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We perform direct numerical simulation of supersonic turbulent channel flow over
cubical roughness elements, spanning bulk Mach numbers Mb = 0.3–4, both in the
transitional and fully rough regime. We propose a novel definition of roughness Reynolds
number which is able to account for the viscosity variations at the roughness crest
and should be used to compare rough-wall flows across different Mach numbers. As
in the incompressible flow regime, the mean velocity profile shows a downward shift
with respect to the baseline smooth wall cases, however, the magnitude of this velocity
deficit is largely affected by the Mach number. Compressibility transformations are able
to account for this effect, and data show a very good agreement with the incompressible
fully rough asymptote, when the relevant roughness Reynolds number is used. Velocity
statistics present outer layer similarity with the equivalent smooth wall cases, however,
this does not hold for the thermal field, which is substantially affected by the roughness,
even in the channel core. We show that this is a direct consequence of the quadratic
temperature–velocity relation which is also valid for rough walls. Analysis of the heat
transfer shows that the relative drag increase is always larger than the relative heat transfer
enhancement, however, increasing the Mach number brings data closer to the Reynolds
analogy line due to the rising relevance of the aerodynamic heating.
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1. Introduction

Supersonic boundary layers are ubiquitous in aerospace systems and they feature a
more complex flow physics compared with their incompressible counterpart because
of the strong coupling between the velocity and thermal fields and the presence of
propagating disturbances such as shock waves. The flow physics of compressible turbulent
boundary layers over smooth walls is an active topic of research in the community,
and important advances have been achieved on several fundamental aspects, such as the
relevance of genuine compressibility effects (Bradshaw 1977; Yu, Xu & Pirozzoli 2019),
compressibility transformations (Coleman, Kim & Moser 1995; Foysi, Sarkar & Friedrich
2004; Modesti & Pirozzoli 2016; Trettel & Larsson 2016; Volpiani et al. 2020; Griffin, Fu
& Moin 2021), Reynolds analogy relations (Zhang et al. 2014) and internal flows (Modesti,
Pirozzoli & Grasso 2019; Modesti & Pirozzoli 2019). On the contrary, much less is known
on the effect of distributed surface roughness in high-speed flows.

A typical example of supersonic flow over rough surfaces is the ablative shield of
re-entry vehicles, which experience extreme thermal loads due to the intense aerodynamic
heating (Candler 2019). In order to maintain their structural integrity, re-entry vehicles are
equipped with tiled or ablative thermal protection systems (TPS), and in both cases the
flow may experience a rough surface. Tiled TPS are constituted of carbon or ceramic
tiles with a square, diamond or hexagonal shape and the gaps between the tiles form
a structured roughness pattern. Ablative TPS protect the underlying structure because
the material undergoes pyrolysis and the gases that are generated in this process blow
the boundary layer away from the surface. The surface ablates with a non-uniform
recession rate, resulting in regular (Peltier, Humble & Bowersox 2016; Wilder & Prabhu
2019) or irregular (Kocher et al. 2017) distributed roughness patterns, depending on the
type of material. Another example of compressible flows over roughness is found in
transonic turbines, where the blades are subjected to erosion, forming irregular surface
patterns. Additionally, irregular surface patterns may form at the wing leading edge due
to icing.

Despite the technological relevance of compressible flows over rough surfaces, the vast
majority of studies on rough walls are limited to the incompressible flow regime, which is
well documented both from the experimental (Nikuradse 1933; Perry, Schofield & Joubert
1969; Raupach, Antonia & Rajagopalan 1991; Jiménez 2004; Flack & Schultz 2014) and
numerical (Leonardi et al. 2003; Cardillo et al. 2013; MacDonald et al. 2016; Busse,
Thakkar & Sandham 2017) perspectives. Incompressible flows over rough walls constitute
a topic of active research with several challenges and unanswered questions (Chung et al.
2021). However, there is at least consensus on basic aspects, whereas this is not the case
for the compressible flow regime. For instance, whether the flow experiences the surface
as rough or smooth depends on the roughness Reynolds number k+ = k/δv , where k is
the physical roughness height, δv = νw/uτ the viscous length scale, uτ = √

τw/ρw the
friction velocity, τw the drag per plane area and νw, ρw the kinematic viscosity and density
of the fluid at the wall, respectively. In order to compare different types of roughness
the equivalent sand-grain roughness height ks is often used which is the characteristic
length scale that leads to matched drag between the surface pattern of interest and the
sand-grain roughness originally studied by Nikuradse (1933). For roughness Reynolds
numbers k+

s � 5 the flow is hydraulically smooth, that is the roughness does not induce
any additional drag. As the roughness Reynolds number increases (5 � k+

s � 80) the
flow becomes transitionally rough and in this regime both viscous and pressure drag
are important. For k+

s � 80 the flow becomes fully rough, meaning the skin-friction
coefficient does not depend on the Reynolds number.
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DNS of supersonic flows over roughness

Another aspect that has considerable consensus in the community is the validity of the
outer layer similarity hypothesis (Townsend 1980) over roughness, namely the fact that
the outer flow is not directly affected by the surface topography, but it feels the roughness
through the mean wall-shear stress. A practical consequence of outer layer similarity is that
the drag variation induced by the roughness can be related to the streamwise momentum
deficit, namely the downward shift of the mean velocity profile, or Hama roughness
function (Hama 1954; Clauser 1956), �U+. The main advantage is that, unlike the drag
variation, the Hama roughness function is fairly independent of the Reynolds number and
therefore it allows us to use numerical simulations and experiments to estimate the drag
variation at higher Reynolds numbers, typical of engineering applications. In the case of
compressible flows, even these fundamental aspects are not set yet. For instance, at the
present stage it is not clear if the onset of the fully rough regime occurs for the same
k+

s ≈ 80 also in the supersonic case, or if, for instance, the additional wave drag modifies
the transition to the fully rough regime. Similarly, the effect of shock and expansion
waves induced by the roughness could challenge the validity of outer layer similarity,
complicating the prediction of drag in high-speed flows. At present, only few experimental
studies of supersonic flows over rough walls are available. Ekoto et al. (2008) performed
experiments of turbulent boundary layer at free stream Mach number M∞ = 2.86 over
distributed cubic and diamond roughness elements (k/h ≈ 11, k+

s ≈ 300), with the main
goal to identify similarities and differences between these two roughness shapes. They
used different experimental techniques, namely particle image velocimetry, schlieren
photography, Pitot measurements and pressure sensitive paint, to measure the mean
velocity and Reynolds shear stress. They found that the diamond roughness elements
distort the flow more than the cubes and induce shock waves which propagate to the
outer wall layer. Their mean flow statistics show similarity with incompressible flows over
rough walls, such as a downward shift of the mean velocity profile. However, a systematic
comparison with incompressible flow data was not performed.

