
16 

States of lowest energy: dynamics 

As for classical dynamics, in many applications the external potentials have a slow 
variation in space-time. The standard procedure is then to ignore the quantized 
Maxwell field and to proceed with an effective one-particle Hamiltonian. This is 
justified since the photons very rapidly adjust to the motion of the electron. To put 
it differently, if a classical trajectory of the electron is prescribed, then the photons 
are governed by a Hamiltonian of slow time-dependence and essentially remain 
in their momentarily lowest state of energy. We propose first to study slow time 
variation, which abstractly falls under the auspices of the time-adiabatic theorem. 
However, the real issue is how, from the slow variation in space, to extract, rather 
than assume, the slow variation in time. It seems appropriate to call such a situation 
space-adiabatic. 

We will work for a start with time-dependent perturbation theory using the in­
sights gained from the time-adiabatic theorem. It turns out that these methods lead 
us astray in the case of slowly varying external vector potentials. Thus we are 
forced to develop more powerful techniques. They come from the area of pseudo­
differential operators. In fact this theory provides a much sharper picture of adia­
batic decoupling and a systematic scheme for computing effective Hamiltonians. 
To avoid technical complications we restrict ourselves to matrix-valued symbols. 
Transcribing these results formally to the Pauli-Pierz Hamiltonian we will com­
pute the effective Hamiltonian governing the motion of the electron in the band of 
lowest energy, including spin precession. The effective Hamiltonian can be anal­
ysed through semiclassical methods which eventually leads to the nonperturbative 
definition of the gyromagnetic ratio. 

There are other properties of the Pauli-Pierz Hamiltonian which can be han­
dled semiclassically. Most notably we may consider a physical situation, where 
classical currents are prescribed. Then the Pauli-Pierz operator reduces to a time­
dependent operator on Pock space quadratic in the bosonic annihilation/creation 
operators. Such quasi-free theories can be studied in great detail. In particular, 
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16.1 The time-adiabatic theorem 221 

coherent states of the photon field evolve in time according to the classical inhomo­
geneous Maxwell equations. Under standard macroscopic conditions field fluctua­
tions are small and the classical Maxwell theory can be used safely. For example, 
a city radio station with a power of 100 kW at a wavelength of 100m emits 1030 

photons per second, and at a distance of 100 km a flux of 1015 photons s- 1 cm-2 

is still observed. On the other hand, experimentally even the smallest field intensi­
ties can be controlled and quantum features are of importance, as for example in 
photon counting statistics. For the Maxwell field an amazingly wide span of scales 
can be probed, from the classical deterministic behavior down to single-photon 
randomness. 

16.1 The time-adiabatic theorem 

In the case where no external forces are present, the total momentum is conserved; 
compare with sections 13.5 and 15.2. Thus under slowly varying external poten­
tials the total momentum can be expected to change slowly, and the appropriate 
starting point is the Pauli-Fierz Hamiltonian in the representation diagonal with 
respect to the total momentum, i.e. 

1 2 
H =-(a· (p- Pf- eAcp- eAex(8x))) + e</Jex(8x) + Hf. 

2m 
(16.1) 

Here p refers to the total momentum and 8 is a dimensionless parameter regulating 
the variation of the external potentials <Pex, Aex· Let us assume for the moment 
that a classical trajectory of the electron is given. Because of the slow variation 

of <Pex, Aex it has to be of the form (qet• Pet), 0 :S t:::; 8- 1r with (8qet• Pet) of 
order 1. Inserting in (16.1), the time-dependent Hamiltonian can be written as 

1 2 e 
H(8t) = 2m (Pet- Pt- eAcp- eAex(8qet)) - 2m a· (Bcp + 8Bex(8qet)) 

+ e</Jex(8qer), (16.2) 

which governs the motion of photons and acts on :F. t is measured in atomic units. 
Bcp = Bcp (0) is the quantized magnetic field. We have already studied the spectrum 
of H (t) for fixed t. The term proportional to Bex is of order 8 and can be neglected. 
Provided IPrl < Pc, H(t) has a two-fold degenerate ground state with energy 

(16.3) 

Physically it is expected that through radiation the photons approach very rapidly a 
state of lowest energy. Subsequently only very few photons escape, since the time 
variation is slow and E(t) is separated by a gap from the continuous spectrum. 
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The time-adiabatic theorem of quantum mechanics makes an abstraction of the 
particular situation and simply postulates the time-dependent Hamiltonian H (t) as 
given and acting on the Hilbert space H. The role of the ground state subspace is 
played by a physically distinguished, "relevant" subspace with corresponding in­
stantaneous spectral projection P (t) and energy E (t), i.e. H (t) P (t) = E (t) P (t). 
It is assumed that for every t the energy E (t) is isolated by a finite gap from the rest 
of the spectrum of H(t). The slow variation in time is introduced through H(8t) 

with 8 « 1 as a dimensionless adiabaticity parameter and one is interested in the 
solution of the Schrodinger equation 

iutl/f(t) = H(8t)l/f(t), (16.4) 

where the initial wave function 1/f(O) is assumed to lie already in the relevant sub­
space, P(O)l/f(O) = 1/f(O). tis chosen to be so long that P(t) rotates by some finite 
amount, implying that 

(16.5) 

Sometimes it is convenient to switch to the slow time scale 

t' = 8t 0 (16.6) 

Then our problem becomes 

i8ut'1f(t1) = H(t')l/f(t'), P(O)l/f(O) = 1/f(O), 0 :S t' :Sr. (16.7) 

To stress the similarity with the space-adiabatic situation, however, we stick to the 
fast time scale of (16.4 ). 

As one of the basic results it is established that the subspace P(8t) is adiabati­
cally protected in the sense that 

11(1- P(8t))l/f(t)ll :S co8 for 0::: t::: 8-1r (16.8) 

with some suitable constant co. Up to an error of order 8 the solution to the 
Schrodinger equation (16.4) clings to the relevant subspace P(8t)H. 

It is of interest briefly to recall the proof of (16.8), since some central elements 
will reappear later. We denote the unitary propagator for (16.4) by U F; (t, s). The 
idea is to define a "diagonal" propagator U Jg (t, s) such that it preserves P (t) ex­
actly, i.e. 

(16.9) 

The unitary propagator UJg(t, s) is generated by the Hamiltonian Hctg(8t). From 
(16.9) it follows that 

[Hctg(8t), P(8t)] = i8P(8t). (16.10) 
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We look for a solution which is s-close to H (st). Using the identities . . 
P(t)P(t)P(t) = 0, (1- P(t))P(t)(l- P(t)) = 0, we obtain 

Hctg(st) = H(st) + is[P(st), P(st)]. (16.11) 

To prove (16.8) one thus has to estimate the difference 

While H (st) - Hctg(st) is of orders, this is not good enough, since errors might 
add up over the long times s- 1r. To make progress we note that P[JJ, P]P = . . 
0 = (1- P)[P, P](1- P), whereas P[P, P](l- P) # 0. Thus to improve on 
(16.12) one has to exploit the time averaging, which is most easily achieved by 
writing [P, P] as a time derivative. Let us assume for a moment that the commu­
tator equation 

[H(t), X(t)] = [P(t), P(t)] (16.13) 

has a bounded solution X(t). Then, using again (16.11), 

U8 (s- 1r, 0)- u~g(s- 1 r, 0) (16.14) 

£-lr 

=- sfo dsU 8 (s- 1r, s)(H(ss)X(ss)- X(ss)Hctg(ss))U~g(s, 0) + O(s) 

