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Bayesian methods for analyzing true-and-error models
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Abstract

Birnbaum and Quispe-Torreblanca (2018) evaluated a set of six models developed under true-and-error theory against data

in which people made choices in repeated gambles. They concluded the three models based on expected utility theory were

inadequate accounts of the behavioral data, and argued in favor of the simplest of the remaining three more general models. To

reach these conclusions, they used non-Bayesian statistical methods: frequentist point estimation of parameters, bootstrapped

confidence intervals of parameters, and null hypothesis significance testing of models. We address the same research goals,

based on the same models and the same data, using Bayesian methods. We implement the models as graphical models in

JAGS to allow for computational Bayesian analysis. Our results are based on posterior distribution of parameters, posterior

predictive checks of descriptive adequacy, and Bayes factors for model comparison. We compare the Bayesian results with

those of Birnbaum and Quispe-Torreblanca (2018). We conclude that, while the very general conclusions of the two approaches

agree, the Bayesian approach offers better detailed answers, especially for the key question of the evidence the data provide for

and against the competing models. Finally, we discuss the conceptual and practical advantages of using Bayesian methods in

judgment and decision making research highlighted by this case study.
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1 Introduction

Birnbaum & Quispe-Torreblanca (2018) present an applica-

tion of true-and-error theory to a simple decision-making

task. In the task, a person chooses between two gambles

for each of two problems, and has to answer each problem

twice. For each individual problem, the choices are identi-

fied as safe (S) and risky (R) choices.

To demonstrate true-and-error theory, and to illustrate the

use of their computer program, TEMAP2.R, Birnbaum &

Quispe-Torreblanca (2018) use data from 107 subjects re-

ported by Birnbaum et al. (2017, Experiment 2, Sample

2). These data are shown in Table 1. The most common re-

sponding pattern, produced by 43 subjects, is RS′RS′. These

subjects chose the risky option for the first problem and the

safe option for the second problem, and did this for both repli-

cates of the problems. The second most common responding

pattern is SS′SS′. These subjects always chose the safe op-

tion for both replicates of problems. Over all of the subjects

and responses, the risky option is chosen more often (142

times) than the safe option (72 times) for the first problem,

but the safe option is chosen more often (177 times) than the
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Table 1: Data from Birnbaum et al. (2017, Experiment 2,

Sample 2).

First Second Replicate

Replicate RR′ RS′ SR′ SS′

RR′ 4 8 2 0

RS′ 4 43 2 8

SR′ 1 0 2 4

SS′ 1 10 0 18

risky option (37 times) for the second problem. Over both

problems, the safe option is chosen 249 times and the risky

option is chosen 179 times.

Figure 1 shows the most general true-and-error theory

model used by Birnbaum & Quispe-Torreblanca (2018). The

basic assumption is that there is a probability a person is in a

risky state or a safe state for the first problem and in a risky

state or a safe state for the second problem. These probabili-

ties are formalized by response-state parameters pRR′ , pRS′ ,

pSR′ , and pSS′ , and are assumed to be the same for both the

first and second replicate of each problem.

The choices made by the person are based on their state,

but also depend on response error probabilities. In the most

general model shown in Figure 1, there are separate response

error probabilities for both states of both problems. Thus, for

example, if a person is in the risky state for the first problem

(R), they choose the risky option R with (high) probability

1−e, and the safe option S with (low) probability e. Similarly,

if a person is in the safe state for the second problem (S′),
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Figure 1: General framework for true-and-error models of

two binary choice problems. For each problem, the decision

maker can be in a risky state or a safe state. The response

they generate follows this state according to a response error

probability.

they choose the safe option S′ with (high) probability 1− f ′,

and the risky option R′ with (low) probability f .

Birnbaum & Quispe-Torreblanca (2018) call the model in

Figure 1 TE-4, corresponding to the true-and-error theory

model with four response error parameters. They consider

an additional five models that correspond to special cases

of the general TE-4 model. The TE-2 model assumes that

the response error probabilities remain dependent on the

problem, but are no longer dependent on the response state.

This theoretical assumption corresponds to the statistical

restrictions e = f and e′ = f ′. The TE-1 model assumes that

response error probabilities are the same for both problems

and states, so that e = f = e′ = f ′.

The other three models considered by Birnbaum &

Quispe-Torreblanca (2018) formalize the key assumption of

expected utility theory that the response state is the same

for both problems. This theoretical assumption corresponds

to the statistical restrictions that pRS′ = 0 and pSR′ = 0.

Imposing just these restrictions, but allowing four response

error probabilities is called the EU-4 model. Following the

construction of the TE-2 and TE-1 models, the additional

restrictions e = f and e′ = f ′ applied to the EU-4 model

produces the EU-2 model, and assuming a single response-

error probability e = f = e′ = f ′ produces the EU-1 model.

Given the two major theories, the six specific models, and

the behavioral data, there is a sequence of obvious research

questions. What evidence do the data provide for and against

the competing theories and models? How well do the the-

ories and mdoels fare in describing the observed patterns

of decisions? If there are models that do describe the data

well, what can we learn about the underlying decision pro-

cesses involved from inferences about their response state

and response error parameters?

Birnbaum & Quispe-Torreblanca (2018) demonstrate their

TEMAP2.R software in addressing these sorts of research

questions. The statistical methods used are non-Bayesian:

frequentist point estimation of parameters, bootstrapped con-

fidence intervals of parameters, and null hypothesis signif-

icance testing (NHST) of models. In the last decade or so,

however, there has been an increase in the use of Bayesian

statistical methods for relating cognitive models to data.

Bayesian methods are emphasized in textbooks (e.g., Far-

rell & Lewandowsky, 2018; Lee & Wagenmakers, 2013),

edited volumes summarizing the field (e.g., Wixted & Wa-

genmakers, 2018), and the journal Psychonomic Bulletin &

Review recently published an extensive special issue entirely

devoted to Bayesian methods (Vandekerckhove et al., 2018)

Accordingly, in this article we develop and demon-

strate an alternative Bayesian approach to answering the

same research questions addressed by Birnbaum & Quispe-

Torreblanca (2018). We first present the Bayesian approach,

and then compare its results to the ones they presented. We

conclude with a discussion of the merits of the two ap-

proaches, and draw conclusions about their usefulness in

cognitive modeling more generally.