Peltier et al. (2016) performed schlieren photography and particle image velocimetry
over diamond roughness elements (k+ = 160, k+

s = 600) at M∞ = 4.9, and they also
observed oblique shock and expansion waves propagating from the roughness to the outer
flow. The mean velocity profile in the overlap region followed a logarithmic profile with a
downward shift of �U+ ≈ 13. This value is similar to the one of the incompressible fully
rough asymptote for k+

s = 600 (�U+ ≈ 12), implying negligible compressibility effects
and the same drag variation with the respect to a smooth wall as in the incompressible
flow regime. Kocher et al. (2018) performed particle image velocimetry and schlieren
photography of a supersonic boundary layer at M∞ = 2 over diamond and realistic
roughness. Similarly to other studies, the schlieren images of their rough cases reveal the
presence of shock waves generated by the roughness, propagating into the boundary layer
up to the free stream region. The inner-scaled mean velocity profiles show the typical
downward shift, which increases in the streamwise direction from transitional to fully
rough. The authors reported different values of �U+ than in previous studies at higher
Mach number (Peltier et al. 2016), and attributed the discrepancies to the limited validity
of the concept of k+

s across Mach numbers.
To our knowledge, only one direct numerical simulation (DNS) study of supersonic

flow over roughness has been performed so far (Tyson & Sandham 2013). The authors
carried out DNS of compressible turbulent channel flow at bulk Mach numbers Mb =
0.3, 1.5, 3.0 over two-dimensional wavy surfaces with different wave amplitudes and
wavelengths spanning both the transitional and fully rough regimes. They evaluated the
van Driest transformed velocity shift and found that it decreases with the Mach number,
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thus contradicting previous experimental studies which reported no compressibility effects
on the Hama roughness function.

From this literature survey we find that supersonic flows over rough walls have so far
been mainly studied experimentally, and even the experimental studies are very limited
in number. Moreover, most studies are restricted to adiabatic or nearly adiabatic wall
conditions, whereas in realistic engineering applications the heat flux plays a relevant
role (Bowersox 2007). As a result several fundamental aspects, which are established
in the incompressible flow regime, have barely been addressed in the framework of
high-speed flows. To cover this gap, in this work we present novel results from DNSs
of supersonic turbulent channel flow over cubical roughness elements at various Mach
and Reynolds numbers, covering both the transitionally and fully rough regime. The
manuscript is organized as follows. We introduce the numerical methodology in § 2, where
a description of the computational set-up and roughness configuration is provided. Results
are reported in § 3 where velocity and thermal statistics are discussed, with a focus on
the assessment of compressibility effects on the roughness function and the outer layer
similarity. Conclusions are finally given in § 4.

2. Methodology

2.1. Physical model
We solve the compressible Navier–Stokes equations for a perfect heat-conducting gas,

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (2.1a)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂σij

∂xj
+ f δi1, (2.1b)

∂ρE
∂t

+ ∂ρujH
∂xj

= −∂qj

∂xj
+ ∂σijui

∂xj
+ fu1 + Φ, (2.1c)

where ui, i = 1, 2, 3 are the velocity components in the streamwise, wall-normal
and spanwise directions, respectively, ρ, p, T are the the fluid density, pressure and
temperature, respectively. The total energy per unit mass is denoted as E = cvT + uiui/2,
H = E + p/ρ is the total enthalpy, whereas σij and qj are the viscous stress tensor and heat
flux vector,

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, (2.2)

qj = −k
∂T
∂xj

. (2.3)

The dependence of the viscosity coefficient on temperature is accounted for through a
power law with exponent 0.76 and k = cpμ/Pr is the thermal conductivity with Prandtl
number, Pr = 0.72. We consider the channel flow configuration where the flow between
two infinite isothermal walls is driven in the streamwise direction by a body force f , which
is evaluated at each time step in order to discretely enforce a constant mass-flow rate with
the corresponding power spent added to (2.1c). Additionally, a bulk cooling term Φ is
added to the total energy equation to control the bulk flow temperature (Yu et al. 2019),
that is kept constant during the simulation. In particular, Φ is evaluated at each time step
such that only a fraction Θ of the bulk flow kinetic energy is converted into wall heat
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flux, namely Tw = Tb[1 + 0.5Θ(γ − 1)rM2
b], where γ = 1.4 is the heat capacity ratio,

r = 0.89 the recovery factor, Tw is the wall temperature, Mb = ub/
√

γ RTb the bulk Mach
number of the flow, and ρb, ub and Tb are the bulk flow density, velocity and temperature

ρb = 1
V

∫
V

ρ dV, ub = 1
ρbV

∫
V

ρu dV, Tb = 1
ρbubV

∫
V

ρuT dV. (2.4a–c)

2.2. Numerical method
The Navier–Stokes equations are solved using the solver STREAmS (Bernardini et al.
2021), which has been extended with immersed boundary capabilities. The nonlinear
terms in the Navier–Stokes equations are discretized using a hybrid energy-conservative
shock-capturing scheme in locally conservative form. In shock-free regions, we use
a sixth-order energy consistent flux, which guarantees a discrete conservation of the
total kinetic energy in the limit case of inviscid incompressible flow (Pirozzoli 2010).
Shock-capturing is achieved through Lax–Friedrichs flux vector splitting, where the
characteristic fluxes are reconstructed at the interfaces using a fifth-order, weighted
essentially non-oscillatory reconstruction (Jiang & Shu 1996). To determine the local
smoothness of the solution and switch between the central and shock-capturing scheme, a
classical shock sensor is adopted (Ducros et al. 1999). The viscous terms are expanded into
a Laplacian form and approximated with sixth-order central finite-difference formulae to
avoid odd–even decoupling phenomena. Time stepping is carried out by means of Wray’s
three-stage third-order Runge–Kutta scheme (Spalart, Moser & Rogers 1991).