,{£-lr d d 
= is}

0 
ds(ds U8 (s- 1r, s)X(ss)U~g(s, 0)- U8 (s- 1r, s)X(ss) ds U~g(s, 0)) 

+O(s) 

i £-lr d . 
=is ds( -(U8 (s- 1r, s)X(ss)U~g(s, 0))- U8 (s- 1r, O)sX(ss)U~g(s, 0)) 

o ds 
+ O(s), 

which implies 

IIU 0 (s- 1r, 0)- u~g(s- 1 r, 0)11 ::: co(1 + r)s. (16.15) 

The adiabatic theorem (16.8) follows from 

11(1- P(r))U~:(s- 1 r, O)P(O)lfrll = 11(1- P(r))U~g(s- 1 r, O)P(O)lfrll + O(s) 

= 11(1- P(r))P(r)U~g(s- 1 r, O)lfrll + O(s) 

= O(s), (16.16) 

where (16.9) has been used. 
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224 States of lowest energy: dynamics 

It remains to see whether the commutator equation (16.13) has a solution. Be­
cause of the spectral gap we may set 

X= P P(l - P)(H- E)-1 + (H- E)-1(1 - P)P P (16.17) 

and verify (16.13) directly. In particular, IIX(t)ll :S g- 111P(t)ll, with g the width 
ofthe gap and IIX(t)ll :s 3g-2 11H(t)IIIIP(t)II-

While undoubtedly correct the estimate (16.8) does not specify the origin of the 
error. As we will explain below the order E is not due to dispersion into all of H. 
Rather the true solution 1/f(t) is slightly tilted out of the subspace P(Et)H. If this 
effect is properly taken into account, the error in (16.8) can be made smaller than 
any given power En at the expense of adjusting the projection P(t) to the slightly 
tilted projection P 8 (t). The second missing aspect is more of a computational na­
ture. Since (1- P 8 (t))H is in essence decoupled from the relevant subspace, one 
would like to have an, in our case time-dependent, effective Hamiltonian govern­
ing the solution in the subspace P 8 (t)H, at least approximately. We will return to 
this point below. 

16.2 The space-adiabatic limit 

With these preparations done we return to the Pauli-Pierz model with the slowly 
varying electrostatic potential V (Ex) = e¢ex (Ex), 

1 2 
H = -(p- Pf- eAcp) + Hf + V(Ex) = Ho + V(Ex). 

2m 
(16.18) 

The case of a slowly varying vector potential will be discussed in section 16.6. Spin 
is omitted only for notational simplicity. H acts on L 2 (l~3 , d3 x) ® F. For the wave 
functions it is convenient to use the momentum representation 1/f(k, fsJ, also for 
the electron, with the shorthand fs. = (k1, A1, ... , kn, An), n arbitrary, 1/f(k, 0) = 
1/f (k) ® Q. Ho then has the direct integral decomposition 

Ho = JEB d3kHo(k). (16.19) 

We assume a small photon mass and the validity of claim 15.4. Then, for every 
k, lkl < Pc, Ho(k) has a unique ground state o/g, Ho(k)o/g(k, fs.) = E(k)o/g(k, fs.). 
Since in the momentum representation Ho(k) is a real operator, the phase of 
o/g(k) can be chosen such that the wave function is real. In particular, using 
(o/g(k), o/g(k)):F = 1, this implies (o/g(k), ''ho/g(k)):F = 0. E(k) is separated by 
a finite gap from the continuum edge Ec(k). Since our aim is to demonstrate the 
basic principle, we deliberately ignore the fact that the ground state band exists 
only up to Pc and continue as if Pc = oo. At the cost of a suitable restriction on 
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the initial state, the assumption Pc = oo can be avoided. We refer to the Notes at 
the end of the chapter for further explanations. 
~The ground state band is the subspace of wave functions of the form 
f(k)o/g(k, Is_), and the corresponding projection is denoted by Pg. Pg1-i is invariant 
under e-iHot, [Ho, Pg] = 0, and 

(e-iH0 t Jo/g)(k, Is_)= (e-iE(k)t fck) )1/fg(k, k). (16.20) 

Thus wave functions in the ground state band propagate according to a free quan­
tum evolution with the effective energy-momentum relation E(k). 

If the slowly varying potential is turned on, the subspace Pg1-i is no longer 
invariant. The in-band dynamics is modified and there are transitions to excited 
states. For times which are not too long their effect remains negligible and one 
expects that 

where, as for the time-adiabatic theorem, the time scale is determined by the con­
dition that the electron should feel the presence of the potential V. The effective 
one-particle Hamiltonian, Hen, is defined through the Peierls substitution 

Heff = E(p) + V(c:x). (16.22) 

Coupling to the Maxwell field renormalizes the kinetic energy of the quantum 
particle. In particular, for small velocities we have 

1 2 
Heff = --p + V(c:x). 

2meti 
(16.23) 

The mass is renormalized, but the coupling to the electrostatic potential is still 
given by the bare charge e. 

Let us now argue with some care that the Peierls substitution gives the correct 
time evolution in the ground state band. The Hamiltonian is the one specified in 
(16.18) and the relevant subspace is the ground state band Pg1-i. In particular, ini­
tially Pgo/(0) = 1/f(O). By construction, [Ho, Pg] = 0 and one has to understand 
the transitions between Pg1-i and (1- Pg)1-i = Qg1-i induced by V(cx). For this 
purpose we decompose into a diagonal and an off-diagonal piece as 

V = Vctg + Vact, 

Vctg = Pg V Pg + Qg V Qg, Vact = Pg V Qg + Qg V Pg. (16.24) 

It should be recalled that the time evolution must be controlled over the time span 
c:- 1r, r = 0(1). Thus only terms of order c:2 can be ignored safely. 
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226 States of lowest energy: dynamics 

We consider first Pg V Pg, which in the ground state band acts as 

(Pg V Pgo/)(k, 15_) = f d3k'V(k')j(k- ck')(o/g(k), o/g(k- ck')):Fo/g(k, 15_) 

(16.25) 

~ 

with f(k) = (o/g(k), lj!(k)):F. The Peierls substitution amounts to V(t:PgxPg), 
since 

with the second term vanishing by the argument given above. The difference is 
estimated as 

(PgV(t:x)Pg- V(t:PgxPg))o/(k,!5_) 

= j d3k'V(k')j(k- t:k')((o/g(k), o/g(k- t:k')):F- 1)o/g(k, Is_). (16.27) 

In the Taylor expansion, the first order vanishes, since (o/g(k), 'ho/g(k)):F = 0 as 
before, and the error is 0(t:2). Thus we are left with showing that V0 ct acts as a 
small perturbation only. 

