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1. Introduction. The question of which manifolds admit metrics of positive
scalar curvature is an extremely interesting and open one. By a well known result of
Lichnerowicz [15], there are spin manifolds which do not admit such metrics. Indeed,
by the Lichnerowicz formula, the existence of such a metric implies that the index of the
Dirac operator vanishes. This, combined with the Atiyah-Singer index theorem implies
that a topological invariant known as the Â genus, which is a linear combination of
the Pontrjagin classes of the manifold, vanishes.

The Â obstruction was generalised by Hitchin [10] to an obstruction α(M) ∈
KO∗. Letting π denote any fundamental group, this gives rise to a transformation
of cohomology theories α : �

spin
∗ (Bπ ) → KO∗(Bπ ), and Gromov and Lawson

conjectured that α(M) = 0 was also a sufficient condition for M to admit a metric
of positive scalar curvature.

Rosenberg [20] later generalised this further to define an obstruction ind :
�

spin
∗ (Bπ ) → KO∗(C∗

redπ ), thought of as an equivariant generalised index. Modifying
the Gromov-Lawson conjecture, Rosenberg conjectured that the converse was true
also; namely that a compact spin manifold Mn with π1(M) = π and n ≥ 5 admits
a positive scalar curvature metric if and only if ind[u : M → Bπ ] = 0 ∈ KOn(C∗

redπ )
where ind : �

spin
∗ (Bπ ) → KO∗(C∗

redπ ) can be thought of as an equivariant generalised
index map, and u is the classifying map for the universal cover of M.

The conjecture has been proven in the simply connected case [24], if π has periodic
cohomology [3], and if π is a free group, free abelian group, or the fundamental group
of an orientable surface [22]. It is now known to be false in general, for example if
π = �4 × �3, and for a large class of torsion free groups [6, 23].

The aim of this paper is to prove the following result:
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THEOREM 1.1. The Gromov-lawson-Rosenberg conjecture (GLR) is true for the
semi-dihedral group of order 16.

We recall that the index map factors through connective and periodic real K-theory
as follows:

ind = A ◦ p ◦ D : �spin
n (Bπ ) → kon(Bπ ) → KOn(Bπ ) → KO∗(C∗

redπ ).

Here D is the map which sends a spin manifold to its ko fundamental class, p is the
periodicity map, and A is known as the assembly map. We denote by ko+

n (Bπ ) the
set D(�spin,+

n (Bπ )), where �
spin,+
n (Bπ ) is the subgroup represented by pairs (N, f ) for

which N admits a positive scalar curvature metric. The following result, due to Jung
and Stolz, is the basis of our proof.

THEOREM 1.2. A compact spin manifold Mn with π1(M) = π and n ≥ 5 admits
a positive scalar curvature metric if and only if D(M, u) ∈ ko+

n (Bπ ), where u is the
classifying map for the universal cover of M.

Thus one way of proving the conjecture is to first calculate kon(Bπ ), and then to
identify ker(Ap) and realise all of it by positive scalar curvature manifolds, and this is
what we shall do in the case of the semi-dihedral group SD16.

The next section describes the calculations of ko∗(BSD16). The method used is the
Greenlees local cohomology spectral sequence.

The following two sections then focus on realising ker(Ap) ⊂ ko∗(BSD16), which
in this case consists of all the local cohomology classes in degrees 1 and 2. This is
done by detection in periodic K-theory and in ordinary homology. Firstly, we consider
the maps on classifying spaces induced by inclusions of lens spaces from cyclic and
quaternion subgroups, and follow the method of calculating eta-invariants in [3]. We
show that this detects all of ker(A) ∩ Im(p).

This leaves certain Bott torsion classes to detect, and this is done by first
considering inclusions of projective bundles over projective space from a Klein-4
subgroup. The method here is to detect these classes in ordinary homology, by making
explicit calculations. The result is that the classes appearing in second local cohomology
may all be realised by this inclusion.

This leaves the Bott torsion in first local cohomology. The eta-multiples are
immediately dealt with, since the subgroup spanned by fundamental classes of positive
scalar curvature manifolds is an ideal, but it turns out that there is a class appearing in
dimensions 8k which comes from local cohomology of the eta multiples in ko∗(BSD2N ),
but which is nevertheless not an eta-multiple itself. Calculation shows that this class
maps non-trivially to the ordinary homology H8k(BSD2N ; �2), with fundamental class
distinct from those realised by the inclusion from the Klein-4 subgroup above. We
realise this class by giving an explicit geometric construction of a lens space bundle
over a circle (compare [11]).

2. The Greenlees local cohomology spectral sequence and ko calculations. In this
section, we show how to calculate ko∗(BSD16). For a group G, we can calculate ko∗(BG)
in several ways. For instance, by the Adams spectral sequence with input H∗(BG; �2),
by the Atiyah-Hirzebruch spectral sequence or by the Bruner-Greenlees method. Here,
the Bruner-Greenlees method can be described by the diagram below;
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H∗(BG; �2)

ku∗(BG) ku∗(BG)

ko∗(BG) ko∗(BG),

������
�

�
� �

ASS

GSS

GSS

BSS BSS

where ASS refers to the Adams spectral sequence, BSS refers to the η-Bockstein spectral
sequence and GSS refers to the Greenlees local cohomology spectral sequence. From
this diagram, we see that to obtain ko∗(BG) via Bruner-Greenlees method with the
input H∗(BG; �2) we can proceed in two ways around the square, namely ASS −→
BSS −→ GSS and ASS −→ GSS −→ BSS. The first way is suitable for tackling the
Gromov-Lawson-Rosenberg conjecture, since we have:

LEMMA 2.1. ([5], Lemma 2.7.1.). The image of Ap is isomorphic to the 0-column at
E∞-page of the Greenlees spectral sequence for ko∗(BG). The kernel of Ap has a filtration
with subquotients given by the higher columns of the E∞-page.

The calculation of ku∗(BG) for a finite group G from H∗(BG; �2) may be performed
using the Adams spectral sequence:

Es,t
2 = Exts,t

E(1)(�2, H∗(BG; �2)) =⇒ ku−(t−s)(BG)∧2 ,

where E(1) denotes the exterior algebra on the Milnor generators Q0 and Q1, and more
details may be found in [4]. The calculation of ko∗(BG) from ku∗(BG) by using the BSS;

E∗,∗
1 = ku∗(BG)[̃η] ⇒ ko∗(BG),

where η̃ has bidegree (1, 1) and the differentials dr : Es,t
r −→ Es+r,t−1

r , were recently
developed by R.R. Bruner and J.P.C. Greenlees in [5]. To get ko∗(BG), as stated above,
we prefer to use the Greenlees local cohomology spectral sequence, GSS [5];

Es,t
2 = H−s

I (ko∗(BG))t ⇒ ko(s+t)(BG),

having differentials dr : Es,t
r −→ Es−r,t+r−1

r , where I = ker(ko∗(BG) −→ ko∗).
The strategy of the GSS for ko∗(BG) is mainly the decomposition of the input,

ko∗(BG), via the short exact sequences;

0 −→ ST −→ ko∗(BG) πo
�� QO −→ 0 (1)

and

0 −→ T −→ ko∗(BG) πu
�� QO −→ 0 (2)

where QO is the image of ko∗(BG) in KO∗(BG) and QO is the image of ko∗(BG) in
KU∗(BG) such that ST is the β-torsion part of ko∗(BG) and T is ker πu. Here, QO
and QO are modules over ko∗(BG) via πo and πu respectively. Moreover, let Qτ be
the kernel ker(i : QO −→ QO). By the snake lemma, Qτ ∼= coker(i′ : ST −→ T) or in
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other words, we have a short exact sequence

0 −→ ST −→ T −→ Qτ −→ 0. (3)

Generally, T will be 2-torsion.
Thus, to find H∗

I (ko∗(BG)), it is convenient to calculate from the long exact
sequence induced by (2) together with the long exact sequence induced by (3).
This is convenient because the calculation of H∗

I (QO) involves character theory and
that of H∗

I (T) use mainly the ordinary cohomology ring. More precisely, to get
H∗

I (ko∗(BG)), we instead calculate H∗
I (QO), H∗

I (T) and the connecting homomorphism
induced by (2), where H∗

I (T) is obtained by H∗
I (ST), H∗

I (Qτ ) and the connecting
homomorphism induced by (3). Normally, Qτ ⊆ τ := η-multiples, since only η ∈
KO∗ = �[α, η, β, (β)−1]/(η2, 2η, ηα, α2 − 4β) is sent to 0 ∈ KU∗. Hence, if there is no
η-multiple obtained from TU , the v-torsion part of ku∗(BG), then Qτ = τ .

