
Letting the ‘‘Computer Boys’’ Take Over: Technology
and the Politics of Organizational Transformation

Nathan L . En smenger

Most experts agree that another barrier to the most desirable use of the computer
is the immense culture and communication gap that divides managers from
computer people. The computer people tend to be young, mobile, and
quantitatively oriented, and look to their peers both for company and for
approval [:::]. Managers, on the other hand, are typically older and tend to regard
computer people either as mere technicians or as threats to their position and
status – in either case they resist their presence in the halls of power.

T. Alexander, ‘‘Computers Can’t Solve Everything’’, Fortune, (1969)

I N V E N T I N G T H E C O M P U T E R P R O G R A M M E R

In the decades following the development of the first electronic digital
computers, the computer industry in the United States grew from nothing
into an important and expansive sector of the American economy.
Whereas in the early 1950s electronic computers were generally regarded
as interesting but extravagant scientific curiosities, by 1963 these devices
and their associated peripherals formed the basis of a billion-dollar
industry. By the beginning of the 1970s, more than 165,000 computers had
been installed in the United States alone, and the computer and software
industries employed several hundred thousand individuals worldwide.1

Co-evolving with these flourishing new information industries was a
novel species of technical professional, the computer programmer. In 1945
there were no computer ‘‘programmers’’, professional or otherwise; by
1967 industry observers were warning that although there were at least
100,000 programmers working in the United States, there was an
immediate need for at least 50,000 more.2 ‘‘Competition for program-
mers’’, declared a contemporary article in Fortune magazine, ‘‘has driven
salaries up so fast that programming has become probably the country’s
highest paid technological occupation [:::]. Even so, some companies can’t

1. Kenneth Flamm, Creating the Computer Government, Industry, and High Technology
(Washington DC, 1988), p. 135.
2. Bruce Gilchrist and Richard Weber (eds), The State of the Computer Industry in the United
States (New York, 1972).

IRSH 48 (2003), Supplement, pp. 153–180 DOI: 10.1017/S0020859003001305
2003 Internationaal Instituut voor Sociale Geschiedenis

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

find experienced programmers at any price.’’3 By the end of the 1960s they
had become the center of the ‘‘software crisis’’, a debate about the health
and future of the computer industry that was to continue for the next
quarter of a century.

It many respects it is the history of the computer programmer, rather
than the computer itself, that is most important to our understanding of
this crucial period of rapid and fundamental transformation in the history
of information technology. While electronic computing held a certain
high-tech appeal for many corporate executives in the late 1950s and early
1960s, few had any idea how to integrate effectively this expensive,
unfamiliar, and often unreliable technology into their existing operations.
It was the computer programmers who developed the applications
software that transformed the latent power of a general-purpose computer
into a specific tool for solving actual real-world problems. For many
organizations, it was the availability of software that most determined the
success or failure of their computerization efforts. As computer hardware
became faster, more reliable, and less expensive, the relative importance of
software – and software developers – became even more pronounced.

Despite their obvious importance to the history of information
technology, computer programmers represent a perplexing problem for
the historian. We know almost nothing about who they were, where they
came from, or what their daily work lives were like. Neither laborers nor
professionals, they defy traditional occupational categorizations. The
ranks of the elite programmers included both high-school dropouts and
ex-Ph.D. physicists. Originally envisioned as little more than glorified
clerical workers, they quickly assumed a position of power within the
corporation vastly disproportionate to their official organizational role.
Defined by their mastery of the highest of high technology, they were
often derided for their adherence to artisanal practices. Although
associated with the emerging academic discipline of computer science,
they were never widely considered to be either scientists or engineers.
Even to this day, their occupational expertise remains difficult to clearly
define or delineate.4 The term ‘‘programmer’’ itself encompasses such a
wide range of occupational categories – from the narrow and highly
technical ‘‘coder’’ to the elite and influential ‘‘systems man’’ – that it is
more useful as a rhetorical device than as an analytical category.5