The complexity of the roughness geometry is handled using a ghost-point-forcing
immersed boundary method to treat arbitrarily complex geometries (Piquet, Roussel &
Hadjadj 2016; De Vanna, Picano & Benini 2020). The geometry of the solid body is
provided in OFF format for three-dimensional objects, and the computational geometry
library CGAL (The CGAL Project 2021) is used to perform the ray-tracing algorithm.
This allows us to define the grid nodes belonging to the fluid and to the solid, and to
compute the distance of each point from the interface. To retain the same computational
stencil close to the boundaries, the first three layers of interface points inside the body are
tagged as ghost nodes. For each ghost node, we identify a reflected point along the wall
normal, lying inside the fluid domain. We interpolate the solution at the reflected point
using a trilinear interpolation and use the values at the reflected points to fill the ghost
nodes inside the body to apply the desired boundary condition. An extensive description
of the algorithm is available in the work by De Vanna et al. (2020).

2.3. Flow configuration and computational parameters
In this work we consider rough walls formed by cubic elements of side k, which are
representative of the structured roughness patterns forming over ablative surfaces. The
cubes are placed specularly over the bottom and top channel walls with a spacing in the
wall-parallel directions equal to 2k, as shown in figure 1. We develop a DNS dataset of
geometrically increasing roughness, namely we keep constant the roughness size with
respect to the channel half-width (k/h = 0.08), while increasing the friction Reynolds
number from Reτ ≈ 500 to Reτ ≈ 1000, corresponding to roughness Reynolds numbers
k+ ≈ 40 and k+ ≈ 80. For each Reynolds number, we consider two supersonic cases at
bulk Mach number Mb = 2, Mb = 4 and one additional case at Reτ ≈ 500, Mb = 0.3. For
each rough wall case, we carry out a companion smooth wall simulation at matching bulk
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Figure 1. Sketch of the computational set-up for compressible channel flow over cubical roughness. The
elements have side k and spacing 2k in both the streamwise and spanwise directions. Here h is the channel
half-width.

Mach number and approximately matching friction Reynolds number, for a total of 10
simulations, as reported in table 1.

The DNS are carried out in a rectangular box with size 6h × 2h × 3h where h is the
channel half-height. The mesh spacing is constant in the wall-parallel directions, and an
error-function mapping is used to cluster mesh points towards the roughness crest (i.e. y =
k). A smooth transition between the two distributions is obtained using a spline function
(Gregory & Delbourgo 1982). We use a standard DNS resolution for smooth wall cases,
whereas a much finer mesh was adopted for the rough wall cases, with approximately 40
mesh points per roughness element in each direction (i.e. �x ≈ �z ≈ k/40), as shown in
table 1. This resolution has been chosen on the basis of a mesh sensitivity analysis reported
in the Appendix.

All computations are initiated with a parabolic velocity profile with superposed random
perturbations, and with uniform values of density and temperature. As for the boundary
conditions, periodicity is enforced in the homogeneous wall-parallel directions, and
no-slip isothermal (Θ = 0.35) conditions are imposed at the channel walls. Here Θ is
a key parameter and estimating its value in a practical flow configuration is not easy
because it may depend on several aspects, such as the type of material of the solid wall, the
type of cooling (ablation, tiles, transpiration) and of course Mach and Reynolds number.
Yu et al. (2019) performed smooth wall simulations with Θ in the range 0.25–1 and
reported increasing compressibility effects for colder walls. Our value of Θ corresponds
to a relatively cold wall which is representative of the strong cooling conditions found on
heat shields, and is in the range studied by Yu et al. (2019).

In the following we use both the Favre (·̃) and Reynolds (·̄) ensemble averages (i.e.
averages in time and over the roughness period) defined as

f (x, y, z, t) = f̃ (x, y, z) + f ′′(x, y, z, t), f (x, y, z, t) = f̄ (x, y, z) + f ′(x, y, z, t). (2.5a)

Ensemble averages are further decomposed into a mean and dispersive component,

f̃ (x, y, z) = 〈f̃ 〉( y) + f̃ d(x, y, z), f̄ (x, y, z) = 〈f̄ 〉( y) + f̄ d(x, y, z), (2.6a)

where angle brackets 〈·〉 denote intrinsic averages in the wall-parallel directions. This triple
decomposition allows us to split the total Reynolds stress tensor into a turbulent and a
dispersive component,

τij = τ t
ij + τ d

ij = 〈ρ̄〉〈ũ′′
i u′′

j 〉 + 〈ρ̄〉〈ũd
i ud

j 〉, (2.7)

which will be analysed in the next section.
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(b)(a)

Figure 2. Instantaneous flow field for cases S4_1000 and R4_1000. The longitudinal and cross-stream planes
show the temperature field, whereas streamwise velocity fluctuations are reported in the wall-parallel planes at
10 wall units from the wall (S4_1000) and from the roughness crest (R4_1000).

3. Results

3.1. Flow visualizations
We begin by inspecting the instantaneous flow fields of representative flow cases S4_1000
and R4_1000 in figure 2, where the wall-parallel planes show contours of the streamwise
velocity, and the wall-normal planes display the temperature field. The near-wall flow is
populated by streaks both for the smooth and rough cases, but the roughness substantially
changes the flow organization. The spacing between the roughness elements is large
enough (2k ≈ 160δv) to interfere with the canonical streaks spacing (≈100δv), and
high-speed streaks are predominantly locked between two spanwise-adjacent roughness
rows, whereas low-speed streaks tend to be located on top of the roughness crests. The
wall-normal planes highlight large bulges of hot fluid raising from the channel walls and
protruding almost to the channel centre which are particularly evident in the cross-stream
plane, whereas they get skewed in the streamwise plane under the effect of the mean shear.
We note that the space between the roughness elements is primarily filled by hot fluid,
whereas close to the smooth wall we can identify cold fluid patches down to the wall.
Hence the roughness reduces the temperature fluctuations close to the wall. The rough
wall case shows much larger temperature excursions, both at the wall and at the channel
centre, which is a hint of possible effects of the roughness on the outer layer.

Another view of the instantaneous flow field is presented in figure 3, where we show
the instantaneous streamwise Mach number u/c in the wall-normal planes for the smooth
and rough flow cases S4_1000 and R4_1000. The smooth flow field shows a canonical
organization where high-speed structures protrude down to the wall and low-speed
eruptions extend towards the channel core, which is particularly evident in the cross-stream
plane, figure 3(b). Over the smooth wall the flow is supersonic down to the viscous
sublayer, as clear from the orange line indicating sonic conditions.

