

# COMPOSITIO MATHEMATICA 

## Non-normal abelian covers

Valery Alexeev and Rita Pardini

Compositio Math. 148 (2012), 1051-1084.
doi:10.1112/S0010437X11007482

LONDON
MATHEMATICAL
SOCIETY

# Non-normal abelian covers 

Valery Alexeev and Rita Pardini


#### Abstract

An abelian cover is a finite morphism $X \rightarrow Y$ of varieties which is the quotient map for a generically faithful action of a finite abelian group $G$. Abelian covers with $Y$ smooth and $X$ normal were studied in $[\mathrm{R}$. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191-213; MR 1103912(92g:14012)]. Here we study the non-normal case, assuming that $X$ and $Y$ are $S_{2}$ varieties that have at worst normal crossings outside a subset of codimension greater than or equal to two. Special attention is paid to the case of $\mathbb{Z}_{2}^{r}$-covers of surfaces, which is used in [V. Alexeev and R. Pardini, Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint (2009), math.AG/arXiv:0901.4431] to construct explicitly compactifications of some components of the moduli space of surfaces of general type.


## Contents

1 General structure of abelian covers ..... 1052
2 Singularities of covers ..... 1063
3 Semi log canonical $\mathbb{Z}_{2}^{r}$-covers of surfaces ..... 1070
References ..... 1084

## Introduction

An abelian cover is a finite morphism $X \rightarrow Y$ of varieties which is the quotient map for a generically faithful action of a finite abelian group $G$. This means that for every component $Y_{i}$ of $Y$ the $G$-action on the restricted cover $X \times_{Y} Y_{i} \rightarrow Y_{i}$ is faithful. The paper [Par91] contains a comprehensive theory of such covers in the case when $Y$ is smooth and $X$ is normal. The covers are described in terms of the building data consisting of branch divisors $D_{H_{i}, \psi_{i}}$ ranging over cyclic subgroups $H_{i} \subset G$, and line bundles $L_{\chi}$ with $\chi$ ranging over the character group of $G$. This collection must satisfy the fundamental relations.

Here, we extend this theory to the case of singular varieties. Namely, we allow $X$ and $Y$ to be varieties satisfying Serre's condition $S_{2}$ and having double crossing singularities in codimension 1, which we abbreviate to gdc for 'generically double crossings' (see § 1.3 for the precise definition). Our interest in this case lies in applications to the moduli theory. Such non-normal abelian covers appear in our work [AP09] where we explicitly construct compactifications of moduli spaces of some Campedelli and Burniat surfaces by adding stable surfaces on the boundary. 'Stable surfaces' here are in the sense of [KS88]: they have slc (semi log canonical) singularities and an ample canonical class.

[^0]
## V. Alexeev and R. Pardini

In this paper, we give a comprehensive treatment of the situation. In $\S 1.3$ we show that the theory of standard covers of [Par91] has a very natural extension to the case when $Y$ is still smooth but $X$ is possibly gdc. In $\S 1.4$ we extend it to the case of normal base by an $S_{2}$-fication trick. In $\S 1.5$ we prove that a cover with non-normal $Y$ can be obtained by gluing a cover over the normalization $\widetilde{Y}$, and we spell out which additional data must be specified.

In $\S 2$ we study the singularities of covers. We determine the conditions for $X$ to have slc singularities, to be Cohen-Macaulay, and we determine the index of the canonical divisor in the situations appearing in common applications.

In $\S 3$ we treat in detail the special case when the group $G$ is $\mathbb{Z}_{2}^{r}$ and $\operatorname{dim} X=\operatorname{dim} Y=2$, as in [AP09]. We restrict ourselves to the situation where the base $Y$ is smooth or has two smooth branches meeting transversally, and the components of branch divisors and the double locus are smooth and have distinct tangent directions at the points of intersection, i.e. locally they look like a collection of lines in the plane. In this situation, we give a complete classification of the covers and the singularities of $X$. The answer is contained in nine tables. Some of these covers appear on the boundary of moduli of Campedelli and Burniat surfaces, but the full list is longer.
Notations. $G$ denotes a finite abelian group. We work with equidimensional varieties defined over an algebraically closed field $\mathbb{K}$ whose characteristic does not divide the order of $G$. We denote by $G^{*}$ the group $\operatorname{Hom}\left(G, \mathbb{K}^{*}\right)$ of characters of $G$, and we write it multiplicatively. The abbreviations $l c$ and slc stand for $\log$ canonical and semi log canonical (cf. $\S 2$ for the definitions). Also, $\widetilde{X}, \widetilde{C}$, etc. denote the normalization of $X, C$, etc. We use the additive and multiplicative notation for line bundles and divisors interchangeably. Linear equivalence will be denoted by $\sim$.

## 1. General structure of abelian covers

### 1.1 Setup

We recall some basic facts about Serre's condition $S_{2}$ and the $S_{2}$-fication of a coherent sheaf. For a comprehensive treatment, the reader may consult [Gro65, 5.9-11], where the latter appears under the name ' $Z{ }^{(2)}$-closure'.

All varieties below are assumed to be reduced, equidimensional, but possibly reducible. Let $\mathcal{F}$ be a coherent sheaf on $X$ all of whose associated components are irreducible components of $X$. Then there exists a unique $S_{2}$-fication, or saturation in codimension 2 , a coherent sheaf defined by

$$
S_{2}(\mathcal{F})(V)=\underset{U \subset X, \operatorname{codim}(X \backslash U) \geqslant 2}{\lim } \mathcal{F}(V \cap U)
$$

The sheaf $S_{2}(\mathcal{F})$ is $S_{2}$, and $\mathcal{F}$ is $S_{2}$ if and only if the map $\mathcal{F} \rightarrow S_{2}(\mathcal{F})$ is an isomorphism. In particular, for $\mathcal{F}=\mathcal{O}_{X}$ one obtains the $S_{2}$-fication $S_{2}(X) \rightarrow X$, which is dominated by the normalization of $X$.

On a normal variety $X$, an $S_{2}$-sheaf is the same as a reflexive sheaf, satisfying $\mathcal{F}^{* *}=\mathcal{F}$, see [Bou65]. Further, reflexive sheaves of rank one are the same as divisorial sheaves, isomorphic to $\mathcal{O}_{X}(D)$ for some Weil divisor $D$ (see e.g. [Rei80, Appendix to § 1]). On a smooth (or factorial) variety Weil divisors are the same as Cartier divisors, and rank-one $S_{2}$ sheaves are the same as invertible sheaves.

Let $G$ be a finite abelian group. An abelian cover with Galois group $G$, or $G$-cover, is a finite morphism $X \rightarrow Y$ of varieties which is the quotient map for a generically faithful action of a finite abelian group $G$. This means that for every component $Y_{i}$ of $Y$ the $G$-action on the restricted
cover $X \times_{Y} Y_{i} \rightarrow Y_{i}$ is faithful. An isomorphism of $G$-covers $\pi_{1}: X_{1} \rightarrow Y$, and $\pi_{2}: X_{2} \rightarrow Y$ is an isomorphism $\phi: X_{1} \rightarrow X_{2}$ such that $\pi_{1}=\pi_{2} \circ \phi$.

The $G$-action on $X$ with $X / G=Y$ is equivalent to a decomposition:

$$
\begin{equation*}
\pi_{*} \mathcal{O}_{X}=\bigoplus_{\chi \in G^{*}} \mathcal{F}_{\chi}, \quad \mathcal{F}_{1}=\mathcal{O}_{Y} \tag{1}
\end{equation*}
$$

where $G$ acts on $\mathcal{F}_{\chi}$ via the character $\chi$. If $\pi$ is Galois then each $\mathcal{F}_{\chi}$ has rank one: if $y \in Y$ is a general closed point, then $G$ acts freely on $\pi^{-1}(y)$, so it acts on $\mathcal{O}_{\pi^{-1}(y)}=\bigoplus_{\chi}\left(\mathcal{F}_{\chi} \otimes \mathbb{K}(y)\right)$ as the regular representation. Thus, $\mathcal{F}_{\chi} \otimes \mathbb{K}(y)$ is one-dimensional for every $\chi$. When the sheaves $\mathcal{F}_{\chi}$ are locally free, it is customary to write $\mathcal{F}_{\chi}=L_{\chi}^{-1}$, with $L_{\chi}$ a line bundle.

Lemma 1.1. (i) The sheaf $\mathcal{O}_{X}$ is $S_{n}$ for some $n$ if and only if every $\mathcal{F}_{\chi}$ is $S_{n}$.
(ii) If $\pi: X \rightarrow Y$ is flat then $X$ is $C M$ (Cohen-Macaulay) if and only if $Y$ is $C M$.
(iii) If $Y$ is smooth and $X$ is $S_{2}$ then $\pi$ is flat and $X$ is CM.

Proof. (i) Part (i) is clear from the definition of depth.
(ii) The morphism $\pi$ is flat if and only if every $\mathcal{O}_{Y}$-module $\mathcal{F}_{\chi}$ is invertible. Then each $\mathcal{F}_{\chi}$ is CM if and only if $\mathcal{O}_{Y}$ is CM.
(iii) On a smooth variety every divisorial sheaf is invertible, and so flat. Now part (ii) applies.

A $G$-cover $\pi: X \rightarrow Y$, where $X$ and $Y$ are $S_{2}$ varieties, is determined by its restriction to the complement of a closed subset of codimension greater than or equal to two.
Lemma 1.2. Let $Y$ be an $S_{2}$ variety, $Y_{0} \subseteq Y$ an open subset with $\operatorname{codim}\left(Y \backslash Y_{0}\right) \geqslant 2$, and $\pi_{0}: X_{0} \rightarrow Y_{0}$ a $G$-cover with $X_{0}$ an $S_{2}$ variety. Then there exist a unique $S_{2}$ variety $X$ and a $G$-cover $\pi: X \rightarrow Y$ whose restriction to $Y_{0}$ is $\pi_{0}$.

Proof. For the existence, we take $\mathcal{O}_{X}:=i_{*} \mathcal{O}_{X_{0}}$, where $i: Y_{0} \rightarrow Y$ is the inclusion. Then $\mathcal{O}_{X}=$ $\bigoplus_{\chi \in G^{*}} \mathcal{F}_{\chi}$, where each $\mathcal{F}_{\chi}$ is a rank-one $S_{2}$-sheaf. The algebra structure on $\mathcal{O}_{X}$ is defined as follows. For an open set $U \subset X$ and sections $s \in \mathcal{F}_{\chi}(U), s^{\prime} \in \mathcal{F}_{\chi^{\prime}}(U)$, their product is

$$
\left.\left.s\right|_{U \cap X_{0}} \cdot s^{\prime}\right|_{U \cap X_{0}} \in \mathcal{F}_{\chi \chi^{\prime}}\left(U \cap X_{0}\right)=\mathcal{F}_{\chi \chi^{\prime}}(U),
$$

since $\operatorname{codim}_{U}\left(U \backslash U \cap X_{0}\right) \geqslant 2$ and $\mathcal{F}_{\chi}$ is saturated in codimension 2. Thus, $X:=\operatorname{Spec}_{\mathcal{O}_{Y}} \mathcal{O}_{X}$ is an $S_{2}$ variety with a finite morphism to $Y$. The $G^{*}$-grading on $\mathcal{O}_{X}$ defines the $G$-action on $X$. By construction, the eigenspace $\mathcal{F}_{1}$ for the trivial character is $i_{*} \mathcal{O}_{Y_{0}}=\mathcal{O}_{Y}$. Therefore, $X / G=Y$.

Uniqueness follows from the uniqueness of the $S_{2}$-fication.
Given a $G$-cover $\pi: X \rightarrow Y$ and an irreducible subset $S \subset Y$, we define the inertia subgroup $H_{S}$ of $S$ to be the subgroup of $G$ consisting of the elements that fix $\pi^{-1}(S)$ pointwise, or, equivalently since $G$ is abelian, that fix an irreducible component of $\pi^{-1}(S)$ pointwise. The branch locus $D_{\pi}$ of $\pi$ is the set of points of $Y$ whose inertia subgroup is not trivial (notice that we regard $D_{\pi}$ simply as a set, without giving it a scheme structure). If $\pi$ is flat, then $D_{\pi}$ is a divisor by [AK70, Theorem 6.8]. If $F$ is an irreducible divisor of $Y$ such that $X$ is generically smooth along $\pi^{-1}(F)$, then the natural representation $\psi$ of $H_{F}$ on the tangent space $T_{X, R}$ at the generic point of an irreducible component $R$ of $\pi^{-1}(F)$ is faithful, and hence $H_{F}$ is cyclic (cf. [Par91, §1]). Notice that $\psi$ does not depend on the choice of the component $R$ of $\pi^{-1}(F)$, since $G$ is abelian.

## V. Alexeev and R. Pardini

### 1.2 Standard covers

In this section we recall, in a form which is convenient for our later applications, the definition of standard abelian covers, a class of flat abelian covers that can be constructed from a collection of line bundles and effective divisors on the target variety (cf. [Par91, FP97]). The prototypical example is the classical construction of a double cover of a variety $Y$ from the data of an effective divisor $D$ on $Y$ and a line bundle $L$ such that $2 L \sim D$.

Let $Y$ be a variety. A set of building data for a standard $G$-cover $\pi: X \rightarrow Y$ consists of the following:

- irreducible effective Cartier divisors $D_{1}, \ldots, D_{k}$ (possibly not distinct);
- for each $D_{i}$ a pair $\left(H_{i}, \psi_{i}\right)$, where $H_{i}$ is a cyclic subgroup of $G$ of order $m_{i}$ and $\psi_{i}$ is a generator of the group of characters $H_{i}^{*}$;
- line bundles $L_{\chi}$, for $\chi \in G^{*} \backslash\{1\}$.

Moreover we assume that these data satisfy the so called fundamental relations:

$$
\begin{equation*}
\forall \chi, \chi^{\prime}, \quad L_{\chi}+L_{\chi^{\prime}} \sim L_{\chi \chi^{\prime}}+\sum_{i} \varepsilon_{\chi, \chi^{\prime}}^{i} D_{i} \tag{2}
\end{equation*}
$$

where for a character $\chi$ we write $\left.\chi\right|_{H_{i}}=\psi_{i}^{a_{\chi}^{i}}$, with $0 \leqslant a_{\chi}^{i}<m_{i}$, and we define $\varepsilon_{\chi, \chi^{\prime}}^{i}:=$ $\left[\left(a_{\chi}^{i}+a_{\chi^{\prime}}^{i}\right) / m_{i}\right]$. Observe that $\varepsilon_{\chi, \chi^{\prime}}^{i}$ is equal either to 0 or to 1 .

We call the divisors $D_{i}$, together with the pairs $\left(H_{i}, \psi_{i}\right)$, the branch data of the cover. An equivalent way of describing the branch data, and therefore the building data, is to give for each pair $(H, \psi)$, with $H \subset G$ a cyclic subgroup and $\psi \in H^{*}$ a generator, the divisor $D_{H, \psi}=\sum_{\left\{i \mid\left(H_{i}, \psi_{i}\right)=(H, \psi)\right\}} D_{i}$. This is the notation used in [Par91].

Remark 1.3. If the group $\operatorname{Pic}(Y)$ has no $m$-torsion, where $m=|G|$, then the branch data determine the building data by [Par91, Proposition 2.1]. In general, the branch data are enough to determine the local geometry of the cover (cf. Proposition 1.6, (ii)).

Remark 1.4. When $G=\mathbb{Z}_{2}^{r}$, it is enough to associate with every divisor $D_{i}$ a non-zero element $g_{i} \in G$, the generator of $H_{i}$. Also, the definition of $\varepsilon_{\chi, \chi^{\prime}}^{i}$ is simpler: $\varepsilon_{\chi, \chi^{\prime}}^{i}$ is equal to 1 if $\chi\left(g_{i}\right)=\chi^{\prime}\left(g_{i}\right)=-1$ and it is equal to 0 otherwise.

We now explain how to construct a $G$-cover from a set of building data. Choose $\chi_{1}, \ldots, \chi_{s} \in$ $G^{*}$ such that $G^{*}$ is the direct sum of the cyclic subgroups generated by the $\chi_{j}$. Denote by $d_{j}$ the order of $\chi_{j}$ and write $L_{j}:=L_{\chi_{j}}$ and $a_{j}^{i}:=a_{\chi_{j}}^{i}$. By [Par91, Proposition 2.1] for $j=1, \ldots, s$ there exist isomorphisms:

$$
\varphi_{j}: L_{j}^{\otimes d_{j}} \xrightarrow{\sim} \mathcal{O}_{Y}\left(\sum_{i} \frac{d_{j} a_{j}^{i}}{m_{i}} D_{i}\right) .
$$

Notice that the coefficients $\left(d_{j} a_{j}^{i}\right) / m_{i}$ in the above formula are integers. Using formulae (2.15) of [Par91] and the isomorphisms $\varphi_{j}$ above, one constructs for each pair $\chi, \chi^{\prime}$ of non-trivial characters an isomorphism

$$
\varphi_{\chi, \chi^{\prime}}: L_{\chi}^{-1} \otimes L_{\chi^{\prime}}^{-1} \xrightarrow{\sim} L_{\chi \chi^{\prime}}^{-1}\left(-\sum \varepsilon_{\chi, \chi^{\prime}}^{i} D_{i}\right)
$$

such that for every $\chi, \chi^{\prime}, \chi^{\prime \prime} \in G^{*}$ the following diagram commutes (we set $L_{1}=\mathcal{O}_{Y}$ ):

where $\delta_{\chi, \chi^{\prime}, \chi^{\prime \prime}}^{i}=\varepsilon_{\chi \chi^{\prime}, \chi^{\prime \prime}}^{i}+\varepsilon_{\chi, \chi^{\prime}}^{i}=\varepsilon_{\chi, \chi^{\prime} \chi^{\prime \prime}}^{i}+\varepsilon_{\chi^{\prime}, \chi^{\prime \prime}}^{i}$ and the maps are induced by the $\varphi_{\chi, \chi^{\prime}}$ in the obvious way. We denote by $\mu_{\chi, \chi^{\prime}}: L_{\chi}^{-1} \otimes L_{\chi^{\prime}}^{-1} \rightarrow L_{\chi \chi^{\prime}}^{-1}$ the maps induced by composing $\varphi_{\chi, \chi^{\prime}}$ with the inclusion $L_{\chi \chi^{\prime}}^{-1}\left(-\sum \varepsilon_{\chi, \chi^{\prime}}^{i} D_{i}\right) \hookrightarrow L_{\chi \chi^{\prime}}^{-1}$. By the commutativity of (3), the collection of maps $\mu_{\chi, \chi^{\prime}}$ defines on $\mathcal{E}:=\mathcal{O}_{Y} \oplus \bigoplus_{\chi \neq 1} L_{\chi}^{-1}$ a commutative and associative algebra structure compatible with the $G$-action defined by letting $G$ act trivially on $L_{1}=\mathcal{O}_{Y}$ and via the character $\chi$ on $L_{\chi}^{-1}$ for $\chi \neq 1$. We define $X:=\operatorname{Spec} \mathcal{E}$ with the natural map $\pi: X \rightarrow Y$ to be a standard $G$-cover associated with the given set of building data. Notice that, since the $L_{\chi}^{-1}$ are locally free, $\pi$ is flat and $X$ is $S_{2}$ if $Y$ is.
$X$ can be described locally above a point $y \in Y$ as follows. Up to shrinking $Y$, we may assume that all the $L_{\chi}$ are trivial and that the $D_{i}$ are defined by equations $\sigma_{i}$. If we denote by $z_{\chi}$ a coordinate on $L_{\chi}^{-1}, \chi \in G^{*} \backslash\{1\}$, then $X$ is given inside the vector bundle $V\left(\bigoplus_{\chi \neq 1} L_{\chi}^{-1}\right) \cong$ $Y \times \mathbb{K}^{m-1}$ by the following set of equations:

$$
\begin{equation*}
z_{\chi} z_{\chi^{\prime}}=c_{\chi, \chi^{\prime}} \Pi_{1}^{k} \sigma_{i}^{\varepsilon_{\chi, \chi^{\prime}}^{i}} z_{\chi \chi^{\prime}}, \quad \chi, \chi^{\prime} \in G^{*} \backslash\{1\}, \tag{4}
\end{equation*}
$$

where the $c_{\chi, \chi^{\prime}}$ are nowhere vanishing regular functions and for $\chi=1$ we set $z_{\chi}=1$. For $1 \neq \chi \in G^{*}$, denote by $d$ the order of $\chi$ and write $\left.\chi\right|_{H_{i}}=\psi_{i}^{a_{i}}$, with $0 \leqslant a_{i}<m_{i}:=\left|H_{i}\right|$. Eliminating between the equations in (4), one gets

$$
\begin{equation*}
z_{\chi}^{d}=b_{\chi} \Pi_{1}^{k} \sigma_{i}^{\left(d a_{i} / m_{i}\right)}, \tag{5}
\end{equation*}
$$

where $b_{\chi}$ is a nowhere-vanishing function. It follows immediately that $X$ is a variety: indeed, using the decomposition of $\pi_{*} \mathcal{O}_{X}$ into $G$-eigenspaces, we may assume that a nilpotent element is locally of the form $f z_{\chi}$ for some character $\chi$ and some regular function $f$. Then by (5), $\left(f z_{\chi}\right)^{k}=0$ for some $k$ only if $f=0$. Using the local equations in (4), one can also show the following lemma.
Lemma 1.5. Use the notation as above. Let $\pi: X \rightarrow Y$ be a standard $G$-cover and $y \in Y$ be a point. Then the inertia subgroup $H_{y}$ of $y$ is equal to $\sum_{\left\{i \mid y \in D_{i}\right\}} H_{i}$.
Proof. Since the question is local on $Y$, we may assume that $X$ is given by the equations in (4). Let $x \in X$ be a point lying above $y$. Then by (5) the coordinate $z_{\chi}(x)$ does not vanish if and only if $\left.\chi\right|_{H_{i}}=1$ for every $i$ such that $y \in D_{i}$. Since an element $g \in G$ fixes $x$ if and only if for every $\chi \in G^{*}$ such that $\chi(g) \neq 1$ the coordinate $z_{\chi}(x)$ vanishes, this remark proves the claim.

