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Active flow control for drag reduction with reinforcement learning (RL) is performed in
the wake of a two-dimensional square bluff body at laminar regimes with vortex shedding.
Controllers parametrised by neural networks are trained to drive two blowing and suction
jets that manipulate the unsteady flow. The RL with full observability (sensors in the
wake) discovers successfully a control policy that reduces the drag by suppressing the
vortex shedding in the wake. However, a non-negligible performance degradation (∼50 %
less drag reduction) is observed when the controller is trained with partial measurements
(sensors on the body). To mitigate this effect, we propose an energy-efficient, dynamic,
maximum entropy RL control scheme. First, an energy-efficiency-based reward function
is proposed to optimise the energy consumption of the controller while maximising drag
reduction. Second, the controller is trained with an augmented state consisting of both
current and past measurements and actions, which can be formulated as a nonlinear
autoregressive exogenous model, to alleviate the partial observability problem. Third,
maximum entropy RL algorithms (soft actor critic and truncated quantile critics) that
promote exploration and exploitation in a sample-efficient way are used, and discover
near-optimal policies in the challenging case of partial measurements. Stabilisation of the
vortex shedding is achieved in the near wake using only surface pressure measurements
on the rear of the body, resulting in drag reduction similar to that in the case with wake
sensors. The proposed approach opens new avenues for dynamic flow control using partial
measurements for realistic configurations.
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1. Introduction

Up to 50 % of total road vehicle energy consumption is due to aerodynamic drag (Sudin
et al. 2014). In order to improve vehicle aerodynamics, flow control approaches have
been applied targeting the wake pressure drag, which is the dominant source of drag.
Passive flow control has been applied (Choi, Lee & Park 2014) through geometry/surface
modifications, e.g. boat tails (Lanser, Ross & Kaufman 1991) and vortex generators
(Lin 2002). However, passive control designs do not adapt to environmental changes
(disturbances, operating regimes), leading to sub-optimal performance under variable
operating conditions. Active open-loop techniques, where predetermined signals drive
actuators, typically are energy inefficient since they target mean flow modifications.
Actuators employed typically are synthetic jets (Glezer & Amitay 2002), movable flaps
(Beaudoin et al. 2006; Brackston et al. 2016) and plasma actuators (Corke, Enloe &
Wilkinson 2010), among others. Since the flow behind vehicles is unsteady and subject
to environmental disturbances and uncertainty, active feedback control is required to
achieve optimal performance. However, two major challenges arise in feedback control
design, which we aim to tackle in this study: the flow dynamics is (i) governed
by the infinite-dimensional, nonlinear and non-local Navier–Stokes equations (Brunton
& Noack 2015); and (ii) partially observable in realistic applications due to sensor
limitations. This study aims to tackle these challenges, focusing particularly on the
potential of model-free control for a partially observable laminar flow, characterised
by bluff body vortex shedding, as a preliminary step towards more complex flows and
applications.

1.1. Model-based active flow control
Model-based feedback control design requires a tractable model for the dynamics of
the flow, usually obtained by data-driven or operator-driven techniques. Such methods
have been applied successfully to control benchmark two-dimensional (2-D) bluff body
wakes, obtaining improved aerodynamic performance, e.g. vortex shedding suppression
and drag reduction. For example, Gerhard et al. (2003) controlled the circular cylinder
wake at low Reynolds numbers based on a low-dimensional model obtained from the
Galerkin projection of Karhunen–Loeve modes on the governing Navier–Stokes equations.
Protas (2004) applied linear quadratic Gaussian control to stabilise vortex shedding based
on a Föppl point vortex model. Illingworth (2016) applied the eigensystem realization
algorithm as a system identification technique to obtain a reduced-order model of the
flow, and used robust control methods to obtain feedback control laws. Jin, Illingworth
& Sandberg (2020) employed resolvent analysis to obtain a low-order input–output model
from the Navier–Stokes equations, based on which feedback control was applied to
suppress vortex shedding.

Model-based flow control has also been applied at high Reynolds numbers to control
dominant coherent structures (persisting spatio-temporal symmetry breaking modes) that
contribute to drag, including unsteady vortex shedding (Pastoor et al. 2008; Dahan,
Morgans & Lardeau 2012; Dalla Longa, Morgans & Dahan 2017; Brackston, Wynn &
Morrison 2018) and steady spatial symmetry breaking modes (Brackston et al. 2016; Li
et al. 2016). Typically, for inhomogeneous flows in all three spatial dimensions, low-order
models fail to capture the intractable and complex turbulent dynamics, leading inevitably
to sub-optimal control performance when used in control synthesis.
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1.2. Model-free active flow control by reinforcement learning
Model-free data-driven control methods bypass the above limitations by using
input–output data from the dynamical system (environment) to learn the optimal control
law (policy) directly without exploiting information from a mathematical model of the
underlying process (Hou & Xu 2009).

Model-free reinforcement learning (RL) has been used successfully for controlling
complex systems, for which obtaining accurate and tractable models can be challenging.
The RL learns a control policy based on observed states, and generates control actions that
maximise a reward by exploring and exploiting state–action pairs. The system dynamics
governing the evolution of the states for a specific action (environment) is assumed to be a
Markov decision process (MDP). The policy is parametrised by artificial neural networks
as a universal function approximator that can be optimised to an arbitrary control function
with any order of complexity. The RL with neural networks can also be interpreted as
parametrised dynamic programming with the feature of universal function approximation
(Bertsekas 2019). Therefore, RL requires only input–output data from complex systems in
order to discover control policies using model-free optimisation.

Effectively, RL can learn to control complex systems in various types of tasks, such
as robotics (Kober, Bagnell & Peters 2013) and autonomous driving (Kiran et al. 2021).
In the context of chaotic dynamics related to fluid mechanics, Bucci et al. (2019) and
Zeng & Graham (2021) applied RL to control the chaotic Kuramoto–Sivashinsky system.
In the context of flow control for drag reduction, Rabault et al. (2019) and Rabault &
Kuhnle (2019) used RL control for the first time in 2-D bluff body simulations at a
laminar regime. The RL algorithm discovered a policy that, using pressure sensors in the
wake and near the body, drives blowing and suction actuators on the circular cylinder to
decrease the mean drag and wake unsteadiness. Tang et al. (2020) trained RL-controlled
synthetic jets in the flow past a 2-D cylinder at several Reynolds numbers (100, 200,
300, 400), and achieved drag reduction in a range of Reynolds number from 60 to 400,
showing the generalisation ability of RL active flow control. Paris, Beneddine & Dandois
(2021) applied the ‘S-PPO-CMA’ RL algorithm to control the wake behind a 2-D cylinder
and optimise the sensor locations in the near wake. Li & Zhang (2022) augmented and
guided RL with global linear stability and sensitivity analyses in order to control the
confined cylinder wake. They showed that if the sensors cover the wavemaker region,
then the RL is robust and successfully stabilises the vortex shedding. Paris, Beneddine
& Dandois (2023) proposed an RL methodology to optimise actuator placement in a
laminar 2-D flow around an aerofoil, addressing the trade-off between performance and
the number of actuators. Xu & Zhang (2023) used RL to suppress instabilities in both
the Kuramoto–Sivashinsky system and 2-D boundary layers, showing the effectiveness
and robustness of RL control. Pino et al. (2023) compared RL and genetic programming
algorithms to global optimisation techniques for various cases, including the viscous
Burger’s equation and vortex shedding behind a 2-D cylinder. Chen et al. (2023) applied
RL in the flow control of vortex-induced vibration of a 2-D square bluff body with various
actuator layouts. The vibration and drag of the body were both reduced and mitigated
effectively by RL policies.

Recently, RL has been used to control complex fluid systems, such as flows in turbulent
regimes, in both simulations and experiments, addressing the potential of RL flow control
in realistic applications. Fan et al. (2020) extended RL flow control to a turbulent regime
in experiments at Reynolds numbers of O(105), achieving effective drag reduction by
controlling the rotation speed of two cylinders downstream of a bluff body. The RL
discovered successfully the global optimal open-loop control strategy that was found
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previously from a laborious non-automated, systematic grid search. The experimental
results were verified further by high-fidelity numerical simulations. Ren, Rabault & Tang
(2021) examined RL-controlled synthetic jets in a weakly turbulent regime, demonstrating
effective control at Reynolds number 1000. This flow control problem of drag reduction
of a 2-D cylinder flow using synthetic jets was extended to Reynolds number 2000 by
Varela et al. (2022). In their work, RL discovered a strategy of separation delay via
high-frequency perturbations to achieve drag reduction. Sonoda et al. (2023) and Guastoni
et al. (2023) applied RL control in numerical simulations of turbulent channel flow, and
showed that RL control can outperform opposition control in this complex flow control
task.

