we get L1,i =OP1×P1(1, 1) and L2,j =OP2(2), j = 1, 2, 3, where L−1

i,j denotes the
subsheaf of OX′i corresponding to the character χj . Notice that the line bundles L−1

i,j have no
cohomology, and hence, in particular, χ(OX′1) = χ(OX′2) = 1.

By [Par91, § 3], for i= 1, 2 the normalization of the cover of C induced by πi is the trivial
G-cover. So, by Theorem 1.13, we can glue X ′1 tX ′2→ Y1 t Y2 to a cover π :X → Y . By (15)
we have

K2
X = 4(KY1 + 1

2(D1,1 +D1,2 +D1,3) + C)2 + 4(KY2 + 1
2(D2,1 +D2,2 +D2,3) + C)2 = 2 + 4 = 6.
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Figure 2. The Z2
2-cover of Example 3.6.

The curve C is smooth and the points y1, y2 and y3 are relevant points with Hyi =G, so
Corollary 3.4 gives:

χ(OX) = χ(OX′1) + χ(OX′2)− χ(O
B̃

)
+ [G :Hy1 ] + [G :Hy2 ] + [G :Hy3 ] = 1 + 1− 4 + 1 + 1 + 1 = 1.

For χ= 1, we have an isomorphism (im α)1 ∼=OC . Hence (im α)1 has no cohomology in degree
i > 0, and the exact sequence

0→OY →OY1 ⊕OY2 → (im α)1 =OC → 0

implies that hi(OY ) = 0 for i > 0. Next we compute the cohomology of the sheaves Fχ. By
Proposition 3.2, for j = 1, 2, 3 we have (im α)χj =OC(−yj). Hence (16) gives an exact sequence:

0→Fχj → L−1
1,j ⊕ L

−1
2,j →OC(−yj)→ 0.

Therefore h1(Fχj ) = h2(Fχj ) = 0 for j = 1, 2, 3, and thus h1(OX) = h2(OX) = 0.

Example 3.6. Let Y = Y1 ∪ · · · ∪ Y6 be the union of six copies of P2 glued in a cycle along lines
as shown in Figure 2.

As in the previous example, let G= Z2
2, and for i ∈ Z6 let πi :X ′i→ Yi be the G-cover branched

on the lines pictured with three shades of gray in Figure 2. For every i, two of the sheaves Li,χ
are OY1(2), and the remaining one is OY1(1). Hence the L−1

i,χ have no cohomology, and χ(X ′i) = 1.
It’s easy to check using Theorem 1.13 that the cover X ′1 t · · · tX ′6→ Y1 t · · · t Y6 can be glued
to a G-cover π :X → Y . The normalization B̃→ C of the induced cover of the double curve C
is the disjoint union of six smooth rational curves, each mapping two-to-one onto a component
of C. The only relevant point is the singular point y of C. So, applying (15) and Corollary 3.4,
we get

K2
X = 6, χ(OX) = 1.

Let F1, . . . , F6 be the irreducible components of C. For χ= 1, as in the proof of Corollary 3.4
we have an exact sequence,

0→ (im α)1→⊕6
l=1OFl →K(y)→ 0,

which gives hi((im α)1) = 0 for i > 0. By Proposition 3.2, for χ 6= 0 the sheaf (im α)χ is isomorphic
to the direct sum of two copies of OP1 , and hence it has no higher cohomology. So by (16) we
have hi(Fχ) = 0 for i > 0, and therefore h1(OX) = h2(OX) = 0.

3.3 Singularities: the case Y smooth.
We wish to describe the singularities of a Zr2-cover π :X → Y as in § 3.1. Since the question is
local, we fix y ∈ Y and we study X locally above Y in the étale topology. By the assumptions
in § 3.1, the singularities of X over a point y ∈ Y lying on q > 2 components of Y are degenerate
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Table 1. One, two, three, and four reduced lines.

