UNIFORM APPROXIMATION BY ELEMENTARY OPERATORS

BOJAN MAGAJNA
Department of Mathematics, University of Ljubljana, Jadranska 21, Ljubljana 1000, Slovenia (bojan.magajna@fmf.uni-lj.si)

(Received 19 October 2007)

Abstract

On a separable C^{*}-algebra A every (completely) bounded map which preserves closed twosided ideals can be approximated uniformly by elementary operators if and only if A is a finite direct sum of C^{*}-algebras of continuous sections vanishing at ∞ of locally trivial C^{*}-bundles of finite type.

Keywords: C^{*}-algebra; subhomogeneous; ideals; elementary operators
2000 Mathematics subject classification: Primary 46L05; 46L07
Secondary 47B47

1. Introduction and the main result

Throughout this paper A will denote a C^{*}-algebra, A_{+}will denote the positive and A_{h} will denote the self-adjoint part of A. An elementary operator on A is a map of the form

$$
\begin{equation*}
\psi(x)=\sum_{i=1}^{m} a_{i} x b_{i}, \quad x \in A \tag{1.1}
\end{equation*}
$$

where a_{i} and b_{i} are fixed elements of the multiplier algebra $M(A)$ of A. The smallest m for which ψ can be expressed in the form (1.1) is called the length of ψ. The set of all elementary operators on A is denoted by $\mathrm{E}(A)$ and its norm closure (in the set of all bounded operators on A) by $\overline{\overline{\mathrm{E}(A)}}$. By $\mathcal{I}_{\mathrm{c}}(A)$ we will denote the set of all closed two-sided ideals in A and by $\operatorname{IB}(A)$ (respectively, $\operatorname{ICB}(A)$) the set of all bounded (respectively, all completely bounded $[\mathbf{2 1}]$) maps that preserve all ideals in $\mathcal{I}_{\mathrm{c}}(A)$. By an ideal we shall always mean a closed two-sided ideal. Clearly,

$$
\mathrm{E}(A) \subseteq \mathrm{ICB}(A) \subseteq \mathrm{IB}(A)
$$

In this note we characterize C^{*}-algebras for which the equalities $\operatorname{ICB}(A)=\overline{\overline{\mathrm{E}(A)}}$ or $\operatorname{IB}(A)=\overline{\overline{\mathrm{E}(A)}}$ hold.

Theorem 1.1. For a separable C^{*}-algebra A the inclusion $\operatorname{ICB}(A) \subseteq \overline{\overline{\mathrm{E}(A)}}$ holds if and only if A is a finite direct sum of homogeneous C^{*}-algebras of finite type; in this case $\operatorname{IB}(A)=\mathrm{E}(A)=\operatorname{ICB}(A)$.

We recall that a C^{*}-algebra A is called n-homogeneous if all its irreducible representations are of the same finite dimension n. (By the dimension of a representation π we mean the dimension of the Hilbert space of π.) Then, by $[\mathbf{1 1}, \mathbf{2 6}], A$ is isomorphic to the C^{*}-algebra $\Gamma_{0}(E)$ of all continuous sections vanishing at ∞ of a locally trivial C^{*}-bundle E with fibres isomorphic to $\mathrm{M}_{n}(\mathbb{C})$. (E is just a usual vector bundle such that the local trivializations, restricted to fibres, are isomorphisms of C^{*}-algebras.) If the base space Δ of this bundle admits a finite open covering $\left(\Delta_{i}\right)$ such that $E \mid \Delta_{i}$ is trivial for each i (as a C^{*}-bundle), then E is said to be of finite type $[\mathbf{1 4}]$ and we shall say that in this case A is of finite type.

We note that a weaker form of approximation is always possible: namely, for every C^{*} algebra A the set $\mathrm{E}(A)$ is dense in $\operatorname{ICB}(A)$ (and in $\operatorname{IB}(A))$ in the point norm-topology (see $[\mathbf{1 8}, 2.3]$ and $[\mathbf{5}, 5.3 .4]$). However, there is in general no control on the norms in this approximation: not every complete contraction $\phi \in \operatorname{ICB}(A)$ can be approximated by a net of complete contractions in $\mathrm{E}(A)$. If A is a von Neumann algebra, then each $\phi \in \mathrm{CB}(A)$ preserving all weak* closed ideals can be approximated by complete contractions in $\mathrm{E}(A)$ in the point-weak* topology if and only if A is injective [8] (at least if the predual of A is separable). For a general C^{*}-algebra A, the question of when every complete contraction $\phi \in \operatorname{ICB}(A)$ can be approximated pointwise by complete contractions in $\mathrm{E}(A)$ is connected to the theory of tensor products of C^{*}-algebras and the complete answer is still not clear to the author. Concerning elementary operators, we mention that in recent years interest has shifted from spectral and structural theory $[\mathbf{9}, \mathbf{1 3}]$ to questions related to the natural map μ from the central Haagerup tensor product $M(A) \otimes_{Z} M(A)$ into $\mathrm{CB}(A)$ (see $[\mathbf{4}, \mathbf{5}, \mathbf{8}, \mathbf{1 9}, \mathbf{2 4}]$ and references therein). In particular, the problem of when μ is isometric has been much studied by several authors for special cases of C^{*}-algebras (see [5, Chapter 5]) and was finally solved for general C^{*}-algebras in $[\mathbf{6}, \mathbf{2 5}]$. Clearly, the range of μ is contained in $\overline{\overline{\mathrm{E}(A)}}$ and Theorem 1.1 characterizes C^{*}-algebras in which the range of μ is as large as possible.

In one direction the proof of Theorem 1.1 is easy. Namely, if $A=\Gamma_{0}(E)$ with E of finite type, the usual (finite) partition of unity argument reduces the proof to the case when $E \cong \Delta \times \mathrm{M}_{n}(\mathbb{C})$ is trivial, so that $A \cong C_{0}\left(\Delta, \mathrm{M}_{n}(\mathbb{C})\right.$) (continuous matrix-valued functions vanishing at ∞). In this special case a bounded linear map ϕ, which preserves all ideals of the form $J_{t}=\{f \in A: f(t)=0\}, t \in \Delta$, decomposes into a bounded continuous collection of maps on fibres $A / J_{t} \cong \mathrm{M}_{n}(\mathbb{C})$; in other words, ϕ is in the set $\mathrm{B}_{Z_{0}}(A)=\mathrm{B}_{Z_{0}}\left(\mathrm{M}_{n}\left(Z_{0}\right)\right)$ of bimodule maps over the centre $Z_{0}=C_{0}(\Delta)$ of A. With $e_{i j}$ the standard matrix units in $\mathrm{M}_{n}(\mathbb{C})$ and $\eta_{k l}: \mathrm{M}_{n}\left(Z_{0}\right) \rightarrow Z_{0}$ the maps $\eta_{k l}\left(\left[z_{i j}\right]\right)=z_{k l}$, we have that

$$
\phi_{k i}^{j l}: Z_{0} \rightarrow Z_{0}, \quad \phi_{k i}^{j l}(z):=\eta_{k l}\left(\phi\left(z e_{i j}\right)\right), \quad z \in Z_{0}
$$

are bimodule maps over Z_{0} (thus, double centralizers since Z_{0} is commutative), and hence given by multiplications with certain elements $c_{k i}^{j l}$ of the multiplier algebra $Z=C_{b}(\Delta)$ of Z_{0}. Then for $\left[z_{i j}\right]=\sum_{i, j=1}^{n} z_{i j} e_{i j}$ we have that

$$
\phi\left(\left[z_{i j}\right]\right)=\sum_{i, j=1}^{n} \phi\left(z_{i j} e_{i j}\right)=\sum_{i, j, k, l=1}^{n} c_{k i}^{j l} z_{i j} e_{k l}=\sum_{k, l, r, s=1}^{n} c_{k s}^{r l} e_{k s}\left(\sum_{i, j=1}^{n} z_{i j} e_{i j}\right) e_{r l}
$$

so that ϕ is an elementary operator with coefficients in $\mathrm{M}_{n}(Z)$, the multiplier C^{*}-algebra of $A=\mathrm{M}_{n}\left(Z_{0}\right)$.

In certain special cases (say, if A is prime) one can use the Akemann-Pedersen characterization of C^{*}-algebras having only inner derivations [2] together with some additional work to give a relatively short proof of a part of Theorem 1.1. But in general the proof of Theorem 1.1 requires construction of new classes of maps preserving ideals, which cannot be uniformly approximated by elementary operators. It is perhaps not very surprising that such maps exist if the dimensions of irreducible representations of A are not bounded. They can be taken to be of the form $x \mapsto \sum_{k=1}^{\infty} e_{k} x f_{k}$, where the sum is norm convergent for all $x \in A$, but not uniformly convergent. It will be shown in $\S 2$ that an appropriate choice of the coefficients e_{k} and f_{k} is possible so that such a map cannot be approximated uniformly by elementary operators.

But even if A is subhomogeneous we do not always have the inclusion $\operatorname{ICB}(A) \subseteq \overline{\overline{\mathrm{E}(A)}}$. Consider, for example, the C^{*}-subalgebra A_{0} of $C\left([0,1], \mathrm{M}_{2}(\mathbb{C})\right)$ consisting of all x such that $x(0)$ is a diagonal matrix with 0 on the $(2,2)$ position (or, alternatively, a general diagonal matrix) and the map $x \mapsto \phi(x)=e_{12} x e_{12}$, where e_{12} has $\underline{1 \text { on the position }(1,2)}$ and 0 elsewhere. It can be shown that ϕ preserves ideals but $\phi \notin \overline{\mathrm{E}\left(A_{0}\right)}$ (the details are just a special case of those in the proof of Lemma 4.1; see the paragraphs containing (4.4)(4.8)). Such examples suggest the way to a part of the proof of Theorem 1.1. Namely, for an n-subhomogeneous C^{*}-algebra A which is not a direct sum of homogeneous C^{*} algebras, it will be shown in $\S 4$ that the multiplier algebra $M(J)$ of the n-homogeneous ideal J of A contains an element b such that the two-sided multiplication $\phi: x \mapsto b x b$ maps A into A and $\phi \in \operatorname{ICB}(A) \backslash \overline{\overline{\mathrm{E}(A)}}$ (provided that J is essential in A, the general case will be reduced to this situation). As a preparation for this, we shall show in $\S 3$ that, if J is not unital, $M(J)$ is the C^{*}-algebra of continuous sections of a (not necessarily locally trivial) C^{*}-bundle over the Stone-Čech compactification $\beta(U)$ of the spectrum U of J and the n-homogeneous ideal of $M(J)$ properly contains J (Lemma 3.4). This will enable us to show in $\S 4$ (as the first step towards the proof of Theorem 1.1 in the case of subhomogeneous C^{*}-algebras) that there exists a point in $\beta(U)$ at which $A(A \subseteq M(J))$ looks in a certain respect essentially like A_{0} of the example mentioned above.

