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1. Introduction. This paper1 has as its chief aim the establishment of 
two formulae associated with subgroups of finite index in free groups. The 
first of these (Theorem 3.1) gives an expression for the total length of the free 
generators of a subgroup U of the free group Fr with r generators. The 
second (Theorem 5.2) gives a recursion formula for calculating the number of 
distinct subgroups of index n in Fr. 

Of some independent interest are two theorems used which do not involve 
any finiteness conditions. These are concerned with ways of determining a 
subgroup U of F. The first (Theorem 4.1) gives a criterion for recognizing 
different representations of the same group, and the second (Theorem 5.1) 
yields a determination of a subgroup U by a set of permutations. 

2. The standard representation. We shall be considering a free group 
Fr with a finite number of generators si, s2, . . . , s r . A word f in Fr is any 
finite s t r ing / = a\. . . at, each az- = some Sj or Sy-1 and the length of/, I* (J) 
= t the number of terms in the string. Every element f of Fr may be written 
in various ways as a word but in only one way as a reduced word. We shall 
write 1(f) for the length of the reduced form of the element / , whence 

i*(f) = ni) 
if and only if / is in reduced form. 

A Schreier system is a set S of reduced words in Fr such that if any 
/ = a,\. . . a% belongs to Fr then also a\. . . at-i belongs to Fr. If U is any 
subgroup of Fr then in the left cosets of Urn Fr 

(2.1) Fr = Ugi + Ug2 + . . . + Ugn 

the representatives g\ — 1, g2j . . . , gn may be chosen as a Schreier system. 
In this paper we shall be considering primarily subgroups U of finite index 
in Fr, [Fr : U] = n. In a recent paper [1] a standard representation for U 
was given. If G is a generic term for the gi and S for the Si, let $(G5e), e = ± 1 
be the G for the coset to which GSe belongs, H being a generic term for elements 
GS6, then 0 is a function defined for arguments H. It was shown that U 
is completely determined by the Schreier system S = {G} and the function 
4>(H). <t>(H) satisfies: 
(2.2.1) <t>(H) i s a G ; 

(2.2.2) 0 (5 ) = Gif H = G; 

(2.2.3) 0[<KGSÉ)S-€] = G. 

Received March 2, 1948. 
1This paper was written as part of a research project for the Office of Naval Research, 

under the administration of the Ohio State University Research Foundation. 

187 

https://doi.org/10.4153/CJM-1949-017-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-017-2


188 MARSHALL HALL, JR. 

Hence we may consider {G} and <t>{H) as giving a representation of U 

(2.3) U= U[{G\, *(fl)] 

which we shall call the standard representation for U. 

3. Coset representatives and generators. Suppose the subgroup U of 
Fr to be given by its standard representation (2.3). Then an element u 
(3.1) u = u(i, a) = giSa<t>(giSa)-

1 

is either a reduced word as it stands or reduces to the identity [1, §3]. 
Moreover, those u's different from the identity are a free set of generators 
of U. Since both gi and 4>{g^a)~l = gj~l a r e reduced as they stand, u(i, a) 
reduces to the identity if and only if one of two things happens: (1) gi ends 
in Sa"1, (2) gj ends in sa. 

Let n(sa) be the number of G's ending in sa, w(sa
-1) the number ending in 

5 a
- 1 . Then 

H[n(sa) + n(5a"
1)] = n - 1, 

a 

since every G ?* 1 is counted exactly once on the left. Hence, as Schreier 
proved [2] the number of generators of U is nr — (n — 1) = n(r — 1) + 1 = N. 
But there is also a relation connecting the lengths of the generators. Let us 
write 

(3.2.1) L = SZfo) , 
i= 1 

N 
(3.2.2) K = S/ («*) , 

k = l 

where in (3.2.2) #i, . . . , uN are the generators u(i, a) ^ 1 of U. From 3.1 
it follows that 

(3.3) 2 l*[u(i,a)] = S Z ^ ^ f e * . ) " 1 ] = 2L + n, 
* = l * = l 

since the gj = ct>(giSa) are a permutation of the G's. In (3.3) let us separate the 
summation into three classes: (A) terms for which gi ends in s a

_ 1 ; (B) terms 
for which gj = cj>(giSa) ends in sa and (C) the remaining terms. Then 

(3.4) 2L + n = Jll*[u(i, a)] + 2Z*[«(*, a)] + Hl*[u(i, a)]. 
A B C 

If we now write 
(3.5) \(sa) = 2/(g;), gj ends in sa; 

3 

X(Sa-1) = S/(g»), gi ends in s."1; 

we have 
(3.6) 2L + n = 2 X ^ " 1 ) + 2X(stt) + SZ[«(i,a)], 

c 

since for S if gi ends in sa
_1 , l[<t>(giSa)] = /(gi) - 1 and l*[giSa<l)(giSa)-

1] = 

2Z(g<). Similarly for 2 if gy = 4>(giSa) ends in sa, then Z[0(gy)] = Z(g<) + 1 

and Z*[gî a</>(g^a)~1] = 2/(gy). Summing (3.6) over a = 1, 2, • . . , r we have 
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N 
(3.7) (2L + n)r = 2L + 2 /(**)• 

& = i 

since S I X V 1 ) + M^a)] = L and the u's of class C for a = 1, 2, . . . , r are 
a 

precisely the N = (r — l)w + 1 free generators of U. Hence, 
THEOREM 3.1. Let U be a subgroup of index n in a free group Fr with r 

generators, given by its standard representation. Thus, if L is the total length 
of the coset representatives and K the total length of the free generators of U 
given by the standard representation, then K = (2L + n)r — 2L. 