Given a set of building data, the construction of the standard $G$-cover $\pi: X \rightarrow Y$ depends of course on the choice of the characters $\chi_{1}, \ldots \chi_{s}$ and of the isomorphisms $\varphi_{j}$. Assume that $\chi_{1}^{\prime}, \ldots \chi_{t}^{\prime}$ are another set of characters of $G$ such that $G^{*}$ is the direct sum of the cyclic subgroups generated by the $\chi_{l}^{\prime}$. Let $d_{l}^{\prime}$ be the order of $\chi_{l}^{\prime}, i=1, \ldots, t$; then by (5) the multiplication maps induce for $l=1, \ldots, t$ isomorphisms $\varphi_{l}^{\prime}: L_{\chi_{l}^{\prime}}^{\otimes d_{l}^{\prime}} \xrightarrow{\sim} \mathcal{O}_{Y}\left(\sum_{i}\left(\left(k_{l} b_{l}^{i}\right) / m_{i}\right) D_{i}\right)$, where $0 \leqslant b_{l}^{i}<m_{i}$ and $\left.\chi_{l}^{\prime}\right|_{H_{i}}=\psi_{i}^{b_{l}^{i}}$. By the associativity and commutativity of the multiplication, the algebra structure defined on $\mathcal{O}_{Y} \oplus \bigoplus_{\chi \neq 1} L_{\chi}^{-1}$ by the $\varphi_{l}^{\prime}$ is the same as that induced by the $\varphi_{j}$. Hence it is enough to analyze to what extent the isomorphism class of $\pi$ depends on the $\varphi_{j}$.

## V. Alexeev and R. Pardini

Proposition 1.6. (i) (Global case.) If $H^{0}\left(\mathcal{O}_{Y}^{*}\right)=\mathbb{K}^{*}$, then the building data determine $\pi: X \rightarrow$ $Y$ up to isomorphism of $G$-covers.
(ii) In general, given two standard covers $\pi_{i}: X_{i} \rightarrow Y, i=1$, 2 , with the same building data, there exists an étale cover $Y^{\prime} \rightarrow Y$ such that, after base change with $Y^{\prime} \rightarrow Y, \pi_{1}$ and $\pi_{2}$ give isomorphic $G$-covers.

Proof. (ii) We use the notation introduced above. Let $\mathcal{E}, \mathcal{E}^{\prime}$ be two $\mathcal{O}_{Y}$-algebra structures on $\mathcal{O}_{Y} \oplus \bigoplus_{\chi \neq 1} L_{\chi}^{-1}$ given by isomorphisms $\varphi_{j}$, respectively $\varphi_{j}^{\prime}$. The isomorphisms $\varphi_{j}, \varphi_{j}^{\prime}$ differ by an automorphism of $L_{j}^{\otimes d_{j}}$, namely by multiplication by an element $k_{j} \in H^{0}\left(\mathcal{O}_{Y}^{*}\right)$. This automorphism is induced by an automorphism of $L_{j}$ if and only if $k_{j}$ has a $d_{j}$ th root $h_{j} \in H^{0}\left(\mathcal{O}_{Y}^{*}\right)$. So, up to taking an étale cover, one can assume that the roots $h_{j}$ exist. By [Par91, (2.15)], the $h_{j}$ can be used to define, for all $\chi \in G^{*} \backslash\{1\}$, automorphisms $\psi_{\chi}$ of $L_{\chi}^{-1}$ that commute with the isomorphisms $\varphi_{\chi, \chi^{\prime}}$ and $\varphi_{\chi, \chi^{\prime}}^{\prime}$.

To prove statement (i), just observe that if $H^{0}\left(\mathcal{O}_{Y}^{*}\right)=\mathbb{K}^{*}$ no base change is necessary to construct the isomorphism above.

Remark 1.7. Let $\pi: X \rightarrow Y$ be a $G$-cover with branch data $D_{i},\left(G_{i}, \psi_{i}\right)$, let $y \in Y$, and let $\sigma_{i}$ be local equations for $D_{i}$ near $y$. Combining Proposition 1.6 with the local equations in (4), we see that, up to passing to an étale cover of $(Y, y), X$ is defined locally near $y$ by the equations

$$
\begin{equation*}
z_{\chi} z_{\chi^{\prime}}=\prod_{i=1}^{k} \sigma_{i}^{\varepsilon_{\chi}^{i}}{ }^{i} z_{\chi} z_{\chi \chi^{\prime}}, \quad \chi, \chi^{\prime} \in G^{*} \backslash\{1\} . \tag{6}
\end{equation*}
$$

### 1.3 Covers of smooth varieties

Here we find conditions for a $G$-cover of a smooth variety to be standard. We keep the notation of the previous section.

Definition 1.8. Let $Y$ be a smooth variety and let $\pi: X \rightarrow Y$ be a standard $G$-cover with building data $L_{\chi}, D_{i},\left(H_{i}, \psi_{i}\right)$. By Lemma 1.5, the branch locus $D_{\pi}$ of $\pi$ is the support of the divisor $\sum_{i} D_{i}$.

We define the Hurwitz divisor of $\pi$ as the $\mathbb{Q}$-divisor $D:=\sum_{i}\left(\left(m_{i}-1\right) / m_{i}\right) D_{i}$. Notice that the support of $D$ is equal to $D_{\pi}$.

We say that a variety is $d c$ (has double crossings) if every point is either smooth or analytically isomorphic to $x y=0$. We say that a variety is gdc (has generically double crossings) if it is dc outside a closed subset of codimension greater than or equal to two.

The following result generalizes the main result of [Par91].
Theorem 1.9. Let $\pi: X \rightarrow Y$ be a $G$-cover such that $Y$ is smooth and $X$ is $S_{2}$. Then the following hold.
(i) The variety $X$ is normal if and only if $\pi$ is standard and every component of the Hurwitz divisor $D$ has multiplicity less than one.
(ii) Assume that $\pi$ is standard. Then $X$ is $g d c$ if and only if every component of $D$ has multiplicity less than or equal to one.
(iii) Assume that $X$ is gdc. Then $\pi$ is standard if and only if for every irreducible divisor $F$ of $Y$ such that $X$ is singular above $F$ one has $H_{F}=\mathbb{Z}_{2}^{s}$ for some $s$.

In the case $G=\mathbb{Z}_{2}^{r}$, which is of special interest to us because of the applications in [AP09], Theorem 1.9 reads as follows.

Corollary 1.10. Let $\pi: X \rightarrow Y$ be a $\mathbb{Z}_{2}^{r}$-cover such that $Y$ is smooth and $X$ is $S_{2}$. Then the following hold.
(i) The variety $X$ is normal if and only if $\pi$ is standard and every component of $D$ has multiplicity less than one.
(ii) The variety $X$ is gdc if and only if $\pi$ is standard and every component of $D$ has multiplicity less than or equal to one.

Remark 1.11. Let $\pi: X \rightarrow Y$ be a standard $G$-cover with $Y$ smooth and $X$ gdc and let $F$ be a component of the branch divisor $D_{\pi}$. By Lemma 1.5, we have $H_{F}=\sum_{\left\{i \mid D_{i}=F\right\}} H_{i}$. The pairs (subgroup, character) corresponding to $F$ can be determined as follows.

- Assume that $F$ has multiplicity less than one in the Hurwitz divisor $D$. Then there is precisely one index $i$ with $D_{i}=F$. In this case, $H_{i}=H_{F}$ and the character $\psi_{i}$ is given by the action of $H_{i}$ on the tangent space to $X$ at the generic point of an irreducible component of $\pi^{-1}(F)$ (cf. [Par91], $\S \S 1$ and 2 ).
- Assume that $F$ has multiplicity equal to one in $D$. Then there are precisely two indices $i_{1}$ and $i_{2}$ such that $D_{i_{1}}=D_{i_{2}}=F$ and $H_{i_{1}}$ and $H_{i_{2}}$ have order two. Hence, either $H_{F}=H_{i_{1}}=H_{i_{2}}$ or $H_{F}=H_{i_{1}} \oplus H_{i_{2}}$. In the latter case the proof of Theorem 1.9 shows that $H_{i_{1}}$ and $H_{i_{2}}$ are generated by the elements of $H_{F}$ that interchange the two branches of $X$ at a general point of $\pi^{-1}(F)$.

Proof of Theorem 1.9 Statement (i) is [Par91, Theorem 2.1 and Corollary 3.1].
Therefore, consider the non-normal case. The cover $\pi$ is flat since $Y$ is smooth and $X$ is $S_{2}$, and hence we write, as usual, $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y} \oplus \bigoplus_{\chi \neq 1} L_{\chi}^{-1}$. The cover is standard if and only if there exist branch data $D_{i},\left(H_{i}, \psi_{i}\right)$ such that for every $\chi, \chi^{\prime} \in G^{*} \backslash\{1\}$ the zero divisor of the multiplication map $\mu_{\chi, \chi^{\prime}}: L_{\chi}^{-1} \otimes L_{\chi^{\prime}}^{-1} \rightarrow L_{\chi \chi^{\prime}}^{-1}$ is equal to $\sum_{i} \varepsilon_{\chi, \chi^{\prime}}^{i} D_{i}$, where the $\varepsilon_{\chi, \chi^{\prime}}^{i}$ are defined in § 1.2.

Notice that $X$, being $S_{2}$, is non-normal if and only if it is singular in codimension 1. Fix a component $F$ of $D$ such that $X$ is singular above $F$. Write $H:=H_{F}$. The cover $\pi$ factors as $X \rightarrow X / H \rightarrow Y$, and $F$ is not contained in the branch locus of the map $X / H \rightarrow Y$; hence $X / H$ is generically smooth over $F$. It follows that there is an element of $H$ that exchanges the two branches of $X$ at a general point of $\pi^{-1}(F)$.

Let $\widetilde{X} \rightarrow X$ be the normalization, let $\pi^{\nu}: \widetilde{X} \rightarrow Y$ be the induced $G$-cover, let $\left(H^{\prime}, \psi^{\prime}\right)$ be the pair (subgroup, character) corresponding to $F$ for the cover $\pi^{\nu}$, and let $m^{\prime}$ be the order of $H^{\prime}$ (if $\pi^{\nu}$ is not branched on $F$, we take $H^{\prime}$ and $\psi^{\prime}$ to be trivial). Since the normalization map $\widetilde{X} \rightarrow X$ is $G$-equivariant, we have a short exact sequence:

$$
\begin{equation*}
0 \rightarrow H^{\prime} \rightarrow H \rightarrow \mathbb{Z}_{2} \rightarrow 0 \tag{7}
\end{equation*}
$$

We consider the $H$-covers $p: X \rightarrow Z:=X / H$ and $p^{\nu}: \widetilde{X} \rightarrow \widetilde{X} / H=Z$, and we study the algebras $\mathcal{A}:=p_{*} \mathcal{O}_{X, F^{\prime}}$ and $\mathcal{A}^{\nu}:=p_{*}^{\nu} \mathcal{O}_{\tilde{X}, F^{\prime}}$, where $F^{\prime}$ is an irreducible component of the inverse image of $F$ in $Z$. We denote by $t \in \mathcal{O}_{Z, F^{\prime}}$ a local parameter.

## V. Alexeev and R. Pardini

We distinguish three cases.
Case (a): $|H|=2$.
In this case $H^{\prime}=\{0\}$, and $X$ is given locally by $z^{2}=a t^{2}$, where $a \in \mathcal{O}_{Z, F^{\prime}}^{*}$.
Case (b): $H$ is cyclic of order $2 m^{\prime} \geqslant 4$.
Let $\psi \in H^{*}$ be a generator that restricts to $\psi^{\prime}$ on $H^{\prime}$. The algebra $\mathcal{A}^{\nu}$ is generated by elements $z, w$ such that

$$
\begin{equation*}
z^{m^{\prime}}=a t w, \quad w^{2}=b \tag{8}
\end{equation*}
$$

where $a, b \in \mathcal{O}_{Z, F^{\prime}}^{*}$ and $H$ acts on $z$ via the character $\psi$ and on $w$ via the character $\psi^{m^{\prime}}$. The eigenspace corresponding to $\psi^{j}$ is generated by $z_{j}:=z^{j}$ for $0 \leqslant j<m^{\prime}$, and by $z_{j}:=w z^{j-m^{\prime}}$ for $m^{\prime} \leqslant j<2 m^{\prime}$. Since the inclusion $\mathcal{A} \subset \mathcal{A}^{\nu}$ is $G$-equivariant, $\mathcal{A}$ is generated by elements of the form $t^{a_{j}} z_{j}$ for suitable $a_{j} \geqslant 0$.

Since $H$ fixes $p^{-1}\left(F^{\prime}\right)$ pointwise, by the argument in the proof of Lemma $1.5 \mathcal{A}$ is contained in the subalgebra $\mathcal{B}$ of $\mathcal{A}^{\nu}$ generated by

$$
1, z^{m^{\prime}}=t w, z_{j}, \quad 1 \leqslant j \leqslant 2 m^{\prime}-1, \quad j \neq m^{\prime} .
$$

The algebra $\mathcal{B}$ is also generated by $z_{1}=z, z_{m^{\prime}+1}=w z$, with the only relation $b z_{1}^{2}=z_{m^{\prime}+1}^{2}$; hence $\operatorname{Spec} \mathcal{B}$ is gdc and the map $\operatorname{Spec} \mathcal{B} \rightarrow \operatorname{Spec} \mathcal{A}$ is an isomorphism. So $\mathcal{A}=\mathcal{B}$.

Case (c): $H$ is not cyclic.
In this case $m^{\prime}$ is even and $H \cong H^{\prime} \times \mathbb{Z}_{2}$. We denote by $\psi \in H^{*}$ a character that restricts to $\psi^{\prime}$ on $H^{\prime}$ and by $\phi$ the character such that $H^{\prime}=\operatorname{ker} \phi$. $\mathcal{A}^{\nu}$ is generated by $z, w$ such that

$$
\begin{equation*}
z^{m^{\prime}}=a t, \quad w^{2}=b, \tag{9}
\end{equation*}
$$

where $a, b \in \mathcal{O}_{Z, F^{\prime}}^{*}$ and $H$ acts on $z$ via the character $\psi$ and on $w$ via the character $\phi$. Arguing as in the previous case, one checks that $\mathcal{A}$ is generated by

$$
1, z_{1}:=z, \ldots, z^{m^{\prime}-1}, t w, z_{m^{\prime}+1}:=z w, \ldots, z^{m^{\prime}-1} w
$$

The algebra $\mathcal{A}$ can also be generated by $z_{1}, z_{m^{\prime}+1}$ with the only relation $b z_{1}^{2}=z_{m^{\prime}+1}^{2}$.
For $\chi_{1}, \chi_{2} \in G^{*} \backslash\{1\}$, denote by $\varepsilon_{\chi_{1}, \chi_{2}}$ the order of vanishing on $F$ of the multiplication map $\mu_{\chi_{1}, \chi_{2}}: L_{\chi_{1}}^{-1} \otimes L_{\chi_{2}}^{-1} \rightarrow L_{\chi_{1} \chi_{2}}^{-1}$. Using the above analysis and arguing as in the proof of [Par91, Theorem 2.1], one obtains the following rules, up to exchanging $\chi_{1}$ and $\chi_{2}$.
Case (a). In this case we have:
$\varepsilon_{\chi_{1}, \chi_{2}}=2$ if $\chi_{1}, \chi_{2} \notin H^{\perp}$; and
$\varepsilon_{\chi_{1}, \chi_{2}}=0$ otherwise.
Case (b). For $i=1,2$, write $\left.\chi_{i}\right|_{H}=\psi^{\alpha_{i} m^{\prime}+\beta_{i}}$, where $\alpha_{i}=0$ or 1 and $0 \leqslant \beta_{i}<m^{\prime}$. Then we have:

$$
\varepsilon_{\chi_{1}, \chi_{2}}=2 \text { if } \alpha_{1}=\alpha_{2}=1, \beta_{1}=\beta_{2}=0
$$

$\varepsilon_{\chi_{1}, \chi_{2}}=1$ if $\alpha_{1}=1, \beta_{1}=0, \beta_{2}>0$; and
$\varepsilon_{\chi_{1}, \chi_{2}}=\left[\left(\beta_{1}+\beta_{2}-1\right) / m^{\prime}\right]$ in the remaining cases.
Case (c). For $i=1,2$, write $\left.\chi_{i}\right|_{H}=\phi^{\alpha_{i}} \psi^{\beta_{i}}$, where $\alpha_{i}=0$ or 1 and $0 \leqslant \beta_{i}<m^{\prime}$. Then we have:

$$
\varepsilon_{\chi_{1}, \chi_{2}}=2 \text { if } \alpha_{1}=\alpha_{2}=1, \beta_{1}=\beta_{2}=0 ;
$$

$\varepsilon_{\chi_{1}, \chi_{2}}=1$ if $\alpha_{1}=1, \beta_{1}=0, \beta_{2}>0$; and
$\varepsilon_{\chi_{1}, \chi_{2}}=\left[\left(\beta_{1}+\beta_{2}\right) / m^{\prime}\right]$ in the remaining cases.
In the above analysis the group $\mathbb{Z}_{2}^{s}$ appears in case (a) and case (c) for $m^{\prime}=2$. In case (a), the cover $\pi$ is standard: $F$ appears twice among the branch data, both times with label $H$.

In case (c), $\pi$ is standard for $m^{\prime}=2: F$ appears twice among the branch data, with labels $H_{1}$ and $H_{2}$ corresponding to the subgroups of order two of $H$ distinct from $H^{\prime}$. Moreover, it is not difficult to check that in case (b) and in case (c) for $m^{\prime} \neq 2$ the cover is not standard. So we have proven (iii) and also that every component of the Hurwitz divisor $D$ of a standard gdc cover has multiplicity less than or equal to one.

Vice versa, assume that $\pi$ is standard and $F$ appears in $D$ with multiplicity less than or equal to one. If the multiplicity is less than one then the cover is normal over $F$. If the multiplicity is equal to 1 , then $F$ appears twice among the branch data, and the corresponding subgroups $H_{1}$ and $H_{2}$ have order two. If $H_{1}=H_{2}$, then the cover is given over the generic point of $F$ by the equation $z^{2}=u t^{2}$, with $u$ a unit, so it is gdc. If $H_{1} \neq H_{2}$, then the cover is given by the equations $z_{1}^{2}=a t, z_{2}^{2}=b t$, with $a$ and $b$ units. These equations are equivalent to $a z_{2}^{2}=b z_{1}^{2}$, so the cover is gdc. This completes the proof of (ii).

### 1.4 Covers of normal varieties

Let $\pi: X \rightarrow Y$ be a $G$-cover such that $Y$ is normal and $X$ is $S_{2}$. Let $Y_{0}$ be the non-singular locus of $Y$. Then the restriction $\pi_{0}: X_{0} \rightarrow Y_{0}$ is a $G$-cover, and by Lemma $1.2 \pi$ is the unique $S_{2}$-extension of $\pi_{0}$ to $Y$. Thus the theory in the normal case is the immediate extension of the non-singular case. We record the following changes.
(i) The sheaves $\mathcal{F}_{\chi}$ are no longer invertible but they are $S_{2}$, i.e. in this case reflexive, divisorial sheaves. The multiplication maps are

$$
\mathcal{F}_{\chi} \times \mathcal{F}_{\chi^{\prime}} \rightarrow \mathcal{F}_{\chi} \otimes \mathcal{F}_{\chi^{\prime}} \rightarrow\left(\mathcal{F}_{\chi} \otimes \mathcal{F}_{\chi^{\prime}}\right)^{* *} \rightarrow \mathcal{F}_{\chi \chi^{\prime}}
$$

(ii) The branch divisors $D_{g}$ are Weil divisors.

Otherwise, the same fundamental relations between $\mathcal{F}_{\chi}$ and $D_{g}$ must hold.
One has to be careful that the morphism $\pi$ may be not flat; indeed, it is flat if and only if all $\mathcal{F}_{\chi}$ are invertible. Also, for a singular $Y$ the branch locus may have non-divisorial components.
Example 1.12. Let $X=\mathbb{A}^{2}=\operatorname{Spec} k[x, y], G=\mathbb{Z}_{2}$ acting by $x \mapsto-x, y \mapsto-y$, and let $Y$ be the quotient $\operatorname{Spec} k\left[x^{2}, x y, y^{2}\right]$, a quadratic cone. Then $\pi$ is ramified only over the vertex $P$ of the cone. The divisors $D_{g}$ are zero. The eigensheaves are $\mathcal{F}_{1}=\mathcal{O}_{Y}$ and $\mathcal{F}_{-1}$, and the divisorial sheaf corresponding to a line $\ell$ through the vertex. $\mathcal{F}_{-1}$ is also isomorphic to the $\mathcal{O}_{Y}$-submodule of $\mathcal{O}_{X}$ generated by $x$ and $y$.

The fundamental relation in this case is $2 \mathcal{F}_{-1}=0$.

### 1.5 Covers of non-normal varieties

Now we assume that $Y$ is a non-normal gdc and $S_{2}$ variety. Let $C$ be the divisorial part of the singular locus of $Y$, let $\nu: \widetilde{Y} \rightarrow Y$ be the normalization, let $C^{\prime}$ be the inverse image of $C$ in $\widetilde{Y}$, and let $\widetilde{C^{\prime}} \rightarrow C^{\prime}$ be the normalization. Since $Y$ is gdc, there is a biregular involution $\iota$ on $\widetilde{C^{\prime}}$ induced by the degree two map $\widetilde{C^{\prime}} \rightarrow C^{\prime} \rightarrow C$. (If the components of $Y$ are smooth, then $\widetilde{C^{\prime}}$ is a union of several pairs of varieties, exchanged by the involution $\iota$. In general, some components of $\widetilde{C}$ map to themselves.) Consider a commutative diagram:


## V. Alexeev and R. Pardini

where $X$ and $X^{\prime}$ are gdc and $S_{2}$ varieties, the vertical arrows are $G$-covers, $X^{\prime} \rightarrow \widetilde{Y}$ is a cover as in the previous section, and $X^{\prime} \rightarrow X$ is a birational morphism.

We denote by $B, B^{\prime}$ the preimages of $C, C^{\prime}$ in $X, X^{\prime}$, and by $\widetilde{B^{\prime}}$ the normalization of $B^{\prime}$.


We first give two constructions for the cover $X \rightarrow Y$ starting with $X^{\prime} \rightarrow \widetilde{Y}$ and the appropriate data for the double locus. One construction proceeds by $S_{2}$-fication of the 'nice' part. The second one is by a gluing procedure, and the result is very convenient for computing the invariants of $X$. Finally, we show that indeed every $X \rightarrow Y$ comes from these constructions.

Theorem 1.13. Suppose we are given:
(i) $Y, \widetilde{Y}, C^{\prime},\left(\widetilde{C^{\prime}}, \iota\right)$;
(ii) a $G$-cover $X^{\prime} \rightarrow \tilde{Y}$, with $X^{\prime}$ an $S_{2}$ and gdc variety.