On the other hand, the explanation that the homogeneous summands in Theorem 1.1 must be of finite type is simple and can be given immediately.

Proof that \boldsymbol{A} must be of finite type. Assume that a locally trivial C^{*}-bundle E over a locally compact space Δ with fibres $\mathrm{M}_{n}(\mathbb{C})$ is not of finite type. Then E is not of finite type as a vector bundle by $[\mathbf{2 3}, 2.9]$ and it follows that for any finite set $\left\{a_{1}, \ldots, a_{m}\right\}$ of bounded continuous sections of E there exists a point $t_{0} \in \Delta$ such that

$$
\operatorname{dim} \operatorname{span}\left\{a_{1}\left(t_{0}\right), \ldots, a_{m}\left(t_{0}\right)\right\}<n^{2}
$$

Indeed, if this were not the case, then the map

$$
f: \Delta \times \mathbb{C}^{m} \rightarrow E, \quad f\left(t ; \lambda_{1}, \ldots, \lambda_{m}\right)=\sum_{j=1}^{m} \lambda_{j} a_{j}(t)
$$

would be a surjective morphism of vector bundles and E would be isomorphic to the subbundle $(\operatorname{ker} f)^{\perp}$ of $\Delta \times \mathbb{C}^{m}$, and hence of finite type by [14, 3.5.8]. It follows that for each elementary operator ψ on $A=\Gamma_{0}(E)$ there is a point $t_{0} \in \Delta$ such that the induced elementary operator $\psi_{t_{0}}$ on $A / J_{t_{0}} \cong \mathrm{M}_{n}(\mathbb{C})$ has length at most $n^{2}-1$. On the other hand, the (normalized) central trace τ on A (defined by $\tau(x)(t)=(1 / n) \operatorname{tr} x(t), t \in \Delta)$ preserves all (primitive ideals J_{t} hence all) ideals of A; hence, $\tau \in \operatorname{ICB}(A)$. But, denoting by $e_{i, j}, i, j=1, \ldots, n$, the usual matrix units in $\mathrm{M}_{n}(\mathbb{C})$, we have that

$$
\tau(x)\left(t_{0}\right)=(1 / n) \sum_{i, j=1}^{n} e_{i, j} x(t) e_{j, i}
$$

so that $\tau_{t_{0}}$ on $\mathrm{M}_{n}(\mathbb{C})$ has length n^{2}. Therefore, $\tau_{t_{0}}$ has a positive distance d to the closed set of all elementary operators of length less than or equal to $n^{2}-1$ on $\mathrm{M}_{n}(\mathbb{C})$. This implies that the distance of τ to $\mathrm{E}(A)$ is at least d, so $\tau \notin \overline{\overline{\mathrm{E}(A)}}$.

Throughout this paper we shall denote by \hat{A} the spectrum of A (equal to the set of all equivalence classes of irreducible representations) and by \check{A} the primitive spectrum of A (equal to the set of all primitive ideals) equipped with the Jacobson topology. The norm and the weak* closure of a set S will be denoted by $\overline{\bar{S}}$ and \bar{S}, respectively.

2. A reduction to subhomogeneous C^{*}-algebras

Lemma 2.1. Let A be an irreducible C^{*}-subalgebra in $\mathrm{B}(\mathcal{H})$, let x_{1}, \ldots, x_{n} be arbitrary elements of A, let $g \in A_{+} \backslash\{0\}$, let $B=\overline{\overline{g A g}}$ be the hereditary C^{*}-subalgebra generated by g and let $\varepsilon>0$. If rank $g>n$, then there exist $e, f \in B_{+}$such that $\|e\|=1=\|f\|$ and

$$
\left\|e x_{j} f\right\|<\varepsilon, \quad j=1, \ldots, n
$$

Proof. Choose a unit vector $\eta \in \mathcal{K}:=[B \mathcal{H}]$. Note that $b=(b \mid \mathcal{K}) \oplus\left(0 \mid \mathcal{K}^{\perp}\right)$ for each $b \in B\left(\right.$ since $\left.B \mathcal{K}^{\perp} \subseteq \mathcal{K} \cap \mathcal{K}^{\perp}=0\right)$, that $B \mid \mathcal{K}$ is irreducible [20, 5.5.2] and that $\operatorname{dim} \mathcal{K}>n$ since $\operatorname{rank} g>n$. Hence, by the Kadison transitivity theorem there exists $e \in B$ with $\|e\|=1$ such that e annihilates the projections of all vectors $x_{j} \eta$ to \mathcal{K}. Thus, (since $\left.e \mathcal{K}^{\perp}=0\right)$,

$$
e x_{j} \eta=0, \quad j=1, \ldots, n
$$

Moreover, replacing e by $e^{*} e$, we may assume that $e \in B_{+}$. By the algebraic irreducibility $[\mathbf{2 0}, 5.2 .3]$ there exists $b \in B_{+}$with $\|b\|=1$ and $b \eta=\eta$. Then the vector state $\omega_{\eta}(x):=$ $\langle x \eta, \eta\rangle$ annihilates the element

$$
x_{0}:=\sum_{j=1}^{n} b x_{j}^{*} e^{2} x_{j} b
$$

of B. Since ω_{η} is a pure state on B (by irreducibility of B on \mathcal{K}), by [1] there exists a positive element h in the unitization of B such that $\|h\|=1$,

$$
\left\|h x_{0} h\right\|<\varepsilon^{2} \quad \text { and } \quad \omega_{\eta}(h)=1
$$

This implies that $\left\|e x_{j} b h\right\|<\varepsilon$ for all $j=1, \ldots, n$, and (since $\|h\|=1$ and $\langle h \eta, \eta\rangle=1$) $h \eta=\eta$. Set $f:=|h b|=\left|(b h)^{*}\right|$. Then $f \in B_{+},\|f\|=1$ (since $h b \eta=\eta$) and (using the polar decomposition $(b h)^{*}=u f$ of $\left.(b h)^{*}\right)$ we deduce that $\left\|e x_{j} f\right\|=\left\|e x_{j} b h\right\|<\varepsilon$ for all $j=1, \ldots, n$.

Lemma 2.2. If A is separable and has an infinite-dimensional irreducible representation $\pi: A \rightarrow \mathrm{~B}(\mathcal{H})$, then there exist two bounded sequences $\left(e_{i}\right)$ and $\left(f_{i}\right)$ in A_{+}such that $\left\|\pi\left(e_{i}\right)\right\|=1=\left\|\pi\left(f_{i}\right)\right\|, e_{i} e_{j}=0=f_{i} f_{j}$ if $i \neq j$ and the sum

$$
\begin{equation*}
\phi(x)=\sum_{n=1}^{\infty} e_{n} x f_{n} \tag{2.1}
\end{equation*}
$$

is norm convergent for each $x \in A$.
Proof. Since $\pi(A)$ is irreducible and \mathcal{H} infinite dimensional, $\pi(A)$ must be infinite dimensional and the same for any of its maximal abelian self-adjoint subalgebras $[\mathbf{1 5}$, 4.6.12]. Thus, by functional calculus we may find a sequence $\left(\dot{g}_{i}\right)$ in $\pi(A)_{+}$with $\left\|\dot{g}_{i}\right\|=1$, $\dot{g}_{i} \dot{g}_{j}=0$ if $i \neq j$ and $\operatorname{rank} \dot{g}_{i}>i$. Set $P=\operatorname{ker} \pi$ and identify A / P with $\pi(A)$. Let $\left(x_{j}\right)$ be a bounded sequence with dense span in A. By Lemma 2.1 for each n there exist elements \dot{e}_{n} and \dot{f}_{n} in $\overline{\left(\dot{g}_{n} \pi(A) \dot{g}_{n}\right)_{+}}$such that $\left\|\dot{e}_{n}\right\|=1=\left\|\dot{f}_{n}\right\|$ and

$$
\begin{equation*}
\left\|\dot{e}_{n} \pi\left(x_{j}\right) \dot{f}_{n}\right\|<\frac{1}{2^{n}}, \quad j=1, \ldots, n \tag{2.2}
\end{equation*}
$$

Since the \dot{g}_{n} are orthogonal (that is, $\dot{g}_{i} \dot{g}_{j}=0$ if $i \neq j$), the same holds for \dot{e}_{n} and for \dot{f}_{n}. By [15, 4.6.20] we may lift $\left(\dot{e}_{n}\right)$ (and similarly $\left(\dot{f}_{n}\right)$) from $\pi(A)$ to orthogonal sequences $\left(\tilde{e}_{n}\right)$ (and $\left(\tilde{f}_{n}\right)$) of norm 1 elements in A_{+}. Recall that, with $\left(u_{k}\right)$ an approximate unit in P, we have $\|\pi(x)\|=\lim \left\|\left(1-u_{k}\right) x\left(1-u_{k}\right)\right\|$ for all $x \in A$; hence, from (2.2) for each n there exists $u_{n} \in P, 0 \leqslant u_{n} \leqslant 1$, such that

$$
\begin{equation*}
\left\|\left(1-u_{n}\right) \tilde{e}_{n} x_{j} \tilde{f}_{n}\left(1-u_{n}\right)\right\|<\frac{1}{2^{n}}, \quad j=1, \ldots, n \tag{2.3}
\end{equation*}
$$

Set $e_{n}=\tilde{e}_{n}\left(1-u_{n}\right) \tilde{e}_{n}$ and $f_{n}=\tilde{f}_{n}\left(1-u_{n}\right) \tilde{f}_{n}$. Then $e_{i} e_{j}=0=f_{i} f_{j}$ if $i \neq j,\left\|e_{n}\right\|=$ $1=\left\|f_{n}\right\|$ (since $\left\|\pi\left(e_{n}\right)\right\|=1,\left\|\pi\left(f_{n}\right)\right\|=1$ and $\left\|e_{n}\right\|,\left\|f_{n}\right\| \leqslant 1$), and (2.3) implies that

$$
\begin{equation*}
\left\|e_{n} x_{j} f_{n}\right\|<\frac{1}{2^{n}}, \quad j=1, \ldots, n \tag{2.4}
\end{equation*}
$$

Since $\left\|\sum_{n=1}^{\infty} e_{n}^{2}\right\|=\max _{n}\left\|e_{n}^{2}\right\|=1$ (by orthogonality) and $\left\|\sum_{n=1}^{\infty} f_{n}^{2}\right\|=1$, it follows that (2.1) defines a (complete) contraction ϕ from A into the von Neumann envelope \bar{A} of A. We have

$$
\phi\left(x_{j}\right)=\sum_{n=1}^{j-1} e_{n} x_{j} f_{n}+\sum_{n=j}^{\infty} e_{n} x_{j} f_{n}
$$

where the sum on the right side is norm convergent by (2.4). Since the sequence $\left(x_{j}\right)$ has dense span in A it follows that the sum (2.1) is convergent for each $x \in A$.