Since Ho(k) = 2~7 (k- Pt- eArp)2 + Ht, one has 'hHo(k) = ~(k- Pt­

eArp) and, with P(k) denoting the projection onto o/g(k), then Pg = Jffi d3kP(k), 

Q(k) = 1- P(k), and Qg = 1- Pg. If clear from the context, the variable "Is_" 
will be dropped. With these conventions 

V(cx)Pgo/(k) = f d3k'V(k')P(k- t:k')lj!(k- t:k') 

= f d3k'V(k')P(k)lj!(k- t:k') 

- t: f d3k'V(k')k' · 'hP(k)lj!(k- t:k') + O(t:2). (16.28) 

By first-order perturbation theory 

'hP(k) = -Q(k)(Ho(k)- E(k))- 1\hHo(k)P(k) + h.c., (16.29) 

h.c. denoting the Hermitian conjugate. Therefore 

(16.30) 

with the shorthand \7 Pg = Jffi d3k\7kP(k) and the force F(x) = -\lV(x). 
The approximate time evolution is generated by 

(16.31) 
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and our goal is to compare it with the full time evolution e-iHt = U (t) over times 
of order s -I, i.e. to estimate the difference 

(I£ 
U(s- 1t)- Uctg(s- 1t) = -i Jo dsU(s- 1t- s)VoctUctg(s) (16.32) 

with t = 0(1). 
At this point we have arrived at a structure very similar to the time-adiabatic dif­

ference (16.14). V0 ct = O(s) and time averaging must be used. As before, the trick 
is to write V0 ct as a time derivate, i.e. as a commutator with Ho, up to unavoidable 
errors of order s2 . We set 

B(k) = -Q(k)(Ho(k)- E(k))-2'hHo(k)P(k). (16.33) 

Then 

Q(k)\lkP(k) = -[Ho(k), B(k)]. (16.34) 

With the shorthand B = Jffi d3kB(k) one has 

Qg \1 Pg · F = [Ho, B] · F = [Ho, B · F]- B · [Ho, F] = [Ho, B · F] + O(s), 
(16.35) 

since [Ho, F] = ~(p- Pf- eArp)· [p, F] + h.c. and [p, F] = -is\lxF(sx). It 
remains to substitute Hctg for Ho. One has [Vdg, B] = Qg[V, B]Pg. Since B = 
Jffi d3kB(k) and V = V (is\lk), the commutator is of orders, hence 

Qg \1 Pg. F = [Hctg, B · F] + O(s). (16.36) 

On inserting in (16.32), we get 

r/£ 
U(s- 1t)- Uctg(s- 1t) = -s Jo dsU(s- 1t- s)[Hctg, B · F + F · B*]Uctg(s) 

+O(s) 

t/£ 
= -s Jo dsU(s- 1t- s)Uctg(s)Uctg(-s)[Hctg, B · F + F · B*]Uctg(s) + O(s) 

=is f'1~sU(s- 1t- s)Uctg(s)~(B · F + F · B*)(s) + O(s) 
Jo ds 

= is(B · F + F · B*)Uctg(s- 1t)- isU(s- 1t)(B · F + F · B*) 

t/£ ( d ) -is Jo ds ds U(s- 1t- s)Uctg(s) (B · F +F. B*)(s) + O(s) 

= O(s), (16.37) 
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since 11 U(-s)Uctg(s) = iU(-s)V0 ctUctg(s) = 0(£) by (16.30). As in the time­
adiabatic setting the leakage out of the ground state subspace PgH is 0(£) for 
times of order£ -I. In addition we have identified the effective Hamiltonian ( 16.22) 
which approximately governs the time evolution inside PgH. 

16.3 Matrix-valued symbols 

If in (16.18) a slowly varying vector potential is added through minimal coupling, 
then even on a formal level the argument of the previous section breaks down. 
The reason is that the ground state subspace PgH is no longer even approximately 
invariant under the time evolution. There is another subspace to take its role, but it 
has to be computed rather than guessed. We immediately consider the general case 
( 16.1) and switch to the macroscopic space scale through the substitution x for Ex. 
Then the Hamiltonian under study is 

1 . 2 e 
H = 2m (- IEY'x - Pf- eAcp- eAex(x)) - 2m a· (Bcp + EBex(x)) 

+ e<f>ex (x) + Hf. (16.38) 

As before, -iY'x refers to the total momentum, Acp = Acp(O), Bcp = Bcp(O). 
The first step is to mold (16.38) into the canonical space-adiabatic form. For this 

purpose we have to distinguish between the classical phase space variable (q, p) 

and the corresponding operators, which exclusively for the purpose of sections 
16.3-16.5 are denoted by q = x, p = -iEY'x. To the Hamiltonian (16.38) in the 
obvious way we associate the operator-valued function(= symbol) 

H(q, p) = Ho(q, p) + t:H1(q, p), 

1 2 e 
Ho(q, p) = -(p- Pt·- eAcp- eAex(q)) --a· Bcp + e<f>ex(q) + Ht, 

2m 2m 
e 

H1(q, p) =--a· Bex(q). 
2m 

(16.39) 

For fixed (q, p), H (q, p) acts as an operator on CC2 Q9 :F, CC2 standing for the spin 
degrees of freedom. Ho is called the leading symbol and H1 the subleading symbol 
for H because of the extra prefactor of£ in the first line of (16.39). To a symbol 
one associates an operator through the Weyl quantization, which can be thought of 
as a specific prescription for ordering x and -i£Y'x.]'o be general, let A(q, p) be 
an operator-valued function with Fourier transform A (ry, ~), 

(16.40) 
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The Weyl quantization of A is then simply 

Ws(A) = (2rr)-3 J d3 r]d3 ~ A(rJ, ~)ei(IJ·IiH·PJ. (16.41) 

A(q, p) is an operator-valued function and W 8 (A) is an operator on the large 
Hilbert space H = L 2 (1Pi.3) 0 CC2 0 F. We will also use the notation 

(16.42) 

as a shorthand. Using the inverse Fourier transform in (16.40), W~:(A) can be writ­
ten in the form of an integral operator as 

W 8 (A)ljf(x) = (2rr)-3 J d3~d3yA(~(x + y), s~)eii;·(x-y)ljf(y). (16.43) 

Here A acts on lfr(x) which is a CC2 0 F-valued wave function, ljf E L2 (IP?.3 , CC2 0 
F)= L2 (IP?.3) 0 (CC2 0 F)= H, and W~:(A) is an operator acting on H. Note 
that f(q) = f(x), f(j}) = f( -is'Vx) as operators. Also W~:(A) being Hermitian 
is equivalent to A(q, p) = A(q, p)* for all (q, p). For the Weyl quantization of 
H(q, p) from (16.39) one obtains simply 

(16.44) 

as it should be. Thus the adiabatic evolution problem associated with (16.38) can 
be written as 

a 
is-ljf(x, t) = H(x, -is'Vx)tfr(x, t) at (16.45) 

with the Weyl rule for the ordering of operators. Consistent with the macroscopic 
space scale we switched also to macroscopic times through the substitution of t 
for st. Equation (16.45) looks like a standard Schri:idinger equation, apart from 
the fact that ljf(x, t) takes values in CC2 0 F and H(q, p) acts as an operator on 
CC2 0 F. 

Ho(q, p) has a subspace of lowest energy with the corresponding projection 
denoted by P(q, p). Deliberately ignoring Pc < oo, from section 15.3 we know 
already that tr[P(q, p)] = 2 and 

H0 (q, p)P(q, p) = E(q, p)P(q, p) ( 16.46) 

with the eigenvalue 

E(q, p) = E(p- eAex(q)) + er/Jex(q). (16.47) 

One would expect that the Peierls substitution E (q, Ji) somehow plays the role of 
the effective one-particle Hamiltonian. Note that this would leave spin precession 

https://doi.org/10.1017/9781009402286.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.017


230 States of lowest energy: dynamics 

still hidden and, in fact, it will appear as the .s-order correction to the Peierls sub­
stitution E(q, /i). 