3. Gene Bylinsky, ‘‘Help Wanted: 50,000 Programmers’’, Fortune, 75 (March 1967), pp. 445–
556, 141.
4. Bruce Webster, ‘‘The Real Software Crisis’’, Byte, 21 (1996), p. 218.
5. Although many of the earliest programmers were women, by the beginning of the 1960s
programming was generally considered a male profession. Certainly the elite ranks of ‘‘systems
men’’ were, quite literally, men. As Margaret Rossiter and others have suggested, masculinity
was a cultural resource that aspiring professionals could draw upon in order to improve the
standing of their discipline. For many in this period the very concept of a professional was

154 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

It is precisely this ambiguous occupational identity that makes the
computer programmer such a fascinating and controversial figure.
Throughout the 1950s and 1960s, the identity of the computer program-
mer was negotiated and renegotiated in response to a changing social and
technological environment. By virtue of their close relationship to the
increasingly powerful technology of electronic computing, computer
programmers became the subject of highly contested boundary disputes
with traditional corporate employees. In the language of the contemporary
management literature, programmers represented influential ‘‘change-
agents’’. In their role as mediators between the technical system (the
computer) and its social environment (existing structures and practices),
computer programmers played a crucial role in transforming the computer
from a scientific instrument into a powerful tool for corporate control and
communication. As such, they also served as a focus for opposition to and
criticism of the use of new information technologies. From the
‘‘programmer personnel’’ problem of the 1950s to the ‘‘software turmoil’’
of the 1960s to the ‘‘world-wide shortage of information technology
workers’’ in the 1990s, the focus of debate about the software crisis has
continued to center around the unique nature of computer programming
as an intellectual and occupational activity.6 The Y2K crisis, the H1-B visa
debates, recent concerns about the loss of programming jobs to India and
Pakistan, are all part of a much larger pattern of debate about the new
structure of technical labor in the late twentieth and early twenty-first
centuries. This paper will explore the emergence of the computer
programmer as a central figure in an ongoing debate about the role of
information technology in organizational transformation. It focuses on the
conflict between the craft-centered practices of the computer program-
mers and the ‘‘scientifically’’ oriented management techniques of their
corporate managers. It argues that the skills and expertise that computer
programmers possessed transcended traditional boundaries between
business knowledge and technical expertise, and that computer program-
mers constituted a substantial challenge to established corporate hierar-
chies and power structures. It suggests that the continued persistence of a
‘‘software crisis’’ mentality among industrial and governmental managers,
as well as the seemingly unrelenting quest of these managers to develop a
software development methodology that would finally eliminate corpo-
rate dependence on the craft knowledge of individual programmers, can
best be understood in light of this struggle over workplace authority.

synonymous with an all masculine and thus high-status occupation. A more thorough discussion
of the systems men can be found in Thomas Haigh, ‘‘Inventing Information Systems: The
Systems Men and the Computer, 1950–1968’’, Business History Review, 75 (2001), pp. 15–61.
6. Office of Technology Policy, United States Department of Commerce, ‘‘America’s New
Deficit: The Shortage of Information Technology Workers’’, technical report (1997).

155Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

T H E O R I G I N S O F P R O G R A M M I N G

The first clear articulation of what a programmer was and should be was
provided in the late 1940s by Herman Goldstine and John von Neumann
in a series of volumes on ‘‘Planning and Coding of Problems for an
Electronic Computing Instrument’’. These volumes, which served as the
principal textbooks available on the computer programming until at least
the early 1950s, outlined a clear division of labor in the programming
process that seems to have been based on the practices used in
programming the ENIAC. These practices were themselves adapted from
those used at the large manual computation projects at the nearby
Aberdeen Proving Grounds. In these projects, the most senior women
(by this point in time manual computation had become an almost
exclusively feminine occupation) developed elaborate ‘‘plans of computa-
tion’’ that were carried out by their fellow human ‘‘computers’’. Since
electronic computing was envisioned by the ENIAC developers as
‘‘nothing more than an automated form of hand computation’’, it seemed
natural that similar plans could be constructed for their electronic
counterparts.7

Drawing on their experience with the ENIAC, Goldstine and von
Neumann spelled out a six-step programming process that clearly
differentiated between the high-level conceptual activities involved in
‘‘planning’’ an algorithm and the tedious but straightforward work of
‘‘coding’’ it into machine-readable form. The planner would conceptualize
the problem mathematically and physically, perform a numerical analysis
to determine precision requirements and evaluate potential approximation
errors, and design the overall algorithm. The coder would merely write out
steps of a computation in a form that could be read by the machine, either
by encoding them on punch cards, or in the case of ENIAC, by plugging
cables and setting switches. Whereas the planners were typically scientists
or engineers (and therefore also overwhelmingly male), the coders were
low-status and almost inevitably female (at least at the ENIAC project).

The use of the designation ‘‘coder’’ in this context is significant.
‘‘Coding’’ suggested a highly specialized – and rigidly circumscribed –
set of occupational activities that required little more than conscientious
precision and a small degree of technical training. Like keypunch operators
or stenographers, coders existed only to transcribe the thoughts of others.
They merely operated the machinery designed by others. Coders
obviously ranked low on the intellectual and professional hierarchy. As
the historian Jennifer Light has suggested, coders were quite literally the
‘‘invisible technicians’’ of the ENIAC project: in press coverage of the

7. David Allan Grier, ‘‘The ENIAC, the Verb to Program and the Emergence of Digital
Computers’’, Annals of the History of Computing, 18 (1996), pp. 51–55, 53.

156 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

project they were never referred to individually, and in many of the
publicity photos they were cropped out entirely.8

The idea that the aspects of the programming process most intimately
connected to the manipulation of the machine (rather than the definition of
the problem) were both low-status and uninteresting carried forward into
the commercial computer projects of the early 1950s. An early manuscript
version of the UNIVAC ‘‘Introduction to Programming’’ manual, for
example, highlighted the distinction between the managerial ‘‘program-
mer’’ and the technical ‘‘coder’’:

[:::] in problem preparation, the detailed work may be accomplished by two
individuals. The first, who may be called the ‘‘programmer’’, studies the problem,
determines the appropriate method of solution, and prepares the flow chart. This
person must be well versed in the particular field in which the problem lies, and
should also be able to fully exploit the flexibility and versatility of the UNIVAC
system. The second person, referred to as the ‘‘coder’’ need only be familiar with
the technique of reducing the flow chart to the specific instructions, or coding,
required by the UNIVAC to solve the problem.9

By differentiating between these two tasks, one clerical and the other
analytical, the manual reinforced the Goldstine/von Neumann model of
the programming process. It is important to note that the versatile
‘‘programmer’’ referred to above was not a computer specialist. He was the
planner, the provider of abstract knowledge, not the master of the
machinery; the actual ‘‘computer’’ aspect of electronic computing was to
be delegated to specialist technicians. In this model the real business of
software development was analysis; the actual coding aspect of program-
ming was trivial and mechanical. ‘‘Problems must be thoroughly analyzed
to determine the many factors that must be taken into consideration’’,
suggested the aforementioned manual, but the once this analysis had been
completed, the ‘‘pattern of the [programming] solution would be readily
apparent’’. Although this division of the programming process into two
distinct and unequal phases did not survive into the published version of
the UNIVAC documentation, its earlier inclusion highlighted the
ubiquity of such distinctions.

Despite this general insistence of the planning/coding distinction,
however, in actual practice it was often difficult to differentiate between
the two functions. As the ENIAC project leaders themselves discovered to
their dismay, controlling the operation of an automatic computer was
nothing like the process of hand computation, and the ‘‘ENIAC girls’’

8. Jennifer Light, ‘‘When Computers Were Women’’, Technology&Culture, 40 (1999), pp. 455–
483.
9. Sperry Rand Univac, ‘‘Introduction to Programming’’, Programming for the UNIVAC, Part
1 (typewritten manuscript, 11 June 1949); Hagley Achives, Box 372, Accession 1825.

157Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

were therefore responsible for defining the first state-of-the-art methods
of programming practice. Programming was a very imperfectly under-
stood activity in these early days, and much more of the work devolved on
the coders than anticipated. To complete their coding, the coders would
often have to revisit the mathematical analysis of the problem at hand; and
with their growing skills, some scientific users left many or all of the six
programming stages to the coders. In order to debug their programs and to
distinguish hardware glitches from software errors, they developed an
intimate knowledge of the ENIAC machinery. ‘‘Since we knew both the
application and the machine’’, claimed ENIAC programmer Betty Jean
Jennings, ‘‘we learned to diagnose troubles as well as, if not better than, the
engineers’’.10 Like many later observers, Goldstine and von Neumann
appear to have described the division of labor in the programming process
as they would have preferred it to be, rather than how it existed in practice.

T H E ‘‘ B L A C K A R T ’’ O F P R O G R A M M I N G

The transformation of the computer programmer from clerical worker to
technical specialist was not confined solely to the ENIAC project. In
electronic computer installations all over the country the limitations of
first generation hardware devices demanded of programmers the develop-
ment of creative innovations and ‘‘work-arounds’’. For example, many of
these machines did not have floating-pointing hardware, so the program-
mers had to do complicated calculations to ensure that the values of the
variables would stay within the machine’s fixed range throughout the
course of the calculation. Little was known about the best algorithms and
numerical methods to use for this purpose, so a programming problem
could often turn into a research excursion in numerical analysis. Memory
devices had very little capacity, and programmers had to develop great skill
and craft knowledge to fit their programs into the available memory space.
Devices were also slow, so tricks and intricate calculations were required
to make sure to get every bit of speed out of the machines, such as carefully
placing an instruction at a particular location on the drum memory so that
the read head would be passing by that very location on the drum at the
time when it came time to execute that instruction.

It is during this period that a peculiar cultural stereotype of the
computer programmer emerges. The emphasis on individual creativity and
idiosyncratic technique in contemporary programming practice suggested
that computer programmers, like chess masters or virtuoso musicians,
were endowed with a uniquely creative ability. Programmers were
therefore selected for their intellectual gifts and aptitudes, rather than

10. W. Barkley Fritz, ‘‘The Women of ENIAC’’, Annals of the History of Computing, 18 (1996),
pp. 13–28, 20.

158 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

their business knowledge or managerial savvy. ‘‘Look for those who like
intellectual challenge rather than interpersonal relations or managerial
decision-making. Look for the chess player, the solver of mathematical
puzzles.’’11 Because the presence of one of these gifted programmers could
often determine the difference between the success and failure of an
expensive electronic data processing (EDP) project, companies went to
great lengths to identify and retain them.

The popular notion that good programmers were born, not made, was
supported by a series of aptitude tests and personality profiles developed
by employers and human resources experts. One widely cited IBM study
determined that code produced by a truly excellent programmer was
twenty-six times more efficient than that produced by his merely average
colleagues.12 Despite the serious methodological flaws that compromised
this particular study (including a sample population of only twelve
individuals), the 26:1 performance ratio quickly became part of the
standard lore of the industry. Dr. E.E. David of Bell Telephone
Laboratories spoke for many when he argued that large software projects
could never be managed effectively, because ‘‘the vast range of program-
mer performance indicated earlier may mean that it is difficult to obtain
better size-performance software using machine code written by an army
of programmers of lesser average caliber’’.13 Skilled programmers were
thought to be effectively irreplaceable, and were treated and compensated
accordingly.

It is during this period that most corporations stopped formally
differentiating between ‘‘programmers’’ and ‘‘coders’’. The now common-
place designation ‘‘programmer’’ was adopted to describe the entire
process of application development. The verb ‘‘to program’’, with its
military connotations of ‘‘to assemble’’ or ‘‘to organize’’, suggested a more
thoughtful and system-oriented activity.14

Even the development of new ‘‘automatic programming systems’’ such
as FORTRAN and COBOL, although originally intended to eliminate the
need for skilled programmers altogether, had the unintended effect of
elevating their status. For those interested in advancing the academic status
of computer science, the design of programming languages provided an
ideal forum for exploring the theoretical aspects of their discipline. More
practical-minded programmers saw programming languages as a means of

11. Joseph O’Shields, ‘‘Selection of EDP Personnel’’, Personnel Journal, 44 (1965), pp. 472–474,
472.
12. Hal Sackman, W.J. Erickson and E.E. Grant, ‘‘Exploratory Experimental Studies Compar-
ing Online and Offline Programming Performance’’, Communications of the ACM, 11 (1968),
pp. 3–11, 3.
13. Peter Naur, Brian Randall, and J.N. Buxton, Software Engineering: Proceedings of the
NATO Conferences (New York, 1976), p. 33.
14. Grier, ‘‘The ENIAC, the Verb to Program’’, pp. 51–55, 53.

159Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

eliminating the more onerous and error-prone aspects of software
development. By eliminating much of the tedium associated with low-
level machine coding, they allowed programmers to focus less on technical
minutia and more on high-status activities such as design and analysis.

It is this last development that is most significant. Software development
managers soon discovered that although automatic programming systems
helped eliminate simple syntax and transcription errors, they did little to
reduce the underlying complexity of the programming process. As the
long-time industry analyst Willis Ware suggested in a 1965 editorial:

We lament the cost of programming; we regret the time it takes. What we really
are unhappy with is the total programming process, not programming (i.e.
writing routines) per se. Nonetheless, people generally smear the details into one
big blur; and the consequence is, we tend to conclude erroneously that all our
problems will vanish if we can improve the language which stands between the
machine and the programmer. ’Tain’t necessarily so. All the programming
language improvement in the world will not shorten the intellectual activity, the
thinking, the analysis, that is inherent in the programming process. Another
name for the programming process is ‘‘problem solving by machine’’, perhaps it
suggests more pointedly the inherent intellectual content of preparing large
problems for machine handling.15

Since so much of the programming process involved ‘‘intellectual activity,
mathematical investigation, discussions between people’’, very often,
individuals who were trained as programmers actually do the early stages
of the programming process but do none of the actual writing. Ware
estimated that at least one-half of the total programming man-hours in a
project was occupied by analysis and definition of the problem.16

Willis Ware was not the only observer to argue for the expansion of the
programmer’s occupational bailiwick to include design and analysis. A
1959 Price-Waterhouse report on ‘‘Business Experience with Electronic
Computers’’ argued that, whereas a knowledge of business of operations
could usually be obtained by an adequate expenditure of time and effort,
‘‘innate ability [:::] seems to have a great deal to do with a man’s capacity to
perform effectively in the fields of computer coding and systems design’’.17

In fact, the study’s authors suggested,

[:::] the term ‘‘programmer’’ [:::] is unfortunate since it seems to indicate that the
work is largely machine oriented when this is not at all the case [:::] training in
systems analysis and design is as important to a programmer as training in

15. Willis Ware, ‘‘As I See It: A Guest Editorial’’, Datamation, 11 (1965), pp. 27–28, 27.
16. Ibid., p. 27.
17. B. Conway, J. Gibbons and D.E. Watts, Business Experience with Electronic Computers: A
Synthesis of What Has Been Learned from Electronic Data Processing Installations (New York,
1959), p. 83.

160 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

machine coding techniques; it may well become increasingly important as
systems get more complex and coding becomes more automatic.18

The clear implication of recent experience, in both scientific computation
and business data processing, seemed to be that programmers should be
given more responsibility for design and analysis, that the idea that coding
could be left to less experienced or lower-grade personnel was ‘‘erro-
neous’’, and that ‘‘the human element [was] crucial in programming’’.19

The growing role of programmers in high-level design activities,
combined with a continued emphasis on innate skills and ability, provided
individual programmers with a certain degree of immunity from manage-
rial imperatives. Indeed, throughout the 1950s software development
projects were thought to be almost impossible to manage using conven-
tional methods. 20 The general consensus was that computer programming
was ‘‘the kind of work that is called creative [and] creative work just
cannot be managed’’.21 One industry observer went so far as to argue that
the ‘‘major managerial task is finding – and keeping – ‘the right people’:
with the right people, all problems vanish’’.22 During this period, many
corporate programmers enjoyed an unprecedented degree of personal
authority and professional autonomy. Programmers were not only
‘‘encouraged to feel they are professionals’’, but they were included as
active participants in all phases of application development, from design to
implementation, in order to ensure their cooperation and enthusiasm.23.
For