The flow organization of the rough wall case R4_1000 is substantially different from the
smooth wall. The channel is essentially divided into two regions, where the high-speed
core is encased by low-speed fluid close to the wall. The high-speed bundle at the channel
centre appears less penetrated by the low-speed ejections from the wall as compared with
the smooth wall, and the maximum Mach number is considerably higher, with localized
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Figure 3. Instantaneous Mach number u/c for smooth flow case S4_1000 and rough wall case R4_1000
in a streamwise wall-normal plane (a,c) and a cross-stream plane (b,d). The orange isoline indicates sonic
conditions u/c = 1.

maxima up to u/c ≈ 8. The sonic isoline (orange) in figure 3(c,d) shows that the roughness
crests are most frequently subsonic but inrushes of high-speed fluid can penetrate down to
the roughness troughs and the local Mach number is supersonic.

As common for turbulent flows the instantaneous field can be very different from the
mean, and in figure 4 we show the average Mach numbers associated with the streamwise
and wall-normal velocities, and the mean temperature close to the roughness element. The
mean flow is effectively three-dimensional close to the roughness, especially below the
crest, where we note a non-uniform spatial distribution both for the Mach number and
the temperature fields, whereas the mean flow becomes homogeneous in the wall-parallel
directions for y � 3k.

The streamwise Mach number (figure 4a–e) is affected by both Reb and Mb. Increasing
the Reynolds number leads to two competing effects, namely a fuller velocity profile, but
also a larger k+ and therefore a larger upward shift of the near wall cycle. In this case
the latter effect is dominating. Increasing the bulk Mach number brings high speed fluid
closer to the roughness, but for the cases under scrutiny the mean flow at the crest is never
supersonic, although it reaches ũ/c̄ ≈ 0.8 for flow cases at Mb = 4 (figure 4c,d).

The Mach number associated with the wall-normal velocity is largely subsonic and it
does not exceed ṽ/c̄ ≈ 0.2, featuring extended separated flow regions both upstream and
downstream of the cube because elements are in each other wakes.

The maximum mean temperature occurs at the crest height, but it is highly localized at
the upstream corner of the roughness element, in correspondence of the stagnation point
where the kinetic energy of the flow is converted into internal energy.

3.2. Compressibility effects on added drag
A crucial aspect of supersonic flows over roughness is whether the flow experiences the
same added drag with the respect to the smooth wall across Mach numbers. The drag
variation with respect to the smooth wall can be expressed as

DV = 1 − cf

cfs
= 1 − 1

Rc

Rcs

(
1 − �U+

U+
cs

)2 , (3.1)
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Figure 4. Mean flow statistics close to the roughness element: streamwise Mach number (a–e), wall-normal
Mach number ( f –j) and temperature (k–o) for flow cases R2_500 (a, f ,k), R2_1000 (b,g,l), R4_500 (c,h,m),
R4_1000 (d,i,n) and R03_500 (e,j,o).

where cf = 2τw/(〈ρ̄c〉U2
c ), Uc = 〈ũ〉(h) is the mean velocity at the channel centreline,

Rc = 〈ρ̄c〉/〈ρ̄w〉, and the subscript s denotes the smooth wall. Equation (3.1) shows that
the drag variation can be related to the velocity deficit at the channel centre and in the
logarithmic region,

�U+ = U+
cs − U+

c ≈ 〈ũs〉( y+) − 〈ũ〉( y+), 100 < y+ < 0.3Reτ (3.2a,b)

where the second identity is valid if outer layer similarity holds. Hence, understanding
compressibility effects on DV is intrinsically related to finding a compressibility
transformation for the mean velocity. Moreover, a notable difference with respect to the
incompressible case is the presence of the density ratio Rc/Rcs in (3.1), which requires
knowledge of the density profile.

After the celebrated velocity transformation proposed by van Driest (1951), several other
compressibility transformations have been developed (Trettel & Larsson 2016; Volpiani
et al. 2020) aiming at improving the accuracy with reference incompressible flow data,
especially for isothermal walls.

A generic compressibility transformation for the mean velocity can be expressed using
stretching functions for the velocity and wall-normal coordinate,

yI( y) =
∫ y

0
fI(η) dη, uI( y) =

∫ y

0
gI(η)

d〈ũ〉
dη

, (3.3a,b)

where fI and gI for different transformations are reported in table 2. The transformed wall
coordinate also allows us to define the equivalent incompressible Reynolds number,

Reτ I = yI(h)

δv

. (3.4)

942 A44-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

39
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.393


DNS of supersonic flows over roughness

Transformation Wall distance (fI) Mean velocity (gI)

van Driest (1951, VD) fD = 1 gD = R1/2

Trettel & Larsson (2016, TL) fT = d
dy

(
yR1/2

M

)
gT = M

d
dy

(
yR1/2

M

)
Volpiani et al. (2020, V) fV = R1/2

M3/2 gV = R1/2

M1/2

Table 2. Stretching functions for the generic compressibility transformation (3.3a,b) with R = 〈ρ̄〉/〈ρ̄w〉 and
M = 〈μ̄〉/〈μ̄w〉.

Recent compressibility transformations (Trettel & Larsson 2016; Volpiani et al. 2020)
have proved their ability to account for compressibility effects and the transformed mean
velocity profile over smooth walls exhibits the canonical logarithmic region,

u+
Is = 1

κ
log( y+

I ) + B, 100 < y+
I < 0.3Reτ , (3.5a,b)

where κ ≈ 0.39 is the von Kármán constant and B ≈ 5.1. In the presence of wall roughness
the mean velocity profile is characterized by a downward shift,

u+
I = 1

κ
log( y+

I ) + B − �U+
I , 100 < y+

I < 0.3Reτ . (3.6a,b)

To verify the accuracy of compressibility transformations, figure 5 shows the mean
velocity profile, untransformed (figure 5a), transformed according to van Driest (1951,
VD)(figure 5b), Trettel & Larsson (2016, TL)(figure 5c) and Volpiani et al. (2020,
V)(figure 5d) for smooth (dashed) and rough wall cases (solid).

The smooth wall profiles transformed according to V show a very good agreement with
the nearly incompressible flow case (dashed line with plus sign). On the contrary VD and
especially TL transformations are less accurate. Rough wall cases are all characterized
by the typical downward shift of the mean velocity, but we find visible compressibility
effects. For instance, the supersonic cases R2_500 (red long-dashed line with solid circle)
and R4_500 (red long-dashed line with solid box) show a different downward velocity
shift with respect to the nearly incompressible case R03_500 (solid line with plus sign),
although they share the same k+. We note that none of the compressibility transformations
is able to account for this discrepancy. Hence, the canonical definition of roughness
Reynolds number does not fully characterize the flow regime in the case of compressible
flows.