No. |H| Relations ι Singularity

0.1 1 none 1 smooth
1.1 2 none 1 smooth
2.1 4 none 1 smooth
2.2 2 12 1 A1

3.1 8 none 1 A1

3.2 4 12 1 A3

3.3 4 123 2 1
4(1, 1)

3.4 2 12,13 1 D4

4.1 16 none 1 elliptic, F 2 =−4
4.2 8 12 1 elliptic, F 2 =−2
4.3 8 123 2 T2,2,2,2, F 2 =−4
4.4 8 1234 1 elliptic, F 2 =−8
4.5 4 12 13 1 elliptic, F 2 =−1
4.6 4 12 34 1 elliptic, F 2 =−4
4.7 4 12 134 2 T2,2,2,2, F 2 =−3
4.8 2 12 13 14 1 elliptic, F 2 =−2

cusps such that the exceptional divisor of its minimal semiresolution is a cycle of q rational
curves (cf. [KS88, Definition 4.20]). So it is enough to analyze two cases.

– The surface Y is smooth.

– The surface Y = Y1 ∪ Y2 dc and π is obtained by gluing standard covers πi :X ′i→ Yi, i= 1, 2.

Remark 3.7. All the singularities listed in Tables 1–9, actually occur on some stable surface of
general type. To give examples of the singularities that appear when the base Y of the cover
is smooth, one can take G= Zr2, 2 6 r 6 4, a set of generators g1, . . . , gk of G, k 6 4, and lines
L1, . . . , Lk through a point y ∈ P2 such that the pair (P2, (L1 + · · ·+ Lk)/2) is lc. If g = gi,
define Dgi = Li, where D′i is a general curve of even degree, and for g 6= 1, g1, . . . , gk let Dg be
a general curve of odd degree. The divisors Dg so defined are the branch data for a G-cover
X → P2 (the relations in (2) are easily seen have a solution in this case). By Proposition 2.5,
the surface X is slc and it is of general type as soon as the degree of the Hurwitz divisor D is
greater than 6. There is only one point x ∈X mapping to y; all the singularities (X, x) with
|H|> 4 listed in Tables 1–3 can be realized in this way (for the definition of H, see below). The
singularities with |H|= 2 can be obtained by taking a double cover X → P2, branched on the
sum of k lines through y and a general curve of degree d such that d+ k is even and greater
than or equal to 8.

Since all the curves in the construction are general, the singularities of X\{x} are at most
A1 points.

Similar constructions, slightly more involved, can be used to realize the singularities of
Tables 4–9.

We study the case Y smooth in this section, and the case Y reducible in § 3.4.
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Table 2. Double line + zero, one, or two reduced lines.

No. |H| Relations ι Singularity X̃ C
X̃
→ CX → CY Xsr

2′.1 4 none 1 semismooth 2(1.1) 2∆→∆→∆ dc
2′.2 2 12 1 semismooth 2(0.1) 2∆→∆→∆ dc

3′.1 8 none 1 semismooth 2(2.1) 2∆→∆ 2−−→∆ dc
3′.2 4 12 1 semismooth 2(1.1) 2∆→∆ 2−−→∆ dc
3′.3 4 13 1 semismooth (2.1) ∆ 2−−→∆→∆ pinch
3′.4 4 123 2 (3′.1)/Z2 2(2.2) 2∆→∆→∆ dc
3′.5 2 12 13 1 semismooth (1.1) ∆ 2−−→∆→∆ pinch

4′.1 16 none 1 deg.cusp(2) 2(3.1) 2Γ2→ Γ2
22−−→∆ dc

4′.2 8 12 1 deg.cusp(2) 2(2.1) 2Γ2→ Γ2
22−−→∆ dc

4′.3 8 13 1 deg.cusp(1) (3.1) Γ2→∆ 2−−→∆ dc
4′.4 8 34 1 deg.cusp(6) 2(3.2) 2Γ2→ Γ2→∆ dc
4′.5 8 123 2 (4′.1)/Z2 2(3.2) 2∆→∆ 2−−→∆ dc
4′.6 8 134 2 (4′.1)/Z2 (3.1) Γ2

22−−→ Γ2→∆ pinch
4′.7 8 1234 1 deg.cusp(2) 2(3.3) 2Γ2→ Γ2→∆ dc
4′.8 4 12 13 1 deg.cusp(1) (2.1) Γ2→∆ 2−−→∆ dc
4′.9 4 13 14 1 deg.cusp(3) (3.2) Γ2→∆→∆ dc
4′.10 4 12 34 1 deg.cusp(2) 2(2.2) 2Γ2→ Γ2 −→∆ dc
4′.11 4 13 24 1 deg.cusp(1) (3.3) Γ2 −→∆→∆ dc
4′.12 4 12 134 2 (4′.2)/Z2 (2.1) Γ2

22−−→ Γ2→∆ pinch
4′.13 4 13 124 2 (4′.3)/Z2 (3.2) ∆ 2−−→∆→∆ pinch
4′.14 4 123 34 2 (4′.4)/Z2 2(3.4) 2∆→∆−→∆ dc
4′.15 2 12 13 14 1 deg.cusp(1) (2.2) Γ2→∆→∆ dc

Table 3. Two double lines.