2 Bayesian Analysis

2.1 Model Specification

Specifying the TE and EU models in Bayesian terms requires

placing priors on the model parameters. Given the nature

of the parameters as probabilities for determining response

states and response errors, and the theoretically meaningful

bounds of the parameters, it seems reasonable to assume

uniform priors based on these bounds. Accordingly, we use

pRR′, pRS′, pSR′, pSS′ ∼ Uniform
(

0, 1
)

e, f , e′, f ′ ∼ Uniform
(

0,
1

2

)

(M1)

for the TE-4 model, and place the appropriate equality and

zero restrictions for the other models. For example, the EU-

2 model has the restrictions e = f , e′ = f ′, pRS′ = 0, and

pSR′ = 0. The labeling of Equation M1 reflects that it is a

modeling assumption.

The Bayesian approach to defining the likelihood is the

same as that used by Birnbaum & Quispe-Torreblanca

(2018). For the ith response pattern, a probability θi of

a subject producing that pattern for a given model and pa-

rameterization follows from the decision trees in Figure 1.

For example, the response pattern RR′RR′, in which the

subject chooses the risky option for both gambles both

times, could be generated from them being in the risky

response state for both problems, and executing their de-

cisions without response error. The probability of this is

pRR′ [(1 − e) (1 − e′)]2. The same response pattern could

also be generated from the other response states, with var-

ious response errors. Following this logic, the response
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probabilities for all of the possible choice patterns are:

θ1 = pRR′ [(1 − e) (1 − e′)]
2
+ pRS′ [(1 − e) f ′]

2
+

pSR′ [ f (1 − e′)]
2
+ pSS′ [ f f ′]

2

θ2 = pRR′ (1 − e)2 e′ (1 − e′) + pRS′ (1 − e)2 f ′ (1 − f ′)+

pSR′e′ (1 − e′) f 2
+ pSS′ f 2 f ′ (1 − f ′)

. . .

θ16 = pRR′ [ee′]
2
+ pRS′ [e (1 − f ′)]2 + pSR′ [(1 − f ) e′]

2
+

pSS′ [(1 − f ) (1 − f ′)]
2
. (M2)

The observed data, given by the count y = (y1, . . . , y16) of

how many of n subjects produced each of the 16 response

patterns thus has likelihood

p (y | pRR′, pRS′, pSR′, pSS′, e, f , e′, f ′,M) =

16∏

i=1

θ
yi
i
,

(M3)

where M denotes the model. This can also be written as

y ∼ Multinomial
(

θ, n
)

, where θ = (θ1, . . . , θ16).

2.2 Bayesian Inference

In the Bayesian framework, it is conceptually helpful to

think of the model as a data-generating process. The likeli-

hood p (y | θ,M) given by the model assumptions in Equa-

tions M2 and M3 measures how likely the data are under a

specific parameterization of the model. The prior p (θ,M)

given by the modeling assumption in Equation M1 measures

how probable each specific parameterization is, according to

the theory being formalized by the model, before data have

been seen. As emphasized by Wagenmakers et al. (2016),

the predictions in Equation M3 form the basis for inference

about parameters. Bayes rule provides the logical way, based

on probability theory, to transform the predictions about how

likely data are given specific parameters into the inference of

how likely those specific parameters are, given the data that

were observed. This inference about parameters is expressed

by the posterior distribution

p (θ | y,M) =
p (y | θ,M) p (θ,M)

p (y)
. (B1)

The posterior distribution can be interpreted as updating the

prior distribution to give more probability to those parameter

values that predicted the data, and less probability to those

parameter values that did not predict the data. The labeling

of Equation B1 reflects that it is required by the adherence

of the Bayesian framework to probability theory, and applies

for any modeling assumptions about the likelihood and prior.

2.3 Posterior Distributions of Parameters

To infer posterior distributions, we used JAGS (Plummer,

2003), which is standard and free software. JAGS allows

probabilistic generative models to be defined in a simple

scripting language, and then automatically applies compu-

tational methods to sample from the joint posterior distribu-

tion. For an introduction to Bayesian graphical models using

JAGS aimed at cognitive scientists, see Lee & Wagenmakers

(2013).

We implemented each of the six models separately in

JAGS. The following script is an excerpt from the full

JAGS script for the EU-2 model. The various response-

state probability parameters are in the matrix variable p and

the response-error parameters are in the matrix variable e.

The definitions of the theta variables are produced by sep-

arate code that simply enumerates the likelihood for the full

TE-4 model. The reduction to the EU2 model is done by

the equality and zero constraints in the definition of the pri-

ors. Notice that the script also collects samples from the

posterior predictive distribution in the variable yPred. The

scripts for the other five models are constructed similarly,

and are provided in the on-line supplementary material.

# EU2

model{

# Data

y ~ dmulti(theta, nSubjects)

yPred ~ dmulti(theta, nSubjects)

# Priors

for (i in 1:4) { eTmp[i] ~ dunif(0,0.5) }

e[1,1] = eTmp[1] # R state,problem 1 (i.e.,e)

e[2,1] = eTmp[1] # S state,problem 1 (i.e.,f)

e[1,2] = eTmp[2] # R’ state,problem 2 (i.e.,e’)

e[2,2] = eTmp[2] # S’ state,problem 2 (i.e.,f’)

pTmp ~ dbeta(1,1)

p[1,1] = pTmp # p_RR’

p[1,2] = 0 # p_RS’

p[2,1] = 0 # p_SR’

p[2,2] = 1-pTmp # p_SS’

# Likelihood (auto-generated)

# RR’RR’

theta[ 1] =

p[1,1]*(1-e[1,1])*(1-e[1,2])*(1-e[1,1])*(1-e[1,2])

+ p[1,2]*(1-e[1,1])*e[2,2]*(1-e[1,1])*e[2,2]

+ p[2,1]*e[2,1]*(1-e[1,2])*e[2,1]*(1-e[1,2])

+ p[2,2]*e[2,1]*e[2,2]*e[2,1]*e[2,2]

# RR’RS’

theta[ 2] =

p[1,1]*(1-e[1,1])*(1-e[1,2])*(1-e[1,1])*e[1,2]

+ p[1,2]*(1-e[1,1])*e[2,2]*(1-e[1,1])*(1-e[2,2])

+ p[2,1]*e[2,1]*(1-e[1,2])*e[2,1]*e[1,2]

+ p[2,2]*e[2,1]*e[2,2]*e[2,1]*(1-e[2,2])
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Figure 2: Posterior distributions of model parameters. Each

panel corresponds to a model, with the parameters on the y-

axis. The violin plots show the posterior distribution of each

parameter.