As commonly done in the low-speed regime (Ibrahim et al. 2021), rough-wall velocity
profiles have been shifted to account for the effective wall origin of the flow. Over the years,
several methods have been proposed to find the virtual origin, which have been recently
reviewed by Chung et al. (2021). In this study we opt for a simple option and chose d =
0.9k for all cases, which allows us to substantially reduce the uncertainty in the measure of
the velocity deficit. To justify this choice in figure 6, we also report the difference between
smooth and rough wall for the transformed velocity profile uV as a function of the wall
distance, after shifting (dash–dotted) and before shifting (solid). The figure shows that the
velocity deficits for the shifted profiles are much flatter, thus increasing the confidence in
evaluating �U+

I . Throughout this work we evaluate the velocity shifts at the nominal edge
of the logarithmic region y+

I = 0.3Reτ I .
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Figure 5. Mean streamwise velocity profiles for smooth (dashed) and rough (solid) wall cases. Untransformed
velocity (a), van Driest-transformed velocity (van Driest 1951) (b), Trettel–Larsson-transformed velocity
(Trettel & Larsson 2016) (c) and Volpiani-transformed velocity (Volpiani et al. 2020) (d). Rough wall cases
have been shifted by d = 0.9k and profiles are shown from the roughness crest upwards.

102 103

yV
+ yV

+

4

8

12

16

4

8

12

16

u+ V
s −

 u
+ V

(a)

102 103

(b)

Figure 6. Streamwise velocity deficit for Volpiani et al. (2020) transformation 〈ũVs〉+ as a function of the
transformed wall distance y+

V , at Mb = 2 (a) and Mb = 4 (b). Unshifted profiles are denoted with a solid line
and shifted profiles with dash–dotted lines.

To understand the role of the roughness Reynolds number we cast (3.6a,b) as

u+
I = 1

κ
log( yI/kI) + C(kI), (3.7)
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where kI is the equivalent incompressible roughness height and C(kI) is a roughness
dependent function. In the incompressible regime there is no ambiguity in the definition of
kI = k, whereas in the compressible case multiple definitions are possible and we consider
two options. The first naturally stems from the compressibility transformation for the
wall-normal coordinate (3.4),

kI = yI(k). (3.8)

Equation (3.8) has the advantage of being consistent with the transformed velocity shift
�U+

I , however, it might be difficult to estimate it from experimental data. For this reason
we also consider the following length scale:

k∗ = k
〈ν̄w〉
〈ν̄k〉 , (3.9)

where ν̄k is the mean kinematic viscosity evaluated at the roughness crest.
Figure 7 shows the velocity shift as a function of the equivalent sand-grain roughness

Reynolds number. In figure 7(a) we report the untransformed velocity shift ΔU+ as a
function of k+

s , whereas figures 7(b–d) show the transformed shift �U+
I as a function of

the corresponding k+
sI . The relationship between the physical roughness height and ks for

the present database was obtained by matching the nearly incompressible case R03_500
with the fully rough asymptote, which provides ks/k = 1.9. We also recall that the concept
of sand-grain roughness Reynolds number is only valid in the fully rough regime, whereas
in the transitionally rough regime different roughness geometries exhibit a different trend
with k+

s . Thakkar, Busse & Sandham (2018) performed DNS of incompressible channel
flow over grit blasted surface which shows a �U+ very similar to the data of Nikuradse
(1933) also in the transitionally rough regime. However, this is in general not expected
especially for structured roughness patterns such as bars and cubes (Chung et al. 2021).
The untransformed �U+ shows visible discrepancies with respect to the incompressible
sand-grain roughness data of Nikuradse (1933, crosses), and also when compared with the
more recent DNS data of Abderrahaman-Elena, Fairhall & García-Mayoral (2019) for a
similar roughness geometry. This is particularly evident for the transitionally rough cases,
which present substantially different values of �U+, although they share the same k+

s ,
figure 7(a). As for the effect of compressibility, we observe a slightly better agreement for
ΔU+

VD in figure 7(b), but transitionally rough data at Mb = 4 (filled square symbol) still
differ from the incompressible data of Abderrahaman-Elena et al. (2019). In figure 7(b)
we also report experimental data of supersonic boundary layer over rough walls, extracted
from the review of Bowersox (2007), which are in good agreement with incompressible
flow data and with the fully rough asymptote. However, experiments have been carried out
in nearly adiabatic wall conditions (Goddard 1959; Latin & Bowersox 2000; Ekoto et al.
2008), whereas the present DNS dataset is characterized by strong cooling at the wall,
thus the thermodynamics properties variation at the crest is more significant and this is not
accounted for by k+

s . Figure 7(c,d) show the transformed velocity shifts �U+
TL and �U+

V
as a function of the respective roughness Reynolds numbers (3.8). These transformations
show similar accuracy to van Driest, and they only partially account for compressibility
effects, whereas differences are still evident for the case R4_500 (filled square).

In figure 8 we report the velocity shift as a function of k+∗s, as defined in (3.9). The
figure shows that the scaling based on the viscosity at the crest substantially improves the
agreement with incompressible flow data, when compared with the transformed roughness
height k+

I in figure 7.
When using k+

s∗, we find an excellent agreement with incompressible data for all
compressibility transformations (figure 8b–d), although a slightly better result is visible
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Figure 7. Shift of the mean streamwise velocity �U+ for different compressibility transformations:
untransformed (a); VD transformation (b); TL transformation (c); and V transformation (d), as a function
of the corresponding equivalent sand-grain roughness Reynolds number k+

s and k+
sI . Open symbols indicate

cases at Reτ ≈ 1000, filled symbols at Reτ ≈ 500 for Mb = 2 (circles) and Mb = 4 (squares). In panel (b)
experimental data of supersonic boundary layer are reported: Reda, Ketter & Fan (1975, upward triangle);
Berg (1979, pentagon); Goddard (1959, downward triangle); (Latin & Bowersox 2000, star); (Ekoto et al.
2008, diamond). Incompressible data are also reported: experiments of Nikuradse (1933, crosses) and DNS of
Abderrahaman-Elena et al. (2019, right triangle).

for �U+
V . The idea behind the length scales k∗ and kI is similar, namely they attempt

to account for density variations between the crest and trough of the roughness, and
they both seem to help the comparison with incompressible data. The transformed
roughness height kI has the advantage to be consistent with its velocity transformation
�U+

I , however, k∗ leads to slightly more accurate results, besides being easier to
compute.