Note that, for finite groups G, ko∗(BG) is a Noetherian graded ring, [5], and thus
local cohomology is suitably calculated via the stable Koszul complex. The first task for
the calculation is to find radical generators for the ideals of each part QO, Qτ, ST , and
we found in many cases that the number of generators required is less than or equal to
the p-rank of G. The next task is to find local cohomology followed by calculating the
differentials of spectral sequence which can be done by using the connective property
of ko and the module structure of local cohomology. The last task is to solve the
extension problems which occur along the induced long exact sequence and at the
E∞-page.

For the case G = SD16, we have (from Section 5.1.2 in [17]) Qτ = τ and ST = TO,
where TO, by definition in [5], consists of Bockstein ∞-cycles in ZTU := ker(Sq2 :
TU −→ TU) lying on the zero line of the BSS for ko∗(BSD16). By Corollary 5.2.5 and
Section 5.4 in [17],

H0
I (ko∗(BSD16)) = H0

I (QO) ⊕ H0
I (τ ),

H1
I (ko∗(BSD16)) = H1

I (τ ) ⊕ ker(δ : H1
I (QO) −→ H2

I (TO)),
H2

I (ko∗(BSD16)) = coker(δ : H1
I (QO) −→ H2

I (TO)),
Hi

I (ko∗(BSD16)) = 0 for all i ≥ 3,

(4)

where δ is the connecting homomorphism in the long exact sequence induced by (2),
and moreover E2-page is the E∞-page, see the details of the calculations in [17]. The
E∞-page of the GSS for ko∗(BSD16) are shown in Figure 1 below (R := ko∗(BSD16)).

Here [n] denotes cyclic group of order n and 2r denotes elementary abelian group
of rank r.

For the precise generators description of [n] and 2r in Figure 1, we refer the reader
to Lemma 5.4.3 in [17]. Now, the results can be read from the E∞-page directly with
the filtration given by

kon(BSD16) = Fn
0 ⊇ Fn

1 ⊇ Fn
2 ⊇ Fn

3 = 0,

with Fn
0 /Fn

1
∼= E0,n

∞ , Fn
1 /Fn

2
∼= E−1,n+1

∞ and Fn
2

∼= E−2,n+2
∞ . Precisely, we use two short

exact sequences to determine kon(BSD16), viz;

0 −→ Fn
1 −→ kon(BSD16) −→ E0,n

∞ −→ 0,
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Figure 1. The E∞-page of the Greenlees local cohomology spectral sequence for
ko∗(BSD16).

and

0 −→ E−2,n+2
∞ −→ Fn

1 −→ E−1,n+1
∞ −→ 0.

We see that there are extension problems in degree n ≥ 8 when n is congruent to 0, 1, 2
modulo 8. It can be shown that they are all trivial, (Section 5.5.2, 6.5 and Lemma 6.5.1
in [17]). This implies that ko∗(BSD16) ∼= E∞-page and hence by lemma 2.1,

ker(Ap) ∼= H1
I (ko∗(BSD16)) ⊕ H2

I (ko∗(BSD16)). (5)

Explicitly, we have (cf. [17], Theorem 6.5.2)
Here, [H1

I (ko∗(BSD16))]n+1 and [H2
I (ko∗(BSD16))]n+2 contribute to (ker Ap)n ⊆

kon(BSD16). Note further from [17] (Theorem 6.5.2) that the 2-column,
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Table 1. The additive structure of ker(Ap) for G = SD16.

n [H1
I (ko∗(BSD16))]n+1 [H2

I (ko∗(BSD16))]n+2

n ≤ 3 0 0
3 [4] ⊕ [8] ⊕ [8] 0
4 0 2
5 [2] 0
6 0 0
7 [2] ⊕ [4] ⊕ [16] ⊕ [32] 0
8 2 2
9 2 ⊕ [2] 0
10 0 2
11 [8] ⊕ [16] ⊕ [128] ⊕ [128] 0
12 0 22

13 [4] 0
14 0 2
15 [2] ⊕ [8] ⊕ [16] ⊕ [256] ⊕ [512] 0
8k ≥ 16 22 = 2 ⊕ η(ko8k−1(BSD16)) 2k

8k + 1 ≥ 17 22 ⊕ [2k] = η(k̃o8k(BSD16)) ⊕ [2k] 0
8k + 2 ≥ 18 0 2k

8k + 3 ≥ 19 [2k−1] ⊕ [2 · 4k] ⊕ [4k+1] ⊕ [8 · 16k] ⊕ [8 · 16k] 0
8k + 4 ≥ 20 0 2k+1

8k + 5 ≥ 21 [2k+1] 0
8k + 6 ≥ 22 0 2k

8k + 7 ≥ 23 [2k] ⊕ [2 · 4k] ⊕ [4k+1] ⊕ [16k+1] ⊕ [2 · 16k+1] 0

[H2
I (ko∗(BSD16))]n+2, are embedded in Hn(BSD16; �2). For the one column,

[H1
I (ko∗(BSD16))]n+1, we have that the generator of [H1

I (ko∗(BSD16))]8+1 maps
infectively into H8(BSD16; �2), namely ξ (yuP) := (yuP)∨ (the dual element of yuP ∈
H8(BSD16; �2))1. In fact, this generator is an element in H1

I (τ ), (see (4) above), by
the GSS calculation; precisely, it is η̃[u4]/(u4)2, Lemma 5.2.4 in [17]. But the BSS
calculation via ku∗(BSD16), Lemma 6.3.1 and Figure 6.3 in [17], reveals that it is
embedded in Hn(BSD16; �2).

In higher degrees, [H1
I (ko∗(BSD16))](8k)+1 contains two generators of order 2

where one of them is an η-multiple (Theorem 6.5.2 in [17]) and the other one is
embedded in H8k(BSD16; �2) as ξ (yuP2k−1) := (yuP2k−1)∨, (analogous reference as the
case ξ (yuP) := (yuP)∨). The generator of [H1

I (ko∗(BSD16))]9+1 is an η-multiple and
in higher degree [H1

I (ko∗(BSD16))](8k+1)+1 contains one η-multiple generator and one
η2-multiple generator (coming from the η-multiple in degree (8k) + 1). The other
generators in this column which we did not mention above are detected by H1

I (QO)
which can be dealt with by character theory, see more details about the generators in
Theorem 6.5.2 in [17].

Note also that the part TO detected in ordinary cohomology of SD2N stays the
same for all N ≥ 4 because the generators and relations of H∗(BSD2N ; �2) do not
depend on N. Indeed, the 2−column of the E∞ page of the Greenlees local cohomology
spectral sequence will be unchanged for all semi-dihedral groups. This is because we
can realise all of them, as in the case of SD16, by positive scalar metric manifolds (see
Section 5). Thus, no more non-zero differentials of the GSS detects them for general
N. However, the representation theory for the calculation of H1

I (QO) for semidihedral
groups of order 2N , N > 4, is increasingly complicated.

1See H∗(BSDN ; �2) in Proposition 5.4.
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3. The one column and lens space bundles detected in periodic K-theory. In order
to prove the conjecture for groups with periodic cohomology, Botvinnik, Gilkey and
Stolz [3] used the eta invariant to detect the orders of fundamental classes of lens
spaces and lens space bundles in periodic K-theory. Since the 1-column contains the
part of ker(Ap) detected in periodic K-theory, by restricting representations to periodic
subgroups, we can use the naturality of the eta invariant to calculate the orders of the
lens spaces which we use for the periodic subgroups, under induction.

We have that SD16 = 〈s, t; s8 = t2 = 1, tst = s3〉. First consider the cyclic subgroup
〈t〉 of order 2. We know that the real projective space ��4k+3 has fundamental group
cyclic of order two, and thus there is a classifying map u : ��4k+3 → B〈t〉. We can
compose this with the map induced by inclusion into SD16 to get a map ��4k+3 →
B〈t〉 → BSD16, and then use the eta invariant to ask how big a subgroup we span by
the inclusion of this fundamental class.