Some RL techniques have been applied also to various flow control problems with
different geometries, such as flow past a 2-D cylinder (Rabault et al. 2019), vortex-induced
vibration of a 2-D square bluff body (Chen et al. 2023), and a 2-D boundary layer (Xu
& Zhang 2023). However, model-free RL control techniques also have several drawbacks
compared to model-based control. For example, it is usually challenging to tune the various
RL hyperparameters. Also, typically model-free RL requires large amounts of training data
through interactions with the environment, which makes RL expensive and infeasible for
certain applications. Further information about RL and its applications in fluid mechanics
can be found in the reviews of Garnier et al. (2021) and Vignon, Rabault & Vinuesa
(2023).

1.3. Maximum entropy RL
In RL algorithms, two major branches have been developed: ‘on-policy’ learning
and ‘off-policy’ learning. The RL algorithms can also be classified into value-based,
policy-based and actor–critic methods (Sutton & Barto 2018). The actor–critic
architecture combines advantages from both value-based and policy-based methods, so
the state-of-the-art algorithms use mainly actor–critic architecture.

The state-of-the-art on-policy algorithms include trust region policy optimisation
(Schulman et al. 2015), asynchronous advantage actor–critic (Mnih et al. 2016) and
proximal policy optimisation (Schulman et al. 2017). On-policy algorithms require fewer
computational resources than off-policy algorithms, but they are demanding in terms of
available data (interactions with the environment). They use the same policy to obtain
experience in the environment and update with policy gradient, which introduces a high
self-relevant experience that may restrict convergence to a local minimum and limit
exploration. As the amount of data needed for training grows with the complexity of
applications, on-policy algorithms usually require a long training time for collecting data
and converging.

By contrast, off-policy algorithms usually have both behaviour and target policies to
facilitate exploration while retaining exploitation. The behaviour policy usually employs
stochastic behaviour to interact with an environment and collect experience, which is
used to update the target policy. There are many off-policy algorithms emerging in the
past decade, such as deterministic policy gradient (Silver et al. 2014), deep deterministic
policy gradient (DDPG; Lillicrap et al. 2015), actor–critic with experience replay (Wang
et al. 2016), twin delayed deep deterministic policy gradient (Fujimoto, Hoof & Meger
2018), soft actor–critic (SAC; Haarnoja et al. 2018a,b) and truncated quantile critic (TQC;
Kuznetsov et al. 2020). Due to the behaviour-target framework, off-policy algorithms are
able to exploit past information from a replay buffer to further increase sample efficiency.
This ‘experience replay’ suits a value-function-based method (Mnih et al. 2015), instead
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of calculating the policy gradient directly. Therefore, most of the off-policy algorithms
implement an actor–critic architecture, e.g. SAC.

One of the challenges of off-policy algorithms is the brittleness in terms of
convergence. Sutton, Szepesvári & Maei (2008) and Sutton et al. (2009) tackled
the instability issue of off-policy learning with linear approximations. They used a
Bellman-error-based cost function together with the stochastic gradient descent to ensure
the convergence of learning. Maei et al. (2009) extended this method further to nonlinear
function approximation using a modified temporal difference algorithm. However, some
algorithms nowadays still experience the problem of brittleness when using improper
hyperparameters. Adapting these algorithms for control in various environments is
sometimes challenging, as the learning stability is sensitive to their hyperparameters, such
as DDPG (Duan et al. 2016; Henderson et al. 2018).

To increase sample efficiency and learning stability, off-policy algorithms were
developed within a maximum entropy framework (Ziebart et al. 2008; Haarnoja et al.
2017), known as ‘maximum entropy reinforcement learning’. Maximum entropy RL solves
an optimisation problem by maximising the cumulative reward augmented with an entropy
term. In this context, the concept of entropy was introduced first by Shannon (1948)
in information theory. The entropy quantifies the uncertainty of a data source, which
is extended to the uncertainty of the outputs of stochastic neural networks in the RL
framework. During the training phase, the maximum entropy RL maximises rewards
and entropy simultaneously to improve control robustness (Ziebart 2010) and increase
exploration via diverse behaviours (Haarnoja et al. 2017). Further details about maximum
entropy RL and two particular algorithms used in the present work (SAC and TQC) are
introduced in § 2.2.

1.4. Partial measurements and POMDP
In most RL flow control applications, RL controllers have been assumed to have
full-state information (the term ‘state’ is in the context of control theory) or a sensor
layout without any limitations on the sensor locations. In this study, it is denoted as
‘full measurement’ (FM) when measurements contain full-state information. In practical
applications, typically measurements are obtained on the surface of the body (e.g. pressure
taps), and only partial-state information is available due to the missing downstream
evolution of the system dynamics. This is denoted as ‘partial measurement’ (PM),
comparatively. Such PM can lead to control performance degradation compared to FM
because the sensors are restricted from observing enough information from the flow field.
In the control of vortex shedding, full stabilisation can be achieved by placing sensors
within the wavemaker region of bluff bodies, which is located approximately at the end of
the recirculation region. In this case, full-state information regarding the vortex shedding
is available to sensors. Placing sensors far from the recirculation region, for example, on
the rear surface of the bluff body (denoted as PM in this work), introduces a convection
delay of vortex shedding sensing and partial observation of the state of the system.

In the language of RL, control with PM can be described as a partially observable
Markov decision process (POMDP; Cassandra 1998) instead of an MDP. In POMDP
problems, the best stationary policy can be arbitrarily worse than the optimal policy in the
underlying MDP (Singh, Jaakkola & Jordan 1994). In order to improve the performance of
RL with POMDP, additional steps are required to reduce the POMDP problem to an MDP
problem. This can be done trivially by using an augmented state known as a ‘sufficient
statistic’ (Bertsekas 2012), i.e. augmenting the state vector with past measurements and
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actions (Bucci et al. 2019; Wang et al. 2023), or recurrent neural networks, such as long
short-term memory (LSTM; Verma, Novati & Koumoutsakos 2018). Theoretically, LSTM
networks and augmented state approaches can yield comparable performance in partially
observable problems (see Cobbe et al. (2020), supplementary material). Practically,
the augmented state methodology provides notable benefits, including reduced training
complexity and ease in parameter tuning, provided that the control state dynamics are
tractable and short-term correlated.

In the specific case for which flow field information is available, a POMDP can also be
reduced to an MDP by flow reconstruction techniques based on supervised learning. For
instance, Bright, Lin & Kutz (2013) estimates the full state based on a library containing
the reduced-order information from the full flow field. However, there might be difficulties
in constructing such a library as the entire flow field might not be available in practical
applications.

1.5. Contribution of the present work
The present work uses RL to discover control strategies of partially observable fluid
flow environments without access to the full flow field/state measurements. Fluid flow
systems typically exhibit more complex sampling in higher-dimensional observation space
compared to other physical systems, necessitating a robust exploration strategy and
rapid convergence in the optimisation process. To address these challenges, we employ
off-policy maximum entropy RL algorithms (SAC and TQC) that identify efficiently
nearly optimal policies in the large action space inherent to fluid flow systems, especially
for cases with PM and observability.

We aim to achieve two objectives related to RL flow control for bluff body drag
reduction problems. First, we aim to improve the RL control performance in a PM
environment by reducing a POMDP problem to an MDP problem. More details about
this method are introduced in § 2.4. Second, we present investigations on different reward
functions and key hyperparameters to develop an approach that can be adapted to a
broader range of flow control applications. We demonstrate the proposed framework and
its capability to discover nearly optimal feedback control strategies in the benchmark
laminar flow of a square 2-D bluff body with fixed separation at the trailing edge, using
sensors only on the downstream surface of the body.

The paper is structured as follows. In § 2, the RL framework is presented, which
consists of the SAC and TQC optimisation algorithms interacting with the flow simulation
environment. A hyperparameter-free reward function is proposed to optimise the energy
efficiency of the dynamically controlled system. Exploiting past action state information
converts the POMDP problem in a PM environment to an MDP, enabling the discovery of
nearly optimal policies. Results are presented and discussed in § 3. The convergence study
of RL is first introduced. The degradation of RL control performance in PM environments
(POMDP) is presented, and the improvement is addressed by exploiting a sequence of
past action measurement information. At the end of this section, we compare the results
from TQC with SAC, addressing the advantages of using TQC as an improved version of
SAC. In § 4, we provide conclusions for the current research and discuss future research
directions.