Let $B^{\prime} \rightarrow C^{\prime}$ be the induced cover and let $\widetilde{B^{\prime}} \rightarrow B^{\prime}$ be its normalization.
Then $X^{\prime}$ can be glued to a cover $X \rightarrow Y$ with $X$ gdc and $S_{2}$ if and only if it is generically smooth along $B^{\prime}$, and there exists an involution $j: \widetilde{B^{\prime}} \rightarrow \widetilde{B^{\prime}}$ that covers the involution $\iota: \widetilde{C^{\prime}} \rightarrow \widetilde{C^{\prime}}$ and commutes with the action of $G$ on $\widetilde{B^{\prime}}$.
Proof by $S_{2}$-fication. Assume that $X$ exists. Then the map $\widetilde{B^{\prime}} \rightarrow X$ induces an involution $j$ as required. In addition, if $X^{\prime}$ were not generically smooth along a component $F$ of $B^{\prime}$, then $X$ would have generically at least three branches along the image of $F$. Thus these two conditions on $X^{\prime}$ are necessary for the existence of $X$.

Next we show that they are also sufficient. We start by identifying the 'bad locus'. It includes the singular locus of $\widetilde{Y}$, the intersection of branch divisors between themselves and with $C^{\prime}$. The image of this bad locus in $Y$ has codimension greater than or equal to two. Let $Y_{0}$ be its complement, and restrict all varieties and covers to $Y_{0}$.

The condition that the involution $j$ commutes with the $G$-action implies that for any irreducible component $F$ of $B^{\prime}$ the subgroup $H$ of elements of $G$ that fix $F$ pointwise is the same as the subgroup of elements that fix $j F$ pointwise. Since $X^{\prime}$ is generically smooth along $B^{\prime}$, one has (cf. [Par91, §1]) $H=\mathbb{Z}_{n}$ for some $n$ and, working étale locally, $H$ acts locally by $\left(x, x_{2}, \ldots, x_{n}\right) \mapsto\left(\xi x, x_{2}, \ldots, x_{n}\right)$ near $F$ and by $\left(y, y_{2}, \ldots, y_{n}\right) \mapsto\left(\xi^{a} y, y_{2}, \ldots, y_{n}\right)$ near $j F$ for some primitive root $\xi^{n}=1$ and $(a, n)=1$. Here $y_{i}=j^{*} x_{i}, i=2, \ldots, n$.

We glue $X_{0}^{\prime}$ along $B_{0}:=\widetilde{B^{\prime}}{ }_{0} / j=B_{0}^{\prime} / \iota$ to obtain a variety $X_{0}$ with a finite morphism to $Y_{0}$. The $G$-action extends to $X_{0}$, because $j$ commutes with the $G$-action, and is of the type (smooth) $\times$ (compatible action of curves), where 'compatible' means that, working étale locally, $\mathbb{Z}_{n}$ acts on $x y=0$ by $x \mapsto \xi x, y \mapsto \xi^{a} y$.

Over the double locus we have $\mathbb{K}[x, y] /(x y)$ and the ring of $\mathbb{Z}_{n}$-invariants is $\mathbb{K}[u, v] /(u v)$, where $u=x^{n}$ and $v=y^{n}$. Thus, $X_{0}$ has only normal crossings and $X_{0} \rightarrow Y_{0}$ is a $G$-cover.

Finally, we apply Lemma 1.2 to obtain an $S_{2}$ and gdc cover $X \rightarrow Y$ by taking $S_{2}$-fication.
Proof by explicit gluing. We obtain $X$ by gluing $X^{\prime}$ along the involution $j: \widetilde{B^{\prime}} \rightarrow \widetilde{B^{\prime}}$, i.e. as the pushout of the following commutative diagram.


Since all varieties are affine over $Y, \mathcal{O}_{X}$ is the fiber product of the corresponding diagram of $\mathcal{O}_{Y}$-algebras, in which we identify sheaves with their pushforwards on $Y$. We can rewrite this fiber product diagram by saying that $\mathcal{O}_{X}$ is the kernel in the exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X^{\prime}} \oplus \mathcal{O}_{\widetilde{B^{\prime}} / j} \xrightarrow{\beta} \mathcal{O}_{\widetilde{B^{\prime}}} .
$$

Further, we have

$$
0 \rightarrow \mathcal{O}_{\widetilde{B^{\prime}} / j} \rightarrow \mathcal{O}_{\widetilde{B^{\prime}}} \rightarrow \mathcal{A} \rightarrow 0
$$

where $\mathcal{A}$ is the alternating part (if char $\mathbb{K} \neq 2$ then $\mathcal{O}_{\widetilde{B^{\prime}}}=\mathcal{O}_{\widetilde{B^{\prime}} / j} \oplus \mathcal{A}$ ), and the image of $\beta$ contains $\mathcal{O}_{\widetilde{B^{\prime}} / j}$. Hence, we have induced exact sequences

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X^{\prime}} \xrightarrow{\alpha} \mathcal{A}, \quad 0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X^{\prime}} \xrightarrow{\alpha} \operatorname{im} \alpha \rightarrow 0 . \tag{11}
\end{equation*}
$$

The variety $X$ thus defined is $S_{2}$ by the next Lemma 1.16, since im $\alpha$ is a subsheaf of $\mathcal{A}$ and so obviously does not have embedded primes. It is gdc again by looking in codimension 1 as in the previous proof. The $G$-action on $X^{\prime}$ descends to a $G$-action on $X$ since $j$ commutes with the $G$-action on $\widetilde{B^{\prime}}$ and by construction the subalgebra of $G$-invariants is the algebra of $\widetilde{Y}$ glued along $\widetilde{C^{\prime}} / \iota$, i.e. $\mathcal{O}_{Y}$.

The varieties $X$ obtained in the two proofs coincide, since they both have finite morphisms to $Y$, they are both $S_{2}$, and they coincide over an open subset $Y_{0} \subset Y$ with $\operatorname{codim}\left(Y \backslash Y_{0}\right) \geqslant 2$.
Warning 1.14. It may happen that there is no covering involution of $B^{\prime}$ but only of its normalization $\widetilde{B}^{\prime}$. Then the double locus of $X$ is obtained from $\widetilde{B}^{\prime} / j$ by some additional gluing in codimension 1 (codimension 2 for $X$ ). As a consequence, branches of $X$ may not be $S_{2}$. However, the variety $X$ is $S_{2}$. Multiple examples of this phenomenon are contained in [AP09, § 5.4].

On the other hand, the involution $j$ need not be unique. For instance, if $g \in G$ has order two, then $j g$ is another involution satisfying the assumptions for gluing. The next example shows that gluing via different involutions can give rise to non-isomorphic covers.
Example 1.15. Let $Y=\left\{u^{2}-w v^{2}=0\right\} \subset \mathbb{A}_{u, v, w}$. The normalization of $Y$ is the map $\widetilde{Y}=\mathbb{A}_{s, t}^{2} \rightarrow$ $Y$ defined by $u=s t, v=t, w=s^{2}$. Here $C=\{u=v=0\}, \widetilde{C^{\prime}}=C^{\prime}=\{t=0\}$ and the involution $\iota$ of $\widetilde{C^{\prime}}$ is given by $s \mapsto-s$.

Let $X^{\prime}=\left\{\epsilon^{2}=1\right\} \subset \mathbb{A}_{s, t, \epsilon}^{3}$ and let $p: X^{\prime} \rightarrow \widetilde{Y}$ be the trivial $\mathbb{Z}_{2}$ cover, given by the projection on the coordinates $s, t$. The $\mathbb{Z}_{2}$-action is $\epsilon \mapsto-\epsilon$ and $B^{\prime}=\widetilde{B^{\prime}}=\left\{t=0, \epsilon^{2}=1\right\}$. There are two involutions of $\widetilde{B^{\prime}}$ that lift $\iota$, namely $j_{1}:=(s, \epsilon) \mapsto(-s, \epsilon)$ and $j_{2}:=(s, \epsilon) \mapsto(-s,-\epsilon)$. The cover $X_{1} \rightarrow Y$ obtained by gluing via $j_{1}$ is obviously the trivial $\mathbb{Z}_{2}$-cover.

## V. Alexeev and R. Pardini

We describe the cover $X_{2} \rightarrow Y$ obtained by gluing via $j_{2}$ following the second proof of Theorem 1.13. The map $\widetilde{B^{\prime}} \rightarrow \widetilde{B^{\prime}} / j_{2}$ corresponds to the inclusion $\mathbb{K}[s \epsilon] \rightarrow \mathbb{K}[s, \epsilon] /\left(\epsilon^{2}-1\right)$ and the map $\widetilde{B^{\prime}} \rightarrow X^{\prime}$ corresponds to the surjection $\mathbb{K}[s, t, \epsilon] \rightarrow \mathbb{K}[s, \epsilon] /\left(\epsilon^{2}-1\right)$. The fiber product of these two ring maps can be identified with $R:=\mathbb{K}[s, t, \epsilon t] /\left(\epsilon^{2}-1\right) \subset \mathbb{K}[s, t, \epsilon] /\left(\epsilon^{2}-1\right)$. The map $R \rightarrow \mathbb{K}[x, y, z] /\left(x^{2}-y^{2}\right)$ defined by $s \mapsto z, t \mapsto x, \epsilon t \mapsto y$ is an isomorphism, and hence $X_{2}$ is the union of two copies of $\mathbb{A}^{2}$ glued along a line. The cover $X_{2} \rightarrow Y$ is given by $(x, y, z) \mapsto\left(x, y z, z^{2}\right)$, and the $\mathbb{Z}_{2}$-action on $X$ is given by $(x, y, z) \mapsto(x,-y,-z)$. Thus $(0,0,0) \in Y$ is the only branch point. Hence the ramification locus of a standard $G$-cover has always pure codimension 1, but this not true for the $G$-covers obtained from a standard cover by gluing, and the analogue of Lemma 1.5 does not hold.

Lemma 1.16. Using the notations as given in the second proof by gluing, assume that $X^{\prime}$ is $S_{n}$ for some $n \geqslant 2$. Then $X$ is $S_{n}$ if and only if im $\alpha$ is $S_{n-1}$.

Proof. We use the cohomological interpretation of depth using local cohomology [Har67, 3.8] (alternatively and equivalently one can use $\operatorname{Ext}^{i}\left(\mathcal{O}_{X, Z} / m_{X, Z}, \bullet\right)$ ). A sheaf $\mathcal{E}$ satisfies $S_{n}$ if and only if for every irreducible subvariety $Z \subset Y$ one has $H_{Z}^{i}(\mathcal{E})=0$ for all $i<$ $\min (n, \operatorname{codim} Z)$. Looking at the long exact sequence of cohomologies corresponding to the short exact sequence (11), we get $H_{Z}^{i}\left(\mathcal{O}_{X}\right)=H_{Z}^{i-1}(\operatorname{im} \alpha)$ for all $i<\min (n, \operatorname{codim} Z)$. The statement now follows.

We spell out Theorem 1.13 in a special case, which is of interest to us because of the applications in [AP09].
Example 1.17. Take $G=\mathbb{Z}_{2}^{r}$. For simplicity of exposition, we assume that $Y=Y_{1} \cup Y_{2}$ is the gdc union of two smooth projective surfaces that intersect along a smooth rational curve $C$, but all our considerations generalize straightforwardly to the case of a gdc surface with smooth components whose double locus is a union of smooth rational curves.

We have $\widetilde{Y}=Y_{1} \sqcup Y_{2}$, and hence an $S_{2}$ and gdc $G$-cover $X^{\prime} \rightarrow \widetilde{Y}$ is the disjoint union of $S_{2}$ and gdc covers $\pi_{i}: X_{i}^{\prime} \rightarrow Y_{i}, i=1,2$. By Corollary 1.10, the covers $\pi_{i}$ are standard. We denote by $D_{1}^{(i)}, \ldots, D_{r_{i}}^{(i)}, g_{1}^{(i)}, \ldots, g_{r_{i}}^{(i)}$ the branch data of $\pi_{i}, i=1,2$. We write $\widetilde{C^{\prime}}=C^{\prime}=C_{1}^{\prime} \sqcup C_{2}^{\prime}$, $B^{\prime}=B_{1}^{\prime} \sqcup B_{2}^{\prime}$ and $\widetilde{B^{\prime}}=\widetilde{B_{1}^{\prime}} \sqcup \widetilde{B_{2}^{\prime}}$. We denote by $\gamma_{i}$ the generator of subgroup $H_{C_{i}^{\prime}}$. An involution $j$ of $\widetilde{B^{\prime}}$ as in Theorem 1.13 exists if and only if there is an isomorphism $\widetilde{B_{1}^{\prime}} \rightarrow \widetilde{B_{2}^{\prime}}$ compatible with the $G$-action. This is equivalent to the following conditions.
(i) One has $\gamma_{1}=\gamma_{2}=: \gamma$.
(ii) For $y \in C$, denote by $m_{y, h}^{(1)}$ the intersection multiplicity at $y$ of $D_{h}^{(1)}$ with $C=C_{1}, h=$ $1, \ldots, r_{1}$ and by $m_{y, s}^{(2)}$ the intersection multiplicity at $y$ of $D_{s}^{(2)}$ with $C=C_{2}, s=1, \ldots, r_{2}$. Then

$$
\sum_{h} m_{y, t}^{(1)} g_{h}^{1}=\sum_{s} m_{y, s}^{(2)} g_{s}^{2} \quad \bmod \gamma, \forall y \in C
$$

Indeed, condition (i) follows immediately by the fact that $j$ commutes with the action of $G$. In addition, by the normalization algorithm of [Par91, §3] condition (ii) is equivalent to requiring that the branch data of the normalizations $\widetilde{B_{1}^{\prime}} \rightarrow C$ and $\widetilde{B_{2}^{\prime}} \rightarrow C$ of the $G /\langle\gamma\rangle$-coverings of $C=C_{1}=C_{2}$ induced by $\pi_{1}$ and $\pi_{2}$ are the same. Since $C$ is smooth rational, the branch data are enough to determine the building data (cf. Remark 1.3). Since $C$ is projective, the building data determine the cover up to isomorphism by Proposition 1.6.

Assume that the gluing conditions are satisfied. Giving an involution of $\widetilde{B^{\prime}}$ that commutes with the $G$ action is the same as giving an isomorphism of $G$-covers $\alpha: \widetilde{B_{1}^{\prime}} \rightarrow \widetilde{B_{2}^{\prime}}$. Then any other such map $\alpha^{\prime}$ is equal to $\alpha g$ for some $g \in G$ and the automorphism of $X^{\prime}=X_{1}^{\prime} \sqcup X_{2}^{\prime}$ defined by $x \mapsto x$ if $x \in X_{1}^{\prime}$ and $x \mapsto g x$ if $x \in X_{2}^{\prime}$ induces an isomorphism of the cover of $Y$ obtained by gluing via $\alpha$ with the one obtained by gluing via $\alpha^{\prime}$. Hence in this case all the possible involutions give isomorphic covers.

Theorem 1.18 (The reverse). Vice versa, every $G$-cover $X \rightarrow Y$ with gdc $S_{2}$ varieties $X, Y$ is obtained via the gluing construction of Theorem 1.13.

Proof. Given $X \rightarrow Y$ and the normalization $\widetilde{Y} \rightarrow Y$, let $X^{\prime \prime}$ be the fiber product $X^{\prime \prime}=X \times_{Y} \widetilde{Y}$. We define $X^{\prime}$ as $X^{\prime}:=S_{2}\left(X_{\text {red }}^{\prime \prime}\right) \rightarrow X_{\text {red }}^{\prime \prime} \rightarrow X^{\prime \prime}$. Thus, $X^{\prime}$ is $S_{2}$ by definition, and it maps to $\widetilde{Y}$. By the universality of taking the reduced part and $S_{2}$-fication, there is an induced $G$-action on $X^{\prime}$. By the universal property of $G$-quotients, we also have a morphism $X^{\prime} / G \rightarrow Y$. We claim that it is an isomorphism.

It is enough to check this in codimension 1 over the double locus. We claim that generically over the double locus of $Y$, the cover is (smooth) $\times$ (admissible action of curves), where 'admissible' means that, working étale locally, $X$ is given by $x y=0$, and the action is $x \mapsto \xi x$, $y \mapsto \xi^{a} y$ for some primitive root $\xi^{n}=1$ and $(a, n)=1$. Indeed, let $H_{F}$ be the subgroup of elements that restrict to the identity on an irreducible component $F$ of the double locus of $X$. Then on the normalization on both branches we have the same subgroup for the preimages $F^{\prime}$ and $j F^{\prime}$. Since generically $F^{\prime}, j F^{\prime}$ are smooth, $H_{F}=\mathbb{Z}_{n}$ for some $n \geqslant 1$ (note that one possibly has $n=1$ ).

Thus, étale locally the morphism $X \rightarrow Y$ can be written as

$$
(\text { smooth }) \times \mathbb{K}[u, v] /(u v) \rightarrow \mathbb{K}[x, y] /(x y), \quad u \mapsto x^{n}, v \mapsto y^{n},
$$

where $G$ acts as $x \mapsto \xi x, y \mapsto \xi^{a} y, \xi^{n}=1,(a, n)=1$. By computation, we get that $X^{\prime \prime}$ corresponds to (smooth) $\times \mathbb{K}[x, y] /\left(x y, y^{n}\right) \oplus \mathbb{K}[x, y] /\left(x y, x^{n}\right)$, and $X^{\prime}$ to $\mathbb{K}[x] \oplus \mathbb{K}[y]$. The quotient $X^{\prime} / G$ is then $\mathbb{K}[u] \oplus \mathbb{K}[v]$, i.e. $\widetilde{Y}$.

This proves that $\phi: X^{\prime} / G \rightarrow \widetilde{Y}$ is an isomorphism outside a closed subset of codimension greater than or equal to two. Since both are finite over $Y$ and $S_{2}, \phi$ is an isomorphism.

## 2. Singularities of covers

### 2.1 The canonical divisor and slc singularities

Let $Z$ be a variety, let $B_{j}, j=1, \ldots, n$, be effective Weil divisors on $X$, possibly reducible, and let $b_{j}$ be rational numbers with $0 \leqslant b_{j} \leqslant 1$. Set $B=\sum_{j} b_{j} B_{j}$.
Definition 2.1. Assume that $Z$ is a normal variety. Then $Z$ has a canonical Weil divisor $K_{Z}$ defined up to linear equivalence. The pair $(Z, B)$ is called $\log$ canonical if the following apply.
(i) The divisor $K_{Z}+B$ is $\mathbb{Q}$-Cartier, i.e. some positive multiple is a Cartier divisor.
(ii) Every prime divisor of $Z$ has multiplicity less than or equal to one in $B$ and for every proper birational morphism $h: Z^{\prime} \rightarrow Z$ with normal $Z^{\prime}$, in the natural formula

$$
K_{Z^{\prime}}+h_{*}^{-1} B=h^{*}\left(K_{Z}+B\right)+\sum a_{i} E_{i}
$$

one has $a_{i} \geqslant-1$. Here, $E_{i}$ are the irreducible exceptional divisors of $h$, the pull back $h^{*}$ is defined by extending $\mathbb{Q}$-linearly the pullback on Cartier divisors, and $h_{*}^{-1} B=\sum b_{j} h_{*}^{-1} B_{j}$ is the strict

## V. Alexeev and R. Pardini

preimage of $B$. The coefficients $a_{i}$ are called discrepancies. For the non-exceptional divisors, already appearing on $Z$, one defines $a\left(B_{j}\right)=-b_{j}$.

If char $\mathbb{K}=0$, then $Z$ has a resolution of singularities $h: Z^{\prime} \rightarrow Z$ such that $\operatorname{Supp}\left(h_{*}^{-1} B\right) \cup E_{i}$ is a normal crossing divisor; then it is sufficient to check the condition $a_{i} \geqslant-1$ for this morphism $h$ only.

Definition 2.2. A pair $(Z, B)$ is called semi log canonical if the following apply.
(i) The variety $Z$ satisfies Serre's condition $S_{2}$.
(ii) The variety $Z$ is gdc, and no divisor $B_{j}$ contains any component of the double locus of $Z$.
(iii) Some multiple of the Weil $\mathbb{Q}$-divisor $K_{Z}+B$, well defined thanks to the previous condition, is Cartier.
(iv) Denoting by $\nu: \widetilde{Z} \rightarrow Z$ the normalization, the pair $\left(\widetilde{Z}\right.$, (double locus) $\left.+\nu_{*}^{-1} B\right)$ is $\log$ canonical.

Lemma 2.3. Let $f: X \rightarrow Y$ be a finite morphism of degree $d$ between equidimensional $S_{2}$ varieties. Assume that either char $\mathbb{K}=0$ or $f$ is Galois and char $\mathbb{K}$ does not divide $d$.

Let $Y_{0}$ be an open subset and denote by $f_{0}: X_{0} \rightarrow Y_{0}$ the induced cover. Assume that the following are true.

- One has $\operatorname{codim}\left(Y \backslash Y_{0}\right) \geqslant 2$ and both $X_{0}$ and $Y_{0}$ are dc.
- There exist effective $\mathbb{Q}$-divisors $B^{X}$ of $X$ and $B^{Y}$ of $Y$, not containing any component of the double locus, such that $\left(f_{0}\right)^{*}\left(K_{Y_{0}}+B^{Y_{0}}\right)=\left(K_{X_{0}}+B^{X_{0}}\right)$, where $B^{Y_{0}}$ is the restriction of $B^{Y}$ to $Y_{0}$ and $B^{X_{0}}$ is the restriction of $B^{X}$ to $X_{0}$.
Then the following hold.
(i) The divisor $K_{Y}+B^{Y}$ is $\mathbb{Q}$-Cartier if and only if $K_{X}+B^{X}$ is also $\mathbb{Q}$-Cartier.
(ii) The pair $\left(Y, B^{Y}\right)$ is slc if and only if the pair $\left(X, B^{X}\right)$ is also slc.

Proof. (i) Let $i: X_{0} \rightarrow X$ be the inclusion map. If the sheaf $L=\mathcal{O}_{Y}\left(N\left(K_{Y}+B^{Y}\right)\right)$ is invertible then we have a homomorphism

$$
\mathcal{O}_{X}\left(N\left(K_{X}+B^{X}\right)\right)=i_{*}\left(\mathcal{O}_{X_{0}}\left(N\left(K_{X_{0}}+B^{X_{0}}\right)\right)\right) \rightarrow f^{*} L
$$

which is an isomorphism outside codimension 2 . Hence it must be an isomorphism by the $S_{2}$ condition. Similarly, if the sheaf $L^{\prime}=\mathcal{O}_{X}\left(N\left(K_{X}+B^{X}\right)\right)$ is invertible, then the sheaf $L=$ $\mathcal{O}_{Y}\left(N d\left(K_{Y}+B^{Y}\right)\right)$ is isomorphic to the norm of $L^{\prime}$, so is invertible.
(ii) Assume first that $X$ and $Y$ are normal. In this case the statement, due to Shokurov, is very well known. We recall the proof because usually it is only stated and proved in characteristic zero. Let $h_{Y}: Y^{\prime} \rightarrow Y$ be some partial resolution with normal $Y^{\prime}, X^{\prime}$ be the normalization of $X \times_{Y} Y^{\prime}$, and let $h_{X}: X^{\prime} \rightarrow X, f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be the induced maps.