If $p_{i} \in \mathrm{~B}(\mathcal{H}), i=1, \ldots, n$, are non-zero orthogonal projections and $\phi \in \mathrm{E}(\mathrm{B}(\mathcal{H}))$ is defined by $\phi(x)=\sum_{i=1}^{n} p_{i} x p_{i}$, the distance of ϕ to the set E_{n-1} of elementary operators of length at most $n-1$ turns out to be (not 1 , but) at most $1 / n$. (For a proof, let $\psi \in \mathrm{E}(\mathrm{B}(\mathcal{H}))$ be defined by

$$
\psi(x)=\sum_{i, j=1}^{n}\left(\delta_{i, j}-\frac{1}{n}\right) p_{i} x p_{j}
$$

and note that $\phi(x)-\psi(x)=p x p / n$, where $p=\sum_{i=1}^{n} p_{i}$, so that $\|\phi-\psi\|=1 / n$. To show that the length of ψ is at most $n-1$, observe that the $n \times n$ matrix $\left[\delta_{i, j}-1 / n\right]$ is (a projection) of rank $n-1$; therefore, there exist $\alpha_{i, j}, \beta_{i, j} \in \mathbb{C}$ such that

$$
\delta_{i, j}-\frac{1}{n}=\sum_{k=1}^{n-1} \alpha_{k, i} \beta_{k, j} \quad \text { for all } i, j
$$

Now, with $a_{k}:=\sum_{i=1}^{n} \alpha_{k, i} p_{i}$ and $b_{k}:=\sum_{i=1}^{n} \beta_{k, i} p_{i}$ we have that

$$
\psi(x)=\sum_{i, j=1}^{n} \sum_{k=1}^{n-1} \alpha_{k, i} \beta_{k, j} p_{i} x p_{j}=\sum_{k=1}^{n-1} a_{k} x b_{k}
$$

for all $x \in \mathrm{~B}(\mathcal{H})$.) However, we shall only need an asymptotic estimate stated in the following lemma.

Lemma 2.3. For each $m \in \mathbb{N}$ there exists $n(m) \in \mathbb{N}$ such that for every $\theta \in \mathrm{E}(\mathrm{B}(\mathcal{H}))$ of the form

$$
\theta(x)=\sum_{i=1}^{n} e_{i} x f_{i}, \quad x \in \mathrm{~B}(\mathcal{H})
$$

where $n \geqslant n(m)$ and $e_{i}, f_{i} \in \mathrm{~B}(\mathcal{H})_{+}$are norm-1 elements satisfying $e_{i} e_{j}=0=f_{i} f_{j}$ if $i \neq j$, the distance $d\left(\theta, E_{m}\right)$ of θ to the set E_{m} of all elementary operators of length at most m is at least $\frac{1}{5}$.

Proof. Denote by $\mathrm{B}(\mathcal{H})^{\sharp}$ the dual of $\mathrm{B}(\mathcal{H})$ and note that the map

$$
\kappa: \mathrm{E}(\mathrm{~B}(\mathcal{H})) \rightarrow \mathrm{B}\left(\mathrm{~B}(\mathcal{H})^{\sharp}, \mathrm{B}(\mathcal{H})\right), \quad \kappa\left(\sum_{i=1}^{n} a_{i} \otimes b_{i}\right)(\rho)=\sum_{i=1}^{n} \rho\left(a_{i}\right) b_{i}\left(\rho \in \mathrm{~B}(\mathcal{H})^{\sharp}\right)
$$

is contractive, where the elements $\psi=\sum a_{i} \otimes b_{i} \in \mathrm{E}(\mathrm{B}(\mathcal{H}))$ have the usual operator norm $\|\psi\|=\sup \left\{\left\|\sum a_{i} x b_{i}\right\|: x \in \mathrm{~B}(\mathcal{H}),\|x\| \leqslant 1\right\}$. This follows from

$$
\|\kappa(\psi)\|=\sup \left\{\left|\sum \rho\left(a_{i}\right) \omega\left(b_{i}\right)\right|: \omega, \rho \in \mathrm{B}(\mathcal{H})^{\sharp},\|\omega\| \leqslant 1,\|\rho\| \leqslant 1\right\}
$$

by noting first that the supremum does not change if we restrict ω and ρ to be of rank 1 (since the unit ball of $\mathrm{B}(\mathcal{H})^{\#}$ is the weak ${ }^{*}$ closure of the convex hull of rank- 1 functionals
of the form $x \mapsto\langle x \xi, \eta\rangle$, where $\xi, \eta \in \mathcal{H}$ have norm at most 1) and then noting that the supremum is equal to

$$
\sup \left\{\left\|\sum a_{i} x b_{i}\right\|: x \in \mathrm{~B}(\mathcal{H}),\|x\| \leqslant 1, \operatorname{rank} x \leqslant 1\right\}
$$

and hence dominated by $\|\psi\|$.
Let θ be as in the lemma (but with n arbitrary). Given $\psi \in E_{m}$ of the form

$$
\psi(x)=\sum_{j=1}^{m} a_{j} x b_{j}
$$

let U be the closed unit ball of $V:=\operatorname{span}\left\{b_{1}, \ldots, b_{m}\right\}$. By the orthogonality of the e_{i} we may choose ρ_{i} in the unit ball of $\mathrm{B}(\mathcal{H})^{\sharp}$ so that $\rho_{i}\left(e_{j}\right)=\delta_{i, j}$; hence,

$$
\varepsilon:=\|\theta-\psi\| \geqslant\|\kappa(\theta)-\kappa(\psi)\| \geqslant\left\|f_{i}-\sum_{j=1}^{m} \rho_{i}\left(a_{j}\right) b_{j}\right\|
$$

This shows that the distance of f_{i} to V is at most ε and, since $\left\|f_{i}\right\|=1$, it follows that $\operatorname{dist}\left(f_{i}, U\right) \leqslant 2 \varepsilon$. Thus, we may choose $h_{i} \in U$ with $\left\|f_{i}-h_{i}\right\| \leqslant 2 \varepsilon$, from which we have (since $\left\|f_{i}-f_{j}\right\|=1$ if $i \neq j$)

$$
\left\|h_{i}-h_{j}\right\| \geqslant\left\|f_{i}-f_{j}\right\|-\left\|f_{i}-h_{i}\right\|-\left\|f_{j}-h_{j}\right\| \geqslant 1-4 \varepsilon
$$

Suppose that $\varepsilon<\frac{1}{5}$, so that $\left\|h_{i}-h_{j}\right\|>\frac{1}{5}$ for all $i \neq j$. If we equip V with a suitable Euclidean norm $\|\cdot\|_{2}$ (by proclaiming an Auerbach basis of V to be orthonormal), then $\|\xi\| / \sqrt{m} \leqslant\|\xi\|_{2} \leqslant\|\xi\| \sqrt{m}$ for all $\xi \in V$. Thus, $\left\|h_{i}-h_{j}\right\|_{2}>1 /(5 \sqrt{m})$ if $i \neq j$, while all the vectors $h_{i}, i=1, \ldots, n$, are contained in the same at most m-dimensional Euclidean ball of radius \sqrt{m}. This is clearly impossible if n is large enough.

Lemma 2.4. Suppose that A is separable. If $\operatorname{ICB}(A) \subseteq \overline{\overline{\mathrm{E}(A)}}$, then A is subhomogeneous, that is, $\sup _{[\pi] \in \hat{A}} \operatorname{dim} \pi<\infty$.

Proof. First we will show that all irreducible representations of A must be finite dimensional. Suppose to the contrary that $\pi: A \rightarrow \mathrm{~B}(\mathcal{H})$ is an infinite-dimensional irreducible representation and consider the map ϕ defined in Lemma 2.2. Clearly, $\phi \in \operatorname{ICB}(A)$. Denote by $\dot{\phi}$ the map on $\dot{A}:=A / \operatorname{ker} \pi$ induced by ϕ. From the norm convergent series (2.1) we have that $\dot{\phi}(x)=\sum_{n=1}^{\infty} \pi\left(e_{n}\right) x \pi\left(f_{n}\right), x \in \pi(A)$, and by the same formula $\dot{\phi}$ can be extended uniquely to a weak* continuous (complete) contraction $\bar{\phi}$ on $\mathrm{B}(\mathcal{H})$ (the weak* closure of $\pi(A))$. If $\phi \in \overline{\overline{\mathrm{E}(A)}}$, then

$$
\dot{\phi} \in \overline{\overline{\mathrm{E}(\dot{A})}}
$$

and (since the norm of any weak* continuous operator on $\pi(A)$ agrees with the norm of its weak* continuous extension to $\overline{\pi(A)}$, a consequence of the Kaplansky density theorem)

$$
\bar{\phi} \in \overline{\overline{\mathrm{E}(\mathrm{~B}(\mathcal{H}))}} .
$$

Thus, there exists $\psi \in \mathrm{E}(\mathrm{B}(\mathcal{H}))$, say $\psi(x)=\sum_{j=1}^{m} a_{j} x b_{j}$, such that

$$
\begin{equation*}
\|\bar{\phi}-\psi\|<\frac{1}{5} \tag{2.5}
\end{equation*}
$$

Now, for each $N \in \mathbb{N}$ denote by P_{N} and Q_{N} the projections onto $\sum_{n=1}^{N} \pi\left(e_{n}\right) \mathcal{H}$ and $\sum_{n=1}^{N} \pi\left(f_{n}\right) \mathcal{H}$, respectively. From orthogonality of each of the sequences $\left(e_{n}\right)$ and $\left(f_{n}\right)$, the operator $P_{N} \bar{\phi} Q_{N}$ has the form $P_{N} \bar{\phi} Q_{N}(x)=\sum_{n=1}^{N} \pi\left(e_{n}\right) x \pi\left(f_{n}\right)$. But (2.5) implies that $\left\|P_{N} \bar{\phi} Q_{N}-P_{N} \psi Q_{N}\right\|<\frac{1}{5}$ for all N and, since $P_{N} \psi Q_{N}$ is an elementary operator of length at most m, this contradicts Lemma 2.3.