Similarly, we can take the cyclic subgroup 〈s〉 of order 8. Lens spaces of the form
S4k+3/C8 together with lens space bundles of the form S4k+3/C8 → M4k+5 → S2 map
naturally into B〈s〉, and we can again compose with map induced by the inclusion and
use the eta invariant formulae of [3]. Finally we can also take the quaternion subgroup
〈s2, ts〉 of order 8, for which we have space forms S4k+3/Q8 mapping into the classifying
space. We will show that this collection of manifolds realises all of ker(A) ∩ Im(p).

We start by recalling the basic properties and relevant formulae for the eta
invariant. Atiyah, Patoudi and Singer showed that there is a formula for the index of
the Dirac operator D for a manifold W with boundary M, analogous to the usual index
formula, but with a correction term η(D(M)), known as the eta invariant, depending
only on the boundary.

Given a representation ρ of a discrete group π and a map from a manifold f :
M → Bπ , we can form a vector bundle Vρ : M̃ ×π ρ → M, where M̃ is the π cover
of M classified by f . We can then consider the Dirac operator D(M, f, ρ), which is the
Dirac operator of M twisted by Vρ , and its eta invariant η(M, f )(ρ).

We recall from [10] that there is a geometric description of periodic K-theory as
follows, where the isomorphism is induced by pD:

�spin
∗ (X)/T∗(X)[B−1] ∼= KO∗(X)

where T∗(X) is the subgroup generated by quaternionic projective bundles, and B = B8

is the Bott manifold, which is any simply connected spin manifold with Â(B) = 1. Using
this description, we have the following result [3]:

THEOREM 3.1. Let ρ be a virtual representation of π of virtual dimension zero. Then
the homomorphisms

η(ρ) : �spin
n (Bπ ) → �/�; η(ρ) : KOn(Bπ ) → �/�

sending [f : M → Bπ ] to η(M, f )(ρ) are well defined. Further if ρ is real and n ≡ 3
mod 8, or if ρ is quaternionic and n ≡ 7 mod 8, then we can replace the range of η(ρ)
by �/2�, meaning that the map η(ρ) : �

spin
n (Bπ ) → �/2� is well defined, and similarly

for KO.

The following theorem, deduced from work of Donnelly [7], is the main tool for
actually computing some eta invariants.
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THEOREM 3.2. Let ρ, π be as above, and τ : π → U(m), be a fixed point free
representation. Assume there exists a representation det(τ )1/2 of π whose tensor square
is det(τ ). Then letting M = S2m−1/τ (π ) with the inherited structures, we have

η(M)(ρ) =| π |−1
∑

1�=g∈π

tr(ρ(g)) det(τ (g))1/2

(det(I − τ (g)))

Botvinnik, Gilkey and Stolz [3] use this result to prove the conjecture for
generalised quaternion groups, and we shall now outline a modified version of
their proof for Q8, so as to understand explicitly the order of the subgroup
of ko4k+3(BSD16) obtained by restricting representations. Recall that Q8 has
presentation 〈−1, i, j, k|(−1)2 = 1, i2 = j2 = k2 = −1, ijk = −1〉. There are three one-
dimensional representations κ1, κ2, κ3 having kernels [i], [j], [k] respectively, and a
natural quaternionic two-dimensional representation τ . Here is the character table
of Q8

1 1 2 2 2
ρ 1 −1 [i] [j] [k]

1 = ρ0 1 1 1 1 1
κ1 1 1 −1 1 −1
κ2 1 1 1 −1 −1
κ3 1 1 −1 −1 1
τ 2 −2 0 0 0

We have three cyclic subgroups Ht, with t = 1, 2, 3 generated by i, j, k respectively,
and thus by viewing S4m−1 inside �m we can consider the manifolds M4m−1

t = S4m−1/Ht

together with M4m−1
Q = S4m−1/Q8. We define quadruples of eta invariants as follows:

−→η (M) = (η(M)(ρ0 − κ1), η(M)(ρ0 − κ3), η(M)(2 − τ ), η(M)(2 − τ )2)

Since the representations (ρ0 − κt), (2 − τ )2a are real and (2 − τ )2a+1 are quaternionic,
Theorem 3.1 tells us that if n ≡ 3 mod 8

−→η (Mn) ∈ �/2� ⊕ �/2� ⊕ �/� ⊕ �/2�

while in n ≡ 7 mod 8

−→η (Mn) ∈ �/� ⊕ �/� ⊕ �/2� ⊕ �/�

We now proceed a little differently than in [3], because it is useful to resolve the
extensions for ko∗(BQ8), so as to understand the inclusion better. This is done in the
thesis of Bayen [1] using the Adams spectral sequence, and we now outline the results,
and verify his calculations from a geometric viewpoint.

There is a 2-local stable decomposition of BQ8, and similarly for higher order
quaternion groups, into indecomposable summands as follows [5]:

BQl = BSL2(q) ∨ 2�−1BS3/BN
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where N is the normaliser of a maximal torus in S3, and l is the largest power of 2
dividing q2 − 1, for q an odd prime power. Note that q = 3 for l = 8. Then, it follows
ko∗(BQ8) = ko∗(BSL2(3)) ⊕ 2ko∗(�−1BS3/BN).

The method then is to make the calculation for each summand. It then turns out
that for k = 3, 7 we get that 2-locally:

ko8m+k(�−1BS3/BN) = �22m+2

ko8m+3(BSL2(3)) = �24m+3 ⊕ �22m = 〈x8m+3〉 ⊕ 〈βx8m−5 − 16x8m+3〉
ko8m+7(BSL2(3)) = �24m+6 ⊕ �22m = 〈x8m+7〉 ⊕ 〈βx8m−1 − 16x8m+7〉

We shall now give a proof of the GLR conjecture for Q8, by describing the
generators as images of fundamental classes of manifolds.

Firstly, in the splitting BQl = BSL2(q) ∨ 2�−1BS3/BN, the 2�−1BS3/BN term is
independent of l, and thus so is 2ko∗(�−1BS3/BN) (here ko∗ is meant 2-locally), and
for n = 8m + 3, 8m + 7 we have the following calculation from [3]:

−→η (Mn
1 − Mn

2) = (2−2m−l, 0, 0, 0)
−→η (Mn

1 − Mn
3) = (∗, 2−2m−l, 0, 0),

where * is a term of lower order which has no effect on the overall orders we seek
to compute. Here l = 1, 2 for n = 8m + 3, 8m + 7 respectively. Since ρ0 − κ1 and
ρ0 − κ3 are both real however, the subspace spanned has order (22m+2)2 in both
cases. Thus it follows that 2-locally, the manifolds Mn

1 − Mn
2 , Mn

1 − Mn
3 generate all

of 2kon(�−1BS3/BN), with n ≡ 3 mod 4.
It thus remains to realise the BSL2(3) part by some fundamental classes of

manifolds, and so we consider the manifolds M4k+3
Q = S4k+3/Ql. We claim that the

remaining part of ko4k+3(BQl) which consists of ko4k+3(BSL2(3)) can be realised by
the images of the fundamental classes of the manifolds M4k+3

Q and B8 × M4k−5
Q . We

do this by explicit eta calculations, using only representations (2 − τ )a. Note that this
suffices since from above and [3], η(Mn

1 − Mn
i )(2 − τ )a = 0 for any a.

We start by calculating the order of [M4k+3
Q ]. Note that M4k+3

Q = S4k+3/(k + 1)τ ,
where (k + 1)τ is the k + 1-fold sum τ ⊕ · · · ⊕ τ . Now τ is a unitary representation
which may be characterised by

τ (i) =
(

i 0
0 −i

)
, τ (j) =

(
0 ω3

ω 0

)
,

where ω = (1 + i)/
√

2. Thus for x �= 1 we get det(1 − τ )(x) = 4 if x = −1, and 2 else.
So we can apply Theorem 3.2 to see:

η(M4k+3
Q )(2 − τ ) = 1

8

∑
1�=g∈Q8

tr((2 − τ )(g)) det((k + 1)τ (g))1/2

(det(I − (k + 1)τ (g)))

= (1/8)(4/4k+1 + 6(2/2k+1)) = 1/22k+3 + 3/2k+2

which has order 22k+3 ∈ �/�, and 22k+4 ∈ �/2�. Thus in dimensions 8m + 3
the ko−fundamental class [M8m+3

Q ] has order at least 24m+3 ∈ ko∗(BQ8), and the
calculations in [5] imply that it has exactly this order. The representation τ is
quaternionic, so in dimensions 8m + 7 the ko−fundamental class [M8m+7

Q ] has order
24m+6, since the eta invariant extends to �/2�.
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We wish to see how large a subspace is spanned by [M4k+3
Q ] and [B × M4k−5

Q ].