Pick an irreducible divisor $E$ on $Y^{\prime}$, and let $F$ be an irreducible divisor on $X^{\prime}$ over it. By our condition on char $\mathbb{K}$, the field extension $\mathbb{K}(F) / \mathbb{K}(E)$ is separable, and if $\pi_{X}, \pi_{Y}$ are uniformizing parameters in the discrete valuation rings $\mathcal{O}_{X^{\prime}, F}$ and $\mathcal{O}_{Y^{\prime}, E}$, then one has $\pi_{Y}=u \cdot \pi_{X}^{e}$ for a unit $u$ and some integer $e$ dividing $d$ and hence coprime to char $\mathbb{K}$.

Then the Riemann-Hurwitz formula applies and says that generically along $E$ and $F$ one has $\left(f^{\prime}\right)^{*}\left(K_{Y^{\prime}}+E\right)=K_{X^{\prime}}+F$. Comparing this to the identity $\left(f^{\prime}\right)^{*} h_{Y}^{*}\left(K_{Y}+B^{Y}\right)=h_{X}^{*}\left(K_{X}+B^{X}\right)$ and the definition of the log discrepancy, one obtains that $1+a_{F}=e\left(1+a_{E}\right)$. Thus, $a_{F} \geqslant$ $-1 \Longleftrightarrow a_{E} \geqslant-1$. This proves that $\left(X, B^{X}\right)$ is lc if and only if $\left(Y, B^{Y}\right)$ is lc.

Now consider the general gdc case. Let $\nu_{X}: \widetilde{X} \rightarrow X$ be the normalization. We have

$$
K_{\tilde{X}}+B^{\tilde{X}}:=\nu_{X}^{*}\left(K_{X}+B^{X}\right)=K_{\tilde{X}}+\nu_{X *}^{-1} B^{X}+(\text { double locus }),
$$

and similarly for $Y$. Thus, the double loci appear in the divisors $B^{\tilde{X}}, B^{\tilde{Y}}$ with coefficient 1 . By the Riemann-Hurwitz formula again, for the normalizations we still have $\tilde{f}^{*}\left(K_{\tilde{Y}}+B^{\tilde{Y}}\right)=K_{\tilde{X}}+B^{\tilde{X}}$. We finish by applying the normal case.

We now extend Definition 1.8 of the Hurwitz divisor to the case of a gdc base $Y$.
Definition 2.4. Let $\pi: X \rightarrow Y$ be a $G$-cover of $S_{2}$ and gdc varieties. For a prime Weil divisor $F \subset Y$, we define $\rho_{F} \in \mathbb{Q}$ as follows.

- If $F$ is contained in the double locus of $Y$, then $\rho_{F}=0$.
- If $F$ is not contained in the double locus of $Y$, but $\pi^{-1}(F)$ is contained in the double locus of $X$, then $\rho_{F}=1$.
- If $F$ is not contained in the double locus of $Y, \pi^{-1}(F)$ is not contained in the double locus of $X$ and $m$ is the ramification order of $\pi$ at $F$, then $\rho_{F}=(m-1) / m$.
We define the Hurwitz divisor $D$ of $\pi$ to be the $\mathbb{Q}$-divisor $\sum_{F} \rho_{F} F$.
Notice that if $X \rightarrow Y$ is a standard $G$-cover with $X$ gdc this definition coincides with Definition 1.8 by Theorem 1.9.

Note that $D$ does not contain any components of the double locus of $Y$.
Proposition 2.5. Let $\pi: X \rightarrow Y$ be a $G$-cover as in Definition 2.4 and let $D$ be the Hurwitz divisor of $\pi$, let $X^{\prime} \rightarrow \widetilde{Y}$ be the corresponding $S_{2}$ and gdc $G$-cover (cf. § 1.5). Then the following hold.
(i) The divisor $K_{X}$ is $\mathbb{Q}$-Cartier if and only if $K_{Y}+D$ is also $\mathbb{Q}$-Cartier, and then $K_{X}=$ $\pi^{*}\left(K_{Y}+D\right)$.
(ii) The variety $X$ is slc if and only if the pair $(Y, D)$ is also slc.

Proof. Recall that $|G|$ and char $\mathbb{K}$ are coprime by assumption. So Lemma 2.3 applies and we may assume that $Y$ is dc. We need to show that $K_{X}=\pi^{*}\left(K_{Y}+D\right)$. This is equivalent to the following equality for the cover $\tilde{\pi}: \widetilde{X} \rightarrow \widetilde{Y}$, where $\widetilde{X}$ is the normalization of $X^{\prime}$ (and of $X$ ):

$$
K_{\tilde{X}}+(\text { double locus })=\tilde{\pi}^{*}\left(\mathrm{~K}_{\widetilde{\mathrm{Y}}}+(\text { double locus })+\nu^{*} \mathrm{D}\right) .
$$

In view of Definition 2.4 the formula follows easily by the usual Hurwitz formula.

### 2.2 Cohen-Macaulay covers

By Lemma 1.1, a $G$-cover over a smooth base is CM. Here, we give a partial generalization of this case to the case of a non-normal base. We use the notations of Theorem 1.13 and the exact sequence (11).
Proposition 2.6. Assume that $X^{\prime}$ is $C M$ (for example, $\tilde{Y}$ is smooth). Then $X$ is $C M$ if and only if the sheaf im $\alpha$ is CM.

Proof. The proof is immediate by Lemma 1.16.
Using Proposition 2.6 it is not hard to give examples of abelian covers $X \rightarrow Y$ such that $Y$ is CM and gdc, and $X$ is gdc and $S_{2}$ but not CM.

## V. Alexeev and R. Pardini

Example 2.7. We take $G=\mathbb{Z}_{2}$ and assume char $\mathbb{K} \neq 2$; for any prime $p$ one can construct similar examples with $G=\mathbb{Z}_{p}$ and char $\mathbb{K} \neq p$.

Let $Y=Y_{1} \cup Y_{2}$ be the union of two copies of $\mathbb{P}^{3}$ glued transversally along a plane $C$. Let $L_{1}$ and $L_{2}$ be distinct lines on $C$, and for $i=1,2$ let $D_{i} \subset Y_{i}$ be a quadric that restricts to $2 L_{i}$ on $C$. For a generic choice, $D_{i}$ is a quadric cone with vertex $y_{i} \in L_{i}$, and the points $y_{1}, y_{2}$ and $y_{3}:=L_{1} \cap L_{2}$ are distinct. Let $X_{i}^{\prime} \rightarrow Y_{i}$ be the double cover of $Y_{i}$ branched on $D_{i}$, and let $X^{\prime}=X_{1}^{\prime} \sqcup X_{2}^{\prime}$. Then $X^{\prime}$ is Gorenstein, and it has an ordinary double point over $y_{1}$ and $y_{2}$ and no other singularity. Write $C^{\prime}=C_{1}^{\prime} \sqcup C_{2}^{\prime}$ and $B^{\prime}=B_{1}^{\prime} \sqcup B_{2}^{\prime}$; then $B_{i}^{\prime}$ is the union of two copies of $C_{i}^{\prime}$ glued transversally along $L_{i}$ and $\widetilde{B^{\prime}} \rightarrow C^{\prime}$ is the trivial $\mathbb{Z}_{2}$-cover. Hence there exists an involution $j$ of $\widetilde{B^{\prime}}$ that commutes with the $\mathbb{Z}_{2}$-action, and by Theorem $1.13 X^{\prime}$ can be glued to an $S_{2}$ and gdc cover $X \rightarrow Y$. The dc locus of $X$ is the complement of the preimage of $L_{1} \cup L_{2}$.

In the exact sequence (11) each term splits under the $G$-action and the maps are compatible with the splitting, so we get two exact sequences, one for each character of $G$. Since $\mathcal{A}=\mathcal{O}_{C} \oplus \mathcal{O}_{C}$ and $\mathbb{Z}_{2}$ acts on $\mathcal{A}$ by switching the two summands, the sequence for the non-trivial character is

$$
0 \rightarrow \mathcal{F}_{-} \rightarrow \mathcal{O}_{Y_{1}}(-1) \oplus \mathcal{O}_{Y_{2}}(-1) \xrightarrow{\alpha^{-}} \mathcal{O}_{C},
$$

where $\mathcal{F}_{-}$(respectively $\mathcal{A}^{-}$) is the antiinvariant summand of $\mathcal{O}_{X}$ (respectively of $\mathcal{A}$ ). By definition, the map $\mathcal{O}_{Y_{i}}(-1) \rightarrow \mathcal{O}_{C}$ factorizes as $\mathcal{O}_{Y_{i}}(-1) \rightarrow \mathcal{O}_{C}\left(-L_{i}\right) \rightarrow \mathcal{O}_{C}$. Hence, im $\alpha^{-}$ coincides with $\mathcal{I}_{y_{3}} \mathcal{O}_{C}$, the maximal ideal of $y_{3}$ in $C$, and therefore it is not $S_{2}$. It follows by Proposition 2.6 that $X$ is not CM over $y_{3}$.

Let $\bar{y} \in L_{1}$ be a point distinct from $y_{3}$; in a neighborhood of $\bar{y}$ we have $\left(D_{1}+D_{2}\right) \cap Y_{2}=L_{1}$, and thus $D_{1}+D_{2}$ is not $\mathbb{Q}$-Cartier. Since $Y$ is Gorenstein, it follows that $2 K_{Y}+D_{1}+D_{2}$ is not $\mathbb{Q}$-Cartier either, and hence $K_{X}$ is not $\mathbb{Q}$-Cartier by Proposition 2.5.

### 2.3 Cartier index of $K_{X}$

All the statements in this section are étale local, so we often pass to a smaller neighborhood of a point without explicit mention of the fact.

For convenience, we write ' $K_{X}$ ' to denote the divisorial sheaf $\omega_{X}$ (recall that $X$ is Gorenstein in codimension 1 and $S_{2}$ ). We also use the additive notation $D_{1}+D_{2}$ for the sheaf $\left(\mathcal{O}_{X}\left(D_{1}\right) \otimes \mathcal{O}_{X}\left(D_{1}\right)\right)^{* *}$.

### 2.3.1 Standard covers with $Y$ normal. We consider the following situation.

- Suppose that $Y$ is a normal variety and $C$ is a reduced effective divisor on $Y$ such that $K_{Y}+C$ is Cartier.
- Suppose that $\pi: X \rightarrow Y$ is a standard gdc $G$-cover (so $X$ is automatically $S_{2}$ by Lemma 1.1). We assume that $X$ is generically smooth over $C$, and we denote by $B$ the preimage of $C$ in $X$. Therefore, $B$ is also a reduced effective divisor.

Let $D$ be the Hurwitz divisor of $\pi$; then we have

$$
K_{X}+B=\pi^{*}\left(K_{Y}+D+C\right) .
$$

Thus, if $d$ is the exponent of $G$, then the divisor $d\left(K_{Y}+D+C\right)$ is Cartier (recall that the divisors $D_{i}$ are Cartier by the definition of a standard cover in $\left.\S 1.2\right)$, and thus $d\left(K_{X}+B\right)$ is also Cartier.

Fix a point $y \in Y$; the purpose of this section is to compute the Cartier index of $K_{X}+B$ at a point $x \in X$ such that $\pi(x)=y$. Here we are interested mainly in the case $B=0$, but the case of a pair is needed in the next section to treat the case $Y$ non-normal.

In order to state our result we need some notation. We label the branch data $D_{i},\left(H_{i}, \psi_{i}\right)$, $i=1, \ldots, k$, in such a way that $D_{i} \subseteq C$ if and only if $i \leqslant p$. Since the question is local on $Y$ we may assume that $y \in D_{i}$ for every $i$. Consider the map $\bar{G}:=\oplus H_{i} \rightarrow G$. By Lemma 1.5, the image of this map is the inertia subgroup $H_{y}$; we denote by $N$ the kernel. We let $\bar{\chi} \in \bar{G}^{*}$ be the character $\psi_{p+1} \cdots \psi_{k}$.
Reminder. Since the group $G$ is finite abelian, the map $G^{*} \rightarrow H_{y}^{*}$ is surjective. Hence the character $\bar{\chi}$ is the pullback of a character of $H_{y}$ if and only if it is the pullback of a character of $G$.

Proposition 2.8. Notation and assumptions are as given previously.
The Cartier index of $K_{X}+B$ at $x$ is equal to the order of $N /(N \cap \operatorname{ker} \bar{\chi})$.
In particular, $K_{X}+B$ is Cartier if and only if $\bar{\chi}$ is the pullback of a character $\chi \in G^{*}$.
Proof. Since the question is local, we may assume that the line bundles $L_{\chi}, \mathcal{O}_{Y}\left(D_{i}\right)$ and $\mathcal{O}_{Y}\left(K_{Y}+C\right)$ are trivial. The map $X \rightarrow X / H_{y}$ is étale. Hence, up to replacing $Y$ by $X / H_{y}$, we may assume that $H_{y}=G$, or, equivalently, that $\pi^{-1}(y)=\{x\}$. We denote by $u_{1}, \ldots, u_{k}$ local equations of $D_{1}, \ldots, D_{k}$ near $y$. By Remark 1.7, up to passing to an étale cover of $Y$ we may assume that $X$ is given by

$$
\begin{equation*}
z_{\chi} z_{\chi^{\prime}}=\Pi_{1}^{k} u_{i}^{\varepsilon_{\chi, \chi^{\prime}}^{i}} z_{\chi \chi^{\prime}}, \quad \chi, \chi^{\prime} \in G^{*} \backslash\{1\} . \tag{12}
\end{equation*}
$$

The equations:

$$
\begin{equation*}
z_{1}^{m_{1}}=u_{1}, \quad \ldots \quad z_{k}^{m_{k}}=u_{k} \tag{13}
\end{equation*}
$$

define inside $Y \times \mathbb{K}^{k}$ a $\bar{G}$-cover $\bar{X} \rightarrow Y\left(\bar{G}\right.$ acts on $z_{i}$ via the character $\left.\psi_{i}\right)$, the maximal totally ramified cover of $Y$ with branch data $D_{i},\left(H_{i}, \psi_{i}\right)$ (here we regard $H_{i}$ as a subgroup of $\bar{G}$ ). Since $Y$ is gdc by assumption and $X \rightarrow Y$ and $\bar{X} \rightarrow Y$ have the same Hurwitz divisor, $\bar{X}$ is also gdc by Theorem 1.9.

For every $\chi \in G^{*}$, write $\chi=\psi_{1}^{a_{\chi}^{1}} \cdots \psi_{k}^{a_{\chi}^{k}}$, with $0 \leqslant a_{i}^{\chi}<m_{i}$ for $i=1, \ldots, k$; then setting $z_{\chi}=z_{1}^{a_{\chi}^{1}} \cdots z_{k}^{a_{\chi}^{k}}$ defines a map $p: \bar{X} \rightarrow X$ which is the quotient map for the action of the kernel $N$ of $\bar{G} \rightarrow G$. The map $p$ is unramified in codimension 1 and $p^{-1}(x)$ consists of just one point $\bar{x}$.

Denote by $\bar{B}$ the preimage of $C$ (and of $B$ ) in $\bar{X}$; observe that $K_{Y}+D+C$ pulls back to $K_{X}+B$ on $X$ and to $K_{\bar{X}}+\bar{B}$ on $\bar{X}$. If $\tau$ is a generator of $\mathcal{O}_{Y}\left(K_{Y}+C\right)$ then $\mathcal{O}_{\bar{X}}\left(K_{\bar{X}}+\bar{B}\right)$ is generated by the residue $\sigma$ on $\bar{X}$ of the rational differential form:

$$
\frac{\left(z_{1}^{m_{1}-1} \cdots z_{p}^{m_{p}-1}\right) d z_{1} \wedge \cdots \wedge d z_{k} \wedge \tau}{\left(z_{1}^{m_{1}}-u_{1}\right) \cdots\left(z_{k}^{m_{k}}-u_{k}\right)}
$$

Thus $\mathcal{O}_{\bar{X}}\left(K_{\bar{X}}+\bar{B}\right)$ is invertible and $G$ acts on the local generator $\sigma$ via the character $\bar{\chi}$. Set $Z:=\bar{X} /(N \cap \operatorname{ker} \bar{\chi})$. The map $\bar{X} \rightarrow Z$ is unramified in codimension 1 and $\sigma$ descends on $Z$ to a generator of $\mathcal{O}_{Z}\left(K_{Z}+B_{Z}\right)$, where $B_{Z}$ is the image of $\bar{B}$. The map $Z \rightarrow X$ is a cyclic cover with Galois group $N /(N \cap \operatorname{ker} \bar{\chi})$ with the following properties.

- It is unramified in codimension 1 and the preimage of $x$ consists only of one point.
- The pullback of $\mathcal{O}_{X}\left(K_{X}+B\right)$ is a line bundle on which the Galois group acts via a primitive character.

It follows that $Z \rightarrow X$ is a canonical cover and that the Cartier index of $K_{X}+B$ at $x$ is equal to $[N: N \cap \operatorname{ker} \bar{\chi}]$.

## V. Alexeev and R. Pardini

Corollary 2.9. Let $\pi: X \rightarrow Y$ be a standard abelian with $X$ and $Y$ gdc and $Y$ Gorenstein, let $y \in Y$ and let $x \in X$ be a point such that $\pi(x)=y$. Then $X$ is Gorenstein at $x$ if and only if the character $\bar{\chi}$ descends to a character $\chi$ of $H_{y}$.

Proof. The variety $X$ is Cohen-Macaulay by Lemma 1.1 and $K_{X}$ is Cartier by Proposition 2.8.
Remark 2.10. Corollary 2.9 is proven in [Tac06] under the assumption that $X$ is normal and $Y$ is smooth.
2.3.2 The case $Y$ non-normal. Here we consider the problem of determining the Cartier index of $K_{X}$ at a point $x \in X$ of a $G$-cover $X \rightarrow Y$ with $Y$ non-normal of Cartier index 1. The situation is much more complicated than in the case $Y$ normal and we are able to give only a partial answer that is, however, sufficient for the applications in [AP09]. The main difficulty is that one does not know how to write down an analogue of the maximal totally ramified cover used in the proof of Proposition 2.8.

We consider the following setup:

- we assume that $Y=Y_{1} \cup \cdots \cup Y_{t}$, where $Y_{i}$ is irreducible for $i=1, \ldots, t$, is a gdc and $S_{2}$ variety; $\widetilde{Y}=\widetilde{Y}_{1} \sqcup \cdots \sqcup \widetilde{Y}_{t} \rightarrow Y$ is the normalization;
- we assume that $\pi: X \rightarrow Y$ is an $S_{2}$ and gdc $G$-cover obtained by gluing a cover $X^{\prime}=$ $X_{1}^{\prime} \sqcup \cdots \sqcup X_{t}^{\prime} \rightarrow \widetilde{Y}$ such that $X_{i}^{\prime} \rightarrow \widetilde{Y}_{i}$ is standard for every $i$;
- we assume that $y \in Y$ and $x \in X$ are points such that $\pi(x)=y$; we assume that $y$ lies on every component of the branch locus of $\pi$.
We denote by $D_{i},\left(H_{i}, \psi_{i}\right), i=1, \ldots, k$ the branch data of the standard cover $X^{\prime} \rightarrow \tilde{Y}$, and we assume that $D_{i}$ is contained in the preimage $C^{\prime}$ of the double locus of $Y$ if and only if $i \leqslant p$. Consider the map $\bar{G}:=\oplus H_{i} \rightarrow G$. As in the case $Y$ normal, we denote by $\bar{\chi} \in \bar{G}^{*}$ the character $\psi_{p+1} \cdots \psi_{k}$. Then we have the following proposition.
Proposition 2.11. In the above setup, if $K_{X}$ is Cartier, then the following are true.
(i) The divisor $K_{Y}+D$ is $\mathbb{Q}$-Cartier.
(ii) The character $\bar{\chi}$ is the pullback of a character $\chi \in G^{*}$.

Proof. (i) Part (i) follows immediately by Proposition 2.5.
(ii) For every $i=1, \ldots, t$, denote by $C_{i}^{\prime} \subset \widetilde{Y}_{i}$ (respectively $B_{i}^{\prime} \subset X_{i}^{\prime}$ ) the preimage of the double locus of $Y$ in $\widetilde{Y}_{i}$ (respectively in $X_{i}^{\prime}$ ). Let $\chi \in G^{*}$ be the character via which $G$ acts on $\mathcal{O}_{X}\left(K_{X}\right) \otimes \mathbb{K}(x)$ at $x$. Let $x_{i}^{\prime} \in X_{i}^{\prime}$ be a point that maps to $x$ and let $y_{i}$ be the image of $x_{i}^{\prime}$ in $\widetilde{Y}_{i}$. Since $K_{X}$ pulls back to $K_{X_{i}^{\prime}}+B_{i}^{\prime}$ on $X_{i}^{\prime}$, the inertia subgroup $H_{y_{i}}$ acts on $\mathcal{O}_{X_{i}^{\prime}}\left(K_{X_{i}^{\prime}}+B_{i}^{\prime}\right) \otimes \mathbb{K}\left(x_{i}^{\prime}\right)$ via the restriction of $\chi$. Set $\bar{G}_{y_{i}}:=\bigoplus_{\left\{j \mid y_{i} \in D_{j}\right\}} H_{j}$ and let $\bar{\chi}_{y_{i}}$ be the restriction of $\bar{\chi}$ to $\bar{G}_{y_{i}}$; the $\operatorname{map} \bar{G}_{y_{i}} \rightarrow H_{y_{i}}$ is a surjection by Lemma 1.5. By the proof of Proposition 2.8, $\chi$ pulls back on $\bar{G}_{y_{i}}$ to $\bar{\chi}_{y_{i}}$. Since $\bar{G}=\sum_{\left\{y^{\prime} \in \tilde{Y} \mid y^{\prime} \mapsto y\right\}} \bar{G}_{y^{\prime}}$, it follows that $\chi$ pulls back to $\bar{\chi}$ on $\bar{G}$.

We now prove a partial converse of Proposition 2.11. Assume that for every component $\widetilde{Y}_{i}$ of $\widetilde{Y}$ the map $\widetilde{Y} \rightarrow Y$ induces a homeomorphism $\widetilde{Y}_{i} \rightarrow Y_{i}$ onto its image (this is always true up to an étale cover). Then we associate to ( $Y, y$ ) an incidence graph $\Gamma_{Y, y}$ as follows.

