SUBGROUPS OF FINITE INDEX IN FREE GROUPS

MARSHALL HALL, Jr.

1. Introduction. This paper ${ }^{1}$ has as its chief aim the establishment of two formulae associated with subgroups of finite index in free groups. The first of these (Theorem 3.1) gives an expression for the total length of the free generators of a subgroup U of the free group F_{r} with r generators. The second (Theorem 5.2) gives a recursion formula for calculating the number of distinct subgroups of index n in F_{r}.

Of some independent interest are two theorems used which do not involve any finiteness conditions. These are concerned with ways of determining a subgroup U of F. The first (Theorem 4.1) gives a criterion for recognizing different representations of the same group, and the second (Theorem 5.1) yields a determination of a subgroup U by a set of permutations.
2. The standard representation. We shall be considering a free group F_{r} with a finite number of generators $s_{1}, s_{2}, \ldots, s_{r}$. A word f in F_{r} is any finite string $f=a_{1} \ldots a_{t}$, each $a_{i}=$ some s_{j} or s_{j}^{-1} and the length of $f, l^{*}(f)$ $=t$ the number of terms in the string. Every element f of F_{r} may be written in various ways as a word but in only one way as a reduced word. We shall write $l(f)$ for the length of the reduced form of the element f, whence

$$
l^{*}(f)=l(f)
$$

if and only if f is in reduced form.
A Schreier system is a set S of reduced words in F_{r} such that if any $f=a_{1} \ldots a_{t}$ belongs to F_{r} then also $a_{1} \ldots a_{t-1}$ belongs to F_{r}. If U is any subgroup of F_{r} then in the left cosets of U in F_{r}

$$
\begin{equation*}
F_{r}=U g_{1}+U g_{2}+\ldots+U g_{n} \tag{2.1}
\end{equation*}
$$

the representatives $g_{1}=1, g_{2}, \ldots, g_{n}$ may be chosen as a Schreier system. In this paper we shall be considering primarily subgroups U of finite index in $F_{r},\left[F_{r}: U\right]=n$. In a recent paper [1] a standard representation for U was given. If G is a generic term for the g_{i} and S for the s_{i}, let $\phi\left(G S^{\epsilon}\right), \epsilon= \pm 1$ be the G for the coset to which $G S^{\epsilon}$ belongs, H being a generic term for elements $G S^{\epsilon}$, then ϕ is a function defined for arguments H. It was shown that U is completely determined by the Schreier system $S=\{G\}$ and the function $\phi(H) . \quad \phi(H)$ satisfies:

$$
\begin{align*}
& \phi(H) \text { is a } G ; \tag{2.2.1}\\
& \phi(H)=G \text { if } H=G \text {; } \tag{2.2.2}\\
& \phi\left[\phi\left(G S^{\epsilon}\right) S^{-\epsilon}\right]=G . \tag{2.2.3}
\end{align*}
$$

[^0]Hence we may consider $\{G\}$ and $\phi(H)$ as giving a representation of U

$$
\begin{equation*}
U=U[\{G\}, \phi(H)] \tag{2.3}
\end{equation*}
$$

which we shall call the standard representation for U.
3. Coset representatives and generators. Suppose the subgroup U of F_{r} to be given by its standard representation (2.3). Then an element u

$$
\begin{equation*}
u=u(i, a)=g_{i} s_{a} \phi\left(g_{i} s_{a}\right)^{-1} \tag{3.1}
\end{equation*}
$$

is either a reduced word as it stands or reduces to the identity [1, §3]. Moreover, those u 's different from the identity are a free set of generators of U. Since both g_{i} and $\phi\left(g_{i} s_{a}\right)^{-1}=g_{j}^{-1}$ are reduced as they stand, $u(i, a)$ reduces to the identity if and only if one of two things happens: (1) g_{i} ends in s_{a}^{-1}, (2) g_{j} ends in s_{a}.