Thus, for each irreducible representation π the C^{*}-algebra $\pi(A)$ is isomorphic to $\mathrm{M}_{r}(\mathbb{C})$ for some $r \in \mathbb{N}$, we may identify \hat{A} with \check{A} and each primitive ideal P of A is maximal. A point $P \in \check{A}$ is called Hausdorff (or separated) if for each $Q \in \check{A}, Q \neq P$, there exist disjoint open neighbourhoods of P and Q in \check{A}. (Note that in our situation singletons are automatically closed sets since primitive ideals are maximal.) By [10,3.9.4] the set S of Hausdorff points is dense in \check{A}. If S is finite, then $S=\check{A}, A$ is finite dimensional and the proof is finished in this case. So we may assume that S is infinite. Since for each $g \in A_{+}$ the trace function $[\pi] \mapsto \operatorname{tr} \pi(g)$ is lower semicontinuous on $\hat{A}[\mathbf{2 2}]$, the same holds for the rank function (for $\operatorname{rank} \pi(g)=\sup _{n} \operatorname{tr} \sqrt[n]{\pi(g)}$ if $\|g\| \leqslant 1$). Thus, if we assume that $\sup _{[\pi] \in \hat{A}} \operatorname{dim} \pi=\infty$, then there exists a sequence $\left(\sigma_{k}\right)$ in S with $\operatorname{dim} \sigma_{k}$ tending to ∞ as $k \rightarrow \infty$. Suppose first that there exists a limit point σ of $\left(\sigma_{k}\right)$ in \hat{A}. Since σ_{1} is a Hausdorff point, there exist disjoint open neighbourhoods U_{1} of σ_{1} and V_{1} of σ. Put $\left[\pi_{1}\right]=\sigma_{1}$ and choose any $\left[\pi_{2}\right] \in V_{1} \cap\left(\sigma_{k}\right)$ such that $\operatorname{dim} \pi_{2}>2 \cdot 3$. Since $\left[\pi_{2}\right]$ is a Hausdorff point, there exist disjoint open neighbourhoods $U_{2} \subseteq V_{1}$ of [π_{2}] and $V_{2} \subseteq V_{1}$ of σ. Continuing in this way, we find a sequence $\left(\left[\pi_{k}\right]\right) \subseteq \hat{A}$ such that $\operatorname{dim} \pi_{k}>k(k+1)$, and open neighbourhoods U_{k} of $\left[\pi_{k}\right]$ and V_{k} of σ such that $U_{k} \cap V_{k}=\emptyset$ and $U_{k+1}, V_{k+1} \subseteq V_{k}$. In particular, $U_{n} \cap \bigcup_{k \neq n} U_{k}=\emptyset$; hence, $\left[\pi_{k}\right] \notin U_{n}$ if $k \neq n$, which implies that the kernel P_{n} of π_{n} is not contained in the closure of the set $\left\{P_{k}: k \neq n\right\}$. If the sequence $\left(\sigma_{k}\right)$ has no limit points, then we simply let $\left(\left[\pi_{k}\right]\right)$ be a subsequence with $\operatorname{dim} \pi_{k}>k(k+1)$ and then again $P_{n}=\operatorname{ker} \pi_{n}$ is not in the closure of $\left\{P_{k}: k \neq n\right\}$.

Setting $R_{n}=\bigcap_{k \neq n} P_{k}$, this means that P_{n} does not contain R_{n}; hence, $P_{n}+R_{n}=A$ since P_{n} is maximal. Since $\pi_{n}(A)$ is of the form $\mathrm{M}_{r}(\mathbb{C})$ for some $r>n(n+1)$, there exist mutually orthogonal projections $\pi_{n}\left(g_{n i}\right), i=1, \ldots, n$, in $\pi_{n}(A)$ such that rank $\pi\left(g_{n i}\right)>n$ and $\sum_{i=1}^{n} \pi_{n}\left(g_{n i}\right)=1$. These may be lifted to mutually orthogonal positive contractions $g_{n i}$ in $A[\mathbf{1 5}, 4.6 .20]$. Moreover, since $R_{n+}+P_{n+}=A_{+}$and $P_{n}=\operatorname{ker} \pi_{n}$, we may see that $g_{n i} \in R_{n}$. Set $\tilde{g}_{n}=\sum_{i=1}^{n} g_{n i}$ and define recursively $g_{1}=\tilde{g}_{1}, g_{n}=\left(1-g_{1}-\cdots-\right.$ $\left.g_{n-1}\right) \tilde{g}_{n}\left(1-g_{1}-\cdots-g_{n-1}\right)$. Then $\sum_{n=1}^{m} g_{n} \leqslant 1$ for all m (by an induction, using the fact that $h^{2} \leqslant h$ if $0 \leqslant h \leqslant 1$); hence, $\sum_{n=1}^{\infty} g_{n} \leqslant 1$ (in the von Neumann envelope of A) and $\pi_{n}\left(g_{n}\right)=1$ since $\pi_{n}\left(\tilde{g}_{n}\right)=1$ and $g_{m} \in R_{m} \subseteq P_{n}=\operatorname{ker} \pi_{n}$ if $m \neq n$.

Let $\left(x_{j}\right)$ be a sequence with a dense span in A and let $\left\|x_{k}\right\| \leqslant 1$. By Lemma 2.1 there exist positive norm 1 elements $\dot{e}_{n i}$ and $\dot{f}_{n i}$ in $\pi_{n}\left(g_{n i} A g_{n i}\right)$ such that

$$
\begin{equation*}
\left\|\dot{e}_{n i} \pi_{n}\left(x_{j}\right) \dot{f}_{n i}\right\|<\frac{1}{n 2^{n}}, \quad i, j=1, \ldots, n . \tag{2.6}
\end{equation*}
$$

Note that $\sum_{i=1}^{n} \dot{e}_{n i} \leqslant 1$ (and similarly for $\dot{f}_{n i}$) by mutual orthogonality of the projections $\pi_{n}\left(g_{n i}\right)$ for a fixed n. For each n we may lift $\dot{e}_{n 1}$ to a positive element $e_{n 1}$ in A such
that $e_{n 1} \leqslant g_{n}$ since $\dot{e}_{n 1} \leqslant \pi_{n}\left(g_{n}\right)=1$ (see [15, 4.6.21]). Assuming inductively that for some $i<n$ we already have elements $e_{n j}, j=1, \ldots, i$, in A_{+}such that $\pi_{n}\left(e_{n j}\right)=\dot{e}_{n j}$ and $e_{n 1}+\cdots+e_{n i} \leqslant g_{n}$, then by [15, 4.6.21] we may find $e_{n, i+1}$ in A_{+}such that $\pi_{n}\left(e_{n, i+1}\right)=\dot{e}_{n, i+1}$ and $e_{n, i+1} \leqslant g_{n}-\left(e_{n 1}+\cdots+e_{n, i}\right)$ since $\dot{e}_{n, i+1} \leqslant 1-\dot{e}_{n i}-\cdots-\dot{e}_{n i}=$ $\pi_{n}\left(g_{n}-e_{n 1}-\cdots-e_{n i}\right)$. Thus, we may find $e_{n, i}$ so that $\sum_{i=1}^{n} e_{n i} \leqslant g_{n}$ and it follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{i=1}^{n} e_{n i} \leqslant 1 \tag{2.7}
\end{equation*}
$$

Similarly, there exist elements $f_{n i} \in A_{+}$such that $\pi_{n}\left(f_{n i}\right)=\dot{f}_{n i}$ and

$$
\sum_{n=1}^{\infty} \sum_{i=1}^{n} f_{n i} \leqslant 1
$$

Given $u \in P_{n}$ with $0 \leqslant u \leqslant 1$, we may replace the elements $e_{n i}(i=1, \ldots, n, n$ fixed $)$ by $\left|(1-u) e_{n i}\right|^{2}$ without violating (2.7) (since $\left.e_{n i}(1-u)^{2} e_{n i} \leqslant e_{n i}^{2} \leqslant e_{n i}\right)$. Choosing u from an (increasing) approximate unit of P_{n}, we have from (2.6) that

$$
\begin{aligned}
\inf _{u}\left\|e_{n i}(1-u)^{2} e_{n i} x_{j} f_{n i}\right\| & \leqslant \lim _{u}\left\|(1-u) e_{n i} x_{j} f_{n i}\right\| \\
& =\left\|\dot{e}_{n i} \pi_{n}\left(x_{j}\right) \dot{f}_{n i}\right\| \\
& <\frac{1}{n 2^{n}}, \quad i, j=1, \ldots, n
\end{aligned}
$$

Thus, we may assume that $e_{n i}$ and $f_{n i}$ have been chosen so that (note that $e^{2} \leqslant e$ if $0 \leqslant e \leqslant 1$)

$$
\begin{gather*}
\sum_{n=1}^{\infty} \sum_{i=1}^{n} e_{n i}^{2} \leqslant 1, \quad \sum_{n=1}^{\infty} \sum_{i=1}^{n} f_{n i}^{2} \leqslant 1 \tag{2.8}\\
\pi_{n}\left(e_{n i}\right) \pi_{n}\left(e_{n j}\right)=0=\pi_{n}\left(f_{n i}\right) \pi_{n}\left(f_{n j}\right) \quad \text { if } i \neq j, \quad\left\|\pi_{n}\left(e_{n i}\right)\right\|=1=\left\|\pi_{n}\left(f_{n i}\right)\right\| \tag{2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|e_{n i} x_{j} f_{n i}\right\|<\frac{1}{n 2^{n}}, \quad i, j=1, \ldots, n \tag{2.10}
\end{equation*}
$$

By (2.8) we may define a (complete) contraction $\phi: A \rightarrow \bar{A}$ by

$$
\begin{equation*}
\phi(x)=\sum_{n=1}^{\infty} \sum_{i=1}^{n} e_{n i} x f_{n i}, \quad x \in A \tag{2.11}
\end{equation*}
$$

Since the sequence $\left(x_{j}\right)$ has dense span in A, (2.10) implies that the series (2.11) is norm convergent for each $x \in A$ and, consequently, $\phi \in \operatorname{ICB}(A)$.