2. Methodology

We demonstrate the RL drag reduction framework on the flow past a 2-D square bluff
body at laminar regimes characterised by 2-D vortex shedding. We study the canonical
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Action at

Reinforcement learning agent

Truncated quantile critics

Reward rt

Environment

Observation ot

ot

U2

B pt

U1
U∞

Critic

Q-function

approximator
Q(θ) ∇φJ π⁓Q

θ  θ – λQ∇θJ π  π – λπ∇φJ π

π(φ)

Policy

(controller)

Actor

Q

Figure 1. The RL framework. The RL agent and flow environment, and the interaction between them, are
demonstrated. The PM case is shown, where sensors are located on the downstream surface of the square bluff
body: 64 sensors are placed by default, and the red dots show only a demonstration with a reduced number
of sensors. Two jets located upstream of the rear separation points are trained to control the unsteady wake
dynamics (vortex shedding).

flow behind a square bluff body due to the fixed separation of the boundary layer at the
rear surface, which is relevant to road vehicle aerodynamics. Control is applied by two jet
actuators at the rear edge of the body before the fixed separation, and partial- or full-state
observations are obtained from pressure sensors on the downstream surface or near-wake
region, respectively. The RL agent handles the optimisation, control and interaction with
the flow simulation environment, as shown in figure 1. The instantaneous signals at, ot and
rt denote actions, observations and rewards at time step t.

Details of the flow environment are provided in § 2.1. The SAC and TQC RL algorithms
used in this work are introduced in § 2.2. The reward functions based on optimal energy
efficiency are presented in § 2.3. The method to convert a POMDP to an MDP by designing
a dynamic feedback controller for achieving nearly optimal RL control performance is
discussed in § 2.4.

2.1. Flow environment
The environment is 2-D direct numerical simulations (DNS) of the flow past a square
bluff body of height B. The velocity profile at the inflow of the computational domain is
uniform with freestream velocity U∞. Length quantities are non-dimensionalised with the
bluff body height B, and velocity quantities are non-dimensionalised with the freestream
velocity U∞. Consequently, time is non-dimensionalised with B/U∞. The Reynolds
number, defined as Re = U∞B/ν, is 100. The computational domain is rectangular
with boundaries at (−20.5, 26.5) in the streamwise x direction and (−12.5, 12.5) in the
transverse y direction. The centre of the square bluff body is at (x, y) = (0, 0). The flow
velocity is denoted as u = (u, v), where u is the velocity component in the x direction, and
v is the component in the y direction.

The DNS flow environment is simulated using FEniCS and the Dolfin library (Logg,
Wells & Hake 2012), based on the implementation of Rabault et al. (2019) and Rabault
& Kuhnle (2019). The incompressible unsteady Navier–Stokes equations are solved using
a finite element method and the incremental pressure correction scheme (Goda 1979).
The DNS time step is dt = 0.004. More simulation details are presented in Appendix A,
including the mesh and boundary conditions.
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Two blowing and suction jet actuators are placed on the top and bottom surfaces of the
bluff body before separation. The velocity profile Uj of the two jets ( j = 1, 2, where 1
indicates the top jet, and 2 indicates the bottom jet) is defined as

Uj =
(

0,
3Qj

2w

[
1−

(
2xj − L+ w

w

)2
])
, (2.1)

where Qj is the mass flow rate of the jet j, and L = B is the streamwise length of the
body. The width of the jet actuator is w = 0.1, and the jets are located at xj ∈ [L/2−
w, L/2], yj = ±B/2. A zero mass flow rate condition of the two jets enforces momentum
conservation as

Q1 + Q2 = 0. (2.2)

The mass flow rate of the jets is also constrained as |Qj| � 0.1 to avoid excessive actuation.
In PM environments, N vertically equispaced pressure sensors are placed on the

downstream surface of the bluff body, the coordinates of which are given by

Psurf ,k =
(

B
2
,
−B
2
+ k

B
N + 1

)
, (2.3)

where k = 1, 2, . . . ,N, and N = 64 unless specified otherwise. In FM environments, 64
pressure sensors are placed in the wake region, with a refined bias close to the body.
The locations of sensors in the wake are defined with sets xs = [0.25, 0.5, 1.0, 1.5,
2.0, 3.0, 4.0, 5.0] and ys = [−1.5,−1.0,−0.5,−0.25, 0.25, 0.5, 1.0, 1.5], following the
formula

Pwake,i,j =
(

B
2
+ xs,i, ys,j

)
, (2.4)

where i = 1, 2, . . . , 8 and j = 1, 2, . . . , 8.
The bluff body drag coefficient CD is defined as

CD = FD
1
2ρ∞U2∞B

, (2.5)

and the lift coefficient CL as

CL = FL
1
2ρ∞U2∞B

, (2.6)

where FD and FL are the drag and lift forces, defined as the surface integrals of the pressure
and viscous forces on the bluff body with respect to the x and y coordinates, respectively.

2.2. Maximum entropy reinforcement learning of an MDP
Reinforcement learning can be defined as policy search in an MDP, with a tuple
(S,A,P,R), where S is a set of states, and A is a set of actions. Here, P(st+1 | st, at) is
a state transition function that contains the probability from current state st and action at
to the next state, st+1, and R(s, a) is a reward function (cost function) to be maximised.
The RL agent collects data as states st ∈ S from the environment, and a policy π(at | st)
executes actions at ∈ A to drive the environment to the next state, st+1.
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A state is considered to have the Markov property if the state at time t retains all the
necessary information to determine the future dynamics at t + 1, without any information
from the past (Sutton & Barto 2018). This property can be presented as

P{rt+1, st+1 | st, at} ≡ P{rt+1, st+1 | s0, a0, r1, . . . , st−1, at−1, rt, st, at}. (2.7)

In the present flow control application, the control task can be regarded as an MDP if
observations ot contain full-state information, i.e. ot = st, and satisfy (2.7).

We use SAC and TQC as two maximum entropy RL algorithms in the present work;
TQC is used by default since it is regarded as an improved version of SAC. Generally, the
maximum entropy RL maximises

J(π) =
T∑

t=0

E[rt(st, at)+ αH(π( · | st))], (2.8)

where rt is the reward (reward functions given in § 2.3), and α is an entropy coefficient
(known as ‘temperature’) that controls the stochasticity (exploration) of the policy. For
α = 0, the standard maximum reward optimisation in conventional RL is recovered. The
probability distribution (Gaussian by default) of a stochastic policy is denoted by π( · | st).
The entropy of π( · | st) is by definition (Shannon 1948)

H(π( · | st)) = E[− log π( · | st)] = −
∫

ât

π(ât | st) log π(ât | st) dât, (2.9)

where the term− log π quantifies the uncertainty contained in the probability distribution,
and ât is a distribution variable of the action at. Therefore, by calculating the expectation
of − log π, the entropy increases when the policy has more uncertainties, i.e. the variance
of π(ât | st) increases.

We develop SAC based on soft policy iteration (Haarnoja et al. 2018b), which uses a
soft Q-function to evaluate the value of a policy, and optimises the policy based on its
value. The soft Q-function is calculated by applying a Bellman backup operator T π as

T πQ(st, at) � rt(st, at)+ γ Est+1∼P [V(st+1)], (2.10)

where γ is a discount factor (here γ = 0.99), and V(st+1) satisfies

V(st) = Eat∼π[Q(st, at)− log π(at | st)]. (2.11)

The target soft Q-function can be obtained by repeating Q = T πQ, and the proof of
convergence can be referred to as soft policy evaluation (Lemma 1 in Haarnoja et al.
2018b). With soft Q-function rendering values for the policy, the policy optimisation is
given as soft policy improvement (Lemma 2 in Haarnoja et al. 2018b).

In SAC, a stochastic soft Q-function Qθ (st, at) and a policy πφ(at | st) are
parametrised by artificial neural networks θ (critic) and φ (actor), respectively. During
training, Qθ (st, at) and πφ(at | st) are optimised with stochastic gradients ∇θJQ(θ) and
∇φJπ(φ) designed corresponding to soft policy evaluation and soft policy improvement,
respectively (see (6) and (10) in Haarnoja et al. 2018b). With these gradients, SAC updates
the critic and actor networks by

θ ← θ − λQ ∇θJQ(θ), (2.12)

φ← φ − λπ ∇φJπ(φ), (2.13)

where λQ and λπ are the learning rates of Q-function and policy, respectively. Typically,
two Q-functions are trained independently, then the minimum of the Q-functions is
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brought into the calculation of stochastic gradient and policy gradient. This method is
also used in our work to increase the stability and speed of training. Also, SAC supports
automatic adjustment of temperature α by optimisation:

α∗ = arg min
α

Eat∼π∗[−α log π∗(at | st;α)− αH̄]. (2.14)

This adjustment transforms a hyperparameter tuning challenge into a trivial optimisation
problem (Haarnoja et al. 2018b).