We believe that the definition of a relevant roughness Reynolds number k+
I is a key

aspect of compressible flows over roughness, but this topic has been often glossed over
by previous studies, who might have involuntarily (but erroneously) incorporated this
effect into k+

s . For instance, Hill, Voisinet & Wagner (1980) reported differences between
ks of their supersonic sand-grain roughness and Nikuradse’s data, and attributed the
discrepancies to uncertainty in the roughness manufacturing. Another example is the work
by Berg (1979), who carried out experiments of bar roughness at M∞ = 6 and computed
ks by matching his �U+

D with Nikuradse’s data. In contrast our data show that calculating
ks/k by matching the transformed velocity shift �U+

I with the fully rough asymptote is
not enough, because the roughness Reynolds number is also influenced by compressibility
effects.
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Figure 8. Shift of the mean streamwise velocity �U+ for different compressibility transformations:
untransformed (a); VD transformation (b); TL transformation (c); and V transformation (d), as a function
of the corresponding equivalent sand-grain roughness Reynolds number k+

s = 1.9k+ and k+
s∗ = 1.9k+∗ . Open

symbols indicate cases at Reτ ≈ 1000, filled symbols at Reτ ≈ 500 for Mb = 2 (circles) and Mb = 4
(squares). Incompressible data are also reported: experiments of Nikuradse (1933, crosses) and DNS of
Abderrahaman-Elena et al. (2019, right triangle).

3.3. Turbulent fluctuations
We analyse the effect of surface roughness on turbulent fluctuations by decomposing the
Reynolds stress tensor into a turbulent and a dispersive component as in (2.7). Figure 9
shows the streamwise Reynolds stress component τ11 as a function of the viscous-scaled
distance from the wall including both rough (solid lines) and smooth wall simulations
(dashed lines). To facilitate comparison across Mach numbers, profiles are reported as a
function of the transformed coordinate y+

TL, which is usually regarded as the correct wall
distance for the Reynolds stresses (Coleman et al. 1995; Huang, Coleman & Bradshaw
1995).

Smooth wall data are characterized by a lack of universality even in the near wall
region where the peak of τ t

11 increases with both the Reynolds and Mach number. The
former effect, widely reported also in the low-speed regime, is a consequence of the
increasing relevance of outer layer structures with the Reynolds number, which provide
additional energy at the low wavenumbers due to the imprinting effect on the near wall
cycle (Hutchins & Marusic 2007). Instead, the latter is typically considered a genuine
compressibility effect that cannot be accounted for by the density scaling (Pirozzoli &
Bernardini 2011).

We note that the roughness disrupts the near wall cycle and the inner peak of τ t
11 is

replaced by a much milder growth of the velocity fluctuations. The streamwise turbulent
stress component has a maximum right above the crest, whose intensity is affected by both
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Figure 9. Turbulent (a) and dispersive (b) streamwise Reynolds stress component as a function of y+
TL for all

flow cases. Dashed lines denote smooth wall cases and solid lines rough wall cases. Symbols in table 1.

Mach and Reynolds number. At approximately matching ReτTL, we observe that the peak
of τ t

11 increases with the Mach number indicating compressibility effects in proximity of
the crest. We also note that at fixed Mach number the peak of τ t

11 increases with ReτTL,
consistently with the incompressible flow regime.

The dispersive and turbulent stresses have approximately the same intensity below the
roughness crest, whereas τ d

11 dominates in the region y ≈ k.
The peak of τ d

11 occurs right below the roughness crest, and again a clear effect of
compressibility is visible, with higher values for increasing Mach number. A rapid decay
of the dispersive stress is observed moving away from the wall, implying that the mean
flow becomes spatially homogeneous above the roughness crest.

Additional insight on the turbulence fluctuations can be gained from figure 10, where we
report the turbulent and dispersive components of the Reynolds shear stress. Differently
from the streamwise component, the density scaling is able to account for compressibility
effects, and the main differences between cases are associated with the Reynolds number.
As in the incompressible flow regime, the main effect of the roughness is to shift upwards
the near wall cycle, thus the peak of τ t

12 occurs above the crest. As for τ t
11, we observe

a good match between rough and smooth wall in the channel core, which supports the
validity of outer layer similarity for the velocity fluctuations. The dispersive component
presents a maximum at the roughness crest, with only minor effect of the Mach number.

To better assess compressibility effects on turbulence in figure 11 we plot the turbulent
Mach number (τ t

11 + τ t
22 + τ t

33)/〈c̄〉 as a function of the wall distance for all flow cases. For
the nearly incompressible case Mt < 0.05, indicating genuine incompressible turbulence,
as expected. For supersonic smooth flow cases at Mb = 2 (figure 11a,b) the peak of Mt
does not exceed 0.3, which is often considered the upper edge above which compressibility
effects become relevant. Smooth flow cases at Mb = 4 (figure 11c,d) have a slightly higher
peak Mt ≈ 0.5, indicating the increasing role of compressibility in the buffer layer, which
is also reflected by the higher peak of the streamwise velocity fluctuations previously
discussed.

Rough wall cases show a substantially different trend with respect to the smooth walls
at all Mach numbers. Besides the obvious shift of the near wall peak, rough wall cases
present much higher values of Mt and also a different shape of the profiles in the outer
region, which cannot be accounted for by a simple virtual origin shift. This observation
suggests that the roughness is able to affect the thermal field in the bulk flow region, as
investigated in the next section, where we focus on the thermal flow statistics.
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Figure 10. Turbulent (a) and dispersive (b) Reynolds shear stress as a function of y+
TL for all flow cases.

Dashed lines denote smooth wall cases and solid lines rough wall cases. Symbols in table 1.
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Figure 11. Turbulent Mach number Mt = (τ t
11 + τ t

22 + τ t
33)/〈c̄〉 for flow cases R2_500, S2_500 (a), R2_1000,

S2_1000 (b), R4_500, S4_500(c), R4_1000, S4_1000 (d). Nearly incompressible flow data S03_500, R03_500
are also reported in panels (a,b). Symbols in table 1.

3.4. Thermal statistics
One of the peculiar features of compressible supersonic flows is the active coupling
between momentum and heat transport. The study of heat transfer over rough walls has
been limited to the incompressible flow regime where temperature can be considered a
passive scalar (MacDonald, Hutchins & Chung 2019; Peeters & Sandham 2019), which
allows direct comparison with the velocity. In the compressible case, feedback coupling
between the temperature and momentum equations leads to a substantially different effect
of the roughness on the thermal field.
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Figure 12. Mean temperature profile normalized by the centreline temperature as a function of the
viscous-scaled distance from the wall for flow cases R2_500, S2_500 (a), R2_1000, S2_1000 (b), R4_500,
S4_500 (b), R4_1000, S4_1000 (d). Dashed lines denote smooth wall cases and solid lines rough wall cases.
Symbols in table 1.