If $\|\phi-\psi\|<\frac{1}{5}$ for some $\psi \in \mathrm{E}(A)$ of length (say) m, then also

$$
\begin{equation*}
\left\|\phi_{n}-\psi_{n}\right\|<\frac{1}{5} \tag{2.12}
\end{equation*}
$$

where ϕ_{n} and ψ_{n} are the maps on $A_{n}:=\pi_{n}(A) \cong A / P_{n} \cong \mathrm{M}_{r(n)}(\mathbb{C})$ induced by ϕ and ψ (respectively). Since $\pi_{n}\left(e_{m i}\right)=0$ if $m \neq n$ (for $\left.e_{m i} \leqslant g_{m}\right)$,

$$
\phi_{n}(\dot{x})=\sum_{i=1}^{n} \dot{e}_{n i} \dot{x} \dot{f}_{n i} \quad \text { for all } \dot{x} \in A / P_{n}
$$

Since the length of ψ_{n} is at most m for each n, by Lemma 2.3 the inequality (2.12) cannot hold for all n; hence, $\|\phi-\psi\| \geqslant \frac{1}{5}$ and

$$
\phi \notin \overline{\overline{\mathrm{E}(A)}} .
$$

3. The multiplier algebra of a homogeneous C^{*}-algebra

Recall that a C^{*}-algebra A is called n-subhomogeneous $(n \in \mathbb{N})$ if n is the maximal dimension of irreducible representations of A. Then the intersection of the kernels of all irreducible representations of dimension at most $n-1$ is an ideal J of A such that all irreducible representations of J are n dimensional. J is called the n-homogeneous ideal of A; it is the largest ideal of A which is n-homogeneous as a C^{*}-algebra.

For an ideal J in A we shall denote by J^{\perp} the annihilator of J in A. Note that the left annihilator is equal to the right annihilator, that is, $a J=0$ if and only if $J a=0, a \in A$.

Lemma 3.1. Suppose that A is n-subhomogeneous, J is the n-homogeneous ideal of $A, B=A / J^{\perp}$, K is the n-homogeneous ideal of B and $q: A \rightarrow B$ is the quotient map. Then $q(J)=K$ and K is an essential ideal in B.

Proof. Since $J \cap J^{\perp}=0, q \mid J$ is injective, so $q(J)$ is isomorphic to J and hence n homogeneous. Since $q(J)$ is an ideal in B, it follows that $q(J) \subseteq K$. Thus, $J \subseteq q^{-1}(K)$ and then $J+J^{\perp} \subseteq q^{-1}(K)$. If $J+J^{\perp} \neq q^{-1}(K)$, then there exists an irreducible representation π of A such that $\pi\left(J+J^{\perp}\right)=0$ and $\pi\left(q^{-1}(K)\right) \neq 0$. Since the set $S:=\{[\sigma] \in \hat{A}: \operatorname{dim} \sigma \leqslant n-1\}$ is closed in $\hat{A}[\mathbf{2 2}, 4.4 .10]$ and J is just the intersection of kernels of representations (the equivalence classes of which are) in S, (the class of) every irreducible representation that annihilates J must be in S. Thus, $[\pi]$ is in S, so $\operatorname{dim} \pi<n$. Furthermore, $\pi\left(J^{\perp}\right)=0$ implies that π descends to an irreducible representation σ of B (so that $\pi=\sigma q)$ and $\sigma(K) \neq 0$, since $\pi\left(q^{-1}(K)\right) \neq 0$. But $\operatorname{dim} \sigma=\operatorname{dim} \pi<n$, which contradicts the definition of K as the intersection of kernels of all irreducible representations of B of dimension less than n.

The ideal $q(J)$ in $B=A / J^{\perp}$ is essential, since $a J \subseteq J^{\perp}, a \in A$, means that in fact $a J \subseteq J \cap J^{\perp}=0$; hence, $a \in J^{\perp}$.

If Z is the centre of a unital C^{*}-algebra A (or more generally, a C^{*}-subalgebra of the centre of the multiplier algebra of a not necessarily unital A such that $Z A$ is dense in $A), \Delta$ is the maximal ideal space of Z and for each $t \in \Delta$ we denote by $A(t)$ the quotient algebra $A(t)=A /(A t)$, then for every $x \in A$ the function $t \mapsto\|x(t)\|$ is upper semicontinuous (see $[\mathbf{2 7}, \mathrm{C} .10]$ and $[\mathbf{1 7}])$ on Δ (and vanishes at ∞). If these functions are
continuous, then the set $E=\{(t, x(t)): t \in \Delta, x \in A\}$ can be equipped with a topology such that E becomes a C^{*}-bundle with fibres $A(t)$ in the sense of [27, Appendix C] or $[\mathbf{1 2}]$ and A is (isomorphic to) the C^{*}-algebra $\Gamma_{0}(E)$ of all continuous sections of E vanishing at ∞. Since we do not need this topology here, we only recall that a section of E is a map $s: \Delta \rightarrow E$ such that $s(t) \in A(t)$ for all $t \in \Delta$.

The following lemma can be deduced as a special case from a more general result in [3], but we shall sketch a short direct proof. For a C^{*}-bundle E let $\Gamma_{\mathrm{b}}(E)$ be the C^{*}-algebra of all continuous bounded sections of E and let $\Gamma_{0}(E)$ be the ideal in $\Gamma_{\mathrm{b}}(E)$ consisting of all sections vanishing at ∞.

Lemma 3.2. If the fibres of a C^{*}-bundle E over a locally compact space Δ are finite dimensional, then $M:=\Gamma_{\mathrm{b}}(E)$ is just the multiplier algebra of $J:=\Gamma_{0}(E)$.

Proof. For each point $e \in E$ there is a section in J passing through e and it follows that J is an essential ideal in M. It suffices to prove that for each C^{*}-algebra A, which contains J as an essential ideal, the inclusion $J \rightarrow A$ can be extended to a *-homomorphism $L: A \rightarrow M$. For each $t \in \Delta$ and $a \in A$ define a map $L_{t, a}$ on the fibre E_{t} of E by

$$
L_{t, a}(s(t))=(a s)(t), \quad s \in J
$$

Here we have used the fact that each element of E_{t} is of the form $s(t)$ for some $s \in J$, but since s is not unique, we need to check that $s(t)=0$ implies $(a s)(t)=0$. This follows from

$$
(a s)(t)^{*}(a s)(t)=\left((a s)^{*}(a s)\right)(t) \leqslant\|a\|^{2}\left(s^{*} s\right)(t)=\|a\|^{2} s(t)^{*} s(t)
$$

which shows also that $\left\|L_{t, a}\right\| \leqslant\|a\|$. Clearly, $L_{t, a}$ is linear and, to check that $L_{t, a}$ is a left multiplication by an element of E_{t}, it suffices to verify that $L_{t, a}$ commutes with all right multiplications $R_{z(t)}, z \in J$. For each $s \in J$ we indeed have

$$
L_{t, a}(s(t) z(t))=L_{t, a}((s z)(t))=(a s z)(t)=(a s)(t) z(t)=L_{t, a}(s(t)) z(t)
$$

Thus, the function $L(a)$ which sends $t \in \Delta$ to $L_{t, a}$ is a bounded section of E. To show that it is continuous, choose an approximate unit $\left(e_{k}\right)$ in J and observe that $L(a)$ is the uniform limit on compact subsets of Δ of continuous sections $L(a) e_{k}=a e_{k} \in J$. Indeed, for each $t \in \Delta$ and $s \in J$ we have

$$
\left\|\left(L(a)(t)-\left(L(a) e_{k}\right)(t)\right) s(t)\right\|=\left\|\left(a\left(1-e_{k}\right) s\right)(t)\right\| \xrightarrow{k} 0
$$

which implies, since E_{t} is finite dimensional (with all elements of the form $s(t)$), that $\left\|\left(L(a)\left(1-e_{k}\right)\right)(t)\right\| \xrightarrow{k} 0$. To show that the convergence is uniform on compact sets, note that

$$
\left\|\left(L(a)\left(1-e_{k}\right)\right)(t)\right\|^{2}=\left\|\left(L(a)\left(1-e_{k}\right)^{2} L(a)^{*}\right)(t)\right\| \leqslant\left\|\left(L(a)\left(1-e_{k}\right) L(a)^{*}\right)(t)\right\|
$$

and that the net of functions $t \mapsto\left\|\left(L(a)\left(1-e_{k}\right) L(a)^{*}\right)(t)\right\|$ is decreasing (since the approximate unit $\left(e_{k}\right)$ is increasing), so Dini's theorem applies. This shows that $L(a) \in M$ and it can be verified that the map $a \rightarrow L(a)$ is a contractive homomorphism from A to M.

If J is an n-homogeneous C^{*}-algebra, then J is (isomorphic to) $\Gamma_{0}(E)$ for some locally trivial C^{*}-bundle E over $U:=\hat{J}$ by $[\mathbf{1 1}, \mathbf{2 6}]$. The multiplier algebra $M(J)=\Gamma_{\mathrm{b}}(E)$ is n-subhomogeneous by [7, IV.1.4.6], but in general not n-homogeneous as we shall now explain.

If E is of finite type (that is, if U admits a finite covering by open subsets U_{i} with $E \mid U_{i}$ trivial), then E can be extended to a locally trivial C^{*}-bundle F over the Stone-Čech compactification $\beta(U)[\mathbf{2 3}, 2.9]$ and it follows (since such a bundle is a direct summand of a trivial bundle and bounded continuous functions on U have unique continuous extensions to $\beta(U))$ that $M(J)=\Gamma_{\mathrm{b}}(E)$ is isomorphic to the C^{*}-algebra $\Gamma(F)$ of all continuous sections of F; hence, $M(J)$ is n-homogeneous in this case.

Conversely, if $M:=M(J)$ is n-homogeneous, then by $[\mathbf{1 1}] M=\Gamma(F)$ for a locally trivial C^{*}-bundle F over the compact Hausdorff space $\hat{M} \sim \hat{Z}_{M}$, where Z_{M} is the centre of M, and (by the Dauns-Hofmann theorem) \hat{Z}_{M} can be identified with $\beta(\hat{J}) \cong \beta\left(\hat{Z}_{J}\right)$. Since J is an ideal in $M=\Gamma(F)$, it follows that J is of the form $J=\{s \in \Gamma(F): s \mid \Lambda=0\}$ for a closed set $\Lambda \subseteq \beta\left(\hat{Z}_{J}\right)$ and, considering the characters of the centre, Λ must be $\beta\left(\hat{Z}_{J}\right) \backslash \hat{Z}_{J}$. We conclude that $J=\Gamma_{0}\left(F \mid \hat{Z}_{J}\right)$, and the C^{*}-bundle $F \mid \hat{Z}_{J}$ has an extension to a locally trivial C^{*}-bundle F over a compact space, hence is of finite type by [23, 2.9]. Thus, we can state the following remark.

Remark 3.3. The multiplier algebra of an n-homogeneous C^{*}-algebra $J, n \in \mathbb{N}$, is n-homogeneous if and only if J is of finite type.