We can regard TQC (Kuznetsov et al. 2020) as an improved version of SAC as it
alleviates the overestimation bias of the Q-function on the basic algorithm of SAC. Also,
TQC adapts the idea of distributional RL with quantile regression (Dabney et al. 2018) to
format the return function R(s, a) :=∑∞t=0 γ

t rt(st, at) into a distributional representation
with Dirac delta functions as

Rψ(s, a) := 1
M

M∑
m=1

δ(zm
ψ(s, a)), (2.15)

where R(s, a) is parametrised by ψ , and Rψ(s, a) is converted into a summation of M
‘atoms’ as zm

ψ(s, a). Here, only one approximation of R(s, a) is used for demonstration.
Then only the k smallest atoms of zm

ψ(s, a) are preserved as a truncation to obtain truncated
atoms

yi(s, a) := r(s, a)+ γ [zi
ψ(s
′, a′)− α log πφ(a′ | s′)], i = 1, . . . , k, (2.16)

where s′ ∼ P( · | s, a) and a′ ∼ π( · | s′). The truncated atoms form a target distribution
as

Y(s, a) := 1
k

k∑
i=1

δ( yi(s, a)), (2.17)

and the algorithm minimises the 1-Wasserstein distance between the original distribution
Rψ(s, a) and the target distribution Y(s, a) to obtain a truncated quantile critic function.
Further details, such as the design of loss functions and the pseudocode of TQC, can be
found in Kuznetsov et al. (2020).

In this work, SAC and TQC are implemented based on Stable-Baselines3 and
Stable-Baselines3-Contrib (Raffin et al. 2021). The RL interaction runs on a longer time
step ta = 0.5 compared to the numerical time step dt. This means that RL-related data ot,
at and rt are sampled every ta time interval. With a different numerical step and an RL
step, control actuation cns for every numerical step should be distinguished from action at
in RL. There are ta/dt = 125 numerical steps between two RL steps, and control actuation
is applied based on a first-order hold function as

cns = at−1 + (at − at−1)
ns dt

ta
, (2.18)

where ns denotes the number of numerical steps after generating the current action at and
before the next action at+1 is generated. Equation (2.18) smooths the control actuation with
linear interpolation to avoid numerical instability. Unless specified, the neural network
configuration is set as three layers of 512 neurons for both actor and critic. The entropy
coefficient in (2.8) is initialised to 0.01 and tuned automatically based on (2.14) during
training. See table 3 in Appendix B for more details of RL hyperparameters.
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2.3. Reward design for optimal energy efficiency
We propose a hyperparameter-free reward function based on net power saving to discover
energy-efficient flow control policies, calculated as the difference between the power saved
from drag reduction 
PD and the power consumed from actuation Pact. Then the power
reward (‘PowerR’) at the RL control frequency is

rt = 
PD︸︷︷︸
power saved

− Pact︸︷︷︸
power spent

. (2.19)

The power saved from drag reduction is given by


PD = PD0 − PDt = (〈FD0〉T − 〈FDt〉a)U∞, (2.20)

where PD0 is the time-averaged baseline drag power without control, 〈FD0〉T is the
time-averaged baseline drag over a sufficiently long period, and PDt denotes the
time-averaged drag power calculated from the time-averaged drag 〈FDt〉a during one RL
step ta. Specifically, 〈 ·〉a quantities are calculated at each RL step using 125 DNS samples.
The jet power consumption of actuation Pact (Barros et al. 2016) is defined as

Pact =
2∑

j=1

|ρ∞〈Uj〉3a Sj| =
2∑

j=1

∣∣∣∣∣ 〈at〉3a
ρ2∞S2

j

∣∣∣∣∣ , (2.21)

where 〈Uj〉a is the average jet velocity, and Sj denotes the area of one jet.
The reward function given by (2.19) quantifies the control efficiency of a controller

directly. Thus it guarantees the learning of a control strategy that simultaneously
maximises the drag reduction and minimises the required control actuation. Additionally,
this energy-based reward function avoids the effort of hyperparameter tuning.

All the cases in this work use the power-based reward function defined in (2.19) unless
specified otherwise. For comparison, a reward function based on drag and lift coefficient
(‘ForceR’) is also implemented, as suggested by Rabault et al. (2019) with a pre-tuned
hyperparameter ε = 0.2, as

ra
t = CD0 − 〈CDt〉a − ε |〈CLt〉a|, (2.22)

where CD0 and 〈CDt〉a are calculated from a constant baseline drag and RL-step-averaged
drag and lift. The RL-step-averaged lift |〈CLt〉a| is used to penalise the amplitude of
actuation on both sides of the body, avoiding excessive lift force (i.e. the lateral deflection
of the wake reduces the drag but increases the side force), and indirectly penalising control
actuation and the discovery of unrealistic control strategies. Here, ε is a hyperparameter
designed to balance the penalty on drag and lift force.

The instantaneous versions of these two reward functions are also investigated for
practical implementation purposes (both experimentally and numerically) because they
can significantly reduce memory used during computation and also support a lower
sampling rate. These instantaneous reward functions are computed only from observations
at each RL step. In comparison, the reward functions above take into account the time
history between two RL steps, while the instantaneous version of the power reward
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(‘PowerInsR’) is defined as

rt,ins = 
PD,ins − Pact,ins, (2.23)

where 
PD,ins is given by


PD,ins = (〈FD0〉T − FDt)U∞, (2.24)

and Pact,ins is defined as

Pact,ins =
2∑

j=1

|ρ∞Uj
3
Sj| =

2∑
j=1

∣∣∣∣∣ a3
t

ρ2∞S2
j

∣∣∣∣∣ . (2.25)

Notice that the definition of reward in (2.23)–(2.25) is similar to (2.19)–(2.25), and the
only difference is that the average operator 〈 ·〉a is removed. Similarly, the instantaneous
version of the force-based reward function (‘ForceInsR’) is defined as

ra
t,ins = CD0 − CDt − ε |CLt|. (2.26)

In § 3.5, we present results on the study of different reward functions, and compare the RL
performance.

2.4. The POMDP and dynamic feedback controllers
In practical applications, the Markov property (2.7) is often not valid due to noise, broken
sensors, partial state information and delays. This means that the observations available
to the RL agent do not provide full or true state information, i.e. ot /= st, while in MDP,
ot = st. Then RL can be generalised as a POMDP defined as a tuple (S,A,P,R,Y,O),
where Y is a finite set of observations ot, and O is an observation function that relates
observations to underlying states.

With only PM available in the flow environments (sensors on the downstream surface of
the body instead of in the wake), the spatial information is missing along the streamwise
direction. Takens’ embedding theorem (Takens 1981) states that the underlying dynamics
of a high-dimensional dynamical system can be reconstructed from low-dimensional
measurements with their time history. Therefore, past measurements can be incorporated
into a sufficient statistic. Furthermore, convective delays may be introduced in the state
observation since the sensors are not located in the wavemaker region of the flow.
According to Altman & Nain (1992), past actions are also required in the state of a
delayed problem to reduce it into an undelayed problem. This is because implicitly, a
typical delayed MDP subverts the Markov property, as the past measurements and actions
encapsulate only partial information.

Therefore, combining the ideas of augmenting past measurements and past actions, we
form a sufficient statistic (Bertsekas 2012) for reducing the POMDP problem to an MDP,
defined as

Ik = [ p0, . . . , pk, a0, . . . , ak−1], (2.27)

which consists of the time history of pressure measurements p0, . . . , pk and control
actions a0, . . . , ak−1 at time steps 0, . . . , k. This enlarged state at time k contains all the
information known to the controller at time k.

However, the size of the sufficient statistic in (2.27) grows over time, leading to a
non-stationary closed-loop system, and introducing a challenge in RL since the number
of inputs to the networks varies over time. This problem can be solved by reducing
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Full-state control

at at at

Pwake Psurf Psurf

(at–1, pt) (at–1, pt) (at–1, ..., at–Nfs , pt, ..., pt–Nfs)

Partial-state control NARX

FM-static PM-static PM-dynamic

Figure 2. Demonstration of an FM environment with a static feedback controller (‘FM-Static’), a PM
environment with a static feedback controller (‘PM-Static’), and a PM environment with a dynamic feedback
controller formulated as an NARX model (case ‘PM-Dynamic’). The dashed curve represents the bottom
blowing/suction jet, and the red dots demonstrate schematically the locations of the sensors.