Figure 12 shows the mean temperature profile normalized with its value at the centreline
Tc, as a function of the inner scaled wall distance. As typical of supersonic boundary layers
with isothermal cold walls, the smooth-wall profiles exhibit a peak of the static temperature
within the wall layer, at y+ ≈ 5, with a positive temperature gradient at the wall, meaning
that the fluid releases heat to the wall.

The rough wall temperature profiles retain the same qualitative trend of the smooth wall
cases, but they also present relevant differences. The maximum of the temperature is now
located approximately at the roughness crest, and it is higher than for the smooth wall. The
rough wall profiles show higher values of 〈T̄〉/Tc over the entire wall layer, suggesting that
outer layer similarity does not hold for the temperature field.

In order to understand why outer layer similarity holds for the mean velocity but
not for the mean temperature we investigate the temperature–velocity relation. The
coupling between the momentum and energy equations gives rise to a well known
quadratic relationship between temperature and velocity (Smits & Dussauge 1996), and
several analytical expressions have been proposed which accurately approximate this
functional form (Walz 1959; Modesti & Pirozzoli 2016). A temperature–velocity relation
for isothermal walls has been proposed by Zhang et al. (2014),

〈T̄〉
Tw

= 1 + Trg − Tw

Tw

〈ũ〉
〈ũc〉 + 〈Tc〉 − Trg

Tw

( 〈ũ〉
〈ũc〉

)2

, (3.10)

where Trg = 〈Tc〉 + rg〈ũc〉2/(2Cp), rg = 2Cp(Tw − 〈Tc〉)/〈ũc〉2 − 2Prqw/(〈ũc〉τw), and
the subscript c indicates quantities at the centreline.
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Figure 13 shows the mean temperature as a function of the mean velocity for all flow
cases, compared with the analytical relation by Zhang et al. (2014). For flow cases at
Mb = 2 (figure 13a,b) the agreement between DNS data and (3.10) is excellent, for both
rough and smooth wall flow cases, whereas some discrepancies are visible at higher
Mach number (figure 13c,d). Despite these differences, figure 13 shows that the quadratic
relation between velocity and temperature is a robust flow feature and it is also valid for
rough walls. Therefore, both for rough and smooth walls it is possible to write

T+ = a〈ũ〉+ + b〈ũ〉+2 + T+
w , (3.11)

where a, b are parameters which depend on Mach, Reynolds number, Prandtl number and
the boundary conditions. We further assume that the compressible mean velocity profiles
of smooth and rough walls exhibit a logarithmic region,

〈ũs〉+ = 1
κ ′ log( y+) + B′, 〈ũ〉+ = 1

κ ′ log( y+) + B′ − �U+, (3.12a,b)

where κ ′, B′ are not universal as in the incompressible case but depend on the Mach
number and boundary conditions. This is essentially equivalent to assuming that outer
layer similarity holds for the untransformed mean velocity profile, which is a rather
accurate approximation as shown in figure 5. Substituting (3.12a,b) into the respective
temperature–velocity relation (3.11), and taking the difference we obtain

〈T̃s〉+ − 〈T̄〉+ = f ( y+), (3.13)

namely, unlike for the mean velocity, the difference between the smooth wall temperature
and the rough wall temperature in the logarithmic region is a function of the wall
distance. This clearly breaks the outer layer similarity for the mean temperature. Hence, for
compressible flows over rough walls the lack of outer layer similarity can be traced back to
the nonlinear relationship between the mean temperature and the mean velocity, which is
a direct consequence of the aerodynamic heating. Additionally, we report the temperature
fluctuations normalized by the friction temperature Tτ ,

Tτ = qw

ρwCpuτ

qw = 1
2LxLz

∫
V

∇ · (
k̄∇T̄

)
dV, (3.14a,b)

where qw is the heat flux per plane area.
Figure 14 shows the temperature fluctuations in viscous units for smooth- and rough-wall

cases. For the smooth wall we note small values of the temperature fluctuations up to
y+ ≈ 10, indicating a thicker viscous sublayer for the temperature than for velocity, and as
a result the near wall peak of the temperature is shifted to y+ ≈ 25–30.

The temperature fluctuations of the rough wall cases show a substantially different
behaviour from the smooth wall. The roughness disrupts the near wall cycle and it shifts
turbulence upwards, thus temperature fluctuations start increasing above the roughness
crest.

The rough wall cases show the emergence of a peak of the temperature fluctuations in the
outer layer, which is particularly evident for the high Reynolds number cases, figure 14(b).
This peak cannot be associated with an upward shift of the near wall cycle because it
occurs well into the outer layer and it increases with the Reynolds number. Therefore, we
conclude that, unlike for the velocity field, the roughness is able to modify the temperature
fluctuations in the outer layer.
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Figure 13. Temperature–velocity relation for flow cases R2_500, S2_500 (a), R2_1000, S2_1000 (b), R4_500,
S4_500 (b), R4_1000, S4_1000 (d). Dashed lines denote smooth wall cases and solid lines rough wall cases.
Symbols in table 1. The dotted (smooth) and dash–dotted (rough) lines refer to (3.10).
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Figure 14. Temperature fluctuations normalized by the friction temperature Tτ as a function of the
viscous-scaled distance from the wall for smooth wall flow cases (a) and rough wall flow cases (b). Symbols

in table 1.

The analysis of the one-point statistics of the temperature field reveals that T is
substantially affected by the presence of the roughness, therefore it is worth comparing
the wall heat flux of smooth and rough walls.

We report the wall heat flux in terms of Stanton number,

St = qw

ρbubCp(Tw − Tr)
= 1

u+
b (T+

w − T+
r )

, (3.15)

where Tr is the recovery temperature based on the bulk Mach number, and we compare
the relative heat transfer increase with the relative drag increase using the skin-friction
coefficient Cf = 2τw/(ρbu2

b).
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Figure 15. (a) Stanton number as a function of the skin-friction coefficient, relative to the corresponding
smooth wall values. Triangles represent incompressible flow data of forced convection of egg-cartoon
roughness (MacDonald et al. 2019). (b) Reynolds analogy factor as a function of the roughness Reynolds
number compared with the hypersonic flow data by Hill et al. (1980, black dots) over a sharp cone with
grit roughness at M∞ = 9.9. Smooth-wall data are also reported in panel (b), corresponding to k+ = 0.
Half-filled symbols refer to the values obtained from the empirical correlation (3.16) by Hill et al. (1980)
for the corresponding DNS data. Symbols style in table 1.