No. |H| Relations ι Singularity X̃ C
X̃
→ CX → CY Xsr

4′′.1 16 none 1 deg.cusp(4) 4(2.1) 4Γ2→ Γ4
2222−−−−→ Γ2 dc

4′′.2 8 12 1 deg.cusp(4) 4(1.1) 4Γ2→ Γ4
2211−−−−→ Γ2 dc

4′′.3 8 13 1 deg.cusp(2) 2(2.1) 2Γ2→ Γ2
22−−→ Γ2 dc

4′′.4 8 123 2 (4′′.1)/Z2 2(2.1) 2Γ2
1122−−−−→ Γ3

211−−−→ Γ2 pinch
4′′.5 8 1234 1 deg.cusp(4) 4(2.2) 4Γ2→ Γ4→ Γ2 dc
4′′.6 4 12 13 1 deg.cusp(2) 2(1.1) 2Γ2→ Γ2

21−−→ Γ2 dc
4′′.7 4 12 34 1 deg.cusp(4) 4(0.1) 4Γ2→ Γ4→ Γ2 dc
4′′.8 4 13 24 1 deg.cusp(2) 2(2.2) 2Γ2→ Γ2→ Γ2 dc
4′′.9 4 12 134 2 (4′′.2)/Z2 2(1.1) 2Γ2

2211−−−−→ Γ3 −→ Γ2 pinch
4′′.10 4 13 124 2 (4′′.3)/Z2 (2.1) Γ2

22−−→ Γ2→ Γ2 pinch
4′′.11 2 12 13 14 1 deg.cusp(2) 2(0.1) 2Γ2→ Γ2→ Γ2 dc
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Table 4. C not in the branch locus, zero, or two, or four reduced lines.

No. |H| Relations ι χ Singularity X̃ C
X̃
→ CX → CY Xsr

E0.1 1 none 1 0 dc (0.1) t (0.1) 2∆→∆→∆ dc

E2.1 2 12 1 0 dc (1.1) t (1.1) 2∆→∆
2−−→∆ dc

E4.1 8 1234 1 2r−3 deg.cusp(4) 2(2.1) t 2(2.1) 2Γ2 t 2Γ2→ Γ4
2222−−−−→∆ dc

E4.2 4 12 34 1 2r−2 deg.cusp(4) 2(2.2) t 2(2.2) 2Γ2 t 2Γ2→ Γ4→∆ dc

E4.3 4 13 24 1 2r−2 deg.cusp(2) (2.1) t (2.1) Γ2 t Γ2→ Γ2
22−−−→∆ dc

E4.4 2 12 13 14 1 2r−1 deg.cusp(2) (2.2) t (2.2) Γ2 t Γ2→ Γ2→∆ dc

Table 5. C not in the branch locus, a double line + two reduced lines.

No. |H| Relations ι χ Singularity X̃ C
X̃
→ CX → CY Xsr

E4′.1 8 1234 1 2r−3 deg.cusp(6) 4(1.1) t 2(2.1) 4Γ2 t 2Γ2→ Γ6
112...2−−−−−−→ Γ2 dc

E4′.2 4 12 34 1 2r−2 deg.cusp(6) 4(0.1) t 2(2.2) 4Γ2 t 2Γ2→ Γ6→ Γ2 dc

E4′.3 4 13 24 1 2r−2 deg.cusp(3) 2(1.1) t (2.1) 2Γ2 t Γ2→ Γ3
122−−−→ Γ2 dc

E4′.4 2 12 13 14 1 2r−1 deg.cusp(3) 2(0.1) t (2.2) 2Γ2 t Γ2→ Γ3→ Γ2 dc

Table 6. C not in the branch locus, two pairs of double lines.