- The vertices of $\Gamma_{Y, y}$ are indexed by the branches of $(Y, y)$.
- The edges are indexed by the components of the double locus $C$ of $Y$.
- The edge corresponding to a component $F$ of $C$ connects the vertices corresponding to the two branches of $Y$ through $F$.

Proposition 2.12. In the above setup, assume the following:
(i) the graph $\Gamma_{Y, y}$ is a tree;
(ii) the divisor $K_{Y}$ is Cartier and there exists $m$ such that $m\left(K_{Y}+D\right)$ is Cartier and $(m, \operatorname{char} \mathbb{K})=1$;
(iii) the character $\bar{\chi}$ is the pullback of a character $\chi \in G^{*}$.

Then $K_{X}$ is Cartier.
Proof. Let $C_{i}^{\prime} \subset \widetilde{Y}_{i}$ the restriction of the double locus $C^{\prime}$ of $\widetilde{Y}$ and let $B_{i}^{\prime} \subset X_{i}^{\prime}$ be the preimage of $C_{i}^{\prime}$. Let $y_{i} \in \widetilde{Y}_{i}$ be the only point that maps to $y \in Y$; let $\bar{G}_{y_{i}}$ and $\bar{\chi}_{i}$ be defined as in the proof of Proposition 2.11.

By assumption (iii), the divisor $K_{X_{i}^{\prime}}+B_{i}^{\prime}$ is Cartier by Proposition 2.8. By the following Lemma 2.13, up to replacing $(Y, y)$ by an étale neighborhood we may assume that for $i=$ $1, \ldots, t$ the sheaf $\mathcal{O}_{X_{i}^{\prime}}\left(K_{X_{i}^{\prime}}+B_{i}^{\prime}\right)$ is trivial and has a generator $\sigma_{i}$ on which $G$ acts via $\chi$. By Proposition 2.5, there exists a local generator $\tau$ of $\mathcal{O}_{X}\left(m K_{X}\right)$ near $x$. For every $i$, by Lemma 2.13, $\tau$ pulls back on $X_{i}^{\prime}$ to $h_{i} \sigma_{i}^{m}$ where $h_{i}$ is a nowhere vanishing regular function on $\widetilde{Y}_{i}$. Up to passing to an étale cover of $Y$ we may assume that $h_{i}$ has an $m$ th root $f_{i}$ for every $i$. Hence we may replace $\sigma_{i}$ by $f_{i} \sigma_{i}$ and assume that $\tau$ pulls back to $\sigma_{i}^{m}$ for every $i$.

Now let $U \subset X$ be an open set such that $U$ is dc and the complement of $U$ has codimension greater than one. Let $F$ be an irreducible component of the double locus $C$ of $Y$ and let $Y_{a}$, $Y_{b}$ be the components of $Y$ that contain $F$. Choose an irreducible component $E$ of the inverse image of $F$ in $U$. It makes sense to compare $\sigma_{a}$ and $\sigma_{b}$ along $E$, since they both restrict to local generators of $\mathcal{O}_{E}\left(K_{E}\right)$. Since $\sigma_{a}^{m}=\sigma_{b}^{m}$, there exists $\zeta \in \mu_{m}$ such that $\sigma_{a}=\zeta \sigma_{b}$ along $E$. Since $G$ acts on $\sigma_{a}$ and $\sigma_{b}$ via the same character $\chi$ and $G$ acts transitively on the components of the preimage of $F, \zeta_{F}:=\zeta$ depends only on $F$. Hence $\left\{\zeta_{F}\right\}$ represents a class in $H^{1}\left(\Gamma_{Y, y}, \mu_{m}\right)$. Since $\Gamma_{Y, y}$ is a tree, we can find $\lambda_{i} \in \mu_{m}$ such that the local generators $\lambda_{i} \sigma_{i}$ glue to give a local generator $\sigma$ of $\mathcal{O}_{X}\left(K_{X}\right)$ on which $G$ acts via $\chi$.

We complete the proof of Proposition 2.12 by proving the following lemma.
Lemma 2.13. Let $Z \rightarrow W$ be a standard $G$-cover with building data $L_{\chi}, D_{i},\left(H_{i}, \psi_{i}\right)$.
Let $w \in W$ be a point and let $H$ be the inertia subgroup of $w$. Let $L$ be a $G$-linearized line bundle of $Z$, let $z \in Z$ be a point that maps to $w$, and let $\phi \in H^{*}$ be the character via which $H$ acts on $L \otimes \mathbb{K}(z)$. Then we have the following.
(i) Let $\chi \in G^{*}$ be such that $\left.\chi\right|_{H}=\phi$; then, up to replacing $W$ by an étale neighborhood of $w$, there exists a generator $\sigma$ of $L$ such that $G$ acts on $\sigma$ via the character $\chi$.
(ii) The generator $\sigma$ is uniquely determined by $\chi$ up to multiplication by a nowhere vanishing regular function of $W$.

Proof. (ii) Assume that $\sigma, \sigma^{\prime}$ are generators of $L$ on which $G$ acts via the character $\chi$. Then $f:=\sigma / \sigma^{\prime}$ is a regular $H$-invariant function on $Z$, so it is a function on $W$.
(i) We break the proof into three steps.

Step 1: the case $H=G$. Let $s$ be a generator of $L$ near $z$. The group $H$ acts on the vector space $V$ of local sections of $L$ spanned by the elements $h_{*} s, h \in H ; V$ is finite-dimensional, and

## V. Alexeev and R. Pardini

decomposes under the $G$-action as a direct sum of eigenspaces. Since $s(z) \neq 0$ and $s \in V$, there exists an eigenvector $\sigma \in V$ such that $\sigma(z) \neq 0$. Since $G$ acts on $L \otimes \mathbb{K}(z)$ via $\chi, \sigma$ belongs to the eigenspace corresponding to $\chi$.

Step 2: the case in which $G=H \oplus N$ for some $N$. Consider the factorization $Z \rightarrow Z^{\prime}:=Z / N \rightarrow$ $W$. The map $Z^{\prime} \rightarrow W$ is an $H$-cover such that the preimage of $w$ consists of one point $z^{\prime} \in Z^{\prime}$. The subgroup $N$ acts freely on $Z$, and hence $L$ descends to an $H$-linearized line bundle $L^{\prime}$ on $Z^{\prime}$. Then by Step 1 there exists a local generator $\sigma^{\prime}$ of $L^{\prime}$ near $z^{\prime}$ such that $H$ acts on $\sigma^{\prime}$ via $\phi$. Pulling back to $Z$ we get a generator $\tau$ of $L$ on which $H$ acts via $\phi$ and $N$ acts trivially.

Denote by $\phi^{\prime}$ the restriction of $\chi$ to $N$, so that $\chi=\left(\phi, \phi^{\prime}\right)$. Consider the factorization $Z \rightarrow Z^{\prime \prime}:=Z / H \rightarrow W$. The map $Z^{\prime \prime} \rightarrow W$ is a étale $N$-cover. Hence there exists a nowhere-vanishing function $f$ on $Z^{\prime \prime}$ such that $N$ acts on $f$ via the character $\phi$. Thus $G$ acts on $\sigma:=f \tau$ via the character $\chi$.

Step 3: the general case. Choose a finite abelian group $N$ with a surjective map $G_{0}:=H \oplus N \rightarrow G$ that extends the inclusion $H \rightarrow G$, and let $T$ be the kernel of $G_{0} \rightarrow G$. By Proposition 1.6, up to replacing $W$ by an étale neighborhood of $w$, we may also assume (cf. (4)) that $Z \rightarrow W$ is given inside $W \times \mathbb{K}^{k}$ by the equations

$$
\begin{equation*}
y_{\chi} y_{\chi^{\prime}}=\Pi_{1}^{k} u_{i}^{\varepsilon_{\chi, \chi^{\prime}}^{i}} y_{\chi \chi^{\prime}}, \quad \chi, \chi^{\prime} \in G^{*} \backslash\{1\}, \tag{14}
\end{equation*}
$$

where $u_{i}$ is a local equation for $D_{i}, i=1, \ldots, k$. The branch data for $Z$ can be interpreted in an obvious way as branch data for a $G_{0}$-cover. Letting $Z_{0} \rightarrow W$ be the $G_{0}$-cover given by the equations analogous to (14), we have $Z=Z_{0} / T$ by construction. Let $L_{0}$ be the pullback of $L$ to $Z_{0} ; L_{0}$ has a natural $G_{0}$-linearization and $H$ is a direct summand of $G_{0}$, and hence by Step 2 there exists a generator $\sigma_{0}$ of $L_{0}$ on which $G_{0}$ acts via the character $\chi_{0}$ of $G_{0}$ induced by $\chi$. Since $T$ acts freely on $Z_{0}$ and $T \subset$ ker $\chi_{0}$ by construction, $\sigma_{0}$ descends to a generator $\sigma$ of $L$ on $Z$ on which $G$ acts via $\chi$.

## 3. Semi log canonical $\mathbb{Z}_{2}^{r}$-covers of surfaces

### 3.1 Setup

In this section we make a detailed study of $\mathbb{Z}_{2}^{r}$-covers of surfaces. We use freely the notation introduced in §1.4. In particular, we refer the reader to the commutative diagram (10) and Theorem 1.13.

The situation that we consider is the following.

- The surface $Y$ is a gdc surface with smooth irreducible components $Y_{1}, \ldots, Y_{t}$. The irreducible components $F_{1}, \ldots, F_{s}$ of the double curve $C$ of $Y$ are smooth, $Y$ is dc at the smooth points of $C$, and it is analytically isomorphic to the cone over a cycle of rational curves at the singular points of $C$. In particular, $Y$ is Gorenstein.
- The group $G=\mathbb{Z}_{2}^{r}$ and $\pi: X \rightarrow Y$ is a $G$-cover with $X$ gdc and $S_{2}$, obtained as in Theorem 1.13 by gluing a cover $X^{\prime} \rightarrow \widetilde{Y}=Y_{1} \sqcup \cdots \sqcup Y_{t}$ such that for every $i=1, \ldots, t$ the restricted cover $\pi_{i}: X_{i}^{\prime} \rightarrow Y_{i}$ is standard with building data $L_{i, \chi}, D_{i, j_{i}}$.
- The $D_{i, j_{i}}$ and the components of the double curve $C^{\prime}$ are 'lines' of $Y$, namely they are smooth and meet pairwise transversally.
- The intersection points of the support of the Hurwitz divisor $D$ of $\pi$ with the double curve $C$ of $Y$ are smooth points of $C$.
- The divisor $K_{Y}+D$ (or, equivalently, $D$, since $Y$ is Gorenstein) is 2-Cartier and the pair $(Y, D)$ is slc, so that by Proposition $2.5 X$ is slc and $K_{X}$ is 2-Cartier. Recall that, since we assume that the components of $\nu^{*} D$ and of $C^{\prime}$ are lines, the pair $(Y, D)$ is slc if and only if on $\widetilde{Y}$ the divisor $\nu^{*} D+C$ has components of multiplicity less than or equal to one and has multiplicity less than or equal to two at every point.
- For every $y \in Y$ that is singular for $C$, label the components $Y_{1}, \ldots, Y_{q}$ of $Y$ containing $y$ in such a way that, for every $i=1, \ldots, q$, the surfaces $Y_{i}$ and $Y_{i+1}$ meet along an irreducible curve $F_{i}$ containing $y$ (the indices are taken modulo $q$ ) and let $g_{i} \in G$ be the generator of the inertia subgroup of $F_{i}$. By Theorem 1.13, for every $i$ we have $g_{i-1}=g_{i+1} \bmod g_{i}$. We assume that the natural map $\left\langle g_{i}\right\rangle \oplus\left\langle g_{i+1}\right\rangle \longrightarrow H_{y}$ is an isomorphism for every $i=1, \ldots, q$. These conditions imply that the fibre of $X \rightarrow Y$ over $y$ consists of $2^{r} /\left|H_{y}\right|$ points. At each of these points $X$ is analytically isomorphic to the cone over a cycle of $q$ smooth rational curves.

All the above assumptions are satisfied in the cases considered in [AP09].

### 3.2 Numerical invariants

Here we assume that the surface $Y$ is projective.
By Proposition 2.5, $K_{X}^{2}$ can be computed as follows:

$$
\begin{equation*}
K_{X}^{2}=2^{r}\left(K_{\tilde{Y}}+\nu^{*} D+(\text { double locus })\right)^{2}=\sum_{i} 2^{r}\left(K_{Y_{i}}+\left.D\right|_{Y_{i}}+\left.(\text { double locus })\right|_{Y_{i}}\right)^{2} \tag{15}
\end{equation*}
$$

To compute the cohomology of $\mathcal{O}_{X}$, we are going to write down explicitly in the above situation the sequences (11) in the second proof of Theorem 1.13 (as usual we push forward to $Y$ all the sheaves). Since all the maps are $G$-equivariant, the sequences (11) split as sums of exact sequences:

$$
\begin{equation*}
0 \rightarrow \mathcal{F}_{\chi} \rightarrow \oplus_{i=1}^{t} L_{i, \chi}^{-1} \xrightarrow{\alpha} \mathcal{A}_{\chi}, \quad 0 \rightarrow \mathcal{F}_{\chi} \rightarrow \oplus_{i=1}^{t} L_{i, \chi}^{-1} \xrightarrow{\alpha}(\operatorname{im} \alpha)_{\chi} \rightarrow 0, \tag{16}
\end{equation*}
$$

where $\chi$ varies in $G^{*}$ and $G$ acts in $\mathcal{F}_{\chi}, \mathcal{A}_{\chi}$ and $(\operatorname{im} \alpha)_{\chi}$ via $\chi$.
To describe the sheaves $\mathcal{A}_{\chi}$ and $(\operatorname{im} \alpha)_{\chi}$, we need to introduce some more notation. Given a component $F_{l}$ of $C$ we denote by $g_{l} \in G$ the generator of the inertia subgroup of $F_{l}$ and by $Y_{a_{l}}$ and $Y_{b_{l}}$ the two components of $Y$ that contain $F_{l}$. We denote by $E_{l}$ (respectively $E_{l, a_{l}}, E_{l, b_{l}}$ ) the preimages of $F_{l}$ in $X$ (respectively $X_{a_{l}}^{\prime}, X_{b_{l}}^{\prime}$ ) and by $\widetilde{E}_{l}$ the common normalization of $E_{l}, E_{l, a_{l}}$, $E_{l, b_{l}}$ (cf. Example 1.17). In the commutative diagram

the maps to $F_{l}$ are $G /\left\langle g_{l}\right\rangle$-covers and the remaining maps are finite and birational. The cover $E_{l, a_{l}} \rightarrow F_{l}$ is standard and its building data can be recovered from those of $X_{a_{l}}^{\prime} \rightarrow Y_{a_{l}}$ as follows.

- We identify $\left(G /\left\langle g_{l}\right\rangle\right)^{*}$ with $\left\langle g_{l}\right\rangle^{\perp} \subseteq G^{*}$, and for every $\chi \in\left\langle g_{l}\right\rangle^{\perp}$ we restrict $L_{\chi}^{a_{l}}$ to $F_{l}$.
- For every $D_{j}^{a_{l}}$ with $g_{j} \neq g_{l}$, we label each point of $D_{j}^{a_{l}} \mid F_{F_{l}}$ with the image of $g_{j}$ in $G /\left\langle g_{l}\right\rangle$.


## V. Alexeev and R. Pardini

The same can be done of course for $E_{l, b_{l}} \rightarrow F_{l}$. Let $y \in F_{l}$ be a point such that $\nu^{*} D$ has multiplicity one at the points of $\widetilde{Y}$ that map to $y$ (since we assume that $2 D$ is Cartier, the multiplicity of $\nu^{*} D$ is the same at all points lying over $y$ ). Recall that by assumption $Y$ is dc at $y$; denote by $\alpha_{y, 1} \alpha_{y, 2}$ the elements of $G$ associated to the two branch lines of $X_{a_{l}}^{\prime} \rightarrow Y_{a_{l}}$ containing $y$ and by $\beta_{y, 1}, \beta_{y, 2}$ the elements of $G$ associated to the two branch lines of $X_{b_{l}}^{\prime} \rightarrow Y_{b_{l}}$ containing $y$. We have $\alpha_{y, 1}+\alpha_{y, 2}=\beta_{y, 1}+\beta_{y, 2}$ modulo $g_{l}$ (cf. Example 1.17). Then $E_{l, a_{l}}$ is singular over $y$ if and only if $\alpha_{y, 1}$ and $\alpha_{y, 2}$ are both different from $g_{l}$, namely if and only if there exists a character $\chi$ with $\chi\left(g_{l}\right)=1$ and $\chi\left(\alpha_{1, y}\right)=\chi\left(\alpha_{2, y}\right)=-1$. For each $\chi \in G^{*}$ and $l$ such that $\chi\left(g_{l}\right)=1$ we denote by $A_{l, \chi}$ the set of points $y \in F_{l}$ such that $\chi\left(\alpha_{1, y}\right)=\chi\left(\alpha_{2, y}\right)=-1$, and we take $A_{l, \chi}$ to be the empty set if $\chi\left(g_{l}\right) \neq 1$. We define $B_{l, \chi}$ in a similar way by considering the cover $E_{l, b_{l}} \rightarrow F_{l}$. We have the following lemma.

Lemma 3.1. For $\chi \in\left\langle g_{l}\right\rangle^{\perp}$ denote by $M_{l, \chi}^{-1}$ the eigensheaf of $\mathcal{O}_{\widetilde{E_{l}}}$ corresponding to $\chi$. Then the maps $\widetilde{E_{l}} \rightarrow E_{l, a_{l}}$ and $\widetilde{E_{l}} \rightarrow E_{l, b_{l}}$ induce isomorphisms:

$$
L_{a_{l}, \chi}^{-1} \otimes \mathcal{O}_{F_{l}} \cong M_{l, \chi}^{-1}\left(-A_{l, \chi}\right), \quad L_{b_{l}, \chi}^{-1} \otimes \mathcal{O}_{F_{l}} \cong M_{l, \chi}^{-1}\left(-B_{l, \chi}\right) .
$$

Proof. The lemma follows by the normalization algorithm of [Par91, § 3].
Let $N_{l, \chi}:=A_{l, \chi} \cap B_{l, \chi}$ and let $T_{\chi}$ be the set of points $y$ such that $C$ is singular at $y$ and $\left.\chi\right|_{H_{y}}$ is trivial. We are now ready to describe $(\operatorname{im} \alpha)_{\chi}$.
Proposition 3.2. For every $\chi \in G^{*} \backslash\{1\}$, there is an exact sequence:

$$
0 \rightarrow(\operatorname{im} \alpha)_{\chi} \longrightarrow \oplus_{\left\{l \mid \chi\left(g_{l}\right)=1\right\}} M_{l, \chi}^{-1}\left(-N_{l, \chi}\right) \longrightarrow \mathcal{O}_{T_{\chi}} \rightarrow 0
$$

Proof. In our setup, the map $\widetilde{B^{\prime}} \rightarrow \widetilde{C^{\prime}}$ is the disjoint union of two copies of $\widetilde{B}=\bigsqcup_{l=1}^{s} \widetilde{E_{l}} \rightarrow \bigsqcup_{l=1}^{s} F_{l}$ that are switched by the involution $j$. So by Lemma 3.1 the first sequence in (16) can be rewritten as:

$$
\begin{equation*}
0 \rightarrow \mathcal{F}_{\chi} \rightarrow \oplus_{i=1}^{t} L_{i, \chi}^{-1} \rightarrow \oplus_{\left\{l \mid \chi\left(g_{l}\right)=1\right\}} M_{l, \chi}^{-1} . \tag{17}
\end{equation*}
$$

In addition, if $F_{l}$ is a component of $C$ contained in $Y_{a_{l}}$ and $Y_{b_{l}}$, then again by Lemma 3.1 the image of the map $L_{a_{l}, \chi}^{-1} \oplus L_{b_{l}, \chi}^{-1} \rightarrow M_{l, \chi}^{-1}$ is equal to $M_{l, \chi}^{-1}\left(-N_{\chi}^{l}\right)$, so we have an exact sequence:

$$
\begin{equation*}
0 \rightarrow(\operatorname{im} \alpha)_{\chi} \rightarrow \oplus_{\left\{l \mid \chi\left(g_{l}\right)=1\right\}} M_{l, \chi}^{-1}\left(-N_{\chi}^{l}\right) \rightarrow \mathcal{C}_{\chi} \rightarrow 0 \tag{18}
\end{equation*}
$$

where the cokernel $\mathcal{C}_{\chi}$ is concentrated on the set $T_{\chi}$. Using the description of the singularities of $X$ at these points given in $\S 3.1$, one checks that $\mathcal{C}_{\chi}$ has length 1 at points $y$ such that $\left.\chi\right|_{H_{y}}$ is trivial and it is 0 elsewhere, so $\mathcal{C}_{\chi}=\mathcal{O}_{T_{\chi}}$.

Remark 3.3. Let $y \in C$ be a smooth point, let $F$ be the irreducible component of $C$ that contains $y$, and let $Y_{1}, Y_{2}$ be the two components of $Y$ that contain $F$. Let $H$ the subgroup of $G$ generated by the inertia subgroups of $F$ and of the components of $D$ that contain $y$. Of course, one has $H \subseteq H_{y}$, but in the present setup equality actually holds. Indeed, if $\chi \in H^{\perp}$ is a non-trivial character, then by Proposition 3.2 the second sequence in (16) can be written near $y$ as $0 \rightarrow \mathcal{F}_{\chi} \rightarrow \mathcal{O}_{Y_{1}} \oplus \mathcal{O}_{Y_{2}} \xrightarrow{\alpha_{\chi}} \mathcal{O}_{F} \rightarrow 0$, where $\alpha_{\chi}$ is given by $\left.\left(f_{1}, f_{2}\right) \mapsto\left(f_{1}-f_{2}\right)\right|_{F}$. By Lemma 1.5, there exist $z_{i} \in \mathcal{O}_{Y_{i}}, i=1,2$, that correspond to functions on $X_{i}^{\prime}$ that do not vanish at any point of $\pi^{-1}(y)$. Up to multiplying, say, $z_{1}$ by a nowhere-vanishing regular function on $Y_{1}$ we can arrange that $z_{\chi}:=z_{1}-z_{2} \in \mathcal{F}_{\chi}$. Hence $z_{\chi}$ corresponds to a function on $X$ that is non-zero near $\pi^{-1}(y)$ and on which $G$ acts via the character $\chi$. It follows that $G / H$ acts freely on $\pi^{-1}(y)$, i.e. that $H=H_{y}$.


Figure 1. The $\mathbb{Z}_{2}^{2}$-cover of Example 3.5.