# theta[ 3] to theta[15] removed for brevity

# SS’SS’

theta[16] =

p[1,1]*e[1,1]*e[1,2]*e[1,1]*e[1,2]

+ p[1,2]*e[1,1]*(1-e[2,2])*e[1,1]*(1-e[2,2])

+ p[2,1]*(1-e[2,1])*e[1,2]*(1-e[2,1])*e[1,2]

+ p[2,2]*(1-e[2,1])*(1-e[2,2])*(1-e[2,1])*

(1-e[2,2])

}

Figure 2 shows the marginal posterior distribution of every

model parameter for every model.1 These posterior distri-

butions quantify the relative probability that each value is

the true value of the parameter, given the assumptions of

the model, and the information provided by the data. The

constraints on the parameters that define the various mod-

els are clear. It is interesting to note that the progression

from the TE-4 model to the TE-2 model to the TE-1 model,

as parameter constraints are added, does not lead to qual-

itatively different inferences. The probability of the pRS′

response state is always high, followed by the pSS′ state,

1Technical details: the results are are based on applying each model to

the data by collecting 5000 samples from the joint posterior from each of

6 independent chains, after a burn-in period of 5000 discarded samples per

chain, and with a thinning factor of 10. The convergence of the chains was

assessed using the standard R̂ statistic (Brooks & Gelman, 1997) and by

visual inspection.

and there is little probability given to the other two states.

The certainty of these inferences, however, does improve as

the models become more constrained. The same is not true

for the progression of EU models. The inferred values for

response state and response error parameters are often differ-

ent between the EU models. For example, the 95% credible

intervals, based on the 2.5% and 97.5% percentiles, for the

pRR′ response state parameter are [0.17, 0.46], [0.04, 0.17],

and [0.01, 0.37], under the EU-4, EU-2, and EU-1 models,

respectively.

2.4 Posterior Predictive Analysis

The posterior distributions in Figure 2 quantify the relative

probability that each value is the true value of the parame-

ter, given the assumptions of the model. Conditioning on

the modeling assumptions means that if they are inappro-

priate the posterior distributions are not useful. A standard

Bayesian method for evaluating the adequacy of modeling

assumptions is posterior predictive checking (Gelman et al.,

2004; Shiffrin et al., 2008). The posterior predictive dis-

tribution is the distribution of data generated by a model,

based on the posterior distribution of parameters found by

conditioning on observed data.

Figure 3 shows a posterior predictive analysis for each

of the models. The violin plots show the predictive mass

each model gives to how many subjects show each of the 16

possible data patterns. The observed numbers of subjects

who produced each pattern are shown by square markers. To

the extent that the predictive distribution gives large mass

to the observed data, the model is able to “fit” the data.

By this standard, Figure 3 shows that all of the TE models

pass the basic test of descriptive adequacy. The observed

number of subjects producing each response pattern is given

significant mass in the posterior predictive distribution. All

of the EU models, however, fail to pass the test of descriptive

adequacy. The most common response pattern RS′RS′ is not

one easily produced by the EU models, since the change in

response states that would most easily produce the pattern is

not permitted by the theory. This incompatibility is visually

evident from the posterior predictive distributions for the

response patterns. Figure 3 shows a number of other cases

of EU models not giving large posterior predictive mass to

the data. The basic conclusions is that the TE models are

descriptively adequate while the EU models are not.

It is important to understand that posterior predictive

checking does not involve evaluating the ability of a model

to predict data. This is because the posterior predictive dis-

tribution is not a genuine prediction.2 Genuine predictions

are made before data are observed. The posterior predic-

tive analysis tests the ability of a model to re-describe data

2The word “predictive” in “posterior predictive” comes from statistics,

where it essentially means “over the data space”.
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Figure 3: Posterior predictive assessment of descriptive ad-

equacy. Each panel corresponds to a model, with the pos-

sible response patterns on the x-axis, and the count of the

number of subjects showing that pattern on the y-axis. The

violin plots show the posterior predictive distributions for the

model for each response pattern. The numbers of subjects

producing that pattern are shown by square markers.

that have already been seen and incorporated into the poste-

rior distribution. Thus, posterior predictive analysis is best

understood as an assessment of descriptive adequacy. It pro-

vides a mechanism for assessing whether it is reasonable to

interpret posterior distributions for parameters, but not for

assessing the predictive adequacy of models.

2.5 Model Comparison

In the Bayesian framework, the comparison and selection of

models is based on testing the relative accuracy of their pre-

dictions. This involves their prior predictive distributions,

which is the analogue to the posterior predictive distribu-

tion, but based on the prior assumptions about parameters

specified by the models. The prior predictive distribution

measures the average likelihood of the data under the model.

Formally, this requires integrating the likelihood of the data

over all of the parameterizations of the model, weighted by

how likely each parameterizations is, as formalized by the

prior:

p (y | M) =

∫

p (y | θ,M) p (θ,M) dθ. (B2)

The resulting marginal probability p (y | M) can be inter-

preted as how likely the data y are to be predicted by model

M. It is then natural to compare the predictions of two or

more competing models. This ratio

p (y | Ma)

p (y | Mb)
(B3)

for two models Ma and Mb is called the Bayes factor, and is

a standard Bayesian measure for comparing models (Kass &

Raftery, 1995; Lee & Wagenmakers, 2013, Ch. 7). Because

it is an odds ratio, the Bayes factor has a natural scale for

interpretation of significance, calibrated by betting. A Bayes

factor of 10, for example, means that the data are 10 times

better predicted by one model than the other.

A complementary interpretation of the Bayes factor is as

the evidence that updates prior knowledge about models to

posterior knowledge. Formally, this updating is given by

posterior odds

︷       ︸︸       ︷

p (Ma | y)

p (Mb | y)
=

Bayes factor

︷       ︸︸       ︷

p (y | Ma)

p (y | Mb)

prior odds

︷   ︸︸   ︷

p (Ma)

p (Mb)
. (B4)

and is conceptually analogous to the updating of knowledge

about parameters in Equation B1 that defined the posterior

distribution. In both equations, priors knowledge about pa-

rameters or models is updated by data, according to how well

the parameter or model predicted the data, to give posterior

knowledge about parameters or models. Under this interpre-

tation, a Bayes factor of 10 means that that the data provide

10 times more evidence for one model than the other.