4. Different representations of the same subgroup. Given a subgroup 
U of F, the choice of coset representatives, even as a Schreier system, is not 
in general unique. The choice of representatives, given U, determines the 
function <£. We seek a criterion for recognizing different representations of 
the same subgroup. The following theorem does not assume either that the 
number of generators of F is finite or that U is of finite index. 

THEOREM 4.1. Let Ux = ^[{G 1}, <t>\H)], U2 = U2[{G2}, <t>2(H)] be 
standard representations of subgroups U\ and U2 of the free group F. Then 
Ui = U2 if and only if we may find a one to one correspondence between the 
coset representatives mapping the identity onto itself such that if gi1 X gj2, 
including 1 = gx

l X gi2 = 1 then for any sa% ^ ( g ^ O X #2(&"20-
Proof. First suppose Ui = Ui = U. Then if Ugi1 = Ugj2 is the same 

left coset of U as given in the two representations this establishes a 1 — 1 
correspondence gi1 X gj2 which includes 1 = gi1 X gi2 = 1 such that if 
g^Xgj2 then 01fe*1O X 02(&y2O- Conversely, suppose the 1 — 1 corres
pondence given with 1 = gi1 X gi2 = 1 such that if gi1 X gj2 then ^1(g»15a

6) X 
<t>2(gj2Sa). By induction on length we may show that an element belonging 
to a coset of U% belongs to the corresponding coset of C/2. This is true for 
/(/) = 0, since / = 1, and 1 ^ 1 . And if/ is in the cosets Uigi1 X Lfigj2, then 
fsa

e is in the corresponding cosets Ui^ig^Sa) X U2(t>2(gj2sa
e). Hence 

corresponding cosets contain the same elements and in particular U\ = Uz. 
Examples exist (subgroups of index 3 in F2) showing that the requirement 
1 = gi1 X gi2 = 1 is not redundant. As an illustration of the content of 
Theorem 3.1, it may be observed that there are 18 Schreier systems for 
subgroups of index 3 in F2 and each of these yields four or six subgroups of 
index 3, and yet of these only 13 are different. 

5. The number of subgroups of index n in Fr. If U is a subgroup of any 
group F (free or not) generated by S\,. . . , Si, . . . then by multiplication on the 
right each Si induces a permutation Pi on the left cosets of U in F. Since 
the Si s generate F, the Pi s will generate a group transitive on the cosets. 
The following theorem is a kind of converse for free groups. No finiteness 
assumptions are needed here. 

THEOREM 5.1. Given a free group F with generators $i, . . . Si, . . . and a set 
of indices I = {1, . . . , / , . . . } . With each generator Si associate a permutation 
Pi of the indices. Suppose J = {1, . . . , j , . . . } to be the subset of I which is 
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the transitive constituent of I including the index 1. Then in F there is a Schreier 
system {G} : gi = 1, . . . , gy, . . . , which may be indexed by J and a <£ function 
such that (frigjsf) = gk if and only if P* takes j into k. 

Proof. The permutations Pi generate a group E. In E let Di be the 
subgroup which fixes the symbol 1. The mapping Si + Pi determines a 
homomorphism of F onto E, F > E. In this homomorphism let U be the 
subgroup of F mapped onto A , U > Di. We may choose coset representatives 
{G} of U in F as a Schreier system. If G + A, then UG + DiA. Let A 
take the index 1 into j , which we write {1)A = j . Here let us assign the 
index j to G, putting G = gj. Hence the Schreier system {G} has been 
indexed by those indices into which elements of E take the index 1, which 
form the set / . Here if gj + A, sf > P»e, then gjsf > AP*. Now if (j)Pi = fe, 
then (\)APi — k and AP* belongs to the coset D\B of Dh consisting of those 
elements X of E such that (l)X = k. Here Ugk -> DiB. Hence gjS? belongs 
to Ugh or 4>(gjSi) = gk. 

THEOREM 5.2. The number Nnir of subgroups of index n in Fr is given 
recursively by Nu r = 1, 

Nnir = «(n!)'-1 - njl [(n - i)\\^Nifr. 
i= 1 

Proof. Ni,r = 1 states merely that Fr is its own unique subgroup of 
index 1. From Theorem 5.1 each subgroup U of index a is determined by r 
permutations Pi , . . . , Pr, generating a group transitive on numbers 1, b2l 

. . . , ba. From Theorem 4.1 replacement of 1, b2l . . . , ba by 1, c2, . . . , ca in 
Pi, . . . , Pr yields the same group U. 

Consider r permutations Pi, P2, . . . , P r on n letters. The number of 
possible choices for Pi, P2, . . . , P r is (n\)r. In general Pi, . . . , Pr will not 
generate a group transitive on all n letters. Let 1, è2, b%, . . . , ba be the 
transitive constituent which includes the identity. Disregarding the rest 
of the numbers, we may associate Pi, . . . , P T with a unique subgroup of 
index a. The other n — a letters may occur in [(n — a)\]r ways. Also 
&2, . • . , ba could be replaced by numbers c2, . . • , ca from 2, . . . , n in 
(n — 1) (n — 2) . . . {n — a + 1) ways. Hence, of the permutations 
Pi, . . . , P r , on 1, 2, . . . , n a total of (n — 1) (n — 2) . . . ( « — a + 1) 
[(w — a)!] r = (w — 1)![(^ — a ) ! ] r _ 1 are associated with the same subgroup 
of index a in Fr. Hence (n — 1)![(^ — a)!]r_1iVa,r. permutations are 
associated with subgroups of index a. Hence 

( « ! ) ' = S (n - l)\[(n - a)r~i Na,r. 
a = 1 

If here we divide by {n — 1)! and transpose the sum for a = 1 to n — 1 
we have the formula of the Theorem, 
Ohio State University 
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