(2.27) to a finite-history approximation (White & Scherer 1994). The controller using this
finite-history approximation of the sufficient statistic is usually known as a ‘finite-state’
controller, and the error of this approximation converges as the size of the finite history
increases (Yu & Bertsekas 2008). The trade-off is that the dimension of the input increases
based on the history length required. The nonlinear policy, which is parametrised by a
neural network controller, has an algebraic description

at ∼ πφ(at | at−1, at−2, . . . , at−Nfs−1︸ ︷︷ ︸
past actions

, pt, pt−1, pt−2, . . . , pt−Nfs︸ ︷︷ ︸
past measurements

), (2.28)

where pt represents pressure measurements at time step t, and Nfs denotes the size of the
finite history. The above expression is equivalent to a nonlinear autoregressive exogenous
(NARX) model.

A ‘frame stack’ technique is used to feed the ‘finite-history sufficient statistic’ to the
RL agent as input to both the actor and critic neural networks. The frame stack constructs
the observation ot from the latest actions and measurements at step t as a ‘frame’ ot =
(at−1, pt), and piles up the finite history of Nfs frames together into a stack. The number
of stacked frames is equivalent to the size of the finite history Nfs.

The neural network controller trained as an NARX model benefits from past information
to approximate the next optimised control action since the policy has been parametrised as
a nonlinear transfer function. Thus a controller parametrised as an NARX model is denoted
as a ‘dynamic feedback’ controller because the time history in the NARX model contains
dynamic information of the system. Correspondingly, a controller fed with only the latest
actions at−1 and current measurements pt is denoted as a ‘static feedback’ controller
because no past information from the system is fed into the controller.

Figure 2 demonstrates three cases with both FM and PM environments that will be
investigated. In the FM environment, sensors are located in the wake as Psurf given by
(2.3). In the PM environment, sensors are placed only on the back surface of the body as
Pwake given by (2.4). The static feedback controller is employed in the FM environment,
and both static and dynamic feedback controllers are applied in the PM environment.
Results will be shown with Nfs = 27, and in § 3.3, a parametric study of the effect of
the finite-history length is presented.
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Environment Algorithm Nc Rep,c (Layers, neurons) Nfs Number of inputs

FM-Static TQC 325 37.72 (3, 512) 0 64pt + 2at−1
PM-Static TQC 1235 21.87 (3, 512) 0 64pt + 2at−1
PM-Dynamic TQC 715 34.35 (3, 512) 27 Nfs(64pt + 2at−1)

Table 1. Number of episodes Nc required for RL convergence in different environments. The episode reward
Rep,c at the convergence point, the configuration of the neural network and the dimension of inputs are presented
for each case. Here, Nfs is the finite-horizon length of past actions measurements.

3. Results of RL active flow control

In this section, we discuss the convergence of the RL algorithms for the three FM and PM
cases (§ 3.1) and evaluate their drag reduction performance (§ 3.2). A parametric analysis
of the effect of NARX memory length is presented (§ 3.3), along with the isolated effect of
including past actions as observations during the RL training and control (§ 3.4). Studies of
reward function (§ 3.5), sensor placement (§ 3.6) and generalisability to Reynolds number
changes (§ 3.7) are presented, followed by a comparison of SAC and TQC algorithms
(§ 3.8).

3.1. Convergence of learning
We perform RL with the maximum entropy TQC algorithm to discover control policies for
the three cases shown in figure 2, which maximise the net-power-saving reward function
given by (2.19). During the learning stage, each episode (one set of DNS) corresponds to
200 non-dimensional time units. To accelerate learning, 65 environments run in parallel.

Figure 3 shows the learning curves of the three cases. Table 1 shows the number of
episodes needed for convergence and relevant parameters for each case. It can be observed
from the curve of episode reward that the RL agent is updated after every 65 episodes, i.e.
one iteration, where the episode reward is defined as

Rep =
Nk∑

k=1

rk, (3.1)

where k denotes the kth RL step in one episode, and Nk is the total number of samples
in one episode. The root mean square (RMS) value of the drag coefficient, CRMS

D , at
the asymptotic regime of control, is also shown to demonstrate convergence, defined
as CRMS

D =
√
(D(〈CD〉env))2, where the operator D detrends the signal with a 9th-order

polynomial and removes the transient part, and 〈 ·〉env denotes the average value of parallel
environments in a single iteration.

In figure 3, it can be noticed that in the FM environment, RL converges after
approximately 325 episodes (five iterations) to a nearly optimal policy using a static
feedback controller. As will be shown in § 3.2, this policy is optimal globally since the
vortex shedding is fully attenuated and the jets converge to zero mass flow actuation, thus
recovering the unstable base flow and the minimum drag state. However, with the same
static feedback controller in a PM environment (POMDP), the RL agent fails to discover
the nearly optimal solution, requiring approximately 1235 episodes for convergence but
obtaining only a relatively low episode reward. Introducing a dynamic feedback controller
in the PM environment, the RL agent converges to a near-optimal solution in 735 episodes.
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Figure 3. Episode rewards (solid lines) and RMS of drag coefficient (dashed lines) against episode number
during the maximum entropy RL phase with TQC.

The dynamic feedback controller trained by RL achieves a higher episode reward (34.35)
than the static feedback controller in the PM case (21.87), which is close to the FM
case (37.72). The learning curves illustrate that using a finite horizon of past actions
measurements (Nfs = 27) to train a dynamic feedback controller in the PM case improves
learning in terms of speed of convergence and accumulated reward, achieving nearly
optimal performance with only wall pressure measurements.

3.2. Drag reduction with dynamic RL controllers
The trained controllers for the cases shown in figure 2 are evaluated to obtain the results
shown in figure 4. Evaluation tests are performed for 120 non-dimensional time units
to show both transient and asymptotic dynamics of the closed-loop system. Control is
applied at t = 0 with the same initial condition for each case, i.e. steady vortex shedding
with average drag coefficient 〈CD0〉 ≈ 1.45 (baseline without control). Consistent with
the learning curves, the difference in control performance in the three cases can be
observed from both the drag coefficient CD and the actuation Q1. The drag reduction is
quantified by a ratio η using the asymptotic time-averaged drag coefficient with control
CDa = 〈CD〉t∈[80,120], the drag coefficient CDb of the base flow (details presented in
Appendix D), and the baseline time-averaged drag coefficient without control 〈CD0〉, as

η = 〈CD0〉 − CDa

〈CD0〉 − CDb
× 100 %. (3.2)

(i) FM-Static. With a static feedback controller trained in a full-measurement
environment, a drag reduction η = 101.96 % is obtained with respect to the base
flow (steady unstable fixed point; maximum drag reduction). This indicates that an
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RL controller informed with full-state information can stabilise the vortex shedding
entirely, and cancel the unsteady part of the pressure drag.

(ii) PM-Static. A static/memoryless controller in a PM environment leads to
performance degradation and a drag reduction η = 56.00 % in the asymptotic
control stage, i.e. after t = 80, compared to the performance of FM-Static. This
performance loss can also be observed from the control actuation curve, as Q1
oscillates with a relatively large fluctuation in PM-Static, while it stays near zero
in the FM-Static case. The discrepancy between FM and PM environments using
a static feedback controller reveals the challenge of designing a controller with a
POMDP environment. The RL agent cannot fully identify the dominant dynamics
with only PM on the downstream surface of the bluff body, resulting in sub-optimal
control behaviour.

(iii) PM-Dynamic. With a dynamic feedback controller (NARX model presented in
§ 2.4) in a PM environment, the vortex shedding is stabilised, and the dynamic
feedback controller achieves η = 97.00 % of the maximum drag reduction after time
t = 60. Although there are minor fluctuations in the actuation Q1, the energy spent
in the synthetic jets is significantly lower compared to the PM-Static case. Thus a
dynamic feedback controller in PM environments can achieve nearly optimal drag
reduction, even if the RL agent collects information only from pressure sensors
on the downstream surface of the body. The improvement in control indicates
that the POMDP due to the PM condition of the sensors can be reduced to an
approximate MDP by training a dynamic feedback controller with a finite horizon of
past actions measurements. Furthermore, high-frequency action oscillations, which
can be amplified with static feedback controllers, are attenuated in the case of
dynamic feedback control. These encouraging and unexpected results support the
effectiveness and robustness of model-free RL control in practical flow control
applications, in which sensors can be placed only on a solid surface/wall.