To estimate the Bayes factors between the six models,

we used a standard latent-mixture approach — also known

as the product-space method — based on the inference of

posterior model probabilities (Lee, 2016; Lodewyckx et al.,

2011). The approach uses a single discrete parameter z that

indexes each of the six models, and controls which model is

assumed to generate the data. Formally

y ∼ Multinomial
(

θz, n
)

(M4)

where θz = (θ1z, . . . , θ16z) are the probabilities generated by

the zth model for each of the possible response patterns. We

place a simple prior on z

z ∼ Categorical
(1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)

(M5)

that makes each of the six models equally likely a priori. The

posterior distribution p (z | y) for the model index parameter

thus estimates the posterior probabilities of the models. We
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again implemented the latent-mixture model in JAGS. This

requires only one script, an excerpt of which focusing on the

additional code follows. The key is that the data are now

distributed y∼dmulti(theta[:, z], nSubjects), with

the predictions of each model calculated as a column in the

matrix theta.

Latent-mixture model selection

model{

# Data

y ~ dmulti(theta[:, z], nSubjects)

# Model indicator prior

z ~ dcat(phi)

for (modelIdx in 1:nModels){

phi[modelIdx] = 1

}

# TE4 MODEL

# Priors

for (i in 1:4) { eTmp[i,1] ~ dunif(0,0.5) }

e[1,1, ] = eTmp[1,1] # R state, problem 1 (i.e., e)

e[2,1,1] = eTmp[2,1] # S state, problem 1 (i.e., f)

e[1,2,1] = eTmp[3,1] # R’ state, problem 2 (i.e., e’)

e[2,2,1] = eTmp[4,1] # S’ state, problem 2 (i.e., f’)

pTmp1 ~ ddirch(c(1,1,1, ))

p[1,1,1] = pTmp1[1] # p_RR’

p[1,2,1] = pTmp1[2] # p_RS’

p[2,1,1] = pTmp1[3] # p_SR’

p[2,2,1] = pTmp1[4] # p_SS’

# RR’RR’

theta[1,1] =

p[1,1,1]*(1-e[1,1,1])*(1-e[1,2,1])

*(1-e[1,1,1])*(1-e[1,2,1])

+ p[1,2,1]*(1-e[1,1,1])*e[2,2,1]*(1-e[1,1,1])*e[2,2,1]

+ p[2,1,1]*e[2,1,1]*(1-e[1,2,1])*e[2,1,1]*(1-e[1,2,1])

+ p[2,2,1]*e[2,1,1]*e[2,2,1]*e[2,1,1]*e[2,2,1]

# theta[2,1] to theta[16,1] removed for brevity

# EU4, TE2, EU2, TE1, EU1 models removed for brevity

}

Figure 4 shows the results of the latent-mixture analysis,

giving the posterior probabilities for each of the six mod-

els.3 Only the three TE models have non-negligible poste-

rior probability. Since the prior probabilities of each model

that led to the estimated posterior probabilities are given by

the modeling assumptions in Equation M5, it is straightfor-

ward to estimate Bayes factors between any pair of models.

In this case, given the choice of equal prior probabilities,

3Technical details: the latent-mixture model was applied to the data

by collecting 10,000 samples from the joint posterior from each of 6 in-

dependent chains, after a burn-in period of 10,000 discarded samples per

chain, and with a thinning factor of 50. This more conservative sampling

strategy was chosen because latent-mixture models often require additional

samples and thinning for convergence. We again used R̂ statistic and visual

inspection to check convergence.
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Figure 4: Posterior model probabilities for each of the six

models, found using the latent-mixture approach. The la-

belled arrows show the resulting Bayes factors between the

TE-1 model, and TE-4 and TE-2 models.

the Bayes factors can be directly measured from the poste-

rior probabilities. For example, the posterior probability of

TE-1 is about 0.51 and the posterior probability of TE-4 is

about 0.35, so the Bayes factor for TE-1 over TE-4 is about

0.51/0.35 ≈ 1.45. Meanwhile, the Bayes factor in favor of

TE-1 over TE-2 is about 3.66. The Bayes factor between any

pair of models with non-negligible posterior probability can

be found in the same way.4

These Bayes factors measure the evidence the data pro-

vide for each model in a way that automatically combines

goodness-of-fit with a complete and principled measure of

the statistical complexity of the models (Myung et al., 2000;

Pitt et al., 2002). The basic conclusion is that the TE-1

model receives the most evidence from the data, followed

by the TE-4 and TE-2 models. This is an interesting pat-

tern of results, showing a non-obvious trade-off between the

goodness-of-fit and complexity of three nested and descrip-

tively adequate models. The Bayes factors, however, are not

large, and the evidence in favor of one TE model over the

other is extremely weak. In the language used by Jeffreys

(1961), the Bayes factors for and against the three TE models

shown in Figure 4 are “not worth more than a bare mention.”

The scientific conclusion we reach is that additional evidence

is needed to make decisions about the relative merits of the

three TE models. The Bayes factors quantify the lack of

discriminating evidence provided by the current data.

2.6 Summary of Bayesian Analysis

The basic research questions outlined in introducing the

models and data are naturally and directly addressed by the

Bayesian analysis. The evidence the data provide for and

4It would also be possible to estimate Bayes factors involving the EU

models by setting priors favoring them in the latent-mixture model, and

accounting for the priors in the Bayes factor calculation (Lodewyckx et al.,

2011). The result, however, would obviously be overwhelming evidence

against these models, and it is not clear what the utility in precise quantifi-

cation of this overwhelming evidence would be.
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against the various models are quantified by Bayes factors,

as shown in Figure 4. The descriptive adequacy of models

can be assessed from their posterior predictive agreement

with the data, as shown in Figure 3. The inferences about

latent parameters, for models favored by the data and having

descriptive adequacy, are quantified by posterior distribu-

tions, as shown in Figure 2.

3 Comparison to Non-Bayesian Anal-

ysis

3.1 Parameter Point Estimates

For each of the models, Birnbaum & Quispe-Torreblanca

(2018) find point estimates of the free parameters that min-

imize either a χ2 or G2 measure of agreement between the

model predictions and the data. Any specific combination

of values of response state and response error parameters

produces response probabilities θ1, . . . , θ16 following Equa-

tion M2. These probabilities, in turn, corresponds to predic-

tions of ŷi = nθi of the n subjects showing that pattern.