We say that a point $y \in C$ is relevant if and only if either it is singular for $C$ or there exists $l$, $\chi$ with $\chi\left(g_{l}\right)=1$ such that $y \in N_{\chi}^{l}$. Observe that, in view of the assumptions of 3.1 , by Proposition 2.12 and by the description of singularities of $\S 3.4$ the set of relevant points can be described intrinsically as the set of points of $C$ over which $X$ is Gorenstein but not dc.

Corollary 3.4. Let Rel be the set of relevant points and let $\widetilde{B}=\bigsqcup_{l=1}^{s} \widetilde{E_{l}}$ be the normalization of the double locus $B$ of $X$. Then

$$
\chi\left(\mathcal{O}_{X}\right)=\chi\left(\mathcal{O}_{X^{\prime}}\right)-\chi\left(\mathcal{O}_{\widetilde{B}}\right)+\sum_{y \in \operatorname{Rel}}\left[G: H_{y}\right] .
$$

Proof. The claim follows immediately by Proposition 3.2, by (16) and by the fact that for $\chi=1$ one has the exact sequence

$$
0 \rightarrow(\mathrm{im} \alpha)_{1} \rightarrow \oplus_{l=1}^{s} \mathcal{O}_{F_{l}} \rightarrow \mathcal{O}_{T} \rightarrow 0
$$

where $T$ is the set of singular points of $C$.
We close this section by computing the numerical invariants of two of the degenerations of Burniat surfaces described in [AP09].

Example 3.5. Let $G=\mathbb{Z}_{2}^{2}$, let $g_{1}, g_{2}, g_{3}$ be the non-zero elements of $G$, and for $i=1,2,3$ let $\chi_{i} \in G^{*}$ be the non-zero character such that $\chi_{i}\left(g_{i}\right)=1$. Let $Y_{1}=\mathbb{P}^{1} \times \mathbb{P}^{1}, Y_{2}=\mathbb{P}^{2}$, and let $Y$ be the surface obtained by gluing $Y_{1}$ and $Y_{2}$ along a smooth rational curve $C$ which is of type $(1,1)$ on $Y_{1}$ and is a line on $Y_{2}$. Fix three distinct points $y_{1}, y_{2}, y_{3} \in C$. For $i=1,2,3$, let $D_{1, j} \subset Y_{1}$ be the union of a fibre and a section through $y_{j-1}$ and let $D_{2, j} \subset Y_{2}$ be a pair of lines through $y_{j+1}$ (the index $j$ varies in $\mathbb{Z}_{3}$ ). In Figure 1, $Y_{1}$ is represented on the left and $Y_{2}$ on the right, the curve $C$ is shown as a solid dashed line, light gray lines correspond to $D_{i, 1}$, black lines correspond to $D_{i, 2}$, and medium gray lines correspond to $D_{i, 3}$.

For $i=1,2$, we let $\pi_{i}: X_{i}^{\prime} \rightarrow Y_{i}$ be the standard $G$-cover with branch data $D_{i, j}, g_{j}, j=1,2,3$. Solving (2), we get $L_{1, i}=\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(1,1)$ and $L_{2, j}=\mathcal{O}_{\mathbb{P}^{2}}(2), j=1,2,3$, where $L_{i, j}^{-1}$ denotes the subsheaf of $\mathcal{O}_{X_{i}^{\prime}}$ corresponding to the character $\chi_{j}$. Notice that the line bundles $L_{i, j}^{-1}$ have no cohomology, and hence, in particular, $\chi\left(\mathcal{O}_{X_{1}^{\prime}}\right)=\chi\left(\mathcal{O}_{X_{2}^{\prime}}\right)=1$.

By [Par91, §3], for $i=1,2$ the normalization of the cover of $C$ induced by $\pi_{i}$ is the trivial $G$-cover. So, by Theorem 1.13, we can glue $X_{1}^{\prime} \sqcup X_{2}^{\prime} \rightarrow Y_{1} \sqcup Y_{2}$ to a cover $\pi: X \rightarrow Y$. By (15) we have
$K_{X}^{2}=4\left(K_{Y_{1}}+\frac{1}{2}\left(D_{1,1}+D_{1,2}+D_{1,3}\right)+C\right)^{2}+4\left(K_{Y_{2}}+\frac{1}{2}\left(D_{2,1}+D_{2,2}+D_{2,3}\right)+C\right)^{2}=2+4=6$.

## V. Alexeev and R. Pardini



Figure 2. The $\mathbb{Z}_{2}^{2}$-cover of Example 3.6.

The curve $C$ is smooth and the points $y_{1}, y_{2}$ and $y_{3}$ are relevant points with $H_{y_{i}}=G$, so Corollary 3.4 gives:

$$
\begin{aligned}
\chi\left(\mathcal{O}_{X}\right)= & \chi\left(\mathcal{O}_{X_{1}^{\prime}}\right)+\chi\left(\mathcal{O}_{X_{2}^{\prime}}\right)-\chi\left(\mathcal{O}_{\widetilde{B}}\right) \\
& +\left[G: H_{y_{1}}\right]+\left[G: H_{y_{2}}\right]+\left[G: H_{y_{3}}\right]=1+1-4+1+1+1=1 .
\end{aligned}
$$

For $\chi=1$, we have an isomorphism $(\operatorname{im} \alpha)_{1} \cong \mathcal{O}_{C}$. Hence $(\operatorname{im} \alpha)_{1}$ has no cohomology in degree $i>0$, and the exact sequence

$$
0 \rightarrow \mathcal{O}_{Y} \rightarrow \mathcal{O}_{Y_{1}} \oplus \mathcal{O}_{Y_{2}} \rightarrow(\operatorname{im} \alpha)_{1}=\mathcal{O}_{C} \rightarrow 0
$$

implies that $h^{i}\left(\mathcal{O}_{Y}\right)=0$ for $i>0$. Next we compute the cohomology of the sheaves $\mathcal{F}_{\chi}$. By Proposition 3.2, for $j=1,2,3$ we have $(\operatorname{im} \alpha)_{\chi_{j}}=\mathcal{O}_{C}\left(-y_{j}\right)$. Hence (16) gives an exact sequence:

$$
0 \rightarrow \mathcal{F}_{\chi_{j}} \rightarrow L_{1, j}^{-1} \oplus L_{2, j}^{-1} \rightarrow \mathcal{O}_{C}\left(-y_{j}\right) \rightarrow 0
$$

Therefore $h^{1}\left(\mathcal{F}_{\chi_{j}}\right)=h^{2}\left(\mathcal{F}_{\chi_{j}}\right)=0$ for $j=1,2,3$, and thus $h^{1}\left(\mathcal{O}_{X}\right)=h^{2}\left(\mathcal{O}_{X}\right)=0$.
Example 3.6. Let $Y=Y_{1} \cup \cdots \cup Y_{6}$ be the union of six copies of $\mathbb{P}^{2}$ glued in a cycle along lines as shown in Figure 2.

As in the previous example, let $G=\mathbb{Z}_{2}^{2}$, and for $i \in \mathbb{Z}_{6}$ let $\pi_{i}: X_{i}^{\prime} \rightarrow Y_{i}$ be the $G$-cover branched on the lines pictured with three shades of gray in Figure 2. For every $i$, two of the sheaves $L_{i, \chi}$ are $\mathcal{O}_{Y_{1}}(2)$, and the remaining one is $\mathcal{O}_{Y_{1}}(1)$. Hence the $L_{i, \chi}^{-1}$ have no cohomology, and $\chi\left(X_{i}^{\prime}\right)=1$. It's easy to check using Theorem 1.13 that the cover $X_{1}^{\prime} \sqcup \cdots \sqcup X_{6}^{\prime} \rightarrow Y_{1} \sqcup \cdots \sqcup Y_{6}$ can be glued to a $G$-cover $\pi: X \rightarrow Y$. The normalization $\widetilde{B} \rightarrow C$ of the induced cover of the double curve $C$ is the disjoint union of six smooth rational curves, each mapping two-to-one onto a component of $C$. The only relevant point is the singular point $y$ of $C$. So, applying (15) and Corollary 3.4, we get

$$
K_{X}^{2}=6, \quad \chi\left(\mathcal{O}_{X}\right)=1 .
$$

Let $F_{1}, \ldots, F_{6}$ be the irreducible components of $C$. For $\chi=1$, as in the proof of Corollary 3.4 we have an exact sequence,

$$
0 \rightarrow(\operatorname{im} \alpha)_{1} \rightarrow \oplus_{l=1}^{6} \mathcal{O}_{F_{l}} \rightarrow \mathbb{K}(y) \rightarrow 0,
$$

which gives $h^{i}\left((\operatorname{im} \alpha)_{1}\right)=0$ for $i>0$. By Proposition 3.2 , for $\chi \neq 0$ the sheaf $(\operatorname{im} \alpha)_{\chi}$ is isomorphic to the direct sum of two copies of $\mathcal{O}_{\mathbb{P}^{1}}$, and hence it has no higher cohomology. So by (16) we have $h^{i}\left(\mathcal{F}_{\chi}\right)=0$ for $i>0$, and therefore $h^{1}\left(\mathcal{O}_{X}\right)=h^{2}\left(\mathcal{O}_{X}\right)=0$.

### 3.3 Singularities: the case $\boldsymbol{Y}$ smooth.

We wish to describe the singularities of a $\mathbb{Z}_{2}^{r}$-cover $\pi: X \rightarrow Y$ as in $\S 3.1$. Since the question is local, we fix $y \in Y$ and we study $X$ locally above $Y$ in the étale topology. By the assumptions in $\S 3.1$, the singularities of $X$ over a point $y \in Y$ lying on $q>2$ components of $Y$ are degenerate

Table 1. One, two, three, and four reduced lines.

| No. | $\|H\|$ | Relations | $\iota$ | Singularity |
| :--- | :--- | :--- | :--- | :--- |
| 0.1 | 1 | none | 1 | smooth |
| 1.1 | 2 | none | 1 | smooth |
| 2.1 | 4 | none | 1 | smooth |
| 2.2 | 2 | 12 | 1 | $A_{1}$ |
| 3.1 | 8 | none | 1 | $A_{1}$ |
| 3.2 | 4 | 12 | 1 | $A_{3}$ |
| 3.3 | 4 | 123 | 2 | $\frac{1}{4}(1,1)$ |
| 3.4 | 2 | 12,13 | 1 | $D_{4}$ |
| 4.1 | 16 | none | 1 | elliptic, $F^{2}=-4$ |
| 4.2 | 8 | 12 | 1 | elliptic, $F^{2}=-2$ |
| 4.3 | 8 | 123 | 2 | $T_{2,2,2,2}, F^{2}=-4$ |
| 4.4 | 8 | 1234 | 1 | elliptic, $F^{2}=-8$ |
| 4.5 | 4 | 1213 | 1 | elliptic, $F^{2}=-1$ |
| 4.6 | 4 | 1234 | 1 | elliptic, $F^{2}=-4$ |
| 4.7 | 4 | 12134 | 2 | $T_{2,2,2,2}, F^{2}=-3$ |
| 4.8 | 2 | 121314 | 1 | elliptic, $F^{2}=-2$ |

cusps such that the exceptional divisor of its minimal semiresolution is a cycle of $q$ rational curves (cf. [KS88, Definition 4.20]). So it is enough to analyze two cases.

- The surface $Y$ is smooth.
- The surface $Y=Y_{1} \cup Y_{2}$ dc and $\pi$ is obtained by gluing standard covers $\pi_{i}: X_{i}^{\prime} \rightarrow Y_{i}, i=1,2$.

Remark 3.7. All the singularities listed in Tables 1-9, actually occur on some stable surface of general type. To give examples of the singularities that appear when the base $Y$ of the cover is smooth, one can take $G=\mathbb{Z}_{2}^{r}, 2 \leqslant r \leqslant 4$, a set of generators $g_{1}, \ldots, g_{k}$ of $G, k \leqslant 4$, and lines $L_{1}, \ldots, L_{k}$ through a point $y \in \mathbb{P}^{2}$ such that the pair $\left(\mathbb{P}^{2},\left(L_{1}+\cdots+L_{k}\right) / 2\right)$ is lc. If $g=g_{i}$, define $D_{g_{i}}=L_{i}$, where $D_{i}^{\prime}$ is a general curve of even degree, and for $g \neq 1, g_{1}, \ldots, g_{k}$ let $D_{g}$ be a general curve of odd degree. The divisors $D_{g}$ so defined are the branch data for a $G$-cover $X \rightarrow \mathbb{P}^{2}$ (the relations in (2) are easily seen have a solution in this case). By Proposition 2.5, the surface $X$ is slc and it is of general type as soon as the degree of the Hurwitz divisor $D$ is greater than 6 . There is only one point $x \in X$ mapping to $y$; all the singularities $(X, x)$ with $|H| \geqslant 4$ listed in Tables $1-3$ can be realized in this way (for the definition of $H$, see below). The singularities with $|H|=2$ can be obtained by taking a double cover $X \rightarrow \mathbb{P}^{2}$, branched on the sum of $k$ lines through $y$ and a general curve of degree $d$ such that $d+k$ is even and greater than or equal to 8 .

Since all the curves in the construction are general, the singularities of $X \backslash\{x\}$ are at most $A_{1}$ points.

Similar constructions, slightly more involved, can be used to realize the singularities of Tables 4-9.

We study the case $Y$ smooth in this section, and the case $Y$ reducible in §3.4.

## V. Alexeev and R. Pardini

Table 2. Double line + zero, one, or two reduced lines.

| No. | $\|H\|$ | Relations | $\iota$ | Singularity | $\widetilde{X}$ | $C_{\tilde{X}} \rightarrow C_{X} \rightarrow C_{Y}$ | $X^{\text {sr }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2^{\prime} .1$ | 4 | none | 1 | semismooth | $2(1.1)$ | $2 \Delta \rightarrow \Delta \rightarrow \Delta$ | dc |
| $2^{\prime} .2$ | 2 | 12 | 1 | semismooth | $2(0.1)$ | $2 \Delta \rightarrow \Delta \rightarrow \Delta$ | dc |
| $3^{\prime} .1$ | 8 | none | 1 | semismooth | $2(2.1)$ | $2 \Delta \rightarrow \Delta \xrightarrow{2} \Delta$ | dc |
| $3^{\prime} .2$ | 4 | 12 | 1 | semismooth | $2(1.1)$ | $2 \Delta \rightarrow \Delta \xrightarrow{2} \Delta$ | dc |
| $3^{\prime} .3$ | 4 | 13 | 1 | semismooth | $(2.1)$ | $\Delta \xrightarrow{2} \Delta \rightarrow \Delta$ | pinch |
| $3^{\prime} .4$ | 4 | 123 | 2 | $\left(3^{\prime} .1\right) / \mathbb{Z}_{2}$ | $2(2.2)$ | $2 \Delta \rightarrow \Delta \rightarrow \Delta$ | dc |
| $3^{\prime} .5$ | 2 | 1213 | 1 | semismooth | $(1.1)$ | $\Delta \xrightarrow{2} \Delta \rightarrow \Delta$ | pinch |
| $4^{\prime} .1$ | 16 | none | 1 | deg.cusp $(2)$ | $2(3.1)$ | $2 \Gamma_{2} \rightarrow \Gamma_{2} \xrightarrow{22} \Delta$ | dc |
| $4^{\prime} .2$ | 8 | 12 | 1 | deg.cusp $(2)$ | $2(2.1)$ | $2 \Gamma_{2} \rightarrow \Gamma_{2} \xrightarrow{22} \Delta$ | dc |
| $4^{\prime} .3$ | 8 | 13 | 1 | deg.cusp $(1)$ | $(3.1)$ | $\Gamma_{2} \rightarrow \Delta \xrightarrow{2} \Delta$ | dc |
| $4^{\prime} .4$ | 8 | 34 | 1 | deg.cusp $(6)$ | $2(3.2)$ | $2 \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Delta$ | dc |
| $4^{\prime} .5$ | 8 | 123 | 2 | $\left(4^{\prime} .1\right) / \mathbb{Z}_{2}$ | $2(3.2)$ | $2 \Delta \rightarrow \Delta \xrightarrow{2} \Delta$ | dc |
| $4^{\prime} .6$ | 8 | 134 | 2 | $\left(4^{\prime} .1\right) / \mathbb{Z}_{2}$ | $(3.1)$ | $\Gamma_{2} \xrightarrow{22} \Gamma_{2} \rightarrow \Delta$ | pinch |
| $4^{\prime} .7$ | 8 | 1234 | 1 | deg.cusp $(2)$ | $2(3.3)$ | $2 \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Delta$ | dc |
| $4^{\prime} .8$ | 4 | 1213 | 1 | deg.cusp $(1)$ | $(2.1)$ | $\Gamma_{2} \rightarrow \Delta \xrightarrow{2} \Delta$ | dc |
| $4^{\prime} .9$ | 4 | 1314 | 1 | deg.cusp $(3)$ | $(3.2)$ | $\Gamma_{2} \rightarrow \Delta \rightarrow \Delta$ | dc |
| $4^{\prime} .10$ | 4 | 1234 | 1 | deg.cusp $(2)$ | $2(2.2)$ | $2 \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Delta$ | dc |
| $4^{\prime} .11$ | 4 | 1324 | 1 | deg.cusp $(1)$ | $(3.3)$ | $\Gamma_{2} \rightarrow \Delta \rightarrow \Delta$ | dc |
| $4^{\prime} .12$ | 4 | 12134 | 2 | $\left(4^{\prime} .2\right) / \mathbb{Z}_{2}$ | $(2.1)$ | $\Gamma_{2} \xrightarrow{22} \Gamma_{2} \rightarrow \Delta$ | pinch |
| $4^{\prime} .13$ | 4 | 13124 | 2 | $\left(4^{\prime} .3\right) / \mathbb{Z}_{2}$ | $(3.2)$ | $\Delta \xrightarrow{2} \Delta \rightarrow \Delta$ | pinch |
| $4^{\prime} .14$ | 4 | 12334 | 2 | $\left(4^{\prime} .4\right) / \mathbb{Z}_{2}$ | $2(3.4)$ | $2 \Delta \rightarrow \Delta \rightarrow \Delta$ | dc |
| $4^{\prime} .15$ | 2 | 121314 | 1 | deg.cusp $(1)$ | $(2.2)$ | $\Gamma_{2} \rightarrow \Delta \rightarrow \Delta$ | dc |

Table 3. Two double lines.

| No. | $\|H\|$ | Relations | $\iota$ | Singularity | $\widetilde{X}$ | $C_{\widetilde{X}} \rightarrow C_{X} \rightarrow C_{Y}$ | $X^{\text {sr }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $4^{\prime \prime} .1$ | 16 | none | 1 | deg.cusp(4) | 4(2.1) | $4 \Gamma_{2} \rightarrow \Gamma_{4} \xrightarrow{2222} \Gamma_{2}$ | dc |
| $4^{\prime \prime} .2$ | 8 | 12 | 1 | deg.cusp(4) | 4(1.1) | $4 \Gamma_{2} \rightarrow \Gamma_{4} \xrightarrow{2211} \Gamma_{2}$ | dc |
| $4^{\prime \prime} .3$ | 8 | 13 | 1 | deg.cusp(2) | $2(2.1)$ | $2 \Gamma_{2} \rightarrow \Gamma_{2} \xrightarrow{22} \Gamma_{2}$ | dc |
| $4^{\prime \prime} .4$ | 8 | 123 | 2 | $\left(4^{\prime \prime} .1\right) / \mathbb{Z}_{2}$ | 2(2.1) | $2 \Gamma_{2} \xrightarrow{1122} \Gamma_{3} \xrightarrow{211} \Gamma_{2}$ | pinch |
| $4^{\prime \prime} .5$ | 8 | 1234 | 1 | deg.cusp(4) | 4(2.2) | $4 \Gamma_{2} \rightarrow \Gamma_{4} \rightarrow \Gamma_{2}$ | dc |
| $4^{\prime \prime} .6$ | 4 | 1213 | 1 | deg.cusp(2) | 2(1.1) | $2 \Gamma_{2} \rightarrow \Gamma_{2} \xrightarrow{21} \Gamma_{2}$ | dc |
| $4^{\prime \prime} .7$ | 4 | 1234 | 1 | deg.cusp(4) | 4(0.1) | $4 \Gamma_{2} \rightarrow \Gamma_{4} \rightarrow \Gamma_{2}$ | dc |
| $4^{\prime \prime} .8$ | 4 | 1324 | 1 | deg.cusp(2) | 2(2.2) | $2 \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Gamma_{2}$ | dc |
| $4^{\prime \prime} .9$ | 4 | 12134 | 2 | $\left(4^{\prime \prime} .2\right) / \mathbb{Z}_{2}$ | 2(1.1) | $2 \Gamma_{2} \xrightarrow{2211} \Gamma_{3} \rightarrow \Gamma_{2}$ | pinch |
| $4^{\prime \prime} .10$ | 4 | 13124 | 2 | $\left(4^{\prime \prime} .3\right) / \mathbb{Z}_{2}$ | (2.1) | $\Gamma_{2} \xrightarrow{22} \Gamma_{2} \rightarrow \Gamma_{2}$ | pinch |
| $4^{\prime \prime} .11$ | 2 | 121314 | 1 | deg.cusp(2) | 2(0.1) | $2 \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Gamma_{2}$ | dc |

Table 4. $C$ not in the branch locus, zero, or two, or four reduced lines.

| No. | $\|H\|$ | Relations | $\iota$ | $\chi$ | Singularity | $\widetilde{X}$ | $C_{\tilde{X}} \rightarrow C_{X} \rightarrow C_{Y}$ | $X^{\text {sr }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| E0.1 | 1 | none | 1 | 0 | dc | $(0.1) \sqcup(0.1)$ | $2 \Delta \rightarrow \Delta \rightarrow \Delta$ | dc |
| E2.1 | 2 | 12 | 1 | 0 | dc | $(1.1) \sqcup(1.1)$ | $2 \Delta \rightarrow \Delta \xrightarrow{2} \Delta$ | dc |
| E4.1 | 8 | 1234 | 1 | $2^{r-3}$ | deg.cusp(4) | $2(2.1) \sqcup 2(2.1)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \xrightarrow{2222} \Delta$ | dc |
| E4.2 | 4 | 1234 | 1 | $2^{r-2}$ | deg.cusp(4) | $2(2.2) \sqcup 2(2.2)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \rightarrow \Delta$ | dc |
| E4.3 | 4 | 1324 | 1 | $2^{r-2}$ | deg.cusp(2) | $(2.1) \sqcup(2.1)$ | $\Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{2} \xrightarrow[22]{ } \Delta$ | dc |
| E4.4 | 2 | 121314 | 1 | $2^{r-1}$ | deg.cusp(2) | $(2.2) \sqcup(2.2)$ | $\Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Delta$ | dc |

Table 5. $C$ not in the branch locus, a double line + two reduced lines.

| No. | $\|H\|$ | Relations | $\iota$ | $\chi$ | Singularity | $\widetilde{X}$ | $C_{\tilde{X}} \rightarrow C_{X} \rightarrow C_{Y}$ | $X^{\text {sr }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{E} 4^{\prime} .1$ | 8 | 1234 | 1 | $2^{r-3}$ | deg.cusp(6) | $4(1.1) \sqcup 2(2.1)$ | $4 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{6} \xrightarrow{112 \ldots 2} \Gamma_{2}$ | dc |
| $\mathrm{E} 4^{\prime} .2$ | 4 | 1234 | 1 | $2^{r-2}$ | deg.cusp(6) | $4(0.1) \sqcup 2(2.2)$ | $4 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{6} \rightarrow \Gamma_{2}$ | dc |
| $\mathrm{E} 4^{\prime} .3$ | 4 | 1324 | 1 | $2^{r-2}$ | deg.cusp(3) | $2(1.1) \sqcup(2.1)$ | $2 \Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{3} \xrightarrow{122} \Gamma_{2}$ | dc |
| $\mathrm{E} 4^{\prime} .4$ | 2 | 121314 | 1 | $2^{r-1}$ | deg.cusp(3) | $2(0.1) \sqcup(2.2)$ | $2 \Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{3} \rightarrow \Gamma_{2}$ | dc |

Table 6. $C$ not in the branch locus, two pairs of double lines.

| No. | $\|H\|$ | Relations | $\iota$ | $\chi$ | Singularity | $\tilde{X}$ | $C_{\tilde{X}} \rightarrow C_{X} \rightarrow C_{Y}$ | $X^{\text {sr }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{E} 4^{\prime \prime} .1$ | 8 | 1234 | 1 | $2^{r-3}$ | deg.cusp(8) | $4(1.1) \sqcup 4(1.1)$ | $4 \Gamma_{2} \sqcup 4 \Gamma_{2} \rightarrow \Gamma_{8} \xrightarrow{112 \ldots 211} \Gamma_{3}$ | dc |
| $\mathrm{E} 4^{\prime \prime} .2$ | 4 | 1234 | 1 | $2^{r-2}$ | deg.cusp(8) | $4(0.1) \sqcup 4(0.1)$ | $4 \Gamma_{2} \sqcup 4 \Gamma_{2} \rightarrow \Gamma_{8} \rightarrow \Gamma_{3}$ | dc |
| $\mathrm{E} 4^{\prime \prime} .3$ | 4 | 1324 | 1 | $2^{r-2}$ | deg.cusp(4) | $2(1.1) \sqcup 2(1.1)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \xrightarrow{1221} \Gamma_{3}$ | dc |
| $\mathrm{E} 4^{\prime \prime} .4$ | 2 | 121314 | 1 | $2^{r-1}$ | deg.cusp(4) | $2(0.1) \sqcup 2(0.1)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \rightarrow \Gamma_{3}$ | dc |

We let $\left(D_{1}, g_{1}\right), \ldots,\left(D_{k}, g_{k}\right)$ be the branch data of $\pi$. We may assume that $y \in D_{i}$ for every $i$. So, by the condition that $D$ is slc, we have $k \leqslant 4$ and no three of the $D_{i}$ coincide. Whenever the $D_{i}$ are not all distinct, we assume $D_{1}=D_{2}$.