We shall need the fact that for a non-unital n-homogeneous C^{*}-algebra J the n homogeneous ideal of $M(J)$ is strictly larger than J.

Lemma 3.4. Let E be a locally trivial C^{*}-bundle with fibres $\mathrm{M}_{n}(\mathbb{C}), n \in \mathbb{N}$, over a non-compact, locally compact space $U, J:=\Gamma_{0}(E), M$ the multiplier C^{*}-algebra of J and K the n-homogeneous ideal of M. Regard each point $t \in \beta(U)$ (the StoneČech compactification of U) as a maximal ideal of the centre Z_{M} of M. Then M is the C^{*}-algebra of continuous sections of a (not necessarily locally trivial) C^{*}-bundle E_{0}, with fibres $M(t):=M /(M t)$, over $\beta(U)$, extending E, such that $F:=E_{0} \mid \hat{K}$ is locally trivial. Moreover, at least if U is metrizable, \hat{K} properly contains U (that is, K properly contains J).

Proof. For each $x \in M$ denote by $x(t)$ the coset of x in $M(t)$. The function $\check{x}(t):=$ $\|x(t)\|$ is upper semicontinuous on $\check{Z}_{M}=\beta(U)[\mathbf{2 7}, \mathrm{C} 10]$. Moreover, \check{x} must be lower semicontinuous on U as the supremum $\sup \left\{(x y)^{2}: y \in J,\|y\| \leqslant 1\right\}$ of continuous functions (note that $x y \in J=\Gamma_{0}(E)$ if $y \in J$). To show that \check{x} is continuous on all $\beta(U)$, we may assume that $x \geqslant 0$ (otherwise just replace x by $|x|$). It suffices now to prove that \check{x} coincides with the unique continuous extension \tilde{x} of the bounded continuous function $\check{x} \mid U$. In other words, we have to show, for each $t^{\prime} \in \beta(U) \backslash U$ and each net $\left(t_{\nu}\right) \subseteq U$ converging to t^{\prime}, the equality

$$
\check{x}\left(t^{\prime}\right)=\lim \check{x}\left(t_{\nu}\right) .
$$

The inequality $\tilde{x}\left(t^{\prime}\right) \leqslant \check{x}\left(t^{\prime}\right)$ follows from the continuity of \tilde{x} and the upper semicontinuity of \check{x} since the two functions coincide on the dense set U. Suppose that $\tilde{x}\left(t^{\prime}\right)<\check{x}\left(t^{\prime}\right)$. Then,
by continuity of \tilde{x}, for a small $\varepsilon>0$ we have the inequality $\tilde{x}(t) \leqslant \check{x}\left(t^{\prime}\right)-\varepsilon$ for all t in an open neighbourhood V of t^{\prime} in $\beta(U)$. Choose a continuous function $f:[0, \infty) \rightarrow[0,1]$ such that $f\left(\left[0, \check{x}\left(t^{\prime}\right)-\varepsilon\right]\right)=0$ and $f\left(\check{x}\left(t^{\prime}\right)\right)=1$. Note that for $t \in U \cap V$ the spectrum of $x(t)$ is contained in $\left[0, \check{x}\left(t^{\prime}\right)-\varepsilon\right]$; hence, $f(x)(t)=f(x(t))=0$ and therefore by continuity $\widetilde{f(x)}(t)=0$ for all $t \in V$. Furthermore, $(f(x))^{\check{(}\left(t^{\prime}\right)}=\left\|f(x)\left(t^{\prime}\right)\right\|=\left\|f\left(x\left(t^{\prime}\right)\right)\right\|=1$, since $\check{x}\left(t^{\prime}\right)$ is in the spectrum of $x(t)$ and $f\left(\check{x}\left(t^{\prime}\right)\right)=1$. Thus, replacing x by $f(x)$, we have that $\tilde{x}(t)=0$ if $t \in V$ and $\check{x}\left(t^{\prime}\right)=1$. Choosing a continuous function χ on $\beta(U)$ with values in $[0,1]$, supported in V and with $\chi\left(t^{\prime}\right)=1$, and replacing x by χx (where χ is regarded as an element of Z_{M} by the Dauns-Hofmann theorem), we find an element $x \in M$ such that $\tilde{x}(t)=0$ for all $t \in \beta(U)$ (hence $x=0$) and $\check{x}\left(t^{\prime}\right)=1$, which is a contradiction. The continuity of \check{x} proved above means that M is the C^{*}-algebra of continuous sections of a C^{*}-bundle E_{0} over $\beta(U)$ with fibres $M(t)[\mathbf{2 7}$, Appendix C].

In general the $\operatorname{map} \zeta: \hat{M} \rightarrow \check{Z}_{M}=\beta(U), \zeta([\pi])=\operatorname{ker}\left(\pi \mid Z_{M}\right)$, is continuous, but since the functions $\check{x}(x \in M)$ are continuous this map is also open [27, C.10]. Since J and $K(J \subseteq K)$ are essential ideals in M, one can verify the inclusion of the centres $Z_{J} \subseteq Z_{K} \subseteq Z_{M}$ as ideals in Z_{M}. Furthermore, $\zeta(\hat{K})=\check{Z}_{K}$. (More precisely, denoting for each $[\pi] \in \hat{K}$ by $\tilde{\pi}$ the unique extension of π to the irreducible representation of M, $\tilde{\pi}\left|Z_{K}=\pi\right| Z_{K}$.) Since K is n-homogeneous, we may identify \hat{K} with \check{Z}_{K}, that is, ζ maps \hat{K} onto $\check{Z}_{K} \subseteq \beta(U)$ homeomorphically, and we may regard \hat{K} as an open subset in $\beta(U)$. Since K is n-homogeneous, for each $t \in \check{Z}_{K}$ there is (up to a unitary equivalence) a unique irreducible representation π_{t} of K such that $\operatorname{ker}\left(\pi \mid Z_{K}\right)=t \cap Z_{K}$. Then the extension $\tilde{\pi}_{t}$ of π_{t} to M is the unique irreducible representation σ of M with $\operatorname{ker}\left(\sigma \mid Z_{M}\right)=t$. (Namely, $\operatorname{ker}\left(\sigma \mid Z_{M}\right)=t$ implies that $\operatorname{ker}\left(\sigma \mid Z_{K}\right)=t \cap Z_{K}$; hence, $\sigma \mid K$ must coincide, up to a unitary equivalence, with π_{t}, since irreducible representations of a homogeneous C^{*}-algebra K are determined by their restrictions to the centre. This implies that $\sigma=\tilde{\pi}_{t}$, since extensions of non-degenerate representations from ideals are unique.) Since each $M t$ is an intersection of primitive ideals, it follows that $M t$ must be a primitive ideal in M (for by the above there is only one primitive ideal containing t) and $M /(M t) \cong \mathrm{M}_{n}(\mathbb{C})$ for all $t \in \check{Z}_{K}$. Furthermore, if $t \in \beta(U) \backslash \check{Z}_{K}$, then $M t$ must be the intersection of kernels of certain irreducible representations π with $[\pi] \in \hat{M} \backslash \hat{K}$ only. It follows that for a section $x \in M$ we have that $x(t)=0$ for all $t \in \beta(U) \backslash \check{Z}_{K}$ if and only if $\pi(x)=0$ for all $[\pi] \in \hat{M} \backslash \hat{K}$. This means that the ideal $\Gamma_{0}\left(E_{0} \mid \hat{K}\right)$ in $\Gamma\left(E_{0}\right)=M$ must be K. Since K is n-homogeneous, it follows (using [11]) that $F:=E_{0} \mid \hat{K}$ must be locally trivial. Finally, since K contains J as an ideal, $J=\{s \in K: s \mid(\hat{K} \backslash U)=0\}=\Gamma_{0}(F \mid U)$ [12, II.14.8]; hence $F \mid U \cong E$.

To show that \hat{K} properly contains U, choose a sequence $\left(t_{k}\right)$ in U with no limit points in U (recall that U is assumed metrizable) and sections $s_{i j} \in M=\Gamma_{\mathrm{b}}(E)$ such that $s_{i j}\left(t_{k}\right)$ $(i, j=1, \ldots, n)$ are the matrix units in the fibres $E_{t_{k}} \cong \mathrm{M}_{n}(\mathbb{C})$. For each section $s \in M$ we expand $s\left(t_{k}\right)=\sum_{i, j=1}^{n} \alpha_{i j}\left(t_{k}\right) s_{i j}\left(t_{k}\right), \alpha_{i j}\left(t_{k}\right) \in \mathbb{C}$, extend each (bounded) sequence $\left(\alpha_{i j}\left(t_{k}\right)\right)_{k}$ to a continuous function $\alpha_{i j}$ on $\beta(U)$, choose a limit point $t_{0} \in \beta(U) \backslash U$ of $\left(t_{k}\right)$ and set

$$
\pi_{t_{0}}(s):=\sum_{i, j=1}^{n} \alpha_{i, j}\left(t_{0}\right) e_{i j}=\left[\alpha_{i j}\left(t_{0}\right)\right] \in \mathrm{M}_{n}(\mathbb{C}),
$$

where $e_{i j}$ are the standard matrix units in $\mathrm{M}_{n}(\mathbb{C})$. This defines a representation $\pi_{t_{0}}$ of M into $\mathrm{M}_{n}(\mathbb{C})\left(\pi_{t_{0}}(s)\right.$ is a kind of a limit point of $\left.\left(s\left(t_{k}\right)\right)\right)$, which is surjective (hence irreducible) since $\pi_{t_{0}}\left(s_{i j}\right)=e_{i j}$. If [$\pi_{t_{0}}$] was not in \hat{K}, then $\pi_{t_{0}}(K)=0$, which would imply (by the definition of K) that $\operatorname{ker} \pi_{t_{0}}$ is in the closure of the set of kernels of all irreducible representations of M of dimension less than n. But this is impossible since the set is closed.

4. A reduction to locally homogeneous C^{*}-algebras

Lemma 4.1. If a separable n-subhomogeneous C^{*}-algebra A is not a direct sum of homogeneous C^{*}-algebras, then $\operatorname{ICB}(A) \nsubseteq \overline{\overline{\mathrm{E}(A)}}$.