Given these prediction, Birnbaum & Quispe-Torreblanca

(2018) find the combination of parameters, subject to the

equality and zero constraints appropriate for the model, that

minimize either

χ2
=

16∑

i=1

(yi − ŷi)
2

ŷi

,

or

G2
= 2

16∑

i=1

yi ln
yi

ŷi

.

Figure 5 shows the point estimates of parameters found

this way, in relation to the Bayesian posterior distributions.

It is clear that the point estimates for the same parameter

can be meaningfully different depending on the optimization

criterion used. This is especially the case for the TE-4 and

EU-1 models. It is also clear that, while the point estimates

always fall in a region of non-negligible posterior density,

they do not always correspond to standard point summaries

of the posteriors. Typically point summaries use the mode

of the posterior distribution, corresponding to the maximum

a posteriori value (optimizing zero-one loss), or the mean of

the posterior distribution, corresponding to the expectation

(optimizing quadratic loss). Many of the point estimates

based on χ2 or G2 in Figure 5, again especially for the TE-4

and EU-1 models, lie in the tails of the posteriors and differ

significantly from the mode and mean.

Collectively, these observations show that the conclusions

about the underlying psychological variables represented by

the parameters can depend on the choice of optimization

criterion, and can differ from those found by Bayesian meth-

ods. These discrepancies are especially relevant for the TE-4
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Figure 5: Comparison of Bayesian posterior distributions

and frequentist point estimates. Each panel corresponds to

a model, with the response preference and response error

probability parameters on the y-axis and their values on the

x-axis. The violin plots show the posterior distribution of each

parameter. The point estimates found using χ2 and G2 opti-

mization are shown by upward and downward triangle mark-

ers, respectively.

model, which provides a descriptively adequate account of

the behavioral data, and so could be argued to be a reasonable

model on which to base inferences about parameters.

3.2 Parameter Distributions

To quantify the uncertainty about parameter estimates, Birn-

baum & Quispe-Torreblanca (2018) use a bootstrapping

approach that generates distributions of parameters. This

standard procedure involves generating alternative data sets

based on the observed data, and estimating parameters for

each of these newly generated data sets (Efron & Tibshirani,

1986). The distribution of these estimates is then used as a

quantification of uncertainty.

Figures 6 and 7 compare bootstrap distributions based,

respectively, on the χ2 and G2 criterion with the Bayesian

posterior distributions. The upper-half of each violin plot

corresponds to the bootstrap distribution, and the lower-half

to the Bayesian posterior. Thus, the distributions are the

same to the extent they have mirror symmetry. There appear

to be at least three general ways in which the bootstrap dis-
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Figure 6: Comparison of Bayesian posterior distributions

and bootstrap distribution based on the χ2 criterion. Each

panel corresponds to a model, with the response preference

and response error probability parameters on the y-axis and

their values on the x-axis. The lower-half of each violin plot

shows the posterior distribution from the Bayesian analysis

while the upper-half shows the bootstrap distribution of the

parameter.

tributions differ from the posterior distributions. First, the

bootstrap and posterior distributions sometimes give proba-

bility to different non-overlapping ranges of parameter val-

ues. Examples include the response error parameters under

the EU-1 model and the χ2 criterion. Secondly, sometimes

the ranges are consistent, but the relative probabilities across

the range are not. Examples include the response state pa-

rameters under the TE-4 model using both the χ2 and G2 cri-

teria. The difference for pSS′ response state parameter of the

TE-4 model and the χ2 criterion is especially striking, with

a multi-modal bootstrap distribution. Thirdly, sometimes

almost all of the bootstrap distribution collapses against a

bound for a parameter. This occurs for many parameters

for many models with the χ2 criterion, and occasionally

for the G2 criterion. Clear examples are the response error

parameters for the TE-4 model using the χ2 criterion.

As was the case for the comparison of point estimates of

parameters, the basic conclusion is that the bootstrap dis-

tribution of parameter values, and the summaries like 95%

confidence intervals they generate, depend on the criterion

used, and do not always agree with the Bayesian posterior
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Figure 7: Comparison of Bayesian posterior distributions

and bootstrap distribution based on the G2 criterion. Each

panel corresponds to a model, with the response preference

and response error probability parameters on the y-axis and

their values on the x-axis. The lower-half of each violin plot

shows the posterior distribution from the Bayesian analysis

while the upper-half shows the bootstrap distribution of the

parameter.

distribution. There is additional evidence that the bootstrap

distributions sometimes collapse to a point in the parame-

ter space, rather than representing a distribution of possible

values that are consistent with the observed data.

3.3 Model Adequacy

Figure 8 compares the assessment of descriptive adequacy

made by the Bayesian and frequentist approaches. The pos-

terior predictive distribution for each model and data pattern

from Figure 3 are shown again. The frequentist best-fit

predictions, of the type detailed in Table 4 and Table 5 of

Birnbaum & Quispe-Torreblanca (2018), are shown as tri-

angular markers.5 It is clear the descriptions of the data

5We note that Birnbaum & Quispe-Torreblanca (2018) encounter sim-

ilar terminological problems in discussing the assessment of descriptive

adequacy as those caused by the Bayesian term “predictive”. For exam-

ple Birnbaum & Quispe-Torreblanca (2018) say “[t]o gain insight into the

performance of a model, it is useful to compare predictions against the

empirical data” but, of course, the values in Figure 8 are not predictions in

any reasonable scientific or everyday sense of the word. They are based on

the observed data, and so are not genuine predictions about the data. Pre-
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Figure 8: Comparison of Bayesian posterior predictive dis-

tribution and frequentist point estimates. Each panel corre-

sponds to a model, with the possible response patterns on

the x-axis, and the count of the number of subjects showing

that pattern on the y-axis. The violin plots show the poste-

rior predictive distributions for the model for each response

pattern. The numbers of subjects producing that pattern are

shown by square markers. The point estimates found using

χ2 and G2 optimization are shown, respectively, by upward

and downward triangle markers.

provided by both χ2 and G2 optimization agree closely with

each other, and are completely consistent with the Bayesian

posterior predictive distributions.

Birnbaum & Quispe-Torreblanca (2018) also reach the

same substantive conclusions about the descriptive adequacy

of each model. That is, all three TE model are adequate, but

none of the three EU models are. Part of this assessment

is based on more formal measures than were used in the

Bayesian analysis, using null hypothesis significance testing

(NHST) to find that the TE models have p values greater than

0.1, but the EU models have p values less than 0.01. The

logic is these p values demonstrate a significant difference

between the EU models and the data, but such a significant

difference fails to be found for the TE models so they “fit

acceptably, by conventional standards.”

sumably the phrase “best-fit predictions” captures the important distinction

between between genuine prediction and the fitted description of observed

data.