Multiplying by the Bott element is a monomorphism, so [B × M4k−5
Q ] has the same

order as [M4k−5
Q ]. Then, just as above, we can make the following calculations,

remembering (2 − τ )a is real for a even, and quaternionic for a odd:

η(M4k+3
Q )(2 − τ )2 = 1

8

∑
1�=g∈Q8

tr((2 − τ )(g))2 det((k + 1)τ (g))1/2

(det(I − (k + 1)τ (g)))

= (1/8)(16/4k+1 + 6(4/2k+1)) = 2/4k+1 + 3/2k+1 ∈ �/2�,

η(M4k+3
Q )(2 − τ )3 = 1

8

∑
1�=g∈Q8

tr((2 − τ )(g))3 det((k + 1)τ (g))1/2

(det(I − (k + 1)τ (g)))

= (1/8)(64/4k+1 + 6(8/2k+1)) = 2/4k + 6/2k+1 ∈ �/2�.

Thus using these and the earlier formula we can say:

(η(M8m+3
Q )(2 − τ ), η(M8m−5

Q × B8)(2 − τ )) = (1/24m+3 + 3/22m+2, 1/24m−1 + 3/22m),

while for (2 − τ )2 we get:

(η(M8m+3
Q )(2 − τ )2, η(M8m−5

Q × B8)(2 − τ )2) = (1/24m+2 + 3/22m+2, 1/24m−2 + 3/22m).

The order of the subgroup spanned may be bounded below by the order ∈ �/� of the
determinant of the following matrix in �/�, since the two rows are the images of the
two homomorphisms η(2 − τ ), η(2 − τ )2:

X =
(

η(M4k+3
Q )(2 − τ ) η(M4k−5

Q × B8)(2 − τ )
η(M4k+3

Q )(2 − τ )2 η(M4k−5
Q × B8)(2 − τ )2

)

From our calculations we can read off this matrix. When 4k + 3 = 8m + 3 we get:

X =
(

1/24m+3 + 3/22m+2 1/24m−1 + 3/22m

1/24m+2 + 3/22m+2 1/24m−2 + 3/22m

)
Now the determinant of X is

1/28m+1 + 3/26m+3 + 3/26m + 9/24m+2 − 1/28m+1 − 3/26m+2 − 3/26m+1 − 9/24m+2

= 3/26m+3 + · · ·
The dots mean terms of lower order, so the determinant has order 26m+3 ∈ �/� just as
required. Analogously in dimensions 8m + 7 we have:

(η(M8m+7
Q )(2 − τ ), η(M8m−1

Q × B8)(2 − τ )) = (1/24m+6 + 3/22m+4, 1/24m+2 + 3/22m+2)

while for (2 − τ )2 we get:

(η(M8m+7
Q )(2 − τ )3, η(M8m−1

Q × B8)(2 − τ )3) = (1/24m+3 + 3/22m+2, 1/24m−1 + 3/22m)

The analogous determinant then has order 26m+6 in �/� as required. Thus 2−locally,
all of ko4k+3(BQ8)/2ko4k+3(�−1BS3/BN) is realised by [M4k+3

Q ], [M4k−5
Q × B8], and
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may be detected by the eta invariants, using only the virtual representations 2 − τ and
(2 − τ )2.

Now consider cyclic groups of order l = 2k, which we identify with the subgroup
of S1 consisting of l-th roots of unity:

Cl = {λ ∈ S1|λl = 1}
For an integer a we let ρa be the representation of S1 where λ ∈ S1 acts by multiplication
by λa. For a tuple of integers −→a = (a1, . . . , at), the representation λa1 ⊕ · · · ⊕ λat

restricts to a free Cl action on S2t−1 if and only if all the aj are odd. Let t = 2i be
even, and define the quotient manifold

X4i−1(l,−→a ) = S2t−1/(ρa1 ⊕ · · · ⊕ ρat )(Cl)

This is a lens space with a natural positive scalar curvature metric, and it inherits a
natural spin structure in dimension 4i − 1.

Note that in dimensions 4k + 1 the corresponding construction does not yield
a spin manifold. So, consider the vector bundle H ⊗ H ⊕ (2k − 1)� → S2, where
H is the Hopf line bundle. As above, for a tuple of integers −→a = (a1, . . . , at), the
representation λa1 ⊕ · · · ⊕ λat restricts to a free Cl action on the sphere bundle S(H ⊗
H ⊕ (2k − 1)� → S2) if and only if all the aj are odd. The quotient

X4i+1(l,−→a ) = S(H ⊗ H ⊕ (2k − 1)� → S2)/Cl

is a positive scalar curvature spin manifold of dimension 4k + 1 which is a lens space
bundle over the two-sphere. A general formula for the eta invariants of manifolds of
the form S(B1 ⊕ · · · ⊕ Bk → S2)/Cl, where the Bi are complex line bundles and the Cl

action is specified by a tuple of integers −→a as above, is given by [3]:

THEOREM 3.3. Let ρ ∈ R0(Cl) and M = S(B1 ⊕ · · · Bk → S2)/Cl(
−→a ) as above.

Then

η(M)(ρ) = l−1
∑

1�=λ∈Cl

tr(ρ(λ)
λ(a1+···a2i)/2

(1 − λa1 ) · · · (1 − λa2i )
.
∑

j

1
2

c1(Bj)[��1]
1 + λaj

1 − λaj

It is then clear that π1(X4i−1(l,−→a )) = Cl, giving these manifolds natural Cl

structures, and in order to apply theorem 3.2 we can simply define det(ρa1 ⊕
· · · ⊕ ρat )

1/2 := ρ(a1+···a2i)/2. We say Ln = Xn − Xn
0 ∈ �

spin
n (BCl), where Xn

0 is the same
manifold with trivial Cl structure. We can then use the following formula:

For λ ∈ Cl we define

f4i−1(−→a )(λ) := λ(a1+···a2i)/2(1 − λa1 )−1 · · · (1 − λa2i )−1

and f4i+1(−→a )(λ) := f4i−1(−→a )(λ)(1 + λa1 )(1 − λa1 )−1. Then we have from the above two
theorems:

LEMMA 3.4. η(Ln(l,
−→
b ))(ρ) = l−1

∑
1�=λ∈Cl

f4i±1(
−→
b )(λ) tr(ρ(λ))

We remark that the eta invariant is natural with respect to inclusions [2], [3],
meaning that if we have an inclusion of groups f : H ↪→ G, and a class represented
by a manifold [M] ∈ �

spin
n (BH), then for a representation ρ of G the pull-back bundle
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over M is determined by restricting the representation and we have η([M])(f ∗(ρ)) =
η(f∗([M]))(ρ), as should be clear from the following pull-back diagram:

i∗(EH ×H f ∗(ρ)) ��

��

EH ×H f ∗(ρ) ��

��

EG ×G ρ

��
M

i �� BH
f �� BG

We are now ready to prove the main result of this section, which verifies the conjecture in
odd dimensions. We start with the character table of SD16 = 〈s, t; s8 = t2 = 1, tst = s3〉.
There are three one-dimensional real representations χt with kernels being the cyclic,
quaternion, and dihedral subgroups. There is a real two-dimensional representation
χρ2 , and a pair of complex conjugate representations χρ, χρ5 .