Let $n\left(s_{a}\right)$ be the number of G 's ending in $s_{a}, n\left(s_{a}^{-1}\right)$ the number ending in $s_{a}{ }^{-1}$. Then

$$
\sum_{a}\left[n\left(s_{a}\right)+n\left(s_{a}^{-1}\right)\right]=n-1,
$$

since every $G \neq 1$ is counted exactly once on the left. Hence, as Schreier proved [2] the number of generators of U is $n r-(n-1)=n(r-1)+1=N$. But there is also a relation connecting the lengths of the generators. Let us write

$$
\begin{align*}
& L=\sum_{i=1}^{n} l\left(g_{i}\right), \tag{3.2.1}\\
& K=\sum_{k=1}^{N} l\left(u_{k}\right) \tag{3.2.2}
\end{align*}
$$

where in (3.2.2) u_{1}, \ldots, u_{N} are the generators $u(i, a) \neq 1$ of U. From 3.1 it follows that

$$
\begin{equation*}
\sum_{i=1}^{n} l *[u(i, a)]=\sum_{i=1}^{n} l *\left[g_{i} s_{a} \phi\left(g_{i} s_{a}\right)^{-1}\right]=2 L+n \tag{3.3}
\end{equation*}
$$

since the $g_{j}=\phi\left(g_{i} s_{a}\right)$ are a permutation of the G 's. In (3.3) let us separate the summation into three classes: (A) terms for which g_{i} ends in s_{a}^{-1}; (B) terms for which $g_{j}=\phi\left(g_{i} s_{a}\right)$ ends in s_{a} and (C) the remaining terms. Then

$$
\begin{equation*}
2 L+n=\sum_{A} l *[u(i, a)]+\sum_{B} l *[u(i, a)]+\sum_{C} l^{*}[u(i, a)] \tag{3.4}
\end{equation*}
$$

If we now write

$$
\begin{align*}
& \lambda\left(s_{a}\right)=\sum_{j} l\left(g_{j}\right), g_{j} \text { ends in } s_{a} \tag{3.5}\\
& \lambda\left(s_{a}^{-1}\right)=\sum_{i} l\left(g_{i}\right), g_{i} \text { ends in } s_{a}^{-1}
\end{align*}
$$

we have

$$
\begin{equation*}
2 L+n=2 \lambda\left(s_{a}^{-1}\right)+2 \lambda\left(s_{a}\right)+\sum_{C} l[u(i, a)], \tag{3.6}
\end{equation*}
$$

since for \sum_{A} if g_{i} ends in $s_{a}^{-1}, l\left[\phi\left(g_{i} s_{a}\right)\right]=l\left(g_{i}\right)-1$ and $l *\left[g_{i} s_{a} \phi\left(g_{i} s_{a}\right)^{-1}\right]=$ $2 l\left(g_{i}\right)$. Similarly for \sum_{B} if $g_{j}=\phi\left(g_{i} s_{a}\right)$ ends in s_{a}, then $l\left[\phi\left(g_{j}\right)\right]=l\left(g_{i}\right)+1$ and $l *\left[g_{i} s_{a} \phi\left(g_{i} s_{a}\right)^{-1}\right]=2 l\left(g_{j}\right)$. Summing (3.6) over $a=1,2, \ldots, r$ we have

$$
\begin{equation*}
(2 L+n) r=2 L+\sum_{k=1}^{N} l\left(u_{k}\right), \tag{3.7}
\end{equation*}
$$

since $\sum_{a}\left[\lambda\left(s_{a}{ }^{-1}\right)+\lambda\left(s_{a}\right)\right]=L$ and the u 's of class C for $a=1,2, \ldots, r$ are precisely the $N=(r-1) n+1$ free generators of U. Hence,

Theorem 3.1. Let U be a subgroup of index n in a free group F_{r} with r generators, given by its standard representation. Thus, if L is the total length of the coset representatives and K the total length of the free generators of U given by the standard representation, then $K=(2 L+n) r-2 L$.
4. Different representations of the same subgroup. Given a subgroup U of F, the choice of coset representatives, even as a Schreier system, is not in general unique. The choice of representatives, given U, determines the function ϕ. We seek a criterion for recognizing different representations of the same subgroup. The following theorem does not assume either that the number of generators of F is finite or that U is of finite index.