3.4 Model Comparison

Birnbaum & Quispe-Torreblanca (2018) use two approaches

to compare the models to each other. One approach is

based on the difference in the χ2 distributions measuring

the goodness-of-fit to the data for pairs of models. If there

are significant differences, following NHST logic, then one

model is judged to be better than the other. This approach

uses both asymptotic values of the test statistic and Monte

Carlo values based on re-fit methods. Using this approach,

the basic conclusion is that all of the TE models are signifi-

cantly better than EU models, and that there are no significant

differences between the TE models themselves.

The other approach to model comparison used by Birn-

baum & Quispe-Torreblanca (2018) is based on examining

the measures of absolute goodness-of-fit provided by χ2 and

G2 statistics together with the numbers of parameters or de-

grees of freedom of the models. The logic is that better

fitting models should be preferred, especially if they have

fewer parameters than another model. The basic conclusion

from this approach is that the TE-1 model is to be preferred.

Specifically, Birnbaum & Quispe-Torreblanca (2018) con-

clude: “TE-4 does not fit much better than TE-2 or TE-1 . . .

so there are no reasons to reject TE-1 in favor of TE-2 or

TE-4.”

These findings are consistent with those reached by the

Bayesian approach. There does not seem to be any direct

equivalent of Bayes factors, providing a quantitative mea-

sure of how much evidence the data provide for one model

over another. Birnbaum & Quispe-Torreblanca (2018) make

more qualitative claims, involving deciding whether or not

one model is significantly better than another. These could

be quantified in terms of the strength of rejection of null hy-

potheses, but not in terms of relative evidence for the models

being compared.

4 Discussion

At a very general level of comparison, the Bayesian analysis

developed here and the non-Bayesian analysis presented by

Birnbaum & Quispe-Torreblanca (2018) reach the same con-

clusions. The TE models are found to be clearly superior to

the EU models, because the TE models are able to describe

the data whereas the EU models are not. To the extent that

a single model is favored, the tentative conclusion in both

cases is that this is the TE-1 model, but there is little basis

to choose one TE model over another. The values of the

response state and response error parameters are generally

inferred to have similar values under both methods.

Once the comparison becomes more detailed, however,

differences between the two analyses emerge. The frequen-

tist point estimates, which differ depending on whether χ2

of G2 is used, do not precisely correspond to standard point

https://doi.org/10.1017/S193029750000663X Published online by Cambridge University Press

https://doi.org/10.1017/S193029750000663X


Judgment and Decision Making, Vol. 13, No. 6, November 2018 Bayesian methods for analyzing true-and-error models 631

summaries of the Bayesian posterior distributions. The boot-

strap distributions also differ according to whether χ2 of G2

is used, and often deviate from the the posterior distribu-

tions. The model comparison conclusions based on NHST

and bootstrap differences in test statistics reach only binary

conclusions about which of a pair of models is preferred

given the data. They not quantify the level of evidence or

confidence in the differences between models in the way that

Bayes factors do.

We begin our discussion by examining the reasons for

each these differences in parameter estimation and model

selection. We then address some standard criticisms of

the Bayesian approach, before concluding by examining the

prospects of dealing with extensions of the current models.

4.1 Parameter Estimates

The reason the point estimates of parameters do not match

the Bayesian posterior distributions involves the optimiza-

tion criteria used. Both the χ2 and G2 measures differ from

the likelihood in Equation M3 that is used by the Bayesian

approach. It is common to view both the χ2 and G2 mea-

sures measures as approximations to the multinomial (Mc-

Donald, 2009). As approximations, they have limitations

and possible undesirable behavior, especially in relation to

small or extreme data samples (Jaynes, 2003, Section 9.12,

provides a good example of the limitations of χ2). Given

the availability of modern computing capabilities to use the

multinomial likelihood, it is not clear what the rationale for

using approximations might be. If there is some aspect of

the psychological model that differs from the multinomial,

that should be built into the model, not introduced implicitly

through using an approximate optimization criterion.

Beyond point estimates, it seems clear that there is a need

to represent uncertainty associated with the model parame-

ters. For example, the TE-4 model could be viewed a serious

theoretical competitor, capable of describing the data, and

not obviously out-performed by any other model. But, as

the Bayesian analysis resulting in the posteriors in Figure 2

shows, there is large uncertainty in key parameters inferred

from the data using this model. For example, the pRS′ re-

sponse state probability could be anywhere between about

0.4 and 0.8. There is no way to summarize this informa-

tion as a point estimate, without the summarizing process

losing valuable information. A fundamental advantage of

the Bayesian approach is that it is predicated on the repre-

sentation and updating of uncertainty about parameters and

models at all stages and in all aspects of statistical analysis.

Birnbaum & Quispe-Torreblanca (2018) address the

small-sample limitations of the χ2 and G2 measures, and

the need to represent uncertainty, using bootstrap meth-

ods. Bootstrapping is a standard frequentist technique (Efron

& Tibshirani, 1986), but involves generating new data sets

based on the single data set actually observed, and basing

inference on those generated data. The results in Figures 6

and 7 suggest that the data set generating methods used in

bootstrapping sometimes produce answers that are difficult

to interpret. In particular, the cases in which parameter dis-

tributions collapse to a single value on the edge of parameter

space seem inappropriate. As a concrete example, consider

the pRR′ parameter under the TE-4 model. Using both χ2

and G2 measures, the bootstrap inference is that the value

is near 0. But, as the Bayesian posterior distribution shows,

there are other values of the response state, permitted by the

TE-4 theory, that are as consistent or more consistent with the

data. Of course, it might be possible to address these issues

with further refinement of the data set generation procedure.

From a Bayesian perspective, none of this methodological

inventiveness is needed. The posterior distributions of pa-

rameters represent uncertainty about their values coherently

and completely, and follow automatically from the applica-

tion of Bayes rule. Posterior distributions are validly defined

and calculated in the same way for any sample size, without

the need to any sort of correction or alternative procedure

for small numbers of data.