1 1 2 2 2 4 4
ρ [1] [s4] [s] [s2] [s5] [t] [ts]

1 = ρ0 1 1 1 1 1 1 1
χ2 = Ĉ8 1 1 1 1 1 −1 −1
χ3 = D̂8 1 1 −1 1 −1 1 −1
χ4 = Q̂8 1 1 −1 1 −1 −1 1
χρ 2 −2

√
2i 0 −√

2i 0 0
χρ2 2 2 0 −2 0 0 0
χρ5 2 −2 −√

2i 0
√

2i 0 0

PROPOSITION 3.5. Inclusion of ko−fundamental classes of the lens spaces given
above from the cyclic subgroups 〈s〉, 〈t〉 and the quaternion subgroup 〈s2, ts〉, spans all
of ko4m+3(BSD16). Inclusion from 〈s〉 spans all of ko8m+5(BSD16), and together with eta
multiples, all of ker(Ap) ⊂ ko8m+9(BSD16)

Proof. We recall that |ko8m+3(BSD16)| = 28+13m, while |ko8m+7(BSD16)| = 212+13m.
Start by considering explicitly the restrictions to Q8, and using the calculations known
for Q8. Recall that we had

−→η (M) = (η(M)(ρ0 − κ1), η(M)(ρ0 − κ3), η(M)(2 − τ ), η(M)(2 − τ )2)

The real representation χρ2 restricts to κ1 + κ3, so since −→η (Mn
1 − Mn

2) =
(2−2m−1, 0, 0, 0) in n = 8m + 3, this has the same order as 2−2m−1 ∈ �/2� which has
order 22m+2, while in n = 8m + 7 we get −→η (Mn

1 − Mn
2) = (2−2m−2, 0, 0, 0) which has

the same order as 2−2m−2 ∈ �/� which again has order 22m+2 .
Further, the representations χρ, χρ5 both restrict to the natural representation

τ of Q8, and (2 − τ )2 = 4 + τ 2 − 4τ is the restriction of 4 + χρ.χρ5 − 2(χρ + χρ5 )
which is a real representation since χρ, χρ5 are complex conjugate. So, by restricting
representations we see directly that in n = 8m + 3 we have spanned a subspace of order
22m+282m+1 by including from Q8.

In n = 8m + 7, since χρ, χρ5 are not quaternionic representations, we must halve
the order of whatever is in �/2� from the 2 − τ , giving a subspace of order
22m+282m+22−1 = 22m+182m+2.
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Note further that the representation χ4 of SD16 restricts trivially on the quaternion
subgroup 〈s2, ts〉 and to the non trivial representation on 〈t〉, and thus in addition
to what is induced from Q8 we have [��n] ∈ kon(B〈t〉) → kon(BSD16) of orders
24m+3, 24m+4 when n = 8m + 3, 8m + 7 respectively.

Putting this all together, we have in 8m + 3 a subgroup of order 22m+282m+124m+3 =
28+12m (this is already enough in n = 3), while in 8m + 7 the order is 24m+422m+182m+2 =
211+12m. We now realise what is remaining by using the lens spaces Ln described above,
viewing the fundamental group C8 = 〈s〉 sitting inside SD16.

We start by calculating the eta invariant with respect to the real representation
ρ0 − ρ4 of C8. We show that η(L8m+j(8,

−→a ))(ρ4 − ρ0) has order at least 2m for both
j = 3, 7 for suitable −→a . Firstly, let ω = (1 + i)/

√
2 be the generator of C8. Then ρ4(ω) =

−1, ω5 = −ω,ω7 = −ω3 and we have:

η(L3(8, (1, 1)))(ρ4 − ρ0) = 1
8

{
2ω

(1 − ω)2
+ 2ω3

(1 − ω3)2
+ 2ω5

(1 − ω5)2
+ 2ω7

(1 − ω7)2

}

= 1
4

{
ω((1 + ω)2 − (1 − ω)2)

(1 − i)2
+ ω3((1 + ω3)2 − (1 − ω3)2)

(1 + i)2

}

= 1
8i

{−ω(4ω) + ω3(4ω3)} = −8i/8i = −1

which has order 2 ∈ �/2�. Similarly, in n = 7 we have:

η(L7(8, (1, 1, 1, 1)))(ρ4 − ρ0) = 1
8

{
2ω2

(1 − ω)4
+ 2ω6

(1 − ω3)4
+ 2ω10

(1 − ω5)4
+ 2ω14

(1 − ω7)4

}

= 1
4

{
i((1 + ω)4 + (1 − ω)4)

(1 − i)4
− i((1 + ω3)4 + (1 − ω3)4)

(1 + i)4

}

= −1
16

{12i2 − 12i(−i)} = 24/16 = 3/2

which has order 2 ∈ �/�.
For the general case we let −→a = (a1, . . . , a2k), K = (a1 + · · · a2i)/2 and use the

following inductive trick: η(L4k+7(8, (−→a , 1, 1, 5, 5)))(ρ4 − ρ0) is equal to

1
8

{
2ωK+6

(1 − ωa1 ) · · · (1 − ωa2k )(1 − i)2
+ 2ω3K+18

(1 − ω3a1 ) · · · (1 − ω3a2k )(1 + i)2

+ 2ω5K+30

(1 − ω5a1 ) · · · (1 − ω5a2k )(1 − i)2
+ 2ω7K+42

(1 − ω7a1 ) · · · (1 − ω7a2k )(1 + i)2

}

Noting again that (1 ± i)2 = ±2i, and ω4j+2 = i,−i for j even, odd respectively, we may
take the common terms out of the bracket to simplify:

i
16i

{
2ωK

(1 − ωa1 ) · · · (1 − ωa2k )
+ 2ω3K

(1 − ω3a1 ) · · · (1 − ω3a2k )

+ 2ω5K

(1 − ω5a1 ) · · · (1 − ω5a2k )
+ 2ω7K

(1 − ω7a1 ) · · · (1 − ω7a2k )

}
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which is (1/2)η(L4k−1(8, (−→a ))(ρ4 − ρ0). Thus η(L4k+7(8, (−→a , 1, 1, 5, 5)))(ρ4 − ρ0) has
twice the order in �/� of η(L4k−1(8, (−→a ))(ρ4 − ρ0), and the claim is immediate by
induction.

Thus we can consider 6−tuples of eta invariants as follows. The three non-trivial
one dimensional representations of SD16 can each be characterised by their kernels,
which are C8, D8 and Q8 respectively. We will denote the representation with kernel C8

as Ĉ8 for example. Then for any M ∈ �
spin
n (BSD16) we set:

−→η (M) = (η(M)(1 − D̂8), η(M)(1 − Ĉ8), η(M)(1 − Q̂8),

η(M)(2 − χρ2 ), η(M)(4 + χρ.χρ5 − 2(χρ + χρ5 ))

We now apply this to the real projective spaces, and cyclic and quaternionic lens spaces
discussed, with the map again induced by inclusion. Using [3] and the calculations
we’ve already given we have upto order at least in n = 8m + 3:

−→η (L8m+3,
−→a ) = (2−m−1, 0, 2−m−1, ∗, ∗, ∗)−→η (��n) = (0, 2−4m−3, 2−4m−3, 2−4m−3, 2−4m−2, 2−4m−3)−→η (Mn

1 − Mn
2) = (∗, ∗, 0, 2−2m−2, 0, 0)−→η (Mn−8

Q × B8) = (∗, ∗, 0, ∗, 1/24m−1 + 3/22m, 1/24m−2 + 3/22m)−→η (Mn
Q) = (∗, ∗, 0, ∗, 1/24m+3 + 3/22m+2, 1/24m+2 + 3/22m+2)

Here ∗ is again a term of lower order not affecting the overall order, and we have
divided by 2 already for the real representations. Thus in �/� we may consider the
following matrix of vectors spanned by positive scalar curvature manifolds:⎛⎜⎜⎜⎜⎜⎜⎝

2−m−1 0 2−m−1 ∗ ∗ ∗
0 2−4m−3 2−4m−3 2−4m−3 2−4m−2 2−4m−3

∗ ∗ 0 2−2m−2 0 0

∗ ∗ 0 ∗ 1/24m+3 + 3/22m+2 1/24m+2 + 3/22m+2

∗ ∗ 0 ∗ 1/24m−1 + 3/22m 1/24m−2 + 3/22m

⎞⎟⎟⎟⎟⎟⎟⎠
Note that since D̂8 and Ĉ8 both restrict to the same representation on Q8, we can

do a cancellation with the first three columns, namely, adding the first and the third
and then subtracting the second gives us the column (2−m, 0, 0, 0, 0)T , and so this,
combined with the zeroes down the Q̂8 column immediately imply that we have spanned
a subspace of order at least 2m times what is spanned by ��n and the quaternionic
lens spaces, which we already calculated as 28+12m. Thus in total we have a subspace of
order 28+13m as required.