All the possible cases are listed in Tables 1-3. The first digit in the label given to each case is equal to the number $k$ of components through $y$, followed by ' if $D_{1}=D_{2}$ and by " if $D_{1}=D_{2}$ and $D_{3}=D_{4}$ (obviously this case occurs only for $k=4$ ). So, for instance, a label of the form $3^{\prime} . m$, where $m$ is any positive integer, means that $y$ belongs to three components of $D$, two of which coincide.

The entries in the columns have the following meanings.

- The column marked $|H|$ contains the order of the subgroup $H$ the subgroup generated by $g_{1}, \ldots, g_{k}$.
- The column marked Relations contains the relations between $g_{1}, \ldots, g_{k}$. For instance, 123 means $g_{1}+g_{2}+g_{3}=0$.
- Singularity. The notations are mostly standard: $\frac{1}{4}(1,1)$ denotes a cyclic singularity $\mathbb{A}^{2} / \mathbb{Z}_{4}$ with weights $1,1 . T_{2,2,2,2}$ denotes an arrangement consisting of four disjoint -2 -curves $G_{1}, \ldots, G_{4}$ and of a smooth rational curve $F$ intersecting each of the $G_{i}$ transversely at one point. The self-intersection $F^{2}$ is given in the table. In the non-normal case (Tables 2 and 3) we use the notations of [KS88], where Kollár and Shepherd-Barron classified all slc surface singularities over $\mathbb{C}$. We work in any characteristic not equal to 2 , but only


## V. Alexeev and R. Pardini

Table 7. $C$ in the branch locus, zero, or two, or four reduced lines.

| No. | $\|H\|$ | Relations | $\iota$ | $\chi$ | Singularity | $\widetilde{X}$ | $C_{\widetilde{X}} \rightarrow C_{X} \rightarrow C_{Y}$ | $X^{\text {sr }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R0.1 | 2 | none | 1 | 0 | dc | $(1.1) \sqcup(1.1)$ | $\Delta \sqcup \Delta \rightarrow \Delta \rightarrow \Delta$ | dc |
| R2.1 | 4 | 12 | 1 | 0 | dc | (2.1) $\sqcup(2.1)$ | $\Delta \sqcup \Delta \rightarrow \Delta \xrightarrow{2} \Delta$ | dc |
| R2.3 | 2 | 1201 | 2 | 0 | $(\mathrm{R} 2.1) / \mathbb{Z}_{2}$ | $(2.2) \sqcup(2.2)$ | $\Delta \sqcup \Delta \rightarrow \Delta \rightarrow \Delta$ | dc |
| R2.2 | 4 | 012 |  |  | same as R2.1 |  |  |  |
| R4.1 | 16 | 1234 | 1 | $2^{r-4}$ | deg.cusp(4) | $2(3.1) \sqcup 2(3.1)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \xrightarrow{2 \ldots 2} \Delta$ | dc |
| R4.2 | 8 | 123401 | 2 | 0 | (R4.1)/ $\mathbb{Z}_{2}$ | $2(3.2) \sqcup(3.1)$ | $2 \Delta \sqcup \Gamma_{2} \rightarrow \Gamma_{2} \xrightarrow{22} \Delta$ | dc |
| R4.3 | 8 | 1234012 | 1 | $2^{r-3}$ | deg.cusp(4) | $2(3.3) \sqcup 2(3.3)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \rightarrow \Delta$ | dc |
| R4.4 | 8 | 1234013 | 1 | $2^{r-3}$ | deg.cusp(2) | (3.1) $\sqcup(3.1)$ | $\Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{2} \xrightarrow{22} \Delta$ | dc |
| R4.5 | 8 | 1234 | 1 | $2^{r-3}$ | deg.cusp(12) | $2(3.2) \sqcup 2(3.2)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \rightarrow \Delta$ | dc |
| R4.6 | 4 | 123401 | 2 | 0 | $(\mathrm{R} 4.5) / \mathbb{Z}_{2}$ | $2(3.4) \sqcup(3.2)$ | $2 \Delta \sqcup \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Delta$ | dc |
| R4.7 | 4 | 1234013 | 1 | $2^{r-2}$ | deg.cusp (6) | $(3.2) \sqcup(3.2)$ | $\Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Delta$ | dc |
| R4.8 | 8 | 1324 |  |  | same as R4.4 |  |  |  |
| R4.9 | 4 | 132401 | 2 | 0 | (R4.8)/ $\mathbb{Z}_{2}$ | (3.2) $\sqcup(3.2)$ | $\Delta \sqcup \Delta \rightarrow \Delta \xrightarrow{2} \Delta$ | dc |
| R4.10 | 4 | 1324012 | 1 | $2^{r-2}$ | deg.cusp(2) | $(3.3) \sqcup(3.3)$ | $\Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Delta$ | dc |
| R4.11 | 4 | 121314 |  |  | same as R4.7 |  |  |  |
| R4.12 | 2 | 12131401 | 2 | 0 | $(\mathrm{R} 4.11) / \mathbb{Z}_{2}$ | (3.4) $\sqcup(3.4)$ | $\Delta \sqcup \Delta \rightarrow \Delta$ | dc |
| R4.13 | 16 | 01234 |  |  | same as R4.1 |  |  |  |
| R4.14 | 8 | 12034 | 1 | $2^{r-3}$ | deg.cusp(8) | $2(3.2) \sqcup 2(3.3)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \rightarrow \Delta$ | dc |
| R4.15 | 8 | 13024 |  |  | same as R4.4 |  |  |  |
| R4.16 | 8 | 12304 |  |  | same as R4.2 |  |  |  |
| R4.17 | 4 | 1213014 | 1 | $2^{r-2}$ | deg.cusp(4) | (3.2) $\sqcup(3.3)$ | $\Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Delta$ | dc |
| R4.18 | 4 | 1213401 | 2 | 0 | $(\mathrm{R} 4.14) / \mathbb{Z}_{2}$ | $2(3.4) \sqcup(3.3)$ | $2 \Delta \sqcup \Gamma_{2} \rightarrow \Gamma_{2} \rightarrow \Delta$ | dc |
| R4.19 | 4 | 1312401 |  |  | same as R4.9 |  |  |  |

the singularities from the list in [KS88] appear. The notation 'deg.cusp $(k)$ ' means a degenerate cusp (cf. [KS88, Definition 4.20]) such that the exceptional divisor in the minimal semiresolution has $k$ components.

- The column marked $\iota$ contains the index of $x \in X$. It is equal to 1 if all the relations have even length and it is equal to 2 otherwise (cf. Proposition 2.8).
- The column marked $\tilde{X}$ describes the normalization of $X$ (the entries refer to the cases in Table 1).
- The column marked $C_{\widetilde{X}} \rightarrow C_{X} \rightarrow C_{Y}$ describes the inverse image in $\widetilde{X}$ of the double curve $C_{X}$ of $X$ and $C_{Y}$ is the image of $C_{X}$ in $Y$. The symbol $\Delta$ denotes the germ of a smooth curve, and $\Gamma_{k}$ is the seminormal curve obtained by gluing $k$ copies of $\Delta$ at one point. The notation $\Gamma_{k} \xrightarrow{a_{1}, \ldots, a_{k}} C$ means that the map restricts to a degree $a_{i}$ map on the $i$ th component of $\Gamma_{k}$ (we do not specify the $a_{i}$ when they are all equal to 1 ).
- The column marked $X^{\mathrm{sr}}$ describes the minimal semiresolution of $X$. We write 'dc' when $X^{\mathrm{sr}}$ has only normal crossings and 'pinch' if it has also pinch points.

Theorem 3.8. The singularities of slc covers $\pi: X \rightarrow Y$ with smooth $Y$ are listed in Tables 1-3.
Since all these singularities can be studied in a similar way, we just explain the method and work out two cases as an illustration. We start with some general remarks.
(i) We always assume $G=H$. Indeed, the cover $\pi$ factors as $X \xrightarrow{\pi_{2}} X / H \xrightarrow{\pi_{1}} Y$. By Lemma 1.5, the map $\pi_{1}$ is étale near $y$, while for every $z \in \pi_{1}^{-1}(y)$ the fiber $\pi_{2}^{-1}(z)$ consists
Table 8. $C$ in the branch locus, a double line + two reduced lines.

| No. | $\|H\|$ | Relations | $\iota$ | $\chi$ | Singularity | $\widetilde{X}$ | $C_{\widetilde{X}} \rightarrow C_{X} \rightarrow C_{Y}$ | $X^{\text {sr }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R4'. 1 | 16 | 1234 | 1 | $2^{r-4}$ | deg.cusp(6) | $4(2.1) \sqcup 2(3.1)$ | $4 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{6} \xrightarrow{2 \ldots 2} \Gamma_{2}$ | dc |
| $\mathrm{R} 4^{\prime} .2$ | 8 | 123401 | 2 | 0 | $\left(\mathrm{R} 4^{\prime} .1\right) / \mathbb{Z}_{2}$ | $2(2.1) \sqcup(3.1)$ | $2 \Gamma_{2} \sqcup \Gamma_{2} \xrightarrow{221111} \Gamma_{4} \xrightarrow{1122} \Gamma_{2}$ | pinch |
| R4'. 3 | 8 | 123403 | 2 | 0 | $\left(\mathrm{R} 4^{\prime} .1\right) / \mathbb{Z}_{2}$ | $2(2.1) \sqcup 2(3.2)$ | $2 \Gamma_{2} \sqcup 2 \Delta \rightarrow \Gamma_{3} \xrightarrow{222} \Gamma_{2}$ | dc |
| $\mathrm{R} 4^{\prime} .4$ | 8 | 1234012 | 1 | $2^{r-3}$ | deg.cusp(6) | $4(2.2) \sqcup 2(3.3)$ | $4 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{6} \rightarrow \Gamma_{2}$ | dc |
| $\mathrm{R} 4^{\prime} .5$ | 8 | 1234013 | 1 | $2^{r-3}$ | deg.cusp(3) | $2(2.1) ~ \sqcup(3.1)$ | $2 \Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{3} \xrightarrow{222} \Gamma_{2}$ | dc |
| R4'. 6 | 8 | 1234 | 1 | $2^{r-3}$ | deg.cusp(10) | $4(1.1) \sqcup 2(3.2)$ | $4 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{6} \xrightarrow{221 \ldots 1} \Gamma_{2}$ | dc |
| $\mathrm{R} 4^{\prime} .7$ | 4 | 123401 | 2 | 0 | $\left(\mathrm{R} 4^{\prime} .6\right) / \mathbb{Z}_{2}$ | $2(1.1) \sqcup(3.2)$ | $2 \Gamma_{2} \sqcup \Gamma_{2} \xrightarrow{221 \ldots 1} \Gamma_{4} \rightarrow \Gamma_{2}$ | pinch |
| R4' ${ }^{\prime}$ | 4 | 123403 | 2 | 0 | $\left(\mathrm{R} 4^{\prime} .6\right) / \mathbb{Z}_{2}$ | $2(1.1) \sqcup 2(3.4)$ | $2 \Gamma_{2} \sqcup 2 \Delta \rightarrow \Gamma_{3} \xrightarrow{211} \Gamma_{2}$ | dc |
| R4' 9 | 4 | 1234013 | 1 | $2^{r-2}$ | deg.cusp(5) | $2(1.1) \sqcup(3.2)$ | $2 \Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{3} \xrightarrow{211} \Gamma_{2}$ | dc |
| R4'. 10 | 8 | 1324 |  |  | same as R4'. 5 |  |  |  |
| R4'. 11 | 4 | 132401 | 2 |  | $\left(\mathrm{R} 4^{\prime} .10\right) / \mathbb{Z}_{2}$ | $(2.1) \sqcup(3.2)$ | $\Gamma_{2} \sqcup \Delta \xrightarrow{211} \Gamma_{2} \xrightarrow{12} \Gamma_{2}$ |  |
| R4'. 12 | 4 | 1324012 | 1 | $2^{r-2}$ | deg.cusp(3) | $2(2.2) \sqcup(3.3)$ | $2 \Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{3} \rightarrow \Gamma_{2}$ | dc |
| R4'. 13 | 4 | 121314 |  |  | same as R4'. 9 |  |  |  |
| R4'. 14 | 2 | 12131401 | 2 | 0 | $\left(\mathrm{R} 4^{\prime} .13\right) / \mathbb{Z}_{2}$ | $(1.1) \sqcup(3.4)$ | $\Gamma_{2} \sqcup \Delta \xrightarrow{211} \Gamma_{2} \rightarrow \Gamma_{2}$ | pinch |
| R4'. 15 | 8 | 13024 |  |  | same as R4'. 5 |  |  |  |
| R4'. 16 | 8 | 12034 | 1 | $2^{r-3}$ | deg.cusp(6) | $4(1.1) \sqcup 2(3.3)$ | $4 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{6} \xrightarrow{221 \ldots 1} \Gamma_{2}$ | dc |
| R4'. 17 | 8 | 13024 |  |  | same as R4'.5 |  |  |  |
| R4'. 18 | 8 | 34012 | 1 | $2^{r-3}$ | deg.cusp(10) | $4(2.2) \sqcup 2(3.2)$ | $4 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{6} \rightarrow \Gamma_{2}$ | dc |
| R4'. 19 | 8 | 12304 |  |  | same as R4'. 3 |  |  |  |
| R4'. 20 | 8 | 13402 |  |  | same as R4'. 2 |  |  |  |
| R4'. 21 | 4 | 1213014 | 1 | $2^{r-2}$ | deg.cusp (3) | $2(1.1) \sqcup(3.3)$ | $2 \Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{3} \xrightarrow{211} \Gamma_{2}$ | dc |
| R4'. 22 | 4 | 1314012 | 1 | $2^{r-2}$ | deg.cusp(5) | $2(2.2) \sqcup(3.2)$ | $2 \Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{3} \rightarrow \Gamma_{2}$ | dc |
| R4'. 23 | 4 | 1213401 | 2 | 0 | (R4'.16)/ $\mathbb{Z}_{2}$ | $2(1.1) \sqcup(3.3)$ | $2 \Gamma_{2} \sqcup \Gamma_{2} \rightarrow \Gamma_{3} \xrightarrow{211} \Gamma_{2}$ | pinch |
| R4'. 24 | 4 | 1312401 |  |  | same as R4'. 11 |  |  |  |
| R4'. 25 | 4 | 3412303 | 2 | 0 | $\left(\mathrm{R} 4^{\prime} .18\right) / \mathbb{Z}_{2}$ | $2(2.2) \sqcup 2(3.4)$ | $2 \Gamma_{2} \sqcup 2 \Delta \rightarrow \Gamma_{3} \rightarrow \Gamma_{2}$ | dc |

V. Alexeev and R. Pardini

Table 9. $C$ in the branch locus, two pairs of double lines.

| No. | $\|H\|$ | Relations | $\iota$ | $\chi$ | Singularity | $\widetilde{X}$ | $C_{\widetilde{X}} \rightarrow C_{X} \rightarrow C_{Y}$ | $X^{\text {sr }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R4" ${ }^{\prime} 1$ | 16 | 1234 | 1 | $2^{r-4}$ | deg.cusp(8) | $4(2.1) \sqcup 4(2.1)$ | $4 \Gamma_{2} \sqcup 4 \Gamma_{2} \rightarrow \Gamma_{8} \xrightarrow{2 \ldots 2} \Gamma_{3}$ | dc |
| $\mathrm{R} 4^{\prime \prime} .2$ | 8 | 123401 | 2 | 0 | $\left(\mathrm{R} 4^{\prime \prime} .1\right) / \mathbb{Z}_{2}$ | $2(2.1) \sqcup 2(2.1)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \xrightarrow{221 \ldots 1} \Gamma_{5} \xrightarrow{11222} \Gamma_{3}$ | pinch |
| R4" ${ }^{\prime \prime}$ | 8 | 1234012 | 1 | $2^{\text {r-3 }}$ | deg.cusp(8) | $4(2.2) \sqcup 4(2.2)$ | $4 \Gamma_{2} \sqcup 4 \Gamma_{2} \rightarrow \Gamma_{8} \rightarrow \Gamma_{3}$ | dc |
| R4" ${ }^{\prime \prime} 4$ | 8 | 1234013 | 1 | $2^{\text {r-3 }}$ | deg.cusp(4) | $2(2.1) \sqcup 2(2.1)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \xrightarrow{2222} \Gamma_{3}$ | dc |
| R4' ${ }^{\prime \prime} 5$ | 8 | 1234 | 1 | $2^{\text {r-3 }}$ | deg.cusp(8) | $4(1.1) \sqcup 4(1.1)$ | $4 \Gamma_{2} \sqcup 4 \Gamma_{2} \rightarrow \Gamma_{8} \xrightarrow{22111122} \Gamma_{3}$ | dc |
| R4" ${ }^{\prime \prime}$ | 4 | 123401 | 2 | 0 | $\left(\mathrm{R} 4^{\prime \prime} .5\right) / \mathbb{Z}_{2}$ | $2(1.1) \sqcup 2(1.1)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \xrightarrow{221 \ldots 1} \Gamma_{5} \xrightarrow{11112} \Gamma_{3}$ | pinch |
| $\mathrm{R} 4^{\prime \prime} .7$ | 4 | 1234013 | 1 | $2^{r-2}$ | deg.cusp(4) | $2(1.1) \sqcup 2(1.1)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \xrightarrow{2112} \Gamma_{3}$ | dc |
| R4" ${ }^{\prime \prime} 8$ | 8 | 1324 |  |  | same as R4" 4 |  |  |  |
| R4" ${ }^{\prime \prime} 9$ | 4 | 132401 | 2 | 0 | $\left(\mathrm{R} 4^{\prime \prime} .8\right) / \mathbb{Z}_{2}$ | (2.1) $\sqcup(2.1)$ | $\Gamma_{2} \sqcup \Gamma_{2} \xrightarrow{212} \Gamma_{3} \xrightarrow{121} \Gamma_{3}$ | pinch |
| R4' ${ }^{\prime \prime} 10$ | 4 | 1324012 | 1 | $2^{\text {r-2 }}$ | deg.cusp(4) | $2(2.2) \sqcup 2(2.2)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \rightarrow \Gamma_{3}$ | dc |
| R4' ${ }^{\prime} 11$ | 4 | 121314 |  |  | same as R4' ${ }^{\prime \prime} 7$ |  |  |  |
| R4" 12 | 2 | 12131401 | 2 | 0 | $\left(\mathrm{R} 4^{\prime \prime} .11\right) / \mathbb{Z}_{2}$ | $(1.1) \sqcup(1.1)$ | $\Gamma_{2} \sqcup \Gamma_{2} \xrightarrow{2112} \Gamma_{3} \rightarrow \Gamma_{3}$ | pinch |
| R4" ${ }^{\prime \prime} 13$ | 16 | 01234 |  |  | same as R4" 1 |  |  |  |
| R4" 14 | 8 | 12034 | 1 | $2^{\text {r-3 }}$ | deg.cusp(8) | $4(1.1) \sqcup 4(2.2)$ | $4 \Gamma_{2} \sqcup 4 \Gamma_{2} \rightarrow \Gamma_{8} \xrightarrow{221 \ldots 1} \Gamma_{3}$ | dc |
| R4' ${ }^{\prime \prime} 15$ | 8 | 13024 |  |  | same as R4" 4 |  |  |  |
| R4' ${ }^{\prime \prime} 16$ | 8 | 12304 |  |  | same as R4" 2 |  |  |  |
| R4' ${ }^{\prime \prime} 17$ | 4 | 1213014 | 1 | $2^{r-2}$ | deg.cusp(4) | $2(1.1) \sqcup 2(2.2)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \rightarrow \Gamma_{4} \xrightarrow{2111} \Gamma_{3}$ | dc |
| R4" 18 | 4 | 1213401 | 2 | 0 | $\left(\mathrm{R} 4^{\prime \prime} .14\right) / \mathbb{Z}_{2}$ | $2(1.1) \sqcup 2(2.2)$ | $2 \Gamma_{2} \sqcup 2 \Gamma_{2} \xrightarrow{221 \ldots 1} \Gamma_{5} \rightarrow \Gamma_{3}$ | pinch |
| R4' ${ }^{\prime \prime} 19$ | 4 | 1312401 |  |  | same as R4" 9 |  |  |  |