4.2 Model Comparison

Birnbaum & Quispe-Torreblanca (2018) make some use of p

values to compare models. Criticisms of p values and NHST

as a method for hypothesis testing are widely documented

and understood in psychological data analysis and modeling

(Wagenmakers, 2007; Wagenmakers et al., 2016). Perhaps

most importantly for the analyses reported by Birnbaum &

Quispe-Torreblanca (2018), NHST cannot find evidence in

favor of the null hypothesis. Thus, concluding that a model

is adequate because it has a p value greater than 0.1 is prob-

lematic. This p value simply is not evidence of sameness,

even if it is often used that way.

The other approach to model comparison used by Birn-

baum & Quispe-Torreblanca (2018) involves measures of

goodness-of-fit based on the χ2 and G2 criteria, together

with counts of the number of free parameters or degrees of

freedom in the models. There often seems to be an (im-

plicit) assumption assumed that a parameter count provides

an adequate measure of model complexity to counter the im-

proved goodness-of-fit achieved by models with more free

parameters. For example, Birnbaum & Quispe-Torreblanca

(2018) say “[b]ecause TE-2 and EU-4 have the same number

of degrees of freedom, one is tempted to compare these to

see if EU with four errors might come off better than a model

that has fewer errors but rejects EU” and “[b]ut if EU-4 can

be rejected in the context of TE-4 it means that one cannot

save the simpler decision model even with the extra param-

eters”. Concretely, the test of significance in the difference

in χ2 values for the TE-4 and EU-4 models is based on two

degrees of freedom, arising from the difference in counts of

their free parameters.
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An emphasis of the modern Bayesian literature on model

comparison in psychology is that counting the number of

parameters is, at best, a crude approximation to model com-

plexity. At worst, it is entirely misleading (Myung & Pitt,

1997; Pitt et al., 2002). It is possible for two models with the

same number of parameters to have very different levels of

complexity. It is possible for models with many more param-

eters to be much simpler than models with fewer parameters.

In fact, this happens regularly in hierarchical modeling (Lee

& Vanpaemel, 2018). It is possible for the introduction of an

additional parameter to create a model that is simpler than the

original model, even if the new model reduces to the original

at a specific value of the newly-introduced parameter. An

example is provided by the introduction of a determinism

parameter to Luce choice-response models commonly used

in decision models (Lee & Vanpaemel, 2018; Vanpaemel,

2016).

Rather that counting parameters or degrees of freedom,

the complexity of a model is best understood as the extent of

the predictions it is able to make about data (Myung et al.,

2000; Wagenmakers et al., 2016). This notion of statistical

complexity depends on the number of parameters, the range

of values they can take, and the functional form of their

interaction. For the current models, the different ranges of

values and the complexity inherent in the interaction of the

response state and response error probability parameters is

ignored by counting parameters. It is extremely unlikely that

each of the response state and response error parameters in

the TE and EU model contributes equal complexity. This

will depend on the range of values of the parameter can take,

and whether other parameters in the model have equality or

zero-value constraints.

>From a Bayesian perspective, the right way to choose

between models is using the Bayes factor. One way to think

of a Bayes factor is as a likelihood ratio extended to integrate

over the parameters of the models being compared. Another

way is as a test of how relatively likely the observed data

are, given the prior predictive distributions of the models.

Whatever the conception, the Bayes factor has the statisti-

cal property automatically accounts for both goodness-of-fit

and all forms of model complexity, and is able to compare

any set of probabilistic models (Myung et al., 2000; Wagen-

makers et al., 2016). In addition, the Bayes factor provides

a meaningful quantitative measure of the evidence that the

data provide for and against the models being compared. The

Bayes factors in Figure 4 quantify the level of evidence the

data provide in favor of the TE-1 model over the TE-2 and

TE-4 models.

Birnbaum & Quispe-Torreblanca (2018) do not appear to

produce any measure of evidence analogous to the Bayes

factor. They report binary significance findings in favor of

the TE models over all of the EU models, but not between TE

models. How much evidence there is for these conclusions,

and how much confidence should be placed in them, is never

quantified by the p values or goodness-of-fit and parameter-

counting measures. In reaching conclusions about model

comparison, Birnbaum & Quispe-Torreblanca (2018) point

out that “[o]f course, making a scientific decision to prefer

one theory over another should depend on more than just

comparing indices of fit and numbers of parameters.” We

agree completely with this point, but it is not a justification

for an incomplete statistical analysis of the evidence. Mea-

sures like Bayes factors provide only one source of evidence

in making scientific decisions about models, but they are

an important source of evidence. The failure of the non-

Bayesian methods used by Birnbaum & Quispe-Torreblanca

(2018) to provide an analogous non-Bayesian version of this

sort of evidence is an important limitation.

4.3 The Nature and Role of Priors

The advantages in Bayesian analysis just described, in terms

of posterior distributions for inferences about parameters and

Bayes factors for inferences about models, both require the

specification of prior distributions. Indeed, it is the exis-

tence of these distributions that makes an analysis Bayesian

(Lindley, 1972). Prior distributions are also the source of

the greatest resistance to Bayesian methods. Thus, part of

advocating for the use of Bayesian methods for the current

problem requires a discussion the nature and role of priors.

Jaynes (2003) argued that without priors the scientific

problem of inference is ill-defined. One cannot know the

state of knowledge about parameters and models after data

are observed if one did not formalize what was known before

the data were observed. We think it is natural to require a

model to formalize that initial uncertainty. The prior dis-

tribution quantifies theoretical assumptions about the prior

plausibility of the psychological variables the parameters

represent. We suspect, as argued insightfully by Leamer

(1983), that the discomfort in specifying priors arises be-

cause they present a new modeling challenge. But the nature

of the challenge is identical to the ones always faced in speci-

fying other parts of a model, such as the likelihood. The goal

is simply to make good creative judgments about the psy-

chological variables and processes that are being assumed

to generate behavior. Assumptions about psychological pro-

cesses typically are formalized by likelihoods, and priors

provide a natural modeling vehicle to formalize statistical as-

sumptions about psychological variables (Lee & Vanpaemel,

2018).

Indeed, theoretically-motivated constraints on parameters

are a central part of the model specification of Birnbaum

& Quispe-Torreblanca (2018). The defining property of the

EU models is that some response state parameters are con-

strained to be zero, while other response state parameter are

free to lie in the interval (0, 1). The response error probabil-

ities to be inferred are assumed to lie in the interval (0, 1
2
),

consistent with their interpretation as imperfect executions

https://doi.org/10.1017/S193029750000663X Published online by Cambridge University Press

https://doi.org/10.1017/S193029750000663X


Judgment and Decision Making, Vol. 13, No. 6, November 2018 Bayesian methods for analyzing true-and-error models 633

of deterministic response processes in binary choice. These

constraints on the parameter thus capture meaning, and con-

strain the predictions about data that the models make. But

the constraints and equalities are not sufficient for a model to

make complete quantitative predictions about the outcomes

of the behavioral experiment, in the sense of predicting the

probability for each response pattern. To make these detailed

quantitative predictions requires a full prior distribution on

the parameters.