In figure 5, snapshots of the velocity magnitude |u| = √u2 + v2 are presented for
baseline without control, PM-Static, PM-Dynamic and FM-Static control cases. Snapshots
are captured at t = 100 in the asymptotic regime of control. A vortex shedding structure of
different strengths can be observed in the wake of all three controlled cases. In PM-Static,
the recirculation area is lengthened compared to the baseline flow, corresponding to base
pressure recovery and pressure drag reduction. A longer recirculation area can be noticed
in PM-Dynamic due to the enhanced attenuation of vortex shedding and pressure drag
reduction. The dynamic feedback controller in the PM case renders a 326.22 % increase
of recirculation area with respect to the baseline flow, while only a 116.78 % increase is
achieved by a static feedback controller. The FM-Static case has the longest recirculation
area, and the vortex shedding is almost fully stabilised, which is consistent with the drag
reduction shown in figure 4.

Figure 6 presents first- and second-order base pressure statistics for the baseline case
without control and PM cases with control. In figure 6(a), the time-averaged value of
base pressure, p̄, demonstrates the base pressure recovery after control is applied. Due to
flow separation and recirculation, the time-averaged base pressure is higher at the middle
of the downstream surface, which is retained with control. The base pressure increase
is linked directly to pressure drag reduction, which quantifies the control performance of
both static and dynamic feedback controllers. Up to 49.56 % of the pressure increase at the
centre of the downstream surface is obtained in the PM-Dynamic case, while only 21.15 %
can be achieved by a static feedback controller. In figure 6(b), the base pressure RMS is
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Figure 4. (a) Drag coefficient CD without control (‘Baseline’) and with active flow control by RL in both FM
and PM cases. In PM cases, control results with a dynamic and static feedback controller are presented. The
dash-dotted line represents the base flow CDb. (b) The mass flow rate Q1 of one of the blowing and suction jets.

shown. For the baseline flow, strong vortex-induced fluctuations of the base pressure can
be noticed around the top and bottom on the downstream surface of the bluff body. In
the PM-Static case, the RL controller partially suppresses the vortex shedding, leading
to a sub-optimal reduction of the pressure fluctuation. The sensors close to the top and
bottom corners are also affected by the synthetic jets, which change the RMS trend for the
two top and bottom measurements. In the PM-Dynamic case, the pressure fluctuations are
nearly zero for all the measurements on the downstream surface, highlighting the success
of vortex shedding suppression by a dynamic RL controller in a PM environment.

The differences between static and dynamic controllers in PM environments are
elucidated further in figure 7 by examining the time series of pressure differences 
pt
from surface sensors (control input) and control actions at−1 (output). The pressure
differences are calculated from sensor pairs at y = ±ysensor, where ysensor is defined in
(2.3). For N = 64, there are 32 time series of 
pt for each case. During the initial
stages of control (t ∈ [0, 11]), the control actions are similar for the two PM cases and
they deviate for t > 11, resulting in discernible control performance at the asymptotic
regime. At the initial stages, the controllers operate in nearly anti-phase to 
pt, in order
to eliminate the antisymmetric pressure component due to vortex shedding. The inability
of the static controller to have a frequency-dependent amplitude (and phase) manifests as
well through the amplification of high-frequency noise. For t > 11, the static feedback
controller continues to operate in nearly anti-phase to the pressure difference, resulting in
partial stabilisation of unsteadiness. However, the dynamic feedback controller adjusts its
phase and amplitude significantly, which attenuates the antisymmetric fluctuation of base
pressure and drives 
pt to near zero.
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Figure 5. Contours of velocity magnitude |u| in the asymptotic regime of control (at t = 100). Areas of
(−4, 26) in the x direction and (−3, 3) in the y direction are presented for visualisation: (a) baseline (no
control), (b) PM-Static, (c) PM-Dynamic, (d) FM-Static.
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Figure 6. (a) Mean and (b) RMS base pressure for controlled and uncontrolled cases from the 64 wall
sensors on the downstream surface of the bluff body base.
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Figure 7. Time series of pressure differences 
pt (blue) and action at−1 (red) for (a) PM-Static and (b)
PM-Dynamic cases. Control is applied at t = 0. The arrows are pointing from low to high values of |ysensor|
among 
pt curves. The vertical dashed lines mark the time instances of the vorticity snapshots in figure 8.

Figure 8 shows instantaneous vorticity contours for PM-Dynamic and PM-Static cases,
showing both similarities and discrepancies between the two cases. At t = 2, flow is
expelled from the bottom jet for both cases, generating a clockwise vortex, termed V1.
This V1 vortex, shown in black, works against the primary anticlockwise vortex labelled as
P1, depicted in red, emerging from the bottom surface. At t = 5.5, a secondary vortex, V2,
forms from the jets to oppose the primary vortex shedding from the top surface (labelled as
P2). At t = 13, the suppression of the two primary vortices near the bluff body is evident in
both cases, indicated by their less tilted shapes compared to the previous time instances. At
t = 13, the PM-Dynamic adjusted the phase of the control signal, which corresponds to a
marginal action at this time instance at figure 7. Consequently, no additional counteracting
vortex is formed in PM-Dynamic. However, in the PM-Static scenario, the jets generate
a third vortex, labelled V3, which emerges from the top surface. This corresponds to a
peak in the action of the PM-Static controller at this time. The inability of the PM-Static
controller to adapt the amplitude/phase of the input–output behaviour results in suboptimal
performance.

3.3. Horizon of the finite-history sufficient statistic
A parametric study on the horizon of the finite history in the NARX model (2.28), i.e. the
number of frames stacked Nfs, is presented in this subsection. Since the NARX model uses
a finite horizon of past actions measurements in (2.27), the horizon of the finite history
affects the convergence of the approximation (Yu & Bertsekas 2008). This approximation
affects the optimisation during the learning of RL because it determines whether the RL
agent can observe sufficient information to converge to an optimal policy.

Since vortex shedding is the dominant instability to be controlled, the choice of Nfs
should link intuitively to the time scale of the vortex shedding period. The ‘frames’ of
observations are obtained every RL step (0.5 time units), while the vortex shedding period
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Figure 8. Vorticity snapshots at the transient phase of control: (a–c) PM-Static, (d– f ) PM-Dynamic.

Number of VS periods Non-dimensional time units History length (Nfs)

0.5 3.43 7
1 6.85 14
2 13.70 27
3 20.55 41
4 27.40 55
5 34.25 68

Table 2. Correspondence between the number of vortex shedding (VS) periods and frame stack (history)
length in samples Nfs. The RL control step size is ta = 0.5, and Nfs is rounded to an integer.

is tvs ≈ 6.85 time units. Thus Nfs is rounded to integer values for different numbers of
vortex shedding periods, as shown in table 2.

The results of time-averaged drag coefficients 〈CD〉 after control, and the average
episode rewards 〈Rep〉 in the final stage of training, are presented in figure 9. As Nfs
increases from 0 to 27, the performance of RL control improves, resulting in a lower
〈CD〉 and a higher 〈Rep〉. We examine Nfs = 2 especially, because the latent dimension
of the vortex shedding limit cycle is 2. However, the control performance with Nfs = 2
is improved marginally to the one with Nfs = 0, i.e. a static feedback controller. This
result indicates that the horizon consistent with the vortex shedding dimension is not long
enough for the finite horizon of past action measurements. The optimal history length to
achieve stabilisation of the vortex shedding in PM environments is 27 samples, which are
equivalent to 13.5 convective time units or ∼2 vortex shedding periods.

With Nfs = 41 and Nfs = 55, the drag reduction and episode rewards drop slightly
compared to Nfs = 27. The decline in performance is non-negligible as Nfs increases
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Figure 9. Average drag coefficient 〈CD〉 and average episode reward 〈Rep〉 in PM cases against number history
length (numbers of stacked frames) Nfs. Here, 〈CD〉 is obtained from the asymptotic regime of control, and
〈Rep〉 is calculated from two episodes after convergence of RL.

further to 68. This decline shows that excessive inputs to the neural networks (see table 1)
may impede training because more parameters need to be tuned or larger neural networks
need to be trained.

3.4. Observation sequence with past actions
Past actions (exogenous terms in NARX) facilitate reducing a POMDP to an MDP
problem, as discussed in § 2.4. In the near-optimal control of a PM environment using a
dynamic feedback controller with inputs (ot, ot−1, . . . , ot−Nfs), a sequence of observations
ot = {pt, at−1} at step t is constructed to include pressure measurements and actions. In the
FM environment, due to the introduction of one-step delayed action due to the first-order
hold interpolation given by (2.18), the inclusion of the past action along with the current
pressure measurement, meaning ot = {pt, at−1}, is required even when the sensors are
placed in the wake and cover the wavemaker region.