Since the proof of the lemma occupies the entire section, it will be divided into several steps. Let J be the n-homogeneous ideal of A, let U be the primitive spectrum of the centre Z_{J} of J, let E be the locally trivial C^{*}-bundle over U such that $J=\Gamma_{0}(E)$ and let $M=M(J)=\Gamma_{\mathrm{b}}(E)$ be the multiplier C^{*}-algebra of J. If J is unital, then A is isomorphic to $J \oplus(A / J)$, where A / J is m-subhomogeneous for some $m<n$, and the proof reduces to a smaller degree of subhomogeneity. So by an induction we may assume that J is not unital; hence, U is not compact. We shall show that in this case $\operatorname{ICB}(A) \nsubseteq \overline{\overline{\mathrm{E}(A)}}$. By Lemma 3.4 the n-homogeneous ideal K of M properly contains J and the corresponding locally trivial C^{*}-bundle F over the open subset \hat{K} of $\beta(U)$ (so that $K=\Gamma_{0}(F)$) extends E, while $M=\Gamma\left(E_{0}\right)$ for a (not necessarily locally trivial) C^{*}-bundle E_{0} over $\beta(U)$ extending F. We denote by Z_{K} and Z_{M} the centres of K and M, identify \hat{K} and \hat{J} with \check{Z}_{K} and \check{Z}_{J}, respectively, and regard them as open subsets of $\check{Z}_{M}=\beta(U)$. Choose $t_{0} \in \hat{K} \backslash \hat{J}$ and an open neighbourhood V of t_{0} in $\beta(U)$ such that $\bar{V} \subseteq \hat{K}$ and $F \mid \bar{V}$ is trivial. Using a fixed isomorphism $E_{0}|\bar{V}=F| \bar{V} \cong \bar{V} \times \mathrm{M}_{n}(\mathbb{C})$, we shall identify the two bundles over V.

Step 1 (suppose that the ideal \boldsymbol{J} in \boldsymbol{A} is essential). We may thus regard A as a C^{*}-subalgebra of M. Since all n-dimensional irreducible representations of A are (up to a unitary equivalence) evaluations at points of U, for each $t \in \bar{V} \backslash U$ the evaluation π_{t} of sections of E_{0} at t must be reducible as a representation of A. Let m be the maximal dimension of irreducible subrepresentations of $\pi_{t} \mid A$ as t ranges over $\bar{V} \backslash U$ and let $t_{1} \in \bar{V} \backslash U$ be a point where this maximum is attained. Then (up to a unitary equivalence) $\pi_{t_{1}} \mid A$ has the form

$$
\pi_{t_{1}}(a)=\left[\begin{array}{cc}
\sigma_{t_{1}}^{(k)}(a) & 0 \tag{4.1}\\
0 & \rho_{t_{1}}(a)
\end{array}\right], \quad a \in A
$$

where $\sigma_{t_{1}}: A \rightarrow \mathrm{M}_{m}(\mathbb{C})$ is an irreducible representation, $k \in \mathbb{N}$ and $\rho_{t_{1}}: A \rightarrow \mathrm{M}_{n-k m}$ is a representation disjoint from $\sigma_{t_{1}}$. Denote by $e_{i j}, i, j=1, \ldots, m$, the standard matrix units in $\mathrm{M}_{m}(\mathbb{C})$. By $[\mathbf{1 0}, 4.2 .5]$ there exist $a_{i j} \in A$ such that $\pi_{t_{1}}\left(a_{i j}\right)=e_{i j}^{(k)} \oplus 0$ (relative to the decomposition (4.1)). By continuity, if t is close to $t_{1}, \pi_{t}\left(a_{i j}\right)$ will be approximate matrix units in $\mathrm{M}_{m}(\mathbb{C})$ and well-known arguments (using functional calculus and polar decomposition, as in $[\mathbf{1 6}, \S 12.1])$ show that there exist $b_{i j} \in A$ such that $\pi_{t}\left(b_{i j}\right), i, j=$ $1, \ldots, m$, are $m \times m$ matrix units in $\mathrm{M}_{n}(\mathbb{C})$; in other words, $\pi_{t}(A)$ contains a copy of
$\mathrm{M}_{m}(\mathbb{C})$ for all t in a neighbourhood $W \subseteq \bar{W} \subseteq V$ of t_{1}. It follows now by maximality of m that (up to a conjugation with a unitary $u \in C\left(W, \mathrm{M}_{n}(\mathbb{C})\right)$) $\pi_{t} \mid A$ has the form

$$
a(t):=\pi_{t}(a)=\left[\begin{array}{cc}
\sigma_{t}(a) & 0 \tag{4.2}\\
0 & \theta_{t}(a)
\end{array}\right], \quad a \in A, t \in W \backslash U
$$

where $\sigma_{t}: A \rightarrow \mathrm{M}_{m}(\mathbb{C})$ is an irreducible representation and $\theta: A \rightarrow \mathrm{M}_{n-m}(\mathbb{C})$ is a (possibly degenerate) representation.

Choose a continuous function χ on $\beta(U) \backslash U$, supported in $W \backslash U$, with values in $[0,1]$ and $\chi\left(t_{1}\right)=1$. Let $v \in \mathrm{M}_{m, n-m}(\mathbb{C})$ be any matrix with $\|v\|=1$. Since

$$
M=\Gamma\left(E_{0}\right) \quad \text { and } \quad J=\Gamma_{0}(E)=\left\{s \in \Gamma\left(E_{0}\right): s \mid(\beta(U) \backslash U)=0\right\}
$$

$M / J=\Gamma\left(E_{0} \mid(\beta(U) \backslash U)\right.$) (using the Tietze extension theorem for sections of Banach bundles [12, II.14.8]). Define a section $s \in M / J$ on $\beta(U) \backslash U$ by

$$
s(t)= \begin{cases}{\left[\begin{array}{cc}
0 & \chi(t) v \\
0 & 0
\end{array}\right]} & \text { if } t \in W \backslash U \tag{4.3}\\
0 & \text { if } t \in(\beta(U) \backslash U) \backslash W\end{cases}
$$

and let $b \in M$ be any lift of s (that is, a continuous extension of s to a section of E_{0}). Finally, let $\phi: A \rightarrow M$ be the two-sided multiplication $x \mapsto b x b$.

Step 2 (proof that $\phi(A) \subseteq A$ and that ϕ preserves ideals). Given $a \in A$, the value $\phi(a)(t)$ of $\phi(a) \in M$ at each $t \in \beta(U) \backslash U$ is 0 . Indeed, $b(t)=s(t)=0$ if $t \in(\beta(U) \backslash U) \backslash W$, while for $t \in W \backslash U$ we have that $\phi(a)(t)=b(t) a(t) b(t)=$ $s(t) \pi_{t}(a) s(t)=0$, as can be verified by performing the matrix multiplication with $\pi_{t}(a)$ and $s(t)$ of the form (4.2) and (4.3). This implies that $\phi(a) \in J$; in particular, ϕ maps A into A. To show that ϕ preserves all ideals in $\mathcal{I}_{\mathbf{c}}(A)$, let $\left(e_{k}\right)$ be an approximate unit in the n-homogeneous ideal J. Note that $($ since $\phi(a) \in J)$

$$
\phi(a)=\lim e_{k} \phi(a) e_{k}=\lim \left(e_{k} b\right) a\left(b e_{k}\right)
$$

where the two-sided multiplications $a \mapsto\left(e_{k} b\right) a\left(b e_{k}\right)$ preserve the ideals, since $e_{k} b$ and $b e_{k}$ are in $J \subseteq A$. Thus, ϕ is a pointwise limit of maps preserving ideals, so ϕ must preserve (closed) ideals.

Step 3 (proof that $\phi \notin \overline{\overline{\mathbf{E (A)}}}$). First we shall 'localize' the proof to W (to work with matrix-valued functions instead of bundles), then we shall show by an explicit computation that $\phi \notin \overline{\overline{\mathrm{E}(A)}}$.
Let $J_{W}=\{a \in M: a(t)=0 \forall t \in \bar{W}\}$ and let ϕ_{W} be the map on $A_{W}:=A /\left(J_{W} \cap A\right)$ induced by ϕ. Note that A_{W} is (naturally isomorphic to) a C^{*}-subalgebra of $M / J_{W}=$ $\Gamma\left(E_{0} \mid \bar{W}\right)=\Gamma_{0}(F \mid \bar{W})=C\left(\bar{W}, \mathrm{M}_{n}(\mathbb{C})\right)$, and ϕ_{W} is just the two-sided multiplication

$$
\phi_{W}(x)=d x d, \quad x \in A_{W} \subseteq C\left(\bar{W}, \mathrm{M}_{n}(\mathbb{C})\right)
$$

where d is the coset of b in M / J_{W}. As an element of $C\left(\bar{W}, \mathrm{M}_{n}(\mathbb{C})\right)$, decomposing $\mathrm{M}_{n}(\mathbb{C})$ into blocks according to (4.2), d can be represented by a block matrix of continuous functions

$$
d=\left[\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right]
$$

where (by the definitions of b and s) $d_{11}\left(t_{1}\right)=0, d_{21}\left(t_{1}\right)=0, d_{22}\left(t_{1}\right)=0$ and $d_{12}\left(t_{1}\right)=v$. It follows now from $\phi_{W}(x)=d x d$ that

$$
\phi_{W}(x)\left(t_{1}\right)=\left[\begin{array}{cc}
0 & v x_{21}\left(t_{1}\right) v \\
0 & 0
\end{array}\right] \quad \text { for all } x=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right] \text { in } A_{W} \subseteq C\left(\bar{W}, \mathrm{M}_{n}(\mathbb{C})\right)
$$

Given $\varepsilon>0$, by continuity of functions $d_{i j}$ (that is, since $\left\|d(t)-d\left(t_{1}\right)\right\|$ is small if $t \in W$ is close to t_{1}) there exists a neighbourhood $W_{1} \subseteq W$ of t_{1} such that we have, uniformly for all $x=\left[x_{i j}\right] \in A_{W}$ with $\|x\| \leqslant 1$, the estimate

$$
\left\|\phi_{W}(x)(t)-\left[\begin{array}{cc}
0 & v x_{21}(t) v \tag{4.4}\\
0 & 0
\end{array}\right]\right\|<\varepsilon \quad \text { for all } t \in W_{1}
$$

The evaluation $\pi_{t_{1}}$ maps A into block-diagonal matrices according to (4.2), but we shall need the same for $M(A)\left(\pi_{t_{1}}\right.$ can be degenerate). Since J is essential in A, and hence also in $M(A)$, we have that $M(A) \subseteq M(J)=M$; hence, each $f \in M(A)$ can be represented over W by a 2×2 block matrix $f \mid W=\left[f_{i j}\right]$ in accordance with the decomposition (4.2). Let $p \in \mathrm{M}_{n}(\mathbb{C})$ be the projection onto $\left[\sigma_{t_{1}}^{(k)}(A) \mathbb{C}^{n}\right]$ (where $\sigma_{t_{1}}$ is as in (4.1)). Then $p \in \pi_{t_{1}}(A)$ since $\rho_{t_{1}}$ and $\sigma_{t_{1}}^{(k)}$ are disjoint. With respect to the decomposition (4.2), p has the form $p=1 \oplus q$, where 1 is the $m \times m$ identity matrix and q is a projection. Since $f\left(t_{1}\right) p \in \pi_{t_{1}}(A)$ and $p f\left(t_{1}\right) \in \pi_{t_{1}}(A)$ and matrices in $\pi_{t_{1}}(A)$ are block diagonal, a matrix multiplication shows that $f_{21}\left(t_{1}\right)=0$ and $f_{12}\left(t_{1}\right)=0$. Thus, $\pi_{t_{1}}(M(A))$ consists of block-diagonal matrices only.