No. |H| Relations ι χ Singularity X̃ C
X̃
→ CX → CY Xsr

E4′′.1 8 1234 1 2r−3 deg.cusp(8) 4(1.1) t 4(1.1) 4Γ2 t 4Γ2→ Γ8
112...211−−−−−−−→ Γ3 dc

E4′′.2 4 12 34 1 2r−2 deg.cusp(8) 4(0.1) t 4(0.1) 4Γ2 t 4Γ2→ Γ8→ Γ3 dc

E4′′.3 4 13 24 1 2r−2 deg.cusp(4) 2(1.1) t 2(1.1) 2Γ2 t 2Γ2→ Γ4
1221−−−−→ Γ3 dc

E4′′.4 2 12 13 14 1 2r−1 deg.cusp(4) 2(0.1) t 2(0.1) 2Γ2 t 2Γ2→ Γ4→ Γ3 dc

We let (D1, g1), . . . , (Dk, gk) be the branch data of π. We may assume that y ∈Di for every i.
So, by the condition that D is slc, we have k 6 4 and no three of the Di coincide. Whenever the
Di are not all distinct, we assume D1 =D2.

All the possible cases are listed in Tables 1–3. The first digit in the label given to each case
is equal to the number k of components through y, followed by ′ if D1 =D2 and by ′′ if D1 =D2

and D3 =D4 (obviously this case occurs only for k = 4). So, for instance, a label of the form
3′.m, where m is any positive integer, means that y belongs to three components of D, two of
which coincide.

The entries in the columns have the following meanings.

– The column marked |H| contains the order of the subgroup H the subgroup generated by
g1, . . . , gk.

– The column marked Relations contains the relations between g1, . . . , gk. For instance, 123
means g1 + g2 + g3 = 0.

– Singularity. The notations are mostly standard: 1
4(1, 1) denotes a cyclic singularity A2/Z4

with weights 1,1. T2,2,2,2 denotes an arrangement consisting of four disjoint −2-curves
G1, . . . , G4 and of a smooth rational curve F intersecting each of the Gi transversely at
one point. The self-intersection F 2 is given in the table. In the non-normal case (Tables 2
and 3) we use the notations of [KS88], where Kollár and Shepherd-Barron classified all
slc surface singularities over C. We work in any characteristic not equal to 2, but only
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Table 7. C in the branch locus, zero, or two, or four reduced lines.

No. |H| Relations ι χ Singularity X̃ C
X̃
→ CX → CY Xsr

R0.1 2 none 1 0 dc (1.1) t (1.1) ∆ t∆→∆→∆ dc

R2.1 4 12 1 0 dc (2.1) t (2.1) ∆ t∆→∆
2−−→∆ dc

R2.3 2 12 01 2 0 (R2.1)/Z2 (2.2) t (2.2) ∆ t∆→∆→∆ dc
R2.2 4 012 same as R2.1

R4.1 16 1234 1 2r−4 deg.cusp(4) 2(3.1) t 2(3.1) 2Γ2 t 2Γ2→ Γ4
2...2−−−−→∆ dc

R4.2 8 1234 01 2 0 (R4.1)/Z2 2(3.2) t (3.1) 2∆ t Γ2→ Γ2
22−−−→∆ dc

R4.3 8 1234 012 1 2r−3 deg.cusp(4) 2(3.3) t 2(3.3) 2Γ2 t 2Γ2→ Γ4→∆ dc

R4.4 8 1234 013 1 2r−3 deg.cusp(2) (3.1) t (3.1) Γ2 t Γ2→ Γ2
22−−−→∆ dc

R4.5 8 12 34 1 2r−3 deg.cusp(12) 2(3.2) t 2(3.2) 2Γ2 t 2Γ2→ Γ4→∆ dc
R4.6 4 12 34 01 2 0 (R4.5)/Z2 2(3.4) t (3.2) 2∆ t Γ2→ Γ2→∆ dc

R4.7 4 12 34 013 1 2r−2 deg.cusp(6) (3.2) t (3.2) Γ2 t Γ2→ Γ2→∆ dc
R4.8 8 13 24 same as R4.4