Theorem 4.1. Let $U_{1}=U_{1}\left[\left\{G^{1}\right\}, \quad \phi^{1}(H)\right], \quad U_{2}=U_{2}\left\{\left\{G^{2}\right\}, \phi^{2}(H)\right]$ be standard representations of subgroups U_{1} and U_{2} of the free group F. Then $U_{1}=U_{2}$ if and only if we may find a one to one correspondence between the coset representatives mapping the identity onto itself such that if $g_{i}{ }^{1}{ }_{\gtrless} g_{j}{ }^{2}$, including $1=g_{1}{ }^{1} \nless g_{1}{ }^{2}=1$ then for any $s_{a}{ }^{\epsilon}, \phi^{1}\left(g_{i}{ }^{1} s_{a}{ }^{\epsilon}\right) \vec{\gtrless} \phi^{2}\left(g_{j}{ }^{2} s_{a}{ }^{\epsilon}\right)$.

Proof. First suppose $U_{1}=U_{2}=U$. Then if $U g_{i}{ }^{1}=U g_{j}{ }^{2}$ is the same left coset of U as given in the two representations this establishes a $1-1$ correspondence $g_{i}{ }^{1} \nless g_{j}{ }^{2}$ which includes $1=g_{1}{ }^{1} \nless g_{1}{ }^{2}=1$ such that if $g_{i}{ }^{1} \nless g_{j}{ }^{2}$ then $\phi^{1}\left(g_{i}{ }^{1} s_{a}{ }^{6}\right) \nless \phi^{2}\left(g_{j}{ }^{2} s_{a}{ }^{6}\right)$. Conversely, suppose the $1-1$ correspondence given with $1=g_{1}{ }^{1} \vec{孔} g_{1}{ }^{2}=1$ such that if $g_{i}{ }^{1} \vec{\gtrless} g_{j}{ }^{2}$ then $\phi^{1}\left(g_{i}{ }^{1} S_{a}{ }^{6}\right) ね$ $\phi^{2}\left(g_{j}{ }^{2} s_{a}{ }^{6}\right)$. By induction on length we may show that an element belonging to a coset of U_{1} belongs to the corresponding coset of U_{2}. This is true for $l(f)=0$, since $f=1$, and $1 \underset{\gtrless}{ }$. And if f is in the cosets $U_{1} g_{i}{ }^{1}{ }_{\gtrless} U_{2} g_{j}{ }^{2}$, then $f s_{a}{ }^{\epsilon}$ is in the corresponding cosets $U_{1} \phi^{1}\left(g_{i}{ }^{1} s_{a}{ }^{\epsilon}\right) \nLeftarrow U_{2} \phi^{2}\left(g_{j}{ }^{2} s_{a}{ }^{\epsilon}\right)$. Hence corresponding cosets contain the same elements and in particular $U_{1}=U_{2}$. Examples exist (subgroups of index 3 in F_{2}) showing that the requirement $1=g_{1}{ }^{1} \nLeftarrow g_{1}{ }^{2}=1$ is not redundant. As an illustration of the content of Theorem 3.1, it may be observed that there are 18 Schreier systems for subgroups of index 3 in F_{2} and each of these yields four or six subgroups of index 3 , and yet of these only 13 are different.
5. The number of subgroups of index \boldsymbol{n} in \boldsymbol{F}_{r}. If U is a subgroup of any group F (free or not) generated by $s_{1}, \ldots, s_{i}, \ldots$ then by multiplication on the right each s_{i} induces a permutation P_{i} on the left cosets of U in F. Since the s_{i} 's generate F, the P_{i} 's will generate a group transitive on the cosets. The following theorem is a kind of converse for free groups. No finiteness assumptions are needed here.

Theorem 5.1. Given a free group F with generators $s_{1}, \ldots s_{i}, \ldots$ and a set of indices $I=\{1, \ldots, t, \ldots\}$. With each generator s_{i} associate a permutation P_{i} of the indices. Suppose $J=\{1, \ldots, j, \ldots\}$ to be the subset of I which is
the transitive constituent of I including the index 1. Then in F there is a Schreier system $\{G\}: g_{1}=1, \ldots, g_{j}, \ldots$, which may be indexed by J and a ϕ function such that $\phi\left(g_{j} s_{i}{ }^{\epsilon}\right)=g_{k}$ if and only if $P_{i}{ }^{\epsilon}$ takes j into k.