At this stage, as for the time-adiabatic theorem, it is convenient to abstract 
from the specific origin of the space-adiabatic evolution (16.45). Thereby the 
general structure of space-adiabatic problems becomes visible with the bonus 
of wide applicability. For simplicity CC2 Q9 :F is replaced by ccn with n arbitrary. 
In fact, a finite-dimensional internal Hilbert space is not essential and only al­
lows us to remain in familiar territory. We record that the Hamiltonian H (q, p) = 
Ho(q, p) + .sH1 (q, p) is a matrix-valued function, assumed to be smooth in q, p. 
There is a relevant subspace of physical interest with energy band E (q, p) of con­
stant multiplicity f. This means that Ho ( q, p) has the eigenprojection P ( q, p), 
[Ho(q, p), P(q, p)] = 0, with tr[P(q, p)] = £, 1::::; £ < n, such that 

Ho(q, p)P(q, p) = E(q, p)P(q, p). (16.48) 

Most importantly, Ho is assumed to have a spectral gap in the sense that 

IE(q, p)- Ej(q, p)l 2:: g > 0 (16.49) 

for all (q, p) and all other eigenvalues E j (q, p) of Ho(q, p ). As before, the space­
adiabatic evolution is governed by 

a ~~ 
i.s at 1/f(x, t) = H(q, PJl/f(x, t) (16.50) 

with 1/f (x, t) an n-spinor, i.e. the Hilbert space for the Schrodinger equation ( 16.50) 
is L2 (IR3) Q9 ccn = 1-i. Note that, if in (16.50) H(q, /i) is replaced by H(t), then 
(16.50) turns into its time-adiabatic cousin (16.7) where the role of the relevant 
projection P ( q, p) is taken over by P (t). 

The analysis of (16.50) will be carried out in such a way as to make use only of 
(16.48) and (16.49) with no further assumptions at all on the spectrum of Ho(q, p) 
in the subspace orthogonal to P (q, p )CCn. For this reason we are confident that the 
final result will apply also to the Pauli-Pierz Hamiltonian. 

With the more general perspective gained, one can understand why the case 
Aex = 0 can be handled by more elementary means. In that case Ho(q, p) = 

2~ (p- Pf- eAcp)2 + er/Jex(q). Thus P(q, p) depends only on p and P(q, /i) = 
Pg, the projection onto the ground state subspace. This suggests that also in the 
general case P(q, /i)1-i is the adiabatically decoupled subspace. Unfortunately 
P(q, /i) 2 =!= P(q, /i),ingeneral,althoughP(q, p)2 = P(q, p).Ontheotherhand, 
as will be shown, P(q, /i)(l - P(q, /i)) = O(.s). Since P(q, /i) is Hermitian, its 
spectrum is of order .s concentrated near 0 and 1. Thus, at the expense of an error 
of order .s, we can associate to P (q, /i) a true projection operator P (q, /i), and 
P(q, /i)1-i is the adiabatically protected subspace in lowest-order approximation. 

https://doi.org/10.1017/9781009402286.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.017


16.3 Matrix-valued symbols 231 

From the example of P (q, Ji) just discussed, it is clear that for a study of the 
Schri:idinger equation (16.50) in the limit of small e one has to understand the re­
lationship between the multiplication of symbols and the multiplication of their 
Weyl quantization, which is taken up next. Let A, B be two matrix-valued func­
tions. One defines their Moyal product A#B implicitly through the condition 

(16.51) 

The Moyal product is best grasped in the case where the symbols are given as 
formal power series, 

A(q, p) =Lei A1(q, p), B(q, p) =Lei B1(q, p), (16.52) 
i?:.O i?:.O 

where the expansion coefficients A i, B i do not depend on e. The equality is un­

derstood as lA - ~}~6 ei A i I ::: Cnen with constants en possibly growing so fast 
inn that the partial sums in (16.52) do not converge. Then A#B also has a formal 
power series, which is written as 

A#B = Lei(A#B)1. 
i?:.O 

Equating power by power in (16.51) one finds 

(16.53) 

(-1)1/!1 
(2i)-(lal+l/11) aa al-i AI (q p)ua at! B (q p) 

lai!I,BI! q P ' P q m ' ' 
(A#B)j(q, p) = 

lal+l/-il+l+m=j 
(16.54) 

where it is understood that j, l, m EN and a, ,8 are multi-indices, a, ,8 E N 3. To 
lowest order 

1 
(A#B)o = AoBo, (A#B)1 = AoB1 + A1Bo- l{Ao, Bo}. (16.55) 

We introduced here the Poisson bracket { ·, ·} for matrix-valued functions. It is 
defined by 

(16.56) 

the dot referring to the scalar product of the two gradients. Thus even if the formal 
power series for A, B consists only of the leading term, A= Ao, B = Bo, as is the 
case for P(q, p), their Moyal product is a formal power series starting with 

1 
A#B = AB- e-{A, B} + 0(e2) 

2 
(16.57) 
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and, by definition, the lowest-order product becomes 

(16.58) 

Note that in (16.56) the order of matrices must be respected. In general, it is not 
true that {A, A}= 0, or {A, B} = -{B, A}, as one is used to from the standard 
calculus of Poisson brackets. 

In the sequel, very roughly the idea is to use (16.51) as a link between functions 
of operators, like the time-evolved position operator q(t) = eiH t I F;qe -iH t IF;, and 
matrix-valued symbols. In particular, one can regard the matrix-valued function 
P (q, p) as the lowest-order symbol for the true Hilbert space projection onto the 
adiabatically decoupled relevant subspace. 

16.4 Adiabatic decoupling, effective Hamiltonians 

As noticed already, in general P (q, Ji) is not a projection, due to errors of order E. 

This suggests to successively correct P (q, p) with the goal in Weyl quantization 
to get a projection up to precision En, n arbitrary, a situation denoted by the symbol 
0(E00). We make the ansatz 

rr(q, p) = Z..:.t:in:j(q, p), rro(q, p) = P(q, p) 
j:;,O 

and recall that in general 

H(q, p) =LEi Hj(q, p), 
j:;,O 

(16.59) 

(16.60) 

where in our specific application Hi = 0 for j ::::_ 2. The Weyl quantization for rr 
should be a projection and commute with H(q, Ji) up to errors 0(E00). rr has then 
to satisfy the conditions 

rr* = rr, rr#rr = rr, n:#H = H#n:. (16.61) 

Through an iterative procedure it can be shown that the symbol rr is in fact 
uniquely determined by (16.61). By construction WF;(rr)2 = WF;(rr) + 0(E00 ) and 
there is a projection operator 0 on 1-i naturally associated to W 8 (rr). If we assume 
the initial wave function 1/f to lie in 01-i, 0 1/f = 1/f, then for the true solution 
1/f(t) = e-iHtloo/ one has 

(16.62) 

For this reason 01-i is called an almost invariant subspace, associated to the 
relevant projection P(q, q). On the adiabatic scale transitions out of 01-i are 
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exponentially suppressed as e-(~£) and the dynamics on ITH is governed by the 
diagonal Hamiltonian Hctg = OHO. 

Equation (16.62) solves the adiabatic problem only in principle. To have a work­
able scheme it is required to have a basis in OH which is in some sense naturally 
adapted to the slow degrees of freedom and in which Hctg can be computed per­
turbatively. Of course, the hope is that low-order perturbation will suffice. For this 
purpose we pick a fixed ( q, p)-independent basis I X a), a = 1, . . . , n, in ccn and 
define the £-dimensional reference projection 

e 
7Tr = L IXa)(Xal· (16.63) 

O'=l 

Since lxa) does not depend on (q, p), 1 ® 7Tr = Hr = W8 (nr) is a projection 
and its range defines the reference Hilbert space L 2 (IR3) ® 7TrCCn = Hr as a sub­
space of H. Of course, at this stage the reference subspace is fairly arbitrary 
and a convenient choice must be made in concrete applications. The projection 
P(q, p) is spanned by the eigenvectors tfra(q, p), a= 1, ... , £, of Ho(q, p), 
(tfra(q, p), lfrf:l(q, p))cn = Daf:l· The unitary map from P(q, p)CCn to the reference 
subspace is then 

e 
uo(q, p) = L lxa)(tfra(q, p)l. (16.64) 

0'=1 

If uo were completed to a unitary operator uo on ccn, then for every q, p the n x n 
matrix uoHou0 is block diagonal, with block sizes£ and n - £,and has in the f X £ 
left upper block only the diagonal entries E (q, p ). 