R4.9 4 13 24 01 2 0 (R4.8)/Z2 (3.2) t (3.2) ∆ t∆→∆
2−−→∆ dc

R4.10 4 13 24 012 1 2r−2 deg.cusp(2) (3.3) t (3.3) Γ2 t Γ2→ Γ2→∆ dc
R4.11 4 12 13 14 same as R4.7
R4.12 2 12 13 14 01 2 0 (R4.11)/Z2 (3.4) t (3.4) ∆ t∆→∆ dc
R4.13 16 01234 same as R4.1

R4.14 8 12 034 1 2r−3 deg.cusp(8) 2(3.2) t 2(3.3) 2Γ2 t 2Γ2→ Γ4→∆ dc
R4.15 8 13 024 same as R4.4
R4.16 8 123 04 same as R4.2

R4.17 4 12 13 014 1 2r−2 deg.cusp(4) (3.2) t (3.3) Γ2 t Γ2→ Γ2→∆ dc
R4.18 4 12 134 01 2 0 (R4.14)/Z2 2(3.4) t (3.3) 2∆ t Γ2→ Γ2→∆ dc
R4.19 4 13 124 01 same as R4.9

the singularities from the list in [KS88] appear. The notation ‘deg.cusp(k)’ means a
degenerate cusp (cf. [KS88, Definition 4.20]) such that the exceptional divisor in the minimal
semiresolution has k components.

– The column marked ι contains the index of x ∈X. It is equal to 1 if all the relations have
even length and it is equal to 2 otherwise (cf. Proposition 2.8).

– The column marked X̃ describes the normalization of X (the entries refer to the cases in
Table 1).

– The column marked C
X̃
→ CX → CY describes the inverse image in X̃ of the double curve

CX of X and CY is the image of CX in Y . The symbol ∆ denotes the germ of a smooth
curve, and Γk is the seminormal curve obtained by gluing k copies of ∆ at one point.
The notation Γk

a1,...,ak−−−−−−→ C means that the map restricts to a degree ai map on the ith
component of Γk (we do not specify the ai when they are all equal to 1).

– The column marked Xsr describes the minimal semiresolution of X. We write ‘dc’ when
Xsr has only normal crossings and ‘pinch’ if it has also pinch points.

Theorem 3.8. The singularities of slc covers π :X → Y with smooth Y are listed in Tables 1–3.

Since all these singularities can be studied in a similar way, we just explain the method and
work out two cases as an illustration. We start with some general remarks.

(i) We always assume G=H. Indeed, the cover π factors as X
π2−−→X/H

π1−−→ Y . By
Lemma 1.5, the map π1 is étale near y, while for every z ∈ π−1

1 (y) the fiber π−1
2 (z) consists
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only of one point. Since G acts transitively on each fiber of π, it is enough to describe the
singularity of X above any point z ∈ π−1

1 (x).

(ii) The cover X is normal at x if and only if [D] = 0. It is non-singular at x if and only if
either k = 1 or k = 2, D1 6=D2, g1 6= g2. Assume that X is not normal, and let F be an irreducible
divisor that appears in D with multiplicity one. This means that, say, F =D1 and F =D2. The
normalization of X along F is a G-cover of Y with branch data (Di, gi), for i 6= 1, 2, and, if
g1 + g2 6= 0, (F, g1 + g2) (cf. [Par91, § 3]).

(iii) The cover X is said to be simple if the set {g1, . . . , gk} is a basis of |H| (for instance, X
is simple if the gi are all equal). In this case, X is a complete intersection, and it is very easy to
write down equations for it (see Case 4′.1 below).

(iv) The double curve CX maps onto the divisors that appear in D with multiplicity equal to
one. Since for a semismooth surface the double curve is locally irreducible, X is never semismooth
in the cases 4′′. In addition, if X is semismooth then the pullback C

X̃
of CX to the normalization

is smooth. Using this remark, it is easy to check that X is never semismooth in the cases 4′, either.