Figure 10 presents the control performance for the same environment with and without
past actions included. In the FM case, there is no apparent difference between RL control
with ot = {pt, at−1} or ot = {pt}, which indicates that the inclusion of the past action
is negligible to the performance. This is the case when the RL sampling frequency is
sufficiently faster than the time scale of the vortex shedding dynamics. In PM cases, if
exogenous action terms are not included in the observations but only the finite history of
pressure measurements is used, then the RL control fails to converge to a near-optimal
policy, with only η = 67.45 % drag reduction. With past actions included, the drag
reduction of the same environment increases to η = 97.00 %.

The above results show that in PM environments, sufficient statistics cannot be
constructed from only the finite history of measurements. Missing state information needs
to be reconstructed by both state-related measurements and control actions.
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Figure 10. Curves of drag coefficients after control applied in both FM and PM environments. Results from
FM cases are presented as references, while a performance difference can be observed in the PM cases with
and without past actions included.

3.5. Reward study
In § 3.2, a power-based reward function given by (2.19) has been implemented, and
stabilising controllers can be learned by RL, as shown. In this subsection, RL control
results with other forms of reward functions (introduced in § 2.3) are provided and
discussed.

The control performance of RL control with the different reward functions is evaluated
based on the drag coefficient CD shown in figure 11. Static feedback controllers are trained
in FM environments, and dynamic feedback controllers are trained in PM environments.
In FM cases, control performance is not sensitive to the choice of reward function
(power or force-based). In PM cases, the discrepancies between RL-step time-averaged
and instantaneous rewards can be observed in the asymptotic regime of control. The
controllers with both rewards (power or force-based) achieve nearly optimal control
performance, but there is some unsteadiness in the cases using instantaneous rewards
due to slow statistical convergence of the rewards and limited correlation to the partial
observations.

All four types of reward functions studied in this work achieve nearly optimal drag
reduction at approximately 100 %. However, the energy-based reward (‘PowerR’) offers
an intuitive reward design, attributable to its physical properties and the dimensionally
consistent addition of the constituent terms of the reward function. Further enhancing
its practicality, since the power of the actuator can be measured directly, it avoids the
necessity for hyperparameter tuning, as in the force-based reward. Additionally, the results
show similar performance with both time-averaged between RL steps and instantaneous
rewards, avoiding the necessity for faster sampling for the calculation of the rewards. This
choice of reward function can be extended to various RL flow control problems, and can
be beneficial to experimental studies.
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Figure 11. Tests of RL-trained controllers with various reward functions. Drag coefficient CD curves are
presented for each case. Dotted lines denote the cases with FM environments, while solid lines denote PM
environments. The dash-dotted line represents CD in the base flow, which has no vortex shedding. Control
starts at t = 0, with the same initial conditions for every case.

3.6. Sensor configuration study with PM
In the PM environment, the configuration of sensors (number and location on the
downstream surface) may also affect the information contained in the observations, and
thus control performance. Control results of drag coefficient CD for different sensor
configurations in PM-Dynamic cases are presented in figure 12. In the configuration with
N = 2, two sensors are placed at y = ±0.25, and for N = 1, only one sensor is placed at
y = 0.25. Other configurations are consistent with (2.3).

The CD curves in figure 12 show that as the number of sensors is reduced from 64 to
2, RL control achieves the same level of performance with minor discrepancies due to
randomness in different learning cases. However, if RL control uses observations from
only one sensor at y = 0.25, performance degradation can be observed in the asymptotic
stage with 19.79 % on average less drag reduction. The inset presents the relationship
between the number of sensors and asymptotic drag coefficient 〈CD〉. These results
indicate a limit on sensor configuration for the use of the NARX-modelled controller to
stabilise the vortex shedding.

To understand the cause of performance degradation in the N = 1 case, the pressure
measurements from two sensors in both baseline and PM-Dynamic cases are presented
in figure 13. In the baseline case, two sensors are placed at the same location as the
N = 2 case (y = ±0.25) only for observations. It can be observed that the pressure
measurements from two sensors are antisymmetric since they are placed symmetrically
on the downstream surface. In the PM-Dynamic case, the NARX controller is used, and
control is applied at t = 0. In this closed-loop system, the antisymmetric relationship
between two sensors (from the symmetric position) is broken by the control actuation, and
no correlation is evident. This can be seen during the transient dynamics, e.g. in t ∈ [0, 10].
Therefore, when the number of sensors is reduced to N = 1 by removing one sensor from
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Figure 12. Curves of drag coefficients after control applied at t = 0 in PM-Dynamic cases. Sensor
configurations with different sensor numbers N = 1, 2, 16, 32, 48, 64 are tested. The dash-dotted line presents
CD from the base flow. The inset shows the asymptotic drag coefficient 〈CD〉 (time-averaged value after t = 80)
and probe number N.

the N = 2 case, the dynamic feedback from the removed sensor cannot be reflected fully by
the remaining sensor in the closed-loop system. This loss of information affects the fidelity
of the control response to the dynamics of the sensor-removing side, causing sub-optimal
drag reduction in the N = 1 scenario.

It should be noted that the configuration of 64 sensors is not necessary for control, as
N = 2 or N = 16 also achieves nearly optimal performance. The number of sensors N =
64 in PM-Static environments is used for comparison with the FM-Static configuration
(2.4), which eliminates the effect from different input dimensions between two static
cases. Also, 64 sensors cover the downstream surface of the bluff body sufficiently to
avoid missing spatial information. The optimal configuration of sensors can be tuned with
optimisation techniques such as in Paris et al. (2021), but the results in figure 12 indicate
that RL adapts with nearly optimal performance to non-optimised sensor placement in the
present environment.

3.7. Performance of RL controllers to unseen Re
The RL controller is tested at different Reynolds numbers, in order to examine its
generalisability to environment changes. The controllers have been trained at Re = 100
with both FM and PM conditions, and tested at Re = 80, 90, 100, 110, 120, 150. The
controllers were trained further at Re = 150, denoted as continual learning (CL), and tested
again at Re = 150.

As shown in figure 14, in both PM-Dynamic and FM-Static cases, the RL controllers
are able to reduce drag by η = 64.68 % in the worst case, when Re is close to the
training point at Re = 100, i.e. the test cases with Re = 80, 90, 100, 110, 120. However,
when applying the controllers trained at Re = 100 to an environment at Re = 150, the
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Figure 13. Pressure measurements in t ∈ [0, 40] (early transient stage in the controlled case) from two surface
sensors: (a) baseline without control; (b) PM-Dynamic with an NARX controller, N = 2. All curves are
detrended by a fifth-order polynomial to reveal the relationship between measurements from the two sensors.

drag reduction drops to η = 41.98 % and η = 74.04 % in the PM-Dynamic and FM-Static
cases, respectively.

Performing CL at Re = 150, the drag reduction is improved to η = 78.07 % in
PM-Dynamic after 1105 training episodes, while η = 88.13 % in FM-Static after 390
episodes, with the same RL parameters as the training at Re = 100. Overall, the results of
these tests indicate that the RL-trained controllers can achieve significant drag reduction
in the vicinity of the training point (i.e. ±20 % Re change). If the test point is far from the
training point, then a CL procedure can be implemented to achieve nearly optimal control.

3.8. Comparing TQC to SAC
Control results with TQC and SAC are presented in figure 15 in terms of CD, where TQC
shows a more robust control performance. In the case of FM, SAC might demonstrate a
slightly more stable transient behaviour attributed to the fact that the quantile regression
process in TQC introduced complexity to the optimisation process. Both controllers
achieved an identical level of drag reduction in the FM case.

However, in the context of the PM cases, it is observed that TQC outperforms SAC
in drag reduction with both static and dynamic feedback controllers. For static feedback
control, TQC achieved an average drag reduction η = 56.00 %, compared to the η =
46.31 % reduction achieved by SAC. The performance under dynamic feedback control
conditions is more compelling, where TQC fully reduced the drag, achieving η = 97.00 %
of drag reduction, reverting it to a near-base-flow scenario. In contrast, SAC managed to
achieve average drag reduction η = 96.52 %.