Proceeding in exactly the same manner in n = 8m + 7 gives us a subspace
of order 211+13m in �/�. However here, the ‘cancellation’ we use above is
slightly different, because when we restrict to the real representation of C8

we have that η(L8m+7(8, (1, . . . , 1))(ρ4 − ρ0) ∈ �/� in fact has the same order
as η(L8m+7(8, (1, . . . , 1))(2ρ4 − 2ρ0) ∈ �/2�, since 2ρ4 is in fact a quaternionic
representation. Thus we get an extra factor of 2, giving the required 212+13m in total.

In dimensions 4m + 1 we use the lens space bundles L4m+1 described above, with
fundamental group C8 = 〈s〉, and calculate some eta invariants, again closely following
the methods in [3]. We note from [3] that there is a surjective map from Łn(BC8) to
Łn−4(BC8), where Łn(BC8) ⊂ �/� is the subspace spanned by the set of lens spaces
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η(Ln)(ρ), where ρ ∈ R0(Cl). Thus, using naturality there is also a surjective map δ :
Łn(BSD16) → Łn−4(BSD16).

Recall from the second section that in dimensions 8m + 5 we have ker(Ap) =
[2m+1], while in 8m + 9 we have ker(Ap) = [2m+1] together with eta multiples. Since
the order of the subgroups we need to realise using these lens space bundles is
the same in 8m + 5, 8m + 9, the above paragraph implies we need only realise
a subgroup of order 2m+1 in dimensions 8m + 5. Further, again using [3], we
need only check this claim in dimensions 5, 13, since then we would deduce that
δ : Ł13(BSD16) = [4] → Ł9(BSD16) = [2] is surjective with kernel [2], and then by
periodicity δ : Ł8m+13(BSD16) → Ł8m+9(BSD16) is also surjective with kernel at least
[2], so that inductively we would have realised a subgroup of order 2m+2 as required.

So we do some calculations in dimensions 5, 13. Note that χρ restricts to ρ1 ⊕ ρ3

on the cyclic subgroup C8 = 〈s〉, where ρ1 is the natural representation with s �→ ω =
(1 + i)/

√
2, and ρ3 with s �→ ω3. So we take:

η(i∗(L5(8, (1, 1))))(2ρ0 − χρ) = η(L5(8, (1, 1)))(2ρ0 − ρ1 − ρ3)

= η(L5(8, (1, 1)))(ρ0 − ρ1) + η(L5(8, (1, 1)))(ρ0 − ρ3)

and we calculate each summand directly using Lemma 3.4:

η(L5(8, (1, 1)))(ρ0 − ρ1) = 1
8

∑
1�=λ∈C8

λ(1 + λ)(1 − λ)
(1 − λ)3

= 1
8

{
ω(1 + ω)
(1 − ω)2

+ i(1 + i)
(1 − i)2

+ ω3(1 + ω3)
(1 − ω3)2

+ 0

− ω(1 − ω)
(1 + ω)2

− i(1 − i)
(1 + i)2

− ω3(1 − ω3)
(1 + ω3)2

}

= 1
8

{
ω

(
(1 + ω)3 − (1 − ω)3

(1 − i)2

)
+ ω3

(
(1 + ω3)3 − (1 − ω3)3

(1 + i)2

)

− (1 + i)
2

− (1 − i)
2

}
= −3/4 − 1/8,

where we use ω2 = i, ω4+j = −ωj, and then separate the i,−i terms in the summand.
We proceed analogously for ρ3:

η(L5(1, 1))(ρ0 − ρ3) = 1
8

∑
1�=λ∈C8

λ(1 + λ)(1 − λ3)
(1 − λ)3

= 1
8

{
ω

(
(1 + ω)4(1 − ω3) − (1 − ω)4(1 + ω3)

(1 − i)3

)
+ω3

(
(1 + ω3)4(1 − ω) − (1 − ω3)4(1 + ω)

(1 + i)3

)
− 2

(1 − i)3
− 2

(1 + i)3

}
= −3/4 + 1/8
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So that adding up we get 3/2 ∈ �/� of order 2, as required. We now make the analogous
calculation in dimension 13 for L13(8, (1, 1, 1, 1, 1, 1)):

η(L13(8, (1, 1, 1, 1, 1, 1)))(ρ0 − ρ1) = 1
8

∑
1�=λ∈C8

λ3(1 + λ)(1 − λ)
(1 − λ)7

= 1
8

{
ω3

(
(1 + ω)7 − (1 − ω)7

(1 − i)6

)
+ω

(
(1 + ω3)7 − (1 − ω3)7

(1 + i)6

)
− i3(1 + i)

(1 − i)6
+ i(1 − i)

(1 + i)6

}
= −17/8 − 1/32

While for ρ3 we have:

η(L13(8, (1, 1, 1, 1, 1, 1)))(ρ0 − ρ3) = 1
8

∑
1�=λ∈C8

λ3(1 + λ)(1 − λ3)
(1 − λ)7

= 1
8

{
ω3

(
(1 + ω)8(1 − ω3) − (1 − ω)8(1 + ω3)

(1 − i)7

)
+ω

(
(1 + ω3)8(1 − ω) − (1 − ω3)8(1 + ω)

(1 + i)7

)
+ 2

(1 − i)7
+ 2

(1 + i)7

}
= −17/8 + 1/32

So that adding gives us 17/4 of order 4 in �/�, which completes the proof. �

4. The missing class in 8k in the 1 column. The result of the eta invariant
calculations in the previous section, is that we can realise all of ker(Ap) in dimensions
4k + 3 and together with eta-multiples, in 4k + 1 also. However, in dimensions 8k, there
is a class on the one column of the local cohomology spectral sequence, which is not
detected in periodic K-theory for which we need a separate geometric construction.
This class is also detected in the ordinary �2-homology of BSD16, and its image is
ξ (yuP2k−1), the class dual to yuP2k−1. We realise this class as follows:

The idea is to start with the exact sequence C8 → SD16 → �2, lift it to obtain a
sequence C8 → G → �, and take classifying spaces. Of course S1 = B�, and since
C8 acts on n� by multiplication, we have a map from a lens space L into BC8,
and thus a fibre bundle L2n−1 → M2n → S1, as shown. As a lens space bundle this
carries positive scalar curvature, and we claim that this gives the remaining class when
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n ≡ 0 mod 4.

L2n−1 ��

��

M2n ��

f

��

S1

�
��

BC8
��

��

BG ��

g

��

B�

��
BC8

�� BSD16
�� B�2

Note that from proposition 5.4, the cohomology ring of BSD16 is given by
H∗(BSD16, �2) = �2[x, y, u, P]/(xy + x2, xu, x3, u2 + (x2 + y2)P).

PROPOSITION 4.1. When n = 4k, the fundamental class of the manifold M2n

constructed above has image ξ (yuP2k−1) ∈ H∗(BSD2N ), dual to yuP2k−1 ∈ H∗(BSD2N ).

Proof. Let F = g ◦ f . We calculate the cohomology of the manifold M, along with
F∗ : H∗(BSD16) → H∗(M). We know H∗(L2n−1; �2) = �2[X, τ̃ ]/(Xn, τ̃ 2) where X is a
dimension 2 generator, and τ̃ dimension 1, and H∗(S1) = �2[σ ]/(σ 2). By the universal
coefficient theorem, all the cohomology groups except of course H0(M), H2n(M) have
rank 2, and the Serre spectral sequence implies that there are two degree one and
one degree two multiplicative generators, one of the degree one generators being σ ,
with σ 2 = 0. Since y = w1(χ2) has kernel C8, restricting representations implies that
σ = F∗(y), and we can then define τ = F∗(x), and we will deduce H∗(M2n, �2) =
�2[σ, τ, Z]/(σ 2, σ τ + τ 2, Zn), where Z is a degree 2 class restricting to X ∈ H∗(L2n−1).