(v) In order to compute the minimal semiresolution Xsr, we consider the blow up Ŷ → Y of Y
at y, pull back X and normalize along the exceptional curve E to get a cover X̂ → Ŷ . The branch
locus of X̂ → Ŷ is supported on a dc divisor and, by construction, the singularities of X̂ are only
of type 1, 2 or 3′. Looking at the tables, one sees that either X̂ is semismooth or it has points of
type 2.2 or 3′.4 (cf. Table 1). In the former case, X̂ is the minimal semiresolution. In the latter
case, blowing up Ŷ at the non-semismooth points and taking base change and normalization

along the exceptional divisor, one gets a semismooth cover ̂̂X → ̂̂
Y . The semiresolution ̂̂

X →X
is minimal, except in cases 4′′.5, 4′′.10. In these cases the minimal semiresolution Xsr is obtained

by contracting the inverse image in ̂̂
X of the exceptional curve of the blow up Ŷ → Y .

Next we analyze in detail two cases.

Case 4′.1. By remark (ii) above, the normalization X̃ is an H-cover with branch data
(D1, g1 + g2), (D3, g3) and (D4, g4). Hence g1 acts on X without fixed points and X is the
disjoint union of two copies of the cover (3.1). We choose local parameters u, v on Y such that
D1 =D2 is given by u= 0, D3 is defined by v = 0 and D4 by u+ v = 0.

The cover X is defined étale locally above y by the following equations:

z2
1 = u, z2

2 = u, z2
3 = v, z2

4 = (u+ v). (19)

In particular, X is a complete intersection (see remark (iii) above). The element gi acts on zj as
multiplication by (−1)δij . The double curve CX is the inverse image of u= 0, hence it is defined
by z1 = z2 = 0, z3 =±z4 and the map CX →D1 is given by z3 7→ z2

3 , so CX is isomorphic to Γ2,
with each component mapping 2-to-1 to D1 '∆. The curve C

X̃
is the inverse image of D1 in X̃,

so it has two connected components, each isomorphic to Γ2, that are glued together in the map
X̃ →X.

To compute the minimal semiresolution, consider the blow up Ŷ → Y of Y at y and the cover
X̂ → Ŷ obtained by pulling back X → Y and normalizing along the exceptional curve E. The
branch data for X̂ are (E, g1 + g2 + g3 + g4) and, for i= 1, . . . , 4, (D̂i, gi), where ̂ indicates
the strict transform. The cover is singular precisely above D̂1 = D̂2, and it is easy, using the
local equations, to check that it is dc there. Hence X̂ is the minimal semiresolution of X. The
exceptional divisor is the inverse image F of E in X. Applying the normalization algorithm to
the restricted cover F → E, one sees that the normalization F̃ of F is the union of two smooth
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rational curves F1 and F2. The map F̃ → F identifies the two points of F1 that lie over the point
E ∩D′1 with the corresponding two points of F2. Hence X̂ is the minimal semiresolution of X
and the singularity is a degenerate cusp solved by a cycle of two rational curves.

Case 4′.5. As in the previous case, X̃ and C
X̃

can be computed by the normalization algorithm.
One obtains that X̃ is the disjoint union of two copies of (3.2) and C

X̃
is the disjoint union

of two copies of ∆. This singularity is the quotient of a cover X0 of type (4′.1) by the element
g0 := g1 + g2 + g3. Since this element has odd length, the index ι of X at x is equal to 2.

Since the only fixed point of g0 on X is x := π−1(y), the double curve CX is the quotient of
the double curve CX0 of X0. The two components of CX0 are identified by g0, and thus CX is
irreducible and maps two-to-one onto D1.

To compute the minimal semiresolution, again we blow up Ŷ → Y at y and consider the cover
X̂ → Ŷ obtained by pull back and normalization along the exceptional curve E. As usual, we
denote by F̂ the strict transform on Ŷ of a curve F of Y . The branch data for X̂ are (D̂1, g1),
(D̂2, g2), (D̂3, g1 + g2), (D̂4, g4), and (E, g4). Hence X̂ has normal crossings over D̂1, it has four
A1 points over the point ŷ := D̂4 ∩ E, and it is smooth elsewhere (cf. Tables 1 and 2). We blow
up at ŷ and take again pull back and normalization along the exceptional curve E2. We obtain

a cover ̂̂X → ̂̂
Y which is dc over the strict transform ̂̂

D1 of D̂1 and has no other singularity, sô̂
X →X is a semismooth resolution. Let E1 denote the strict transform on ̂̂Y of the exceptional
curve E of the first blow up. Arguing as in Case 4′.1, one sees that the inverse image of E1 is the
union of two smooth rational curves F 1

1 and F 1
2 that intersect transversely precisely at one point

of the double curve, and the inverse image of E2 consists of four disjoint curves F 1
2 , . . . , F

4
2 . All

these curves pull back to −2 curves on the normalization of ̂̂X and, up to relabeling, F 1
1 , F

2
1 , F

2
2

and F 2
1 , F

3
2 , F

4
2 form two disjoint A3 configurations. Hence ̂̂X is the minimal semiresolution of X.