As in the case of the projection P(q, p ), W8 (uo) is in general not unitary with 
an error of order s. Thus we iteratively correct so as to obtain a proper unitary 
operator from OH to the reference subspace Hr. The ansatz is 

u(q, p) = LEjuj(q, p), 
j:;-,0 

(16.65) 

with uo as in (16.64). Unitarity and transformation of JT to 7Tr translates into 

u*#u = 1, u#u* = 1, u#n#u* = 7Tr. (16.66) 

One can show that such a symbol u exists. Since uo is already not unique, neither 
is u. As with n(q, p), one associates with u a unitary operator U : OH---+ Hr. On 
Hr the motion is governed by UOHOU* and it agrees with the true solution up 
to O(s00). UOHOU* has a symbol determined through 

h = u#H#u*. (16.67) 
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234 States of lowest energy: dynamics 

We call h the effective Hamiltonian, associated to the almost invariant subspace 
ITH. The crux of the construction is that h can be represented by a formal power 
series, 

(16.68) 

and the effective Hamiltonian is successively approximated through the Weyl 
quantization 

(16.69) 

Let us work out the two lowest orders. Clearly 

(16.70) 

Its Weyl quantization is E (q, ji)rrr which is the anticipated Peierls substitution. In 
spin or space E (q, p )rrr is diagonal, see (16.63), and there is no internal motion 
at this order yet. For h 1 it is easier to rewrite (16.67) as H #u = u#h and there­
fore (Ho + c;HI)#(uo + cu1) = (uo + cu1)#(ho + ch1). Using (16.57) one thus 
obtains 

( i i ) * h1 = u1Ho + uoH1- hou1- 2{uo, Ho} + 2{ho, uo} u0 . (16.71) 

Projecting onto rr r, the terms Hou 1 and u 1 ho cancel and h 1 simplifies to 

(16.72) 

uo is inserted from Eq. (16.64). In the basis of the reference Hilbert space one then 
obtains to first order 

i 
(Xa, (ho + chJ)xf3kn = E8af3 + c(tfra, H1 lfr13kn- 82(tfra, {Ho + E, lfrf3}kn 

+ O(c2), (16.73) 

where a, f3 = 1, ... , 1!, and where the Poisson bracket is understood as 

(16.74) 

with Ho acting on tfra as a matrix. The Weyl quantization of ho +chi is the effec­
tive Hamiltonian in L2 (1Pi.3) 0 ce to that order. 

In principle, our scheme can be pushed up to arbitrary order. Formulas for h2 

are available, but they are already so involved that h3 is out of reach. Physically 
the dominant effects are in ho, h 1, and to some extent in h2. Further terms will add 
only a minute correction. Of course, the adiabatic decoupling relies on the gap 
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assumption (16.49). In the case where the energy bands of Ho(q, p) cross, or 
almost cross, transition between bands become possible and the qualitative picture 
developed so far breaks down. Away from crossings the description through the 
effective Hamiltonian is still accurate, but close to nearly avoided crossings new 
techniques come into play. 

The formula (16.73) looks unfamiliar. To get acquainted, a simple but instruc­
tive way is to return to the time-adiabatic setting of section 16.1, where H(t) is a 
time-dependent n x n matrix and the relevant subspace has a constant multiplicity 
f. It is spanned by the instantaneous eigenvectors CfJa(t), H(t)cpa(t) = E(t)cpa(t), 

a = 1, ... , £, and the projection onto the relevant subspace is given by P(t) = 
L;=l lcpa(t))(cpa(t)l. As before, one needs a reference subspace of dimension e 
with time-independent basis I X a), a = 1, ... , e. We do not spell out the details 
of the computation, but state the final result. Including order c:, the unitary UF; (t)* 
from the reference space cc£ into ccn = 1-if is given by 

e 
U 8 (t)* = L_)lcpa(t)) + lic:(H(t)- E(t))- 1(1- P(t))CJ?a(t)))(xal + O(c:2). 

a=l 
(16.75) 

U 8 (t)* should be thought of as a kinematical component. It says, for each t, how 
the adiabatically protected subspace lies in ccn. To order 1 the subspace is just 
P (t)CCn and (16.75) provides the first-order correction. The dynamical piece pro­
vides the information of how the solution vector rotates inside the almost invariant 
subspace. It is governed by the effective Hamiltonian acting in cce, which to order 
c:2 has the form 

har.;(t) = DafJE(t)- ic:(cpa(t), CJ?r.;(t))rcn 

1 + 2c:2 (CJ?a(t), (H(t)- E(t))- 1 (1 - P(t))CJ?fJ(t))rcn + O(c:3), (16.76) 

a, f3 = 1, ... , e. The second term of h(t) is the Berry phase. The approximate so­
lution to (16.7) is obtained by first solving the time-dependent Schri:idinger equa­
tion with hen(t) in the reference subspace cce and then mapping into 1-i through 
the unitary (16.75). Thereby the error in (16.8) is improved to order c:2 . In addition 
we know how the vector 1/f (t) rotates inside the relevant subspace. With some 
effort the precision could be improved to 0(c:3). Abstractly, an error 0(c:00 ) is 
guaranteed. 

Matrix-valued symbols are a very powerful tool in the analysis of the space­
adiabatic limit. But, in the end, one would like to have a result on the Schri:idinger 
equation (16.45). This is always possible because the two frames of description 
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are linked through Weyl quantization. To orders the result is 

e-iH(q,PJt/£1/1 = uo(q, ji)*e-i(ho(q,PJ+E:h,(q,PJ)t/E:uo(q, ji)1f; + (1 + lti)O(s) 

(16.77) 

provided the initial wave function lies in the relevant subspace, i.e. no(q, ji)1f; = 
1f;. On the right, one has the effective dynamics in the reference subspace L 2 (1Pi.3) 0 
ce as generated by WE:(ho + sh1). Then W~:(uo) which, up to error s, is uni­
tary turns the effective evolution into the physical Hilbert space L 2 (.!Pi.3) 0 en. 
The error (1 + lti)O(s) comes from the correction of no to no+ sn1, of uo 

to uo + E:UJ, and from the correction of ho + sh1 to ho + sh1 + s2h2. Equation 
(16. 77) agrees with our findings for the particular case studied in section 16.2. 
There ho(q, p) = E(p) + V(q) and h1 (p) = -i(1f;g(p), 'llpo/g(p)):F = 0 by our 
choice of the phase for 1f; g (p). Once the spin is included, h 1 no longer vanishes, 
see section 16.6. 

At the risk of repeating the obvious: expectations of physical observables have 
the form (1/lt. Ao/t). Thus if 1/lt is unitarily transformed so must be the observable 
A. When using the effective Hamiltonian of (16.67) one has to properly transform 
the observables of physical interest. To lowest order x and -i'Vx transform into 
themselves. But, in general, to first order there will be corrections. Also, the basis 
1/la (q, p ), a = 1, ... , l, of the relevant subspace must be selected judiciously such 
that in the I Xa) -basis observables of interest have a simple representation. We will 
come back to this point in the context ofthe Pauli-Fierz operator; see section 16.6 
below. The Weyl quantization of the effective Hamiltonian (16.67) still carries the 
small parameter s which suggests using semiclassical methods, a subject to be 
taken up in the following section. For general E(q, p), the semiclassical regime is 
limited by the Ehrenfest time which in our units is of order log s-1. We stress that 
the adiabatic limit has no such restrictions, as can be seen from (16. 77): if one had 
included the term h2, the approximation with the given precision would be valid 
for macroscopic times of order s - 1. 