In figure 15(a) we report the ratio St/Sts as a function of Cf /Cfs and compare the present
data with the case of forced convection in incompressible flows (MacDonald et al. 2019)
and to the engineering correlation of Hill et al. (1980), developed for hypersonic flows,

St
Sts

= Cf

Cfs

[
1 + β

√
Tw

Tb

Cf

2
k+0.45Pr0.8

]−1

, (3.16)

where β = 0.4. Note that (3.16) requires the explicit knowledge of the skin-friction
coefficient of the rough case and therefore in figure 15(a) each DNS flow case (symbols
in table 1) has a corresponding point evaluated with this empirical correlation (half-filled
symbols).

We observe that both St/Sts and Cf /Cfs > 1, namely the rough surface experiences a
higher drag and heat transfer than the baseline smooth wall. The dashed line represents
the Reynolds analogy line, that is the case in which the drag increase is equal to the heat
transfer increase. All data lie below the axis bisector, implying that drag increases more
than heat transfer, due to the additional pressure drag induced by the roughness, which
does not have an equivalent for the temperature.

Our nearly incompressible flow case follows quite closely the data of egg-carton
roughness by MacDonald et al. (2019), although these cases refer to forced thermal
convection. A very similar trend holds for supersonic flow cases at Mb = 2 (circles), which
are very close to incompressible data because aerodynamic heating plays a minor role at
this Mach number. Instead, flow cases at Mb = 4 (squares) becomes closer to the Reynolds
analogy line, especially for the lower k+, which indicates that aerodynamic heating tends
to compensate for the additional pressure drag caused by the roughness. In figure 15(a)
we also plot the values obtained from Hill’s correlation (3.16) (half-filled symbols), which
show that the empirical formula is very accurate for cases at Mb = 4 as symbols essentially
lay on top of DNS data, whereas we observe large discrepancies at Mb = 2, especially at
higher k+.

In figure 15(b) we report the Reynolds analogy factor (2St/Cf ) as a function of the
roughness Reynolds number, both for rough and smooth wall (k = 0) cases, and we
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Figure 16. Mesh refinement study for turbulent channel flow over cubic roughness at bulk Mach number Mb =
0.2 and bulk Reynolds number Reb = 10293. Flow case M02A (solid line) has Nx × Ny × Nz = 3088 × 384 ×
1536 mesh points and case M02B (circles) Nx × Ny × Nz = 4096 × 384 × 2048 mesh points, corresponding
to 40 and 60 grid points per roughness element, respectively.

compare DNS data with the experiments of Hill et al. (1980) (black circles) and to the
empirical formula (3.16). Smooth wall data from DNS have a Reynolds analogy factor
larger than one, whereas for experimental data are closer to unity, or lower, which can be
probably associated with the much higher Reynolds number of the experiments (Reτ ≈
5000). Despite the very different flow conditions of the experiments (higher Reynolds,
M∞ = 9, different roughness geometry) we note a similar trend with DNS for increasing
k+, indicating that the Reynolds analogy factor mainly depends on the roughness Reynolds
number.

4. Conclusions

We have presented DNSs of supersonic flows over cubical roughness elements, which
are representative of the structured patterns found on the ablative shields of high-speed
vehicles. We used these data to assess basic aspects of compressible flows over rough
walls, which are well established in the incompressible regime, whereas they have been
less explored for supersonic flows.

First, we analysed compressibility transformations and their ability to collapse the
mean velocity shift onto the incompressible rough asymptote. The DNS data show that
using the transformed �U+

I alone does not allow us to fully account for compressibility
effects because of the ambiguity in defining a relevant roughness Reynolds number for the
supersonic flow cases. We find important compressibility effects on the standard roughness
Reynolds number k+, which therefore is not a good candidate for comparing flows across
Mach numbers. These effects have been always ignored in previous studies of supersonic
flows over rough walls or, most probably, involuntarily incorporated in the equivalent
roughness Reynolds number k+

s . We propose a transformed roughness Reynolds number
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k+∗ which accounts for viscosity variations between the crest and the trough, yielding
excellent agreement with incompressible data, especially when used in conjunction with
the recent velocity transformations by Volpiani et al. (2020).

Second, velocity statistics of rough and smooth walls show a very good match away from
the wall, which supports the validity of outer layer similarity also for supersonic flows over
rough walls. However, this does not seem to hold for the thermodynamic variables, and
the temperature of rough and smooth wall cases is substantially different in the whole wall
layer. We show that this can be traced back to the quadratic temperature–velocity relation
which characterizes compressible flows both on smooth and rough walls.

Finally, we assessed the accuracy of the engineering correlation developed by Hill
et al. (1980) for the relative Stanton number increase with respect to a smooth wall. The
accuracy of the correlation increases with the Mach number and it yields nearly perfect
results already at Mb = 4, even if it was developed using sand-grain roughness and much
higher Mach and Reynolds numbers.

This study is a first step towards the understanding of compressibility effects in
flows over rough walls but it only explored a small part of the large parameter
space characterizing this problem, in particular a single roughness geometry has been
investigated. Future work will be dedicated to the study of different roughness geometries,
as diamonds elements and sand-grain roughness, and also different wall-thermal
conditions in both channel and boundary layer configurations.

DNS data are available at http://doi.org/10.4121/19403864.
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Appendix. Validation of the immersed boundary method

Immersed boundary methods are known to be sensitive to the mesh resolution and
often show non-monotonic grid convergence. In this study we carried out simulations
using streamwise and spanwise mesh spacings which guarantee approximately 40 points
inside the roughness element (i.e. �x ≈ �z ≈ k/40), and used �y+ ≈ 0.5 below the
roughness crest. In order to prove that this mesh resolution is adequate, we carried out two
simulations of turbulent channel flow at bulk Mach number Mb = 0.2 and bulk Reynolds
number Reb = 10293 using the same computational domain of the main dataset. The first
simulation M02A has Nx × Ny × Nz = 3088 × 384 × 1536 mesh points, and the second
M02B Nx × Ny × Nz = 4096 × 384 × 2048, corresponding to 40 and 60 mesh points per
roughness element, respectively. Figure 16 shows a comparison between M02A (solid)
and M02B (circles) which shows that the two solutions are in nearly perfect agreement.
We observe only minor deviations for the wall-normal and spanwise Reynolds stress
components, but these are limited to less than 1 %, and therefore, the mesh refinement
study confirms that using 40 points per roughness element allows us to achieve grid
independence of the flow statistics.
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