only of one point. Since $G$ acts transitively on each fiber of $\pi$, it is enough to describe the singularity of $X$ above any point $z \in \pi_{1}^{-1}(x)$.
(ii) The cover $X$ is normal at $x$ if and only if $[D]=0$. It is non-singular at $x$ if and only if either $k=1$ or $k=2, D_{1} \neq D_{2}, g_{1} \neq g_{2}$. Assume that $X$ is not normal, and let $F$ be an irreducible divisor that appears in $D$ with multiplicity one. This means that, say, $F=D_{1}$ and $F=D_{2}$. The normalization of $X$ along $F$ is a $G$-cover of $Y$ with branch data $\left(D_{i}, g_{i}\right)$, for $i \neq 1,2$, and, if $g_{1}+g_{2} \neq 0,\left(F, g_{1}+g_{2}\right)($ cf. $[P a r 91, \S 3])$.
(iii) The cover $X$ is said to be simple if the set $\left\{g_{1}, \ldots, g_{k}\right\}$ is a basis of $|H|$ (for instance, $X$ is simple if the $g_{i}$ are all equal). In this case, $X$ is a complete intersection, and it is very easy to write down equations for it (see Case $4^{\prime} .1$ below).
(iv) The double curve $C_{X}$ maps onto the divisors that appear in $D$ with multiplicity equal to one. Since for a semismooth surface the double curve is locally irreducible, $X$ is never semismooth in the cases $4^{\prime \prime}$. In addition, if $X$ is semismooth then the pullback $C_{\tilde{X}}$ of $C_{X}$ to the normalization is smooth. Using this remark, it is easy to check that $X$ is never semismooth in the cases $4^{\prime}$, either.
(v) In order to compute the minimal semiresolution $X^{\text {sr }}$, we consider the blow up $\widehat{Y} \rightarrow Y$ of $Y$ at $y$, pull back $X$ and normalize along the exceptional curve $E$ to get a cover $\widehat{X} \rightarrow \widehat{Y}$. The branch locus of $\widehat{X} \rightarrow \widehat{Y}$ is supported on a dc divisor and, by construction, the singularities of $\widehat{X}$ are only of type 1,2 or $3^{\prime}$. Looking at the tables, one sees that either $\widehat{X}$ is semismooth or it has points of type 2.2 or $3^{\prime} .4$ (cf. Table 1). In the former case, $\widehat{X}$ is the minimal semiresolution. In the latter case, blowing up $\widehat{Y}$ at the non-semismooth points and taking base change and normalization along the exceptional divisor, one gets a semismooth cover $\widehat{\hat{X}} \rightarrow \widehat{\hat{Y}}$. The semiresolution $\widehat{\hat{X}} \rightarrow X$ is minimal, except in cases $4^{\prime \prime} .5,4^{\prime \prime}$. 10 . In these cases the minimal semiresolution $X^{\text {sr }}$ is obtained by contracting the inverse image in $\widehat{\hat{X}}$ of the exceptional curve of the blow up $\widehat{Y} \rightarrow Y$.

Next we analyze in detail two cases.
Case $4^{\prime} .1$. By remark (ii) above, the normalization $\widetilde{X}$ is an $H$-cover with branch data $\left(D_{1}, g_{1}+g_{2}\right),\left(D_{3}, g_{3}\right)$ and $\left(D_{4}, g_{4}\right)$. Hence $g_{1}$ acts on $X$ without fixed points and $X$ is the disjoint union of two copies of the cover (3.1). We choose local parameters $u, v$ on $Y$ such that $D_{1}=D_{2}$ is given by $u=0, D_{3}$ is defined by $v=0$ and $D_{4}$ by $u+v=0$.

The cover $X$ is defined étale locally above $y$ by the following equations:

$$
\begin{equation*}
z_{1}^{2}=u, \quad z_{2}^{2}=u, \quad z_{3}^{2}=v, \quad z_{4}^{2}=(u+v) . \tag{19}
\end{equation*}
$$

In particular, $X$ is a complete intersection (see remark (iii) above). The element $g_{i}$ acts on $z_{j}$ as multiplication by $(-1)^{\delta_{i j}}$. The double curve $C_{X}$ is the inverse image of $u=0$, hence it is defined by $z_{1}=z_{2}=0, z_{3}= \pm z_{4}$ and the map $C_{X} \rightarrow D_{1}$ is given by $z_{3} \mapsto z_{3}^{2}$, so $C_{X}$ is isomorphic to $\Gamma_{2}$, with each component mapping 2 -to- 1 to $D_{1} \simeq \Delta$. The curve $C_{\widetilde{X}}$ is the inverse image of $D_{1}$ in $\widetilde{X}$, so it has two connected components, each isomorphic to $\Gamma_{2}$, that are glued together in the map $\widetilde{X} \rightarrow X$.

To compute the minimal semiresolution, consider the blow up $\widehat{Y} \rightarrow Y$ of $Y$ at $y$ and the cover $\widehat{X} \rightarrow \widehat{Y}$ obtained by pulling back $X \rightarrow Y$ and normalizing along the exceptional curve $E$. The branch data for $\widehat{X}$ are $\left(E, g_{1}+g_{2}+g_{3}+g_{4}\right)$ and, for $i=1, \ldots, 4,\left(\widehat{D_{i}}, g_{i}\right)$, where ${ }^{\wedge}$ indicates the strict transform. The cover is singular precisely above $\widehat{D_{1}}=\widehat{D_{2}}$, and it is easy, using the local equations, to check that it is dc there. Hence $\widehat{X}$ is the minimal semiresolution of $X$. The exceptional divisor is the inverse image $F$ of $E$ in $X$. Applying the normalization algorithm to the restricted cover $F \rightarrow E$, one sees that the normalization $\widetilde{F}$ of $F$ is the union of two smooth

## V. Alexeev and R. Pardini

rational curves $F_{1}$ and $F_{2}$. The map $\widetilde{F} \rightarrow F$ identifies the two points of $F_{1}$ that lie over the point $E \cap D_{1}^{\prime}$ with the corresponding two points of $F_{2}$. Hence $\widehat{X}$ is the minimal semiresolution of $X$ and the singularity is a degenerate cusp solved by a cycle of two rational curves.

Case $4^{\prime} .5$. As in the previous case, $\widetilde{X}$ and $C_{\widetilde{X}}$ can be computed by the normalization algorithm. One obtains that $\tilde{X}$ is the disjoint union of two copies of (3.2) and $C_{\tilde{X}}$ is the disjoint union of two copies of $\Delta$. This singularity is the quotient of a cover $X_{0}$ of type (4'.1) by the element $g_{0}:=g_{1}+g_{2}+g_{3}$. Since this element has odd length, the index $\iota$ of $X$ at $x$ is equal to 2 .

Since the only fixed point of $g_{0}$ on $X$ is $x:=\pi^{-1}(y)$, the double curve $C_{X}$ is the quotient of the double curve $C_{X_{0}}$ of $X_{0}$. The two components of $C_{X_{0}}$ are identified by $g_{0}$, and thus $C_{X}$ is irreducible and maps two-to-one onto $D_{1}$.

To compute the minimal semiresolution, again we blow up $\widehat{Y} \rightarrow Y$ at $y$ and consider the cover $\widehat{X} \rightarrow \widehat{Y}$ obtained by pull back and normalization along the exceptional curve $E$. As usual, we denote by $\widehat{F}$ the strict transform on $\widehat{Y}$ of a curve $F$ of $Y$. The branch data for $\widehat{X}$ are $\left(\widehat{D_{1}}, g_{1}\right)$, $\left(\widehat{D_{2}}, g_{2}\right),\left(\widehat{D_{3}}, g_{1}+g_{2}\right),\left(\widehat{D_{4}}, g_{4}\right)$, and $\left(E, g_{4}\right)$. Hence $\widehat{X}$ has normal crossings over $\widehat{D_{1}}$, it has four $A_{1}$ points over the point $\hat{y}:=\widehat{D_{4}} \cap E$, and it is smooth elsewhere (cf. Tables 1 and 2 ). We blow up at $\hat{y}$ and take again pull back and normalization along the exceptional curve $E_{2}$. We obtain a cover $\widehat{\hat{X}} \rightarrow \widehat{\hat{Y}}$ which is dc over the strict transform $\widehat{\widehat{D_{1}}}$ of $\widehat{D_{1}}$ and has no other singularity, so $\widehat{\hat{X}} \rightarrow X$ is a semismooth resolution. Let $E_{1}$ denote the strict transform on $\widehat{\hat{Y}}$ of the exceptional curve $E$ of the first blow up. Arguing as in Case 4'.1, one sees that the inverse image of $E_{1}$ is the union of two smooth rational curves $F_{1}^{1}$ and $F_{2}^{1}$ that intersect transversely precisely at one point of the double curve, and the inverse image of $E_{2}$ consists of four disjoint curves $F_{2}^{1}, \ldots, F_{2}^{4}$. All these curves pull back to -2 curves on the normalization of $\widehat{\hat{X}}$ and, up to relabeling, $F_{1}^{1}, F_{1}^{2}, F_{2}^{2}$ and $F_{1}^{2}, F_{2}^{3}, F_{2}^{4}$ form two disjoint $A_{3}$ configurations. Hence $\widehat{\hat{X}}$ is the minimal semiresolution of $X$. In the notation of [KS88, Definition 4.26], $\widehat{\hat{X}}$ is obtained by gluing two copies of $(A, \Delta)$ along $\Delta$.

### 3.4 Singularities: the case $Y$ reducible

Here we repeat the local analysis of the previous section for the case in which $Y=Y_{1} \cup Y_{2}$ is dc, keeping as far as possible the same notations. So we fix $y \in C$, where $C$ is the double curve of $Y$, and describe $X$ locally over $y$. We assume that $X \rightarrow Y$ is obtained by gluing standard covers $\pi_{i}: X_{i}^{\prime} \rightarrow Y_{i}, i=1,2$, such that $y$ lies on all the components of the Hurwitz divisor $D$. We let $\left(D_{1}, g_{1}\right), \ldots,\left(D_{k}, g_{k}\right)$ be the union of the branch data of $\pi_{1}$ and $\pi_{2}$ such that $D_{i}$ is distinct from the double curve $C$ of $Y$ (hence $D=\left(D_{1}+\cdots+D_{k}\right) / 2$ ). We denote by $g_{0}$ the generator of the inertia subgroup of $C$ for $\pi_{1}$ and $\pi_{2}$. By Remark 3.3, the inertia subgroup $H_{y}$ is equal to $H:=\left\langle g_{0}, g_{1}, \ldots, g_{k}\right\rangle$, so up to an étale cover we may assume that $G=H$ and that $\pi^{-1}(y)=\{x\}$.

Since $D$ is $\mathbb{Q}$-Cartier, there are the same number of $D_{i}$ on $Y_{1}$ and on $Y_{2}$. We order them so that all components on $Y_{1}$ come first. Recall that $k \leqslant 4$ by the assumption that $(Y, D)$ is slc. The cases in the tables are labeled $E$ ('étale') if $g_{0}=0$ and $R$ ('ramified') if $g_{0} \neq 0$. The first digit of the label is the number $k$ of branch lines through $y$. It is followed by ${ }^{\prime}$ if $D_{1}=D_{2}$ and by " if $D_{1}=D_{2}$ and $D_{3}=D_{4}$. For instance, in the cases E4'. $m$ the map $\pi$ is generically étale over $C$ and there are four branch lines $D_{1}, \ldots, D_{4}$ with $D_{1}=D_{2}$, and $D_{3} \neq D_{4}$.

The singularities that we get here are non-normal, and as in [KS88, Theorems 4.21, 4.23] they turn out to be either semismooth or degenerate cusps in the Gorenstein case and $\mathbb{Z}_{2}$-quotients of these otherwise.

The tables here contain the same columns as those of $\S 3.3$ plus an extra one, denoted $\chi$ : this is the contribution of $y$ in the formula for $\chi\left(\mathcal{O}_{X}\right)$ of Corollary 3.4 (recall $|G|=2^{r}$ ). By Propositions 2.11 and 2.12 the index $\iota$ is equal to 1 if all relations have even length when reduced modulo $g_{0}$ and it is equal to 2 otherwise.
Theorem 3.9. The singularities of slc covers $\pi: X \rightarrow Y$ where $Y$ is the dc union of two smooth surfaces are given in Tables 4-9.

The analysis of the singularities in the reducible case is similar to the case $Y$ smooth. One blows up $Y$ at the point $y$ and takes pull back and normalization of $X$ along the exceptional divisor. Repeating this process, if necessary, one obtains a semiresolution $X_{0} \rightarrow X$. If $X_{0}$ is not minimal, then the minimal semiresolution $X^{\text {sr }} \rightarrow X$ is obtained by blowing down the -1 -curves of $X_{0}$.

As the computations are all similar, we work out a only a couple of cases to show the method. Case $R 4^{\prime}$.1. The normalization $\widetilde{X}$ is equal to $\widetilde{X_{1}^{\prime}} \sqcup \widetilde{X_{2}^{\prime}}$, where $\widetilde{X_{i}^{\prime}}$ is the normalization of $X_{i}^{\prime}$. The branch data of $\widetilde{X_{1}^{\prime}} \rightarrow Y_{1}$ are $\left(D_{1}, g_{1}+g_{2}\right),\left(D_{0}, g_{0}\right)$, so $\widetilde{X_{1}^{\prime}}$ is étale locally the disjoint union of four copies of the cover (2.1). Also, $X_{2}^{\prime}=\widetilde{X_{2}^{\prime}}$ is étale locally the disjoint union of two copies (3.1).

The image $C_{Y}$ of the double curve $C_{X}$ is equal to $C \cup D_{1}$. The preimage in $\widetilde{X_{1}^{\prime}}$ of $C_{Y}$ is the disjoint union of four copies of $\Gamma_{2}$. The preimage of $C_{Y}$ in $\widetilde{X_{2}^{\prime}}$ is equal to two copies of $\Gamma_{2}$. Hence $C_{\widetilde{X}}=4 \Gamma_{2} \sqcup 2 \Gamma_{2}$. Each component of $C_{\widetilde{X}}$ maps two-to-one onto its image. The map $C_{\widetilde{X}} \rightarrow C_{X}$ identifies in pairs the four components of the preimage of $D_{1}$ and the eight components of the preimage of $C$. Hence $C_{X}$ is $\Gamma_{6}$, with two components mapping two-to-one onto $D_{1}$ and four components mapping two-to-one onto $C$.

To compute the semiresolution, blow up $y \in Y$ to get $\widehat{Y} \rightarrow Y$. Let $E_{1} \subset Y_{1}$ and $E_{2} \subset Y_{2}$ be the irreducible components of the exceptional divisor. Let $\widehat{\pi}: \widehat{X} \rightarrow \widehat{Y}$ be the $G$-cover obtained from $X \rightarrow Y$ by taking pull back and normalizing along $E_{1}$ and $E_{2}$. Denoting by the strict transform on $\widehat{Y}$, the branch data of $\widehat{\pi}$ are $\left(E_{1}, g_{0}+g_{1}+g_{2}\right),\left(E_{2}, g_{0}+g_{3}+g_{4}=g_{0}+g_{1}+g_{2}\right),\left(\widehat{D_{1}}, g_{1}\right),\left(\widehat{D_{2}}=\right.$ $\left.\widehat{D_{1}}, g_{2}\right),\left(\widehat{D_{3}}, g_{3}\right)$ and $\left(\widehat{D_{4}}, g_{4}\right),\left(\widehat{C}, g_{0}\right)$. Hence $\widehat{X}$ is dc by the tables of $\S 3.3$, and it is therefore the semiresolution $X^{\text {sr }}$ of $X$. The preimage of $E_{1}$ is the union of four smooth rational curves meeting in pairs over the point $E_{1} \cap \widehat{D_{1}}$. The preimage of $E_{2}$ is the disjoint union of two rational curves, which together with the components of the preimage of $E_{1}$ form a cycle of six rational curves. The singularity $x \in X$ is Gorenstein by Proposition 2.12, and hence it is 'deg.cusp(6)'.

Case $R 4^{\prime} .2$. This is a $\mathbb{Z}_{2}$-quotient of $R 4^{\prime} .2$, and it is not Gorenstein by Proposition 2.11. The normalization $\widetilde{X}$ is equal to $\widetilde{X_{1}^{\prime}} \sqcup \widetilde{X_{2}^{\prime}}$, where $\widetilde{X_{i}^{\prime}}$ is the normalization of $X_{i}^{\prime}$. The branch data of $\widetilde{X_{1}^{\prime}} \rightarrow Y$ are $\left(D_{1}, g_{0}+g_{2}\right),\left(D_{0}, g_{0}\right)$, so $\widetilde{X_{1}^{\prime}}$ is étale locally the disjoint union of two copies of the cover (2.1). The image $C_{Y}$ of the double curve $C_{X}$ is equal to $C \cup D_{1}$. The preimage in $\widetilde{X_{1}}$ of $C_{Y}$ is the disjoint union of two copies of $\Gamma_{2}$. The preimage of $C_{Y}$ in $\widetilde{X_{2}^{\prime}}$ is $\Gamma_{2}$. Hence $C_{\widehat{X}}=2 \Gamma_{2} \sqcup \Gamma_{2}$. Each component of $C_{\tilde{X}}$ maps two-to-one onto its image in $C_{Y}$. The map $C_{\tilde{X}} \rightarrow C_{X}$ glues to itself each of the two components of the preimage of $D_{1}$, and it identifies in pairs the four components of the preimage of $C$. Hence $C_{X}$ is $\Gamma_{4}$, with two components mapping one-to-one onto $D_{1}$ and two components mapping two-to-one onto $C$.

To compute the semiresolution, blow up $y \in Y$ to get $\widehat{Y} \rightarrow Y$. Let $E_{1} \subset Y_{1}$ and $E_{2} \subset Y_{2}$ be the irreducible components of the exceptional divisor. Let $\widehat{\pi}: \widehat{X} \rightarrow \widehat{Y}$ be the $G$-cover obtained from $X \rightarrow Y$ by taking pull back and normalizing along $E_{1}$ and $E_{2}$. Denoting by the strict transform on $\widehat{Y}$, the branch data of $\widehat{\pi}$ are $\left(E_{1}, g_{2}\right),\left(E_{2}, g_{0}+g_{3}+g_{4}=g_{2}\right),\left(\widehat{D_{1}}, g_{1}=g_{0}\right),\left(\widehat{D_{2}}=\widehat{D_{1}}, g_{2}\right)$,

## V. Alexeev and R. Pardini

$\left(\widehat{D_{3}}, g_{3}\right),\left(\widehat{D_{4}}, g_{4}\right)$ and $\left(\widehat{C}, g_{0}\right)$. By the tables of $\S 3.3, \widehat{X}$ has two pinch points over the point $\widehat{D_{1}} \cap E_{1}$ and is at most dc elsewhere; hence it is equal to the minimal semiresolution $X^{\text {sr }}$. The preimage of $E_{1}$ is a pair of smooth rational curves meeting over the point $E_{1} \cap \widehat{D_{1}}$. The preimage of $E_{2}$ is a smooth rational curve, meeting each component of the preimage of $E_{1}$ at a point lying over $\widehat{C} \cap E_{1}=\widehat{C} \cap E_{2}$.

In the notation of [KS88, Definition 4.26], $X^{\mathrm{sr}}$ is a chain consisting of copy of $(A, 2 \Delta)$ (namely the second component of $\left.X^{\text {sr }}\right)$ in the middle and two copies of $(A, 2 \Delta)$ with $\Delta$ pinched at the ends.

## Acknowledgements

The first author was partly supported by NSF under DMS 0901309. The second author wishes to thank Miles Reid and Angelo Vistoli for several useful communications. We also thank the referee for many useful comments and corrections. Part of this work was done while both authors were visiting MSRI in the spring of 2009. This project was partly supported by the Italian PRIN 2008 project Geometria delle varietà algebriche e dei loro spazi di moduli. The second author is a member of GNSAGA of INDAM.

## References

AP09 V. Alexeev and R. Pardini, Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint (2009), math.AG/arXiv:0901.4431.
AK70 A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, vol. 146 (Springer, Berlin, 1970); MR 0274461(43\#224).
Bou65 N. Bourbaki, Éléments de mathématique. Fasc. XXXI, in Algèbre commutative chapitre 7: diviseurs, Actualités Scientifiques et Industrielles, vol. 1314 (Hermann, Paris, 1965); MR 0260715(41\#5339).
FP97 B. Fantechi and R. Pardini, Automorphisms and moduli spaces of varieties with ample canonical class via deformations of abelian covers, Comm. Algebra 25 (1997), 1413-1441; MR 1444010(98c: 14028).

Gro65 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965), MR 0199181(33\#7330).
Har67 R. Hartshorne, Local cohomology: a seminar given by A. Grothendieck, Harvard University, Fall, 1961, Lecture Notes in Mathematics, vol. 41 (Springer, Berlin, 1967); MR 0224620(37\#219).
Iac06 D. Iacono, Local structure of abelian covers, J. Algebra 301 (2006), 601-615; MR 2236759(2007d: 14034).

KS88 J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), 299-338; MR 922803(88m:14022).
Par91 R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191-213; MR 1103912(92g:14012).
Rei80 M. Reid, Canonical 3-folds, in Journées de Géometrie Algébrique d'Angers, Juillet 1979 (Algebraic Geometry, Angers, 1979) (Sijthoff \& Noordhoff, Alphen aan den Rijn, 1980), 273-310; MR 605348(82i:14025).

Valery Alexeev valery@math.uga.edu
Department of Mathematics, University of Georgia, Athens, GA 30605, USA

Rita Pardini pardini@dm.unipi.it
Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy


[^0]:    Received 23 February 2011, accepted in final form 10 October 2011, published online 20 March 2012. 2010 Mathematics Subject Classification 14E20, 14J17 (primary).
    Keywords: coverings, abelian covers, non-normal varieties, surface singularities, stable surfaces.
    This journal is © Foundation Compositio Mathematica 2012.