16.5 Semiclassical limit 

According to Eq. (16.73) the effective Hamiltonian has the form 

H = H(q, p) = E(q, ji)n + sHsp(q, ji) (16.78) 

acting on L 2 (1Pi.3) 0 ce' where for clarity n denotes thee X l unit matrix. The last 
two terms in (16.73) have been renamed as Hsp anticipating that they are respon­
sible for the precession of the l-spinor. 
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The semiclassical limit can be guessed most directly by considering the Heisen­
berg evolution of the semiclassical observable a = a (q, Ji) as 

(16.79) 

a(t) has a semiclassical representation through a(q, p, t) = 'E.j::::_ociaj(q, p, t). 
From the equations of motion 

d~ ) 0 ~( c:-a(t = t[H, a t)], 
dt 

using [En, aj(t)] = 0, one finds to lowest order 

d 0 

-ao(t) = {E, ao(t)} + t[Hsp, ao(t)] + O(c:) 
dt 

with initial conditions ao(O) = a. 

(16.80) 

(16.81) 

Ignoring the error O(c:), the solution to (16.81) is easily constructed. First one 
defines the classical flow IPt on phase space through 

(16.82) 

Secondly, given the initial condition (q, p) with corresponding trajectory (qt, Pt) 

one obtains the time-dependent spin Hamiltonian Hsp(t) = Hsp(qt, Pt). It deter­
mines the spinor evolution as 

d 
i-x(t) = Hsp(t)x(t), x(t) E Ce. 
dt 

(16.83) 

The unitary propagator for (16.83) from s tot is denoted by U (t, s lq, p ), recalling 
that it depends on the trajectory through its initial conditions. Then 

ao(q, p, t) = U(t, Olq, p)*a(cf>t(q, p))U(t, Olq, p), (16.84) 

as can be verified by inserting in (16.81). 
In the semiclassical limit there is no back-reaction of the spin on the orbit. Such 

an effect could be seen in corrections to the semiclassical limit and in the next­
order correction, h2, to the effective Hamiltonian. 

The predictions of the semiclassical limit move more sharply into focus through 
considering the dual Schri:idinger picture. One picks a possibly c:-dependent initial 
wave function such that for expectations of semiclassical observables the limit 

(16.85) 

holds, examples being listed below. Here tr is over c£. Pel ( d3 qd3 p) is a matrix­
valued classical probability measure on phase space, Pel ( d3 qd3 p) :=:: 0 as a matrix 
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and J tr[pc~(d3qd3 p)] = 1. Then at later times, from (16.82) and (16.84), 

lim (e-iHtjsljrs, ae-iHtjsljrs) = lim (ljrs, a(t)ljrs) 
s~o s~o 

=I tr[pc~(d3qd3 p)U(t, Olq, p)*a(cf>t(q, p))U(t, Olq, p)] 

=I tr[U(t, Olq, p)Pel o cf>_t(d3qd3p)U(t, Olq, p)*a(q, p)]. (16.86) 

The classical part of the measure is transported through the classical flow, while 
the spinor part evolves through the spin Hamiltonian Hsp(qt, Pt). In this sense the 
quantum expectation on the left of (16.86) is approximated by the classical aver­
age on the right, keeping in mind that the internal spinor motion remains of full 
quantum nature. 

We list a few conventional choices, where the position variable refers to the 
macroscopic scale. In wave packet dynamics one assumes a sharp concentration 
as Pei(d3qd3 p) = IX) (X 18(q - qo)8(p- po)d3qd3 p. Then at later times the wave 
packet is concentrated at (qr, Pt) and the spin Xt precesses according to (16.83). A 
particular choice would be an initially Gaussian wave packet, which depends on s 
such that (x) 8 = qo, (-isY'x) = po, ((x- qo) 2) 8 --+ 0, and ((-isY'x- po)2 ) 8 --+ 

0 as s --+ 0. Note that to achieve the concentration in momentum the position is 
necessarily broadly distributed on the atomic scale. A WKB wave function is of 
the form ljr 8 (x) = x (x )eiS(x)/s. In the limit E: --+ 0 it defines the initial distribu­

tion Pel (d3 qd3 p) = IX (q)) (X (q) 18 (p - \7 S(q ))d3 qd3 p. As a measure on the six­
dimensional phase space it is concentrated on a three-dimensional hypersurface, 
a property which is retained by the flow cf>r. Since this surface may in general 
fold up in the course of time, it cannot be represented as the graph of a func­
tion. For fixed q there could be several values of p. The wave function U 8 (t)ljr 8 

has the standard WKB form only locally in phase space. A further choice is 
a microscopic wave packet which in our units reads as ljr 8 (x) = xs-312 ljr(xjs) 

with some given wave function ljr on the microscopic scale. Then Pel ( d3 qd3 p) = 

lx)(xl8(q)l1fr(p)l 2d3qd3p. The wave packet is spatially localized, necessarily 
with a spread in momentum. Pel is concentrated on the three-dimensional surface 
{ (q, p) lq = 0} in phase space. Thus at a later time it will be of WKB form locally. 

If we look back at our starting point, an electron subject to slowly varying exter­
nal potentials governed by the Hamiltonian (16.1), it may appear that we have lost 
sight of our goal. To improve, we summarize our main findings on a qualitative 
level. First, slow variation is satisfied for all laboratory fields including those em­
ployed in the big accelerator machines. The translational degrees of freedom of the 
electron are thus governed in an excellent approximation by an effective Hamil­
tonian obtained from the Peierls substitution, Heff = E(p- eAexCq)) + e¢exC(j). 
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In particular for small velocities, relying on the results from chapter 15, 

1 ~ -;::, 2 -;::, 
Heff = --(p- eAex(q;) + e</Jex(q;. 

2meff 

239 

(16.87) 

To understand the spin precession, one has to compute the first-order correction h 1 

to the effective Hamiltonian, which is the topic of the section to follow. 

16.6 Spin precession and the gyromagnetic ratio 

The time of pleasant harvest has come. The Hamiltonian is (16.38) with principal 
symbol 

Ho(q, p) = H(p- eAex(q)) + e</Jex(q); (16.88) 

compare with (16.39). H(p) acts on C2 0 :F and is defined in (15.68), where for 
notational convenience we use H(p) instead of Hp. From section 15.3 we know 
that H(p) has a two-fold degenerate ground state with energy E(p) and projec­
tor P(p), tr[P(p)] = 2 provided IPI _:::: Pc (~ m). Therefore P(q, p) = P(p­
eAex(q)) as a projection operator on C 2 0 :F defines the relevant subspace for 
Ho(q, p) with corresponding eigenvalue E(q, p) = E(p- eAex(q)) + e</Jex(q). 