In the notation of [KS88, Definition 4.26], ̂̂X is obtained by gluing two copies of (A,∆) along ∆.

3.4 Singularities: the case Y reducible

Here we repeat the local analysis of the previous section for the case in which Y = Y1 ∪ Y2 is
dc, keeping as far as possible the same notations. So we fix y ∈ C, where C is the double curve
of Y , and describe X locally over y. We assume that X → Y is obtained by gluing standard
covers πi :X ′i→ Yi, i= 1, 2, such that y lies on all the components of the Hurwitz divisor D. We
let (D1, g1), . . . , (Dk, gk) be the union of the branch data of π1 and π2 such that Di is distinct
from the double curve C of Y (hence D = (D1 + · · ·+Dk)/2). We denote by g0 the generator
of the inertia subgroup of C for π1 and π2. By Remark 3.3, the inertia subgroup Hy is equal to
H := 〈g0, g1, . . . , gk〉, so up to an étale cover we may assume that G=H and that π−1(y) = {x}.

Since D is Q-Cartier, there are the same number of Di on Y1 and on Y2. We order them so
that all components on Y1 come first. Recall that k 6 4 by the assumption that (Y, D) is slc. The
cases in the tables are labeled E (‘étale’) if g0 = 0 and R (‘ramified’) if g0 6= 0. The first digit of
the label is the number k of branch lines through y. It is followed by ′ if D1 =D2 and by ′′ if
D1 =D2 and D3 =D4. For instance, in the cases E4′.m the map π is generically étale over C
and there are four branch lines D1, . . . , D4 with D1 =D2, and D3 6=D4.

The singularities that we get here are non-normal, and as in [KS88, Theorems 4.21, 4.23] they
turn out to be either semismooth or degenerate cusps in the Gorenstein case and Z2-quotients
of these otherwise.
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The tables here contain the same columns as those of § 3.3 plus an extra one, denoted χ: this is
the contribution of y in the formula for χ(OX) of Corollary 3.4 (recall |G|= 2r). By Propositions
2.11 and 2.12 the index ι is equal to 1 if all relations have even length when reduced modulo g0
and it is equal to 2 otherwise.

Theorem 3.9. The singularities of slc covers π :X → Y where Y is the dc union of two smooth
surfaces are given in Tables 4–9.

The analysis of the singularities in the reducible case is similar to the case Y smooth. One
blows up Y at the point y and takes pull back and normalization of X along the exceptional
divisor. Repeating this process, if necessary, one obtains a semiresolution X0→X. If X0 is not
minimal, then the minimal semiresolution Xsr→X is obtained by blowing down the −1-curves
of X0.

As the computations are all similar, we work out a only a couple of cases to show the method.

Case R4′.1. The normalization X̃ is equal to X̃ ′1 t X̃ ′2, where X̃ ′i is the normalization of X ′i. The
branch data of X̃ ′1→ Y1 are (D1, g1 + g2), (D0, g0), so X̃ ′1 is étale locally the disjoint union of
four copies of the cover (2.1). Also, X ′2 = X̃ ′2 is étale locally the disjoint union of two copies (3.1).

The image CY of the double curve CX is equal to C ∪D1. The preimage in X̃ ′1 of CY is the
disjoint union of four copies of Γ2. The preimage of CY in X̃ ′2 is equal to two copies of Γ2. Hence
C
X̃

= 4Γ2 t 2Γ2. Each component of C
X̃

maps two-to-one onto its image. The map C
X̃
→ CX

identifies in pairs the four components of the preimage of D1 and the eight components of the
preimage of C. Hence CX is Γ6, with two components mapping two-to-one onto D1 and four
components mapping two-to-one onto C.