Proof. The permutations P_{i} generate a group E. In E let D_{1} be the subgroup which fixes the symbol 1. The mapping $s_{i} \rightarrow P_{i}$ determines a homomorphism of F onto $E, F \rightarrow E$. In this homomorphism let U be the subgroup of F mapped onto $D_{1}, U \rightarrow D_{1}$. We may choose coset representatives $\{G\}$ of U in F as a Schreier system. If $G \rightarrow A$, then $U G \rightarrow D_{1} A$. Let A take the index 1 into j, which we write (1) $A=j$. Here let us assign the index j to G, putting $G=g_{j}$. Hence the Schreier system $\{G\}$ has been indexed by those indices into which elements of E take the index 1 , which form the set J. Here if $g_{j} \rightarrow A, s_{i}{ }^{\epsilon} \rightarrow P_{i}{ }^{\epsilon}$, then $g_{j} s_{i}{ }^{\epsilon} \rightarrow A P_{i}{ }^{\epsilon}$. Now if $(j) P_{i}{ }^{\epsilon}=k$, then (1) $A P_{i}{ }^{\epsilon}=k$ and $A P_{i}{ }^{\epsilon}$ belongs to the coset $D_{1} B$ of D_{1}, consisting of those elements X of E such that (1) $X=k$. Here $U g_{k} \rightarrow D_{1} B$. Hence $g_{j} s_{i}{ }^{\epsilon}$ belongs to $U g_{k}$ or $\phi\left(g_{j} s_{i}{ }^{6}\right)=g_{k}$.

Theorem 5.2. The number N_{n}, r of subgroups of index n in F_{r} is given recursively by $N_{1, r}=1$,

$$
N_{n, r}=n(n!)^{r-1}-\sum_{i=1}^{n-1}[(n-i)!]^{r-1} N_{i, r}
$$

Proof. $N_{1, r}=1$ states merely that F_{r} is its own unique subgroup of index 1. From Theorem 5.1 each subgroup U of index a is determined by r permutations P_{1}, \ldots, P_{r}, generating a group transitive on numbers $1, b_{2}$, \ldots, b_{a}. From Theorem 4.1 replacement of $1, b_{2}, \ldots, b_{a}$ by $1, c_{2}, \ldots, c_{a}$ in P_{1}, \ldots, P_{r} yields the same group U.

Consider r permutations $P_{1}, P_{2}, \ldots, P_{r}$ on n letters. The number of possible choices for $P_{1}, P_{2}, \ldots, P_{r}$ is $(n!)^{r}$. In general P_{1}, \ldots, P_{r} will not generate a group transitive on all n letters. Let $1, b_{2}, b_{3}, \ldots, b_{a}$ be the transitive constituent which includes the identity. Disregarding the rest of the numbers, we may associate P_{1}, \ldots, P_{r} with a unique subgroup of index a. The other $n-a$ letters may occur in [$(n-a)!]^{r}$ ways. Also b_{2}, \ldots, b_{a} could be replaced by numbers c_{2}, \ldots, c_{a} from $2, \ldots, n$ in $(n-1)(n-2) \ldots(n-a+1)$ ways. Hence, of the permutations P_{1}, \ldots, P_{r}, on $1,2, \ldots, n$ a total of $(n-1)(n-2) \ldots(n-a+1)$ $[(n-a)!]^{r}=(n-1)![(n-a)!]^{r-1}$ are associated with the same subgroup of index a in F_{r}. Hence $(n-1)![(n-a)!]^{r-1} N_{a}, r$ permutations are associated with subgroups of index a. Hence

$$
(n!)^{r}=\sum_{a=1}^{n}(n-1)![(n-a)!]^{r-1} N_{a}, r
$$

If here we divide by $(n-1)$! and transpose the sum for $a=1$ to $n-1$ we have the formula of the Theorem.
Ohio State University

References

[1] M. Hall, Jr. and T. Rado, "On Schreier Systems in Free Groups," Trans. Amer. Math. Soc., vol. 64 (1948), 386-408.
[2] O. Schreier, "Die Untergruppen der freien Gruppen," Abh. Math. Sem. Hansischen Univ., vol. 5 (1927), 161-183.

[^0]: Received March 2, 1948.
 ${ }^{1}$ This paper was written as part of a research project for the Office of Naval Research, under the administration of the Ohio State University Research Foundation.