Suppose that there exists $\psi \in \mathrm{E}(A)$ with $\|\psi-\phi\|<\varepsilon$; hence,

$$
\begin{equation*}
\left\|\psi_{W}-\phi_{W}\right\|<\varepsilon \tag{4.5}
\end{equation*}
$$

where ψ_{W} is the map induced on A_{W} by ψ. Then ψ is of the form

$$
\psi(x)=\sum_{k=1}^{\ell} a^{k} x b^{k}, \quad x \in A
$$

where $a^{k}, b^{k} \in M(A) \subseteq M$. By the previous paragraph, $a^{k}\left(t_{1}\right)=a_{11}^{k}\left(t_{1}\right) \oplus a_{22}^{k}\left(t_{1}\right)$ and $b^{k}\left(t_{1}\right)=b_{11}^{k}\left(t_{1}\right) \oplus b_{22}^{k}\left(t_{1}\right)$ are block diagonal. Now, for matrices of the form

$$
x=\left[\begin{array}{cc}
0 & 0 \tag{4.6}\\
x_{21} & 0
\end{array}\right]
$$

we have that $\sum_{k=1}^{\ell} a^{k}\left(t_{1}\right) x b^{k}\left(t_{1}\right)$ is of the form

$$
\left[\begin{array}{cc}
0 & 0 \\
\sum_{k=1}^{\ell} a_{22}^{k}\left(t_{1}\right) x_{21} b_{11}^{k}\left(t_{1}\right) & 0
\end{array}\right]
$$

hence, by continuity of the coefficients a^{k} and b^{k} (on W) there exists a neighbourhood $W_{2} \subseteq W$ of t_{1} such that

$$
\left\|\psi_{W}(x)(t)-\left[\begin{array}{cc}
0 & 0 \tag{4.7}\\
\sum_{k=1}^{\ell} a_{22}^{k}(t) x_{21}(t) b_{11}^{k}(t) & 0
\end{array}\right]\right\|<\varepsilon \quad \text { for all } t \in W_{2}
$$

uniformly for all $x \in A_{W}$ of the form (4.6) with $\|x\| \leqslant 1$. From (4.4), (4.5) and (4.7) we conclude that

$$
\left\|\left[\begin{array}{cc}
0 & v x_{21}(t) v \tag{4.8}\\
-\sum_{k=1}^{\ell} a_{22}^{k}(t) x_{21}(t) b_{11}^{k}(t) & 0
\end{array}\right]\right\|<3 \varepsilon
$$

for all $t \in W_{1} \cap W_{2}$ and $x \in A_{W}$ of the form (4.6) with $\|x\| \leqslant 1$. But, for each $t \in W_{1} \cap$ $W_{2} \cap U$, we have that $A_{W}(t)=\pi_{t}(A)=\mathrm{M}_{n}(\mathbb{C})$ (since we already have $J(t)=\mathrm{M}_{n}(\mathbb{C})$); hence, we may choose $x \in A_{W}$ of the form (4.6) so that $\left\|x_{21}(t)\right\|=1$ and $\left\|v x_{21}(t) v\right\|=1$ (for a fixed t), which contradicts (4.8) if $\varepsilon<\frac{1}{3}$. Thus,

$$
\phi \notin \overline{\overline{\mathrm{E}(A)}} .
$$

This proves the lemma in the case where J is essential in A.
Step 4 (a reduction to the case when \boldsymbol{J} is essential). Let $B=A / J^{\perp}$, let $q: A \rightarrow B$ be the quotient map and let $K=q(J)$. By Lemma $3.1 K$ is the n-homogeneous ideal of B and is an essential ideal in B. By what we have proved above, there exists $b \in M(K)$ such that the two-sided multiplication $\phi(x)=b x b$ maps B into K and $\phi \in \operatorname{ICB}(B) \backslash \overline{\mathrm{E}(B)}$. Define $\phi_{0}: A \rightarrow A$ as the composition

$$
\phi_{0}=(q \mid J)^{-1} \phi q .
$$

Then $\phi_{0}(A) \subseteq J$. To show that ϕ_{0} preserves ideals of A, let $\left(e_{k}\right)$ be an approximate unit in J and choose $a \in M(J)$ so that $\tilde{q}(a)=b$, where \tilde{q} is the extension to $M(J) \rightarrow M(K)$ of the isomorphism $q \mid J: J \rightarrow K$. Then, for $x \in A$,

$$
\begin{aligned}
\phi_{0}(x) & =\lim e_{k} \phi_{0}(x) e_{k} \\
& =\lim e_{k}(q \mid J)^{-1}(b q(x) b) e_{k} \\
& =\lim (q \mid J)^{-1}\left(q\left(e_{k}\right) b q(x) b q\left(e_{k}\right)\right) \\
& =\lim (q \mid J)^{-1} q\left(e_{k} \text { axae }_{k}\right) \\
& =\lim \left(e_{k} a\right) x\left(\text { ae }_{k}\right) ;
\end{aligned}
$$

hence, $\phi_{0}(x)$ is in (the closed two-sided) ideal generated by x since $e_{k} a \in J \subseteq A$. To show that

$$
\phi_{0} \notin \overline{\overline{\mathrm{E}(A)}},
$$

assume the contrary: for each $\varepsilon>0$ there exists $\psi \in \mathrm{E}(A)$ with $\left\|\phi_{0}-\psi\right\| \leqslant \varepsilon$. Denote by $\dot{\psi}$ the elementary operator on B induced by ψ, so that $\dot{\psi} q=q \psi$. Then for each x in the unit ball of A we have that $\left\|\phi_{0}(x)-\psi(x)\right\| \leqslant \varepsilon$, which implies that $\|\phi q(x)-\dot{\psi} q(x)\|=$ $\left\|q\left(\phi_{0}(x)-\psi(x)\right)\right\| \leqslant \varepsilon$. Since q maps the closed unit ball of A onto that of B, it follows that $\|\phi-\dot{\psi}\| \leqslant \varepsilon$. But this would imply that $\phi \in \overline{\overline{\mathrm{E}(B)}}$: a contradiction. This completes the proof of Lemma 4.1.

Finally, Theorem 1.1 follows from Lemmas 2.4 and 4.1 from the part already proved in $\S 1$.

The author does not know if Theorem 1.1 also holds for non-separable C^{*}-algebras.
Acknowledgements. The author is grateful to Ilja Gogić for his comments on an earlier version of the paper and to the anonymous referee for suggestions.

References

1. C. A. Akemann, J. Anderson and G. K. Pedersen, Excising states on C^{*}-algebras, Can. J. Math. 38 (1986), 1239-1260.
2. C. A. Akemann and G. K. Pedersen, Central sequences and inner derivations of separable C^{*}-algebras, Am. J. Math. 101 (1979), 1047-1061.
3. C. A. Akemann, G. K. Pedersen and Y. Tomiyama, Multipliers of C^{*}-algebras, J. Funct. Analysis 13 (1973), 277-301.
4. P. Ara and M. Mathieu, On the central Haagerup tensor product, Proc. Edinb. Math. Soc. 37 (1994), 161-174.
5. P. Ara and M. Mathieu, Local multipliers of C^{*}-algebras, Springer Monographs in Mathematics (Springer, 2003).
6. R. J. Archbold, D. W. B. Somerset and R. M. Timoney, On the central Haagerup tensor product and completely bounded mappings of a C^{*}-algebra, J. Funct. Analysis 226 (2005), 406-428.
7. B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Science, Volume 122 (Springer, 2006).
8. A. Chatterjee and R. R. Smith, The central Haagerup tensor product and maps between von Neumann algebras, J. Funct. Analysis 112 (1993), 97-120.
9. R. E. Curto, Spectral theory of elementary operators, in Elementary operators and applications, pp. 3-54 (World Scientific, 1992).
10. J. Dixmier, Les C^{*}-algebres et leurs representations (Gauthier-Villars, Paris, 1964).
11. J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280.
12. J. M. G. Fell and R. S. Doran, Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles, Volume 1, Pure and Applied Mathematics, Volume 125 (Academic, 1988).
13. L. Fialkow, Structural properties of elementary operators, in Elementary operators and applications, pp. 55-113 (World Scientific, 1992).
14. D. Husemoller, Fibre bundles (Springer, 1994).
15. R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Volume 1 (Academic, 1983).
16. R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Volume 2 (Academic, 1986).
17. E. Kirchberg and S. Wassermann, Operations on continuous bundles of C^{*}-algebras, Math. Annalen 303 (1995), 677-697.
18. B. Magajna, A transitivity theorem for algebras of elementary operators, Proc. Am. Math. Soc. 118 (1993), 119-127.
19. B. Magajna, The Haagerup norm on the tensor product of operator modules, J. Funct. Analysis 129 (1995), 325-348.
20. G. J. Murphy, C^{*}-algebras and operator theory (Academic, 1990).
21. V. I. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, Volume 78 (Cambridge University Press, 2002).
22. G. K. Pedersen, C^{*}-algebras and their automorphism groups, London Mathematical Society Monograph Series, Volume 14 (Academic, 1989).
23. N. C. Phillips, Recursive subhomogeneous C^{*}-algebras, Trans. Am. Math. Soc. 359 (2007), 4595-4623.
24. R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Analysis 102 (1991), 156-175.
25. D. W. B. Somerset, The central Haagerup tensor product of a C^{*}-algebra, J. Operat. Theory 39 (1998), 113-121.
26. M. Takesaki and J. Tomiyama, Applications of fibre bundles to the certain class of C^{*}-algebras, Tohoku Math. J. 13 (1961), 498-522.
27. D. P. Williams, Crossed products of C^{*}-algebras, Mathematical Surveys and Monographs, Volume 134 (American Mathematical Society, Providence, RI, 2007).