To compute the semiresolution, blow up y ∈ Y to get Ŷ → Y . Let E1 ⊂ Y1 and E2 ⊂ Y2 be the
irreducible components of the exceptional divisor. Let π̂ : X̂ → Ŷ be the G-cover obtained from
X → Y by taking pull back and normalizing along E1 and E2. Denoting bŷthe strict transform on
Ŷ , the branch data of π̂ are (E1, g0 + g1 + g2), (E2, g0 + g3 + g4 = g0 + g1 + g2), (D̂1, g1), (D̂2 =
D̂1, g2), (D̂3, g3) and (D̂4, g4), (Ĉ, g0). Hence X̂ is dc by the tables of § 3.3, and it is therefore
the semiresolution Xsr of X. The preimage of E1 is the union of four smooth rational curves
meeting in pairs over the point E1 ∩ D̂1. The preimage of E2 is the disjoint union of two rational
curves, which together with the components of the preimage of E1 form a cycle of six rational
curves. The singularity x ∈X is Gorenstein by Proposition 2.12, and hence it is ‘deg.cusp(6)’.

Case R4′.2. This is a Z2-quotient of R4′.2, and it is not Gorenstein by Proposition 2.11. The
normalization X̃ is equal to X̃ ′1 t X̃ ′2, where X̃ ′i is the normalization of X ′i. The branch data of
X̃ ′1→ Y are (D1, g0 + g2), (D0, g0), so X̃ ′1 is étale locally the disjoint union of two copies of the
cover (2.1). The image CY of the double curve CX is equal to C ∪D1. The preimage in X̃1 of CY
is the disjoint union of two copies of Γ2. The preimage of CY in X̃ ′2 is Γ2. Hence C

X̂
= 2Γ2 t Γ2.

Each component of C
X̃

maps two-to-one onto its image in CY . The map C
X̃
→ CX glues to itself

each of the two components of the preimage of D1, and it identifies in pairs the four components
of the preimage of C. Hence CX is Γ4, with two components mapping one-to-one onto D1 and
two components mapping two-to-one onto C.

To compute the semiresolution, blow up y ∈ Y to get Ŷ → Y . Let E1 ⊂ Y1 and E2 ⊂ Y2 be the
irreducible components of the exceptional divisor. Let π̂ : X̂ → Ŷ be the G-cover obtained from
X → Y by taking pull back and normalizing along E1 and E2. Denoting bŷthe strict transform
on Ŷ , the branch data of π̂ are (E1, g2), (E2, g0 + g3 + g4 = g2), (D̂1, g1 = g0), (D̂2 = D̂1, g2),
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(D̂3, g3), (D̂4, g4) and (Ĉ, g0). By the tables of § 3.3, X̂ has two pinch points over the point
D̂1 ∩ E1 and is at most dc elsewhere; hence it is equal to the minimal semiresolution Xsr. The
preimage of E1 is a pair of smooth rational curves meeting over the point E1 ∩ D̂1. The preimage
of E2 is a smooth rational curve, meeting each component of the preimage of E1 at a point lying
over Ĉ ∩ E1 = Ĉ ∩ E2.

In the notation of [KS88, Definition 4.26], Xsr is a chain consisting of copy of (A, 2∆) (namely
the second component of Xsr) in the middle and two copies of (A, 2∆) with ∆ pinched at the
ends.
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Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy

1084

https://doi.org/10.1112/S0010437X11007482 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0274461(43#224)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=0260715(41#5339)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=1444010(98c:14028)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0199181(33#7330)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=0224620(37#219)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=2236759(2007d:14034)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=922803(88m:14022)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=1103912(92g:14012)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
http://www.ams.org/mathscinet-getitem?mr=605348(82i:14025)
https://doi.org/10.1112/S0010437X11007482

	1 General structure of abelian covers
	1.1 Setup
	1.2 Standard covers
	1.3 Covers of smooth varieties
	1.4 Covers of normal varieties
	1.5 Covers of non-normal varieties

	2 Singularities of covers
	2.1 The canonical divisor and slc singularities
	2.2 Cohen--Macaulay covers
	2.3 Cartier index of KX

	3 Semi log canonical Z 2r-covers of surfaces
	3.1 Setup
	3.2 Numerical invariants
	3.3 Singularities: the case Y smooth.
	3.4 Singularities: the case Y reducible

	References