To lowest order the symbol of the effective Hamiltonian is then 

ho(q, p) = E(q, p) ll = (E(p- eAex(q)) + e</Jex(q)) ll, (16.89) 

with n the 2 x 2 unit matrix, and the orbital motion is approximately governed by 

ho(q, ji) = (E(-icY'x- eAex(x)) + e</Jex(x))n. (16.90) 

The spin precession requires more attention. First of all one has to specify 
a basis in P (p )C2 0 :F. The singled-out choice is the eigenvectors of the to­
tal angular momentum component parallel to p, which we denote by o/g±(p, Is_), 

(o/g-(p), o/g+(p))c2rg;F = 0. To define them properly, we follow section 13.5 and 
introduce the total angular momentum 

1 
1 = -rr + it+ St, 

2 
(16.91) 

see (13.96), (13.97). If R is a rotation by angle e relative to the axis of rotation n 
through the origin, then 

eii!/1:-J e;,(k)a(k, A)e-ilin·l = Re;,(R- 1k)a(R- 1k, A) (16.92) 

and therefore 

eilin·l Arpe-ilin·l = RArp, eilin·l Brpe-ilin·l = RBrp, eilin·l rre-ilin·l = Rrr. 

(16.93) 
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If n is parallel to p, n = pI I pI, these relations imply that the component of 1 
along p is conserved, 

[H(p), p · 1] = 0. (16.94) 

IPI- 1 p · 1 has the eigenvalues±!,±~, .... Fore = 0, IPI- 1 p · 1 has eigenval­

ues±! in the ground state subspace of H (p ). By continuity, fore =J. 0, the eigen­

value equations H(p)t/fg±(P) = E(p)t/fg±(p), IPI- 1p · 1t/fg±(p) = ±!lfrg±(p) 
uniquely determine the basis vectors t/fg±(p), up to phase factors e-iii±(P). We 
interpret these states as having spin pointing parallel, eigenvalue !, and anti­

parallel, eigenvalue -!, to p. On the other hand, except for p = 0, one has 
[H(p), p' · 1] =J. 0 unless I PI-I p = ±lp'l- 1 p'. 

The effective spin Hamiltonian in the p · 1 -basis is derived with the help 
of (16.73), recalling the subprincipal symbol H1(q, p) from (16.39). Setting 
o/g±(q, p) = o/g±(P- eAex(q)) one obtains 

e 
(aiHsp(q, p)l/3) =- 2m Bex(q) · (o/ga(q, p), at/fg{:l(q, p))rr}&JF 

i 
- l(t/fga(q, p), {Ho(q, p) + E(q, p), t/fgf:l(q, p)})c2&JF• 

(16.95) 

a, f3 = ±.Working out the Poisson bracket yields 

(aiHsp(q, p)l/3) =- Bex(q) · ( 2~ (o/ga(fJ), at/fgj-J(fJ))r;2&JF 

- ~e(\lpt/fga(fJ), x(H(p)- E(p))\lpt/fgtJ(fJ))r;2&JF) 

+ e( - \1 qc/Jex (q) + V X Bex (q)) · ( o/ga (p), i\lp o/gfJ (jj) }c2&JF 

(16.96) 

with the velocity v = \lpE(p) and jJ = p- eAex(q). The spin Hamiltonian has 
a simple interpretation: through the coupling to the field the electron acquires the 
effective magnetic moment 

e 
(aiMm(fJ)I/3) = 2m (o/ga(fJ), at/fgtJ(fJ))r;2&JF 

1 
- 2e(\lpt/fga(fJ), x(H(p)- E(p))\lpt/fgtJ(fJ))r;2&JF (16.97) 

and the effective electric moment 

(16.98) 
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They are operators on spin space depending on the kinetic momentum p. The spin 
Hamiltonian then reads 

(16.99) 

with the Lorentz force h = - Vq</Jex(q) + v x Bex(q). Note that on top of the ob­
vious magnetic splitting, the effective moments are determined through geometric 
phases. 

The semiclassical analysis of (16.90) together with (16.96) was discussed in the 
previous section. Of particular interest is the case of a small uniform magnetic field 
B, i.e. </Jex = 0, Aex (q) = ~ B x q. For small velocities the orbital motion is then 
governed by 

d 
men-Vt = evt x B; 

dt 
(16.100) 

see (15.23) for the definition of the effective mass, which yields the cyclotron 
frequency 

We= eiBifmeff. (16.101) 

Since j5 = 0, we may pick arbitrarily the f)-basis with eigenvectors t/fg± = 

t/fg±(O) determined through H(O)t/fg± = E(O)t/fg±. ht/fg± = ±~t/fg±· Using first­
order perturbation theory for '\1 P tfr g± (0), the spin Hamiltonian simplifies to 

e 
(aiHspi,B) = - 2mB· (o/ga, at/fgj3}rr}@F 

i 1 1 1 
+ -eB · (o/ga, -(Pf +eArp) x (Pf + eArp)o/gf3)rr:}®F· 

2 m H (0) - E (0) m 
(16.102) 

H (0) is rotation invariant; see the discussion leading to (16.94 ). Therefore Hsp is 
necessarily of the form 

e g 
H =---B·a sp 2m2 ' (16.103) 

which yields gas 

1~ 
2g = (o/g+• a3t/fg+)rr:}®F 

2 1 
--lm(t/fg+, (Pf + eArp)2 (Pf +eArp) 1 o/g+)IC2®F· 

m H(O)- E(O) 

(16.104) 
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242 States of lowest energy: dynamics 

Note that Hsp does not depend on the choice of the phase e-i!:J+(P) for 1/fg+(p). In 

our approximation, the spin motion is governed by 

d e ~ 
-a(t) = --gB x a(t), 
dt 2m 

from which the frequency of spin precession 

Ws = e1Big/2m 

follows. 
The conventional definition of the gyromagnetic factor is 

Comparing (16.1 00) and (16.105) yields 

meff~ 
g=-g. 

m 

(16.105) 

(16.106) 

(16.107) 

(16.108) 

We stress that Eq. (16.1 08) is nonperturbative in the sense that it is valid for any 
coupling strength e. In the derivation it is assumed that the external magnetic field 
is weak, an assumption which certainly holds, since experimentally the radius of 
gyration is of the order of meters. Equation (16.108) is the g-factor at p = 0. At 
p =J. 0, since the Pauli-Pierz model is nomelativistic, there is a p-dependent g­

factor with components parallel and transverse top. 
Under our standard assumptions, g depends analytically on the coupling 

strength e and it is of interest to obtain the order e2 correction to g = 2 at e = 0. 
For this purpose it is convenient to switch to the dimensionless units of section 
19.3. The effective mass is defined through (15.23). Compared to (15.36) there is 
an extra contribution from the fluctuating magnetic field and one obtains 

(16.109) 

Next we have to determine g, which is the sum g1 + g2. H (0) is written as H (0) = 
I 2 ~ ~ 

Ho + eH1 + 2e H2. Ate= 0, o/g+ =X+ 0 Q, a3X+ =X+, and g1 = 2, g2 = 0. 

Expanding o/g+ to first order in e as o/g+ = X+ 0 Q + (ej2)H0- 1a · BrpX+ 0 Q + 
O(e2), we insert in (16.104). For g1 there is a contribution from the normaliza­
tion of o/g+ and one contribution involving (e2 /4)(X+ 0 Q, a· BrpH0- 1a3H0- 1a · 
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Notes and references 243 

~:g~ = 1- ~e2 I d3ki9J(k/Ac)1 2 [1k1(1 + ~lk1) 2r 1 

- / 2 e2 I d3kl$(k/Ac)l 2 [1k1(1 + ~lk1) 2r 1 + O(e4). (16.110) 

For g2 only one of the two ground states is expanded to order e. Hence 
one has a contribution proportional to (X+@ Q, (Arp2H0- 1 PnH0-

1CJ • Brp- CJ • 

BrpH0- 1 PuH0- 1 Arplh+@ Q)iC2Q9F· The net result is 

(16.111) 

Adding up (16.1 09), (16.110), and (16.111 ), the g-factor to order e2 is given by 

In Heaviside-Lorentz units e2 = 4na. We also set the sharp cutoff cp(k) = 

(2n)-312 for lkl _:::: A, cp(k) = 0 for lkl > A. Then 

(16.113) 

Clearly g > 2, as observed experimentally. It is remarkable that g stays bounded 
in the limit A --+ oo and 

goo= 2(1 + ~ ( 2:)) + O(a2), (16.114) 

which is to be compared with 2( 1 + (a j2n)) + O(a2) from fully relativistic QED. 
Evidently the nonrelativistic Pauli-Pierz model overestimates the contribution 
from large wave numbers by a factor 8/3. The result (16.114) is satisfactory, since 
it nourishes the hope that the Pauli-Pierz model makes reasonable predictions even 
when the ultraviolet cutoff A is removed. 