From [8] we have that P = c2(χρ) reduced modulo 2. Since P restricts non-trivially
on the cyclic group, it follows that F∗(P) = Z2 or Z2 + Zτ 2. Either way F∗(P2j) = Z4j.
Further, we can view L2n−1 = S(2kρ1/C8). Notice that the universal cover M̃ of M =
S(2kρ1) ×︸︷︷︸

G

� is just S(2kρ1) × �, and so the induced vector bundle F∗(2kρ1) over M

is given by

2kρ1 ×︸︷︷︸
G

(S(2kρ1) × �) → S(2kρ1) ×︸︷︷︸
G

�

This has a section via the diagonal map, which implies Zn = w2n(F∗(2kρ1)) must be
zero.

Now u2 = P(x2 + y2) ∈ H∗(BSD16) implies F∗(u2) = τ 2Z2, and since xu = 0 we
deduce F∗(u) = Z(τ + σ ). We now claim this manifold M is spin, and F∗(P) =
Z2 + Zτ 2. We have Sq1(u) = 0, so that 0 = Sq1(Z(τ + σ )) = Sq1(Z)(τ + σ ) + Zτ 2

so that Sq1(Z) = Zσ or Z(τ + σ ). Seeking a contradiction, assume the latter. Then
Sq1(Z3σ ) = Z3στ and Sq1(Z3τ ) = Z3τ 2.

We recall that in a smooth manifold M, wk(M) = ∑
i+j=k Sqi(vj), where the Wu

class vj ∈ Hj(Mn) is the unique class such that vjy = Sqj(y), for every y ∈ Hn−j(M).
Thus we deduce from above that w1 = v1 = τ . However, M is a fibre bundle with
orientable fibre, and so w1(M) must restrict to zero in H∗(L4n−1). Since τ restricts to
τ̃ , we have a contradiction.

So Sq1(Z) = Zσ , implying Sq1(Z3σ ) = Z3σ 2 = 0 and Sq1(Z3τ ) = Z3τ 2 +
Z3στ = 0, so that w1(M) = v1 = 0 . Further Sq2(Z3) = Z4 + (Sq1(Z))2 = 0 and
Sq2(Z2τ 2) = τ 2Sq2(Z2) = τ 2(Sq1(Z))2 = 0 so that w2(M) = v2 = 0 also.
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Further, Sq2(P) = u2 implies Sq2(F∗(P)) = Z2τ 2, so that F∗(P) �= Z2. The top
cohomology class of M is Z2n−2τ 2 = Z2n−2στ , and observe that F∗(yuP) = σZ(σ +
τ )(Z2 + Zτ 2) = Z3στ . Any other class mapping to Z2n−2στ must have a factor of
uPn−1 and as xu = 0, dualising F∗ immediately gives F∗(ξ (Z2n−1τ 2) = ξ (yuPn−1). �

This construction is entirely analogous to the one used to obtain similar missing
classes for dihedral groups, and the analogous class in that case also appears in first
local cohomology, see [11, 16] for details.

5. Ordinary cohomology and the two column. The preceding two sections realise
all of ker(Ap) that lies in the first local cohomology. It remains to consider the two
column in the local cohomology spectral sequence. This is in fact the same for all
semi-dihedral groups, and from Section 2 it is a �2 vector space of dimension k + 1 if
n = 8k + 4,k if n = 8k + j with j �= 4 even, and 0 if n is odd. It suffices to detect these
classes in ordinary �2 homology. We claim that sufficiently many classes are realised
by inclusion from a Klein four subgroup V (2).

We refer here to [11], which gives explicit manifold constructions to calculate
H+

∗ (BV (2)) explicitly, together with the image under inclusion in H+
∗ (BD8). The H+

∗
notation here means the subspace in homology spanned by fundamental classes of
positive scalar curvature spin manifolds.

H+
∗ (BV (2)) is spanned by spin real projective bundles over real projective spaces. As

bundles, these naturally carry positive scalar curvature metrics, and their cohomology
and characteristic classes can be calculated using the projective bundle theorem:

THEOREM 5.1. Let π : E �→ B be a real vector bundle of dimension n with ��(π )
the associated projective bundle. Then H∗(��(π )) = H∗(B)[t]/(tn + tn−1w1(π ) + · · · +
wn(π )), and
w1(��(π )) = w1(π ) + w1(B) + nt
w2(��(π )) = w2(B) + w1(B)(nt + w1(π )) + n(n − 1)/2t2 + (n − 1)w1(π )t + w2(π ),
where t is the first Stiefel Whitney class of the canonical line bundle over ��(π ).

Thus suitable choices of projective bundles will yield spin manifolds. The following
may be found in [11, 16].

PROPOSITION 5.2. Spin Projective bundles over projective space span a subspace of
dimension 2k for n = 4k + 2 and 2k+1 for n = 4k, in H∗(BV (2)).

Proof. If n = 4k + 2, the manifolds ��a × ��b, with a, b ≡ 3 mod 4 , which are
trivial projective bundles, are spin, and give the classes ξ(a,b) ∈ H∗(BV (2)), and since
a + b = 4k + 2 it is immediate that this gives us k classes, as required.
If n = 4k, the only product which is spin is ��4k−1 × ��1, which gives two classes,
namely ξ(4k−1,1) and ξ(1,4k−1). The remaining classes can be generated by choosing
projective bundles

M(a,b) := ��(2La ⊕ (n − 1 − a)ε → ��a)

with 5 ≤ a ≡ 1 mod 4. Here La is the canonical line bundle over ��a, and ε is the
trivial line bundle.
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We know H∗(��a) = �2[x]/xa+1 so that w1((2La ⊕ (n − 1 − a)ε → ��a) = x +
x = 0, and w2 = x2, with the higher wi all zero . We thus have

H∗(M(a,b)) = �2[x, y]/(xa+1, yn−a+1 + x2yn−a−1)

Using our formulae w1(M(a,b)) = w1(��a) + w1(2La ⊕ (n − 1 − a)ε → ��a) + ny =
0, since n is even and a is odd. Similarly w2(M(a,b)) = x2 + n(n − 1)/2y2 + x2 = 0, since
n ≡ 0 mod 4 (all w1 terms are zero), so this is indeed a spin manifold.

The unique non-zero top dimensional cohomology class (i.e. in dimension n) in
H∗(M(a,b)) = �2[x, y]/(xa+1, yn−a+1 + x2yn−a−1) is given by:

xayn−a = xa−2yn−a+2 = · · · = xyn−1.

So looking at the map f ∗ : H∗(BV (2)) → H∗(M(a,b)), we see that f ∗(XkY n−k) = xyn−1

as long as k ≤ a is odd. Thus we can dualise in homology to deduce that

[Ma,b] �→
∑

ξ(k,n−k) ∈ H∗(BV (2))

where k ≤ a is odd. Since we can choose bundles over all ��a with a ≡ 1 mod 4, and
5 ≤ a ≤ n − 3 = 4k − 3, there are k − 1 classes obtained using this construction, so we
get a total of k + 1 homology classes as required. �

Next we try and understand the subspace spanned by the images of these classes
when we consider the map induced by inclusion into the dihedral group. Note that
the dihedral group of order 8 includes into all the semi-dihedral groups. We denote by
ω ∈ D8 the rotation by π/2, s, s′, t, t′ the reflections through the lines y = 0, x = 0, y =
x, y = −x respectively. The Klein four subgroup we consider is V (2) = 〈s, s′〉 (note that
〈t, t′〉 is another one, but it turns out not to be needed because viewed inside SD16, it
is conjugate to 〈s, s′〉).

It is known that H∗(BD8, �2) = �2[α, β, δ]/(αβ + β2), where α = w1( ˆ〈ω〉), β =
w1( ˆ〈t, t′〉), δ = w2(σ ) where σ is the natural two-dimensional representation of D8.
Here Ĥ denotes the inflated representation, meaning the representation with kernel
H. Further we have H∗(BV (2)) = �2[p, q], with p = w1( ˆ(ω)2), q = w1(ŝ). Restricting
representations then gives us the induced maps in cohomology. The map H∗(BD8) →
H∗(BV (2)) is determined by α → p, β → 0, δ → q(p + q). So if A = �2[α, δ] we deduce
H∗(BV (2)) = A ⊕ qA.

H∗(BD8, �2) → A � H∗(BV (2)) = A ⊕ qA

Following [11] and [16], the plan now is to dualise, and choose dual bases in homology
and compute where the classes in H+

∗ (BV (2) ( which we know explicitly) map to.