Other choices of priors in our Bayesian analysis would

have been reasonable, and perhaps even preferable. For ex-

ample, it might be better to assume that response error rates

are more likely to be near zero than one-half, since the struc-

ture of the model in Figure 1 is nullified as response error

rates approach one-half. Different prior assumptions about

plausible response rates will lead to different inferences than

the ones we report. This is not surprising, and it is desirable.

The priors formalize theoretical assumptions and different

theories should, in general, yield different conclusions when

applied to the same data.

4.4 Extensions of the Models

Finally, we discuss an advantage of the Bayesian approach

to analysis that goes beyond the specific models and data

considered by Birnbaum & Quispe-Torreblanca (2018).

Bayesian methods are well suited to models that have richer

structures than simply mapping a set of parameters to data. In

particular, Bayesian methods work effectively, in both theory

and practice, for models with hierarchical, latent-mixture,

and common-cause structures (Lee, 2011, 2018). The moti-

vating ambitions of true-and-error theory, in their individual

(iTET) and group (gTET) forms, seem likely to require some

of these sorts of extended modeling structures. Describ-

ing the underlying theory, Birnbaum & Quispe-Torreblanca

(2018) say “[i]n the case of iTET, it is assumed that a mix-

ture of true preference patterns can arise over the course of

many sessions because a person may change personal pa-

rameters over time between sessions” and “[i]n gTET, it is

assumed that a mixture of true preference patterns can arise

from individual differences among people, who may have

different parameters or different decision rules for making

the choices.”

Both of these theories involve heterogeneity that is not

captured by the six specific models considered here and by

Birnbaum & Quispe-Torreblanca (2018). They all assume

there is one single set of response state and response error pa-

rameters that generates the aggregate data in Table 1. There

is no allowance for inter-individual or intra-individual dif-

ferences. Developing models that allow for inter-individual

differences, as per the motivation for gTET, requires hierar-

chical (also known as multi-level) model structures, which

have been widely used in cognitive modeling to incorporate

individual differences (e.g., Farrell & Lewandowsky, 2018;

Lee & Newell, 2011; Oravecz et al., 2015; Rouder & Lu,

2005; Rouder et al., 2003; Shiffrin et al., 2008). A central

theme in this literature is the conceptual and practical ease

with which Bayesian methods extend to the new model struc-

tures. All of the principles of inference remain the same, and

the additional of the hierarchical structure requires just a few

more lines of JAGS code. Meanwhile, developing models

that allow for intra-individual switches in preferences, such

as through changes to the response state, requires the ability

to infer when and where these changes occur. Once again,

there is a large Bayesian literature on change-point detec-

tion (e.g., Barry & Hartigan, 1993; Chib, 1998; Fearnhead,

2006; Green, 1995; Stephens, 1994), including recent devel-

opments aimed at cognitive modeling and implemented in

JAGS (Lee, in press).

Testing these extended models probably requires richer

behavioral data, so that enough is known about each indi-

vidual to infer differences between them, and an individual

is tracked for long enough to detect changes in preferences.

But, given those data, it should be straightforward to im-

plement the appropriate models as graphical models, and

continue to use the same Bayesian approach to their analysis

demonstrated here. Thus, it seems reasonable to argue that

the fuller model-based development of the true-and-error

theory could benefit from the use of Bayesian methods.

5 Conclusion

The Bayesian method we presented is conceptually simple,

statistically principled, and easily implemented and applied.

It forces assumptions about the psychological variables rep-

resented by parameters to be made explicit, and so allows

the models to make predictions about data before they are

observed. It formalizes inferences about parameters and

models using posterior distributions and posterior probabili-

ties, updates the predictions about future data based on those

inferences, and supports models comparison via Bayes fac-

tors. All of these Bayesian inferences are founded on the

complete, consistent, and coherent foundations of probabil-

ity theory.

The approach we have used is standard and general. The

same mechanisms, involving the Equations B1, B2, B3, and

B4 that defined posterior distributions, posterior predictive

evaluation, Bayes factors, and posterior model probabilities,

and can be used in the same way to apply and evaluate any

probabilistic model of cognition. There is nothing in our

Bayesian approach that leads to the modeling assumptions

in Equations M1, M2, M3, M4, and M5 that formalize the

priors and likelihoods for the choice models. Accordingly,

there is a clean conceptual separation between modeling

assumptions that propose psychological variables and pro-

cesses that lead to behavior, and Bayesian methods of sta-

tistical inference that simply process the consequences of
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those assumptions in the light of data. We think this state of

affairs contrasts favorably with the set of non-Bayesian meth-

ods used by Birnbaum & Quispe-Torreblanca (2018). These

involve approximate optimization criteria and measures of

model complexity, the need to switch between asymptotic

and Monte Carlo exact methods, and various procedures for

generating modified data sets to introduce variability and

uncertainty in inferences.

Given the similarity, at a very general level of analysis,

of the results obtained by both methods, it is reasonable to

ask whether it is worth investing in learning and using new

Bayesian methods. If none of the detailed differences matter,

and theoretical elegance and simplicity are not motivating

factors, it is hard to counter that attitude. But this does not,

in our view, place the Bayesian and non-Bayesian approaches

on an equal footing. If roles were reversed, and the Bayesian

analysis presented first was standard, it is near impossible to

imagine anyone could muster any enthusiasm for the non-

Bayesian analysis that followed. In statistical terms, it is less

coherent, less consistent, and less complete.

Perhaps most importantly, we believe that the Bayesian ap-

proach is more intuitive. The Bayesian approach starts with a

model that makes predictions about data and represents what

is known and unknown about the model and its parameters.

Given data, the Bayesian approach then updates the knowl-

edge about models and parameters, by a simple application

of the laws of probability. The process of theory evaluation

by testing model predictions is exactly the account of em-

pirical science advocated so effectively by Feynman (1994).

In that sense, Bayesian methods follow the intuitions many

researchers in psychology have about the purpose and goals

of testing models against data.
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