Notes and references 

Section 16.1 

In the old quantum theory classical adiabatic invariants were associated with 
good quantum numbers (Ehrenfest 1916). Thus the time-adiabatic theorem was an 
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244 States of lowest energy: dynamics 

important consistency check of the Heisenberg-Schrodinger quantum mechanics 
(Born 1926; Born and Fock 1928). Kato (1958) proves the adiabatic theorem under 
the condition that the relevant subspace has finite dimension and is separated by a 
spectral gap. In fact, the theorem holds in much greater generality than explained 
in the text. Only a corridor separating the relevant energy band from the rest is 
needed. The spectrum inside the band can be arbitrary. The error in (16.8) may be 
improved to any order at the expense of a slight tilt of the subspace P(t:t)H, as first 
recognized by Lenard (1959) and further refined by Garrido (1965), Berry (1990), 
Joye et al. (1991), Nenciu (1993), and Joye and Pfister (1994). We refer also to the 
interesting collection of articles by Shapere and Wilczek (1989). Sjostrand (1993) 
discusses the higher-order corrections from the point of view of pseudodifferential 
operators; compare with section 16.4 and Panati et al. (2003a). If H (t) depends 
analytically on t, the error becomes e-l/~:, which complements the Landau-Zener 
formula for almost crossing of eigenvalues (Joye and Pfister 1993). If there is no 
gap, but a smooth t-dependence as before, the adiabatic theorem still holds (Avron 
and Elgart 1999; Bornemann 1998; Teufel 2001). The error depends on the con­
text. It can be as small as in (16.8), but in general it will be larger. 

Section 16.2 

Our discussion of the space-adiabatic limit ignores technical details on purpose. 
They are supplied in Teufel and Spohn (2002), Spohn and Teufel (2001), and 
Teufel (2003). Most importantly, since Pe < oo, one needs a local version of 
the result explained in the text in the following sense. In the limit t: ---+ 0 the 
initial state defines a classical probability measure Pel ( d3 qd3 p) on phase space 
IR6 ; compare with section 16.5. Pel is transported by the classical flow <I>r with 
Hamiltonian (16.22) as Pel o <l>-t· If Pel is supported in IR3 x {piiPI < PeL then 
there is a first time thit at which the support of Pel o <I> -t hits the boundary 
IR3 x {piiPI = Pe}. The approximation through an effective Hamiltonian is valid 
for times 0::: t < t:- 1thit· 

Section 16.3 

Weyl quantization, the Moyal product, and matrix-valued symbols are discussed in 
Robert (1987, 1998), Dimassi and Sjostrand (1999), Martinez (2002), and Panati 
et al. (2003a). The Moyal product is introduced in Moyal (1949). 

Section 16.4 

The methods explained in this section have a rich history with motivations ranging 
from singular partial differential equations and Fourier integral operators to the 
motion of electrons in solids subject to a small magnetic field. Blount (1962a, b, c) 
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develops a similar scheme for computing effective Hamiltonians and applies it to 
Bloch electrons and to the Dirac equation. In particular, he computes the second­
order symbol h2. In the solid state physics literature his work is a standard ref­
erence, but his method is hardly applied to concrete problems. We refer to the 
discussion in Panati et al. (2003b) for an example in the case of magnetic Bloch 
bands. Starting from coupled wave equations Littlejohn and Flynn (1991) and Lit­
tlejohn and Weigert (1993) develop the technique of unitary operators close to the 
identity on the level of symbols in the case where the principal symbol is a nonde­
generate matrix. They apply their scheme to Born-Oppenheimer-type problems, 
where Ho(q, p) = p 2 11 + V(q) with V(q) ann x n matrix. On an abstract level 
the Born-Oppenheimer approximation is similar to the Pauli-Pierz model with a 
slowly varying external electrostatic potential only. The role of the invariant sub­
space is emphasized by Nenciu (1993). The formal power series for the projector 
rr(q, p) is constructed by Brummelhuis and Nourrigat (1999) for the Dirac equa­
tion, by Martinez and Sordoni (2002) for Born-Oppenheimer-type Hamiltonians 
and in the general matrix-valued case by Nenciu and Sordoni (2001 ). Our discus­
sion is based on Panati et al. (2003a). The lecture notes by Teufel (2003) give de­
tailed coverage with many examples, including the case of Bloch electrons (Panati 
et al. 2003 b). There also a more complete listing of the literature can be found. 

Section 16.5 

There is a vast literature on semiclassical methods, both on the theoretical physics 
and on the mathematical side; to mention only a few representatives: Maslov 
and Fedoriuk (1981), Gutzwiller (1990), and Robert (1987, 1998). These works 
are mostly concerned with the scalar case. An alternative technique is to employ 
matrix-valued Wigner functions (Gerard et al. 1997; Spohn 2000b). In this 
approach the adiabatic and semiclassical limits are fused, which is conceptually 
misleading. Also higher-order corrections are not accessible. An important 
example is the Dirac equation which has matrix dimension n = 4 and degeneracy 
1! = 2 of, for example, the electron subspace. The adiabatic limit yields the BMT 
equation of chapter 10, as discussed in Panati et al. (2003a). Blount (1962c) 
computes the next-order correction. It seems to be of interest in accelerator 
physics (Heinemann and Barber 1999), despite its fairly complicated structure. 
Yajima (1992) studies the derivation of the BMT equation using WKB methods, 
which are rather difficult to handle because of the necessity to switch coordinate 
systems on the Lagrangian manifold. 

The classical limit of the free Maxwell field with classical sources is regarded as 
sort of obvious. An instructive discussion is Thirring (1958) and Sakurai (1986). 
Photon counting statistics is covered by Carmichael (1999). 
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Section 16.6 

The gyromagnetic ratio of the electron is the most famous and precise predic­
tion of QED with the current value gtheor/2 = 1.001 159 652 459 (135) as based 
on an eight-loop computation, see Kinoshita and Sapirstein (1984) for a review. 
This result compares extraordinarily well with the experimental value gexp/2 = 
1.001159652193 (4) of van Dyck, Schwinberg and Dehmelt (1986) based on 
measurements on a single electron in a Penning trap, see also Brown and Gabrielse 
(1986), and Dehmelt (1990). The nonrelativistic theory yields g000 /2 = 1.0031, 
with no cutoffs. The nonperturbative formula (16.108) seems to be novel and is 
described in Panati et al. (2002b). A rough approximation is provided by Welton 
(1948). Grotch and Kazes (1977) discuss the g-factor for the Pauli-Pierz model 
and obtain the second-order result ( 16.113) through computing energy shifts; com­
pare with section 19.3.5. Surprisingly, they do not stress the obvious point: the 
g-factor is not too far off the truth even in the limit A --+ oo. After all, the mis­
trust in QED up to the early 1940s was based mainly on the results being cutoff­
dependent and diverging as A --+ oo; see Schweber (1994). 
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