H∗(BD8, �2) ← Av � H∗(BV (2)) = Av ⊕ qAv

Denote the above inclusion by f∗. We now consider ξ(a,b) ∈ Hn(BV (2)), dual to paqb in
the monomial basis. Then using this decomposition ξ(a,b) �→ �ξ (k) where k ∈ A and
k �→ paqb + · · · , where ξ denotes the dual basis to the basis {αiδj, β iδj} of H∗(BD8, �2),
with i, j ≥ 0.

PROPOSITION 5.3. The image under the inclusion f∗ of H+
∗ (BV (2)) in H+

∗ (BD8)is
spanned by the following classes:
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In dimensions 4k + 2 it is spanned by ξ (α4iδ4j+3), with 0 ≤ i, j ∈ Z and 4i + 8j + 6 =
4k + 2.
In dimensions 4k it is spanned by ξ (α4i+2δ4j+1), with 0 ≤ i, j ∈ Z and 4i + 2 + 8j + 2 =
4k.

Proof. We start with n = 4k + 2. Then, using the dual basis to the monomial
basis H+

n (BV (2)) is k− dimensional generated by ξ(a,b), the images of ��a × ��b, with
a, b ≡ 3 mod 4. We see that α4jδa → p4kqa(p + q)a = p4k+aqa + · · · so that ξ(a+4j,a) →
ξ (α4jδa) (Note that j = 0 is allowed here, with a ≡ 3 mod 4). Since we start at a = 3,
adding these up gives us �(k + 1)/2� classes in H+

∗ (BD8).
For n = 4k H+

n (BV (2)) is k + 1− dimensional generated by ξ(4k−1,1), ξ(1,4k−1),
represented by ��4k−1 × ��1, and by all the ξ(a,n−a) + ξ(a−2,n−a+2) which are the images
of ��(2L0 ⊕ (n − 1 − a)ε → ��a), with 5 ≤ a ≡ 1 mod 4. Dualising again, we now
check that the classes we obtain are exactly all those of the form ξ (αn−8i−2δ4i+1), with
0 ≤ i ≤ (n − 2)/8. Adding these gives �(k + 1)/2� again.

Indeed, αn−2δ → pn−1q + · · · , so we get one class from the product ��n−1 × ��1.
Recall that [M(a,b)] gives us the class ξ(a,n−a) + ξ(a−2,n−a+2), so it will be mapped to
�ξ (k), where k maps to a sum containing exactly one of paqn−a and pa−2qn−a+2. Note
that when n = 12, α2δ5 → p2q10 + p3q9 + p6q6 + p7q5 so [M(9,5)] (and [M(5,9)]) map to
ξ (α2δ5). We now observe that if we have realised ξ (αiδj) ∈ H+

∗ (BD8) this way, then we
also realise ξ (αi+4kδj) ∈ H+

∗ (BD8), because if j = 1 it is just a product with a higher
dimensional projective space, and otherwise the original class was realised by some
M(a,b), so that ξ (αi+4kδj) will be realised by one of M(a+4,b) or M(a,b+4). Similarly, if we
have ξ (α2δj) ∈ H+

∗ (BD8) then we also have ξ (α2δj+4k). The j = k = 1 case is the n = 12
scenario done above, so just as before, if the original class was realised by some M(a,b),
then ξ (α2δj+4k) will be realised by one of M(a+8,b) or M(a,b+8).

So, to fully verify the propositon, we claim we can have no term of the form
ξ (αiδ4j+3). Indeed, note that n ≡ 0 mod 4 so i ≡ 2 mod 4, and so it is clear that a
product ��n−1 × ��1 can not hit this class. This leaves the possibility of some M(a,b),
meaning that αiδ4j+3 → pi(q(p + q))4j+3 must map to pa, qb−2 + · · · or pa−2qb + · · ·
but not pa−2qb + paqb−2 + · · · . So equating binomial coefficients we must have (4j +
3)Ca−i ≡ 1 mod 2 and (4j + 3)Ca−i−2 ≡ 0 mod 2, or vice versa.

However note that a − i ≡ 3 mod 4, and for any I, J it’s clear that (4J + 3)C4I+3

and (4J + 3)C4I+1 differ by the factor (4(J − I) + 2)(4(J − I) + 3)/((4I + 2)(4I + 3)),
which simplifies to odd numbers, so working modulo 2, the two coefficients are the
same. �

We thus have a sequence of maps ko∗(BV (2)) → ko∗(BD8) → ko∗(BSD16)
induced by inclusions, and we have understood what classes are induced from the first
inclusion. We know consider the second inclusion, starting with the cohomology of
semi-dihedral groups and how they restrict. The following may be found in [8, 17].

PROPOSITION 5.4. We have

H∗(BSDN, �2) = �2[x, y, u, P]/(xy + x2, xu, x3, u2 + (x2 + y2)P)

where | x |=| y |= 1, | u |= 3, | P |= 4. Further the restriction map f ∗ : H∗(BSDN) →
H∗(BD8) sends x → 0, y → α, u → αδ, P → δ2.
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So we can immediately dualise again to check that we get sufficiently many classes
in H+

∗ (BSD2N+2 ; �2). We can now prove the following proposition, which implies the
Gromov-lawson-Rosenberg conjecture for SD16 immediately.

PROPOSITION 5.5. The image under the above inclusion spans all of the two-column
in the local cohomology filtration for ko∗(BSD2N+2 ).

Proof. We check that we have sufficiently many classes in ordinary homology.
We claim it suffices to check that if i > 0, then f∗(ξ (αiδj)) �= 0 and f∗(ξ (αiδj)) =
f∗(ξ (αi′δj′)) ⇒ i = i′, j = j′.

Indeed, we know that for n = 4k, 4k + 2, we have �(k + 1)/2� classes in H+
∗ (BD8)

induced from V (2). By Table 1 we need to produce K + 1 classes in H+
n (BSD2N+2 ) for

n = 8K + 4, and K classes for n = 8K, 8K + 2 and 8K + 6.
Now if we have 8K + 4 = 4k then 8K + 8 = 4k + 4 which implies that K +

1 = (k + 1)/2 = �(k + 1)/2�. Similarly 8K = 4k and 8K + 2 = 4k + 2 both imply
K = k/2 = �(k + 1)/2� since k must be even. Finally if 8K + 6 = 4k + 2 ⇒ K =
(k − 1)/2 = �(k + 1)/2� − 1, which is exactly what we need since in these dimensions
we have an extra ξ (δ4K+3) ∈ H+

∗ (BD8, �2) which clearly maps to zero under f∗.
So it suffices to check that terms dual to αiδj with i > 0 are mapped

monomorphically by f∗. Recall that the classes ξ (αiδj) ∈ H+
∗ (BD8) always have i even

and j odd, so that by Proposition 5.3 we have that f ∗(yi−1uP(j−1)/2) = αiδj. Thus
f∗(ξ (αiδj)) �= 0, and we claim that f∗(ξ (αiδj)) = ξ (yi−1uP(j−1)/2).

This follows since if f ∗(yaubPc) = αa+bδ2c+b and f ∗(ya′
ub′

Pc′
) = αa′+b′

δ2c′+b′
both

map to αiδj with i > 0 even and j ≥ 1 odd, then a, a′, b, b′ must all be odd. Further
a + b = a′ + b′, 2c + b = 2c′ + b′, which implies that a′ = a − 2j, b′ = b + 2j, c′ = c −
j, for some j ∈ �, and j ≥ 0 without loss of generality. However in H∗(BSD2N+2 , �2),
we have u2 = x2P + y2P which implies yu3 = yx2uP + y3uP = y3uP since xu = 0. Thus
we can repeatedly apply this formula to deduce

ya′
ub′

Pc′ = ya−2jub+2jPc−j = yu3(ya−2j−1ub+2j−3Pc−j) = y3uP(ya−2j−1ub+2j−3Pc−j)

= ya−2j+2ub+2j−2Pc−j+1 = · · · = yaubPc

Now since f∗(ξ (αiδj)) = ∑
ξ (k) where the sum is over all k ∈ H∗(BSD2N+2 ) that map

under restriction to ξ (αiδj), we deduce that f∗(ξ (αiδj)) = ξ (yi−1uP(j−1)/2), and thus that
f∗(ξ (αiδj)) = f∗(ξ (αi′δj′)) ⇒ i = i′, j = j′, as required. �
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