The fundamental mechanism for updating Q-functions in RL involves selecting the
maximum expected Q-functions among possible future actions. This process, however,
potentially can lead to overestimation of certain Q-functions (Hasselt 2010). In the
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Figure 14. Asymptotic drag coefficient 〈CD〉 for baseline, base flow, and tests of RL-trained controllers in both
FM and PM environments with different Re. The controllers were trained at Re = 100 (dashed line), and tested
at Re = 80, 90, 100, 110, 120, 150. The controllers were trained again at Re = 150 (dash-dotted line) and tested
at Re = 150 (square and diamond markers). All curves are fitted using a third-order spline.
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POMDP, this overestimation bias might be exacerbated due to the inherent uncertainty
arising from the partial-state information. Therefore, the Q-learning-based algorithm,
when applied to a POMDP, might be more prone to choosing these overestimated values,
thereby affecting the overall learning and decision-making process.

As mentioned in § 2.2, the core benefit of TQC under these conditions can be attributed
to its advanced handling of the overestimation bias of rewards. By constructing a more
accurate representation of possible returns, TQC provides a more accurate Q-function
approximation than SAC. This process of modulating the probability distribution of the
Q-function assists TQC in managing the uncertainties inherent in environments with
only partial-state information. In this case, TQC can adapt more robustly to changes and
uncertainties, leading to better performance in both static and dynamic feedback control
tasks.

4. Conclusions

In this study, maximum entropy RL with TQC has been performed in an active flow control
application with PM to learn a feedback controller for bluff body drag reduction. Neural
network controllers have been trained by the RL algorithm to discover a drag reduction
control strategy behind a 2-D square bluff body at Re = 100. By comparing the control
performances in FM environments to PM environments, we showed a non-negligible
degradation of RL control performance if the controller is not trained with full-state
information. To solve this issue, we proposed a method to train a dynamic neural network
controller with an approximation of a finite-history sufficient statistic and formulate the
dynamic controller as an NARX model. The dynamic controller was able to improve the
drag reduction performance in PM environments and achieve near-optimal performance
(drag reduction ratio η = 97 % with respect to the base flow drag) compared to a static
controller (η = 56 %). We found that the optimal horizon of the finite history in NARX
is approximately two vortex shedding periods when the sensors are located only on the
base of the body. The importance of including exogenous action terms in the observations
of RL is discussed, by pointing out the degradation of η = 29.55 % on drag reduction
if only past measurements are used in the PM environment. Also, we proposed a net
power consumption design for the reward function based on the drag power savings
and the power of the actuator. This power-based reward function offers an intuitive
understanding of the closed-loop performance, whereas electromechanical losses can also
be added directly, once a specific actuator is chosen. Moreover, its inherent feature of
being hyperparameter-free contributes to a straightforward reward function design process
in the context of flow control problems. Results from SAC are compared with TQC, and
we showed the improvement by TQC, which attenuates overestimation in neural networks.

It was shown that model-free RL was able to discover a nearly optimal control strategy
without any prior knowledge of the system dynamics using partial realistic measurements,
exploiting only input–output data from the simulation environment. Therefore, this
particular study on RL-based active flow control in 2-D laminar flow simulations
can be seen as a step towards controlling the complex dynamics of three-dimensional
turbulent flows in practical applications by replacing the simulation environment with the
experimental set-up. Also, the frame stack method employed here to convert the POMDP
to an MDP can be replaced by recurrent neural networks and attention-based architectures,
which may further improve control performance in a scenario with complex dynamics.

Funding. We acknowledge support from the UKRI AI for Net Zero grant EP/Y005619/1.
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Figure 16. Computational mesh of the simulation domain, x ∈ (−20.5, 26.5) and y ∈ (−12.5, 12.5).
A zoom-in view around the bluff body is presented in the black rectangle at the right. Boundaries of the
simulation domain, bluff body surface and jet area are denoted.
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Appendix A. Details of simulation environment

The simulation environment for solving the governing Navier–Stokes equations is adapted
from Rabault et al. (2019) to the flow past a square bluff body. The boundary condition at
the inflow boundary ΓI is set as a uniform velocity profile, and a zero-pressure condition
is used at the outflow boundary ΓO. A freestream condition is used at the top and bottom
boundary ΓD of the domain. The boundary on the bluff body is separated into body surface
ΓW and jet area Γj, with a no-slip boundary condition and jet velocity profile, respectively.
The boundary conditions are formulated as

u = U∞ on ΓI,

p = 0 on ΓO,

u = U∞ on ΓD,

u = 0 on ΓW ,

u = Uj on Γj, j = 1, 2.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A1)

The mesh of the simulation domain and a zoom-in view of the mesh around the square
bluff body are presented in figure 16. The mesh is refined in the wake region with ratio
0.45, and near the body wall with ratio 0.075, with respect to the mesh size of the far field.
Near the jet area, the mesh is refined further, with ratio 0.015. More details can be found
in the source code (see the GitHub repository).

981 A17-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://github.com/RigasLab/Square2DFlowControlDRL-PM-NARX-SB3
https://orcid.org/0000-0001-6692-6437
https://orcid.org/0000-0001-6692-6437
https://doi.org/10.1017/jfm.2024.69


AFC by RL with partial measurements

Hyperparameter Value

Optimiser Adam
Learning rate 10−4

Discount (γ ) 0.99
Replay buffer size 105

Number of hidden layers (both actor and critic) 3
Number of hidden units per layer 512
Number of samples per mini-batch 128
Entropy target − dim(A)
Activation ReLU
Target smoothing coefficient (τ ) 5× 10−3

Target update interval 1
Gradient steps 48
Top quantiles to drop per net 2
Number of quantiles per net 25

Table 3. Hyperparameters used by default in TQC. For SAC, ‘top quantiles to drop per net’ is not used, and
other parameters remain the same. For the entropy target, − dim(A) denotes the dimension of action space A.

Appendix B. Hyperparameters of RL

The RL hyperparameters to reproduce the results section (§ 3) are listed in table 3.

Appendix C. A long-run test of RL-trained controller

In figure 17, the trained policy is tested for a longer time (400 time units) than training
(200 time units) to show the control stability outside the training time frame for the
dynamic controller in the PM environment. The initial condition of this long-run test is
different compared to figure 4, indicating the adaptability of the controller to different
initial conditions. Other parameters in this run are consistent with the results in figure 4.

The control performance and behaviour in this test are consistent with the results shown
in figure 4 in both the transient stage and the asymptotic stage. The drag coefficient CD
starts from the condition of steady vortex shedding, and drops to the value of the stabilised
flow in approximately 120 time units, with minor fluctuations. After training time (200
time units), the controller is still able to prevent triggering vortex shedding and preserve the
drag coefficient near the base flow values (minimum drag without vortex shedding). The
behaviour of the controller is presented further in the insets of Q1. The controller creates
negligible random mass flow after stabilising the vortex shedding due to the maximum
entropy in training.

Appendix D. Base flow simulation

The base flow corresponds to a steady equilibrium of the governing Navier–Stokes
equations. This fixed point is unstable to infinitesimal perturbations, giving rise to vortex
shedding. The base flow is obtained by simulating only half of the domain, as shown in
figure 18, which prevents antisymmetric vortex shedding. The boundary conditions are
consistent with (A1), while a symmetric boundary condition is applied on the bottom
boundary (symmetry line) of the domain, i.e. on y = 0. The symmetric boundary condition
is imposed as v = 0, ∂u/∂y = 0 and ∂p/∂y = 0.
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Figure 17. A long evaluation for 400 non-dimensional time units of the RL-trained dynamic controller in
a PM environment. Control starts at t = 0. Solid curves show the controlled CD using TQC and baseline
without control. The dash-dotted curve corresponds to the base flow CD. The mass flow rate Q1 is presented
for t ∈ [0, 200] and t ∈ [200, 400], respectively.

3

1

–4 1 6 11 16 21 26

1.0

0.5 |u|
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Figure 18. Base flow (steady flow without vortex shedding) obtained with a half-domain simulation, i.e.
y ∈ [0, 12.5]. A sub-domain y ∈ [0, 3.5], x ∈ [−4, 26] is plotted for demonstration. The symmetric boundary
condition is applied on the y = 0 boundary. The mesh of the simulation is consistent with figure 16.

In this case, the vortex shedding is not triggered, as shown in the contour of figure 18,
and the only cause of the pressure drag is flow separation. Therefore, comparing the
pressure drag in a full-domain simulation of uncontrolled flow, where the vortex shedding
is triggered, with this base flow, the amount of pressure drag due to flow unsteadiness can
be estimated. As only the unsteady component of pressure drag can be reduced effectively
by flow control (Bergmann, Cordier & Brancher 2005), the control performance can be
evaluated with respect to this base flow (3.2). The drag coefficient of the half square
body measures CDh = 0.618, and the base flow drag coefficient of the whole body can
be obtained as CDb = 2CDh = 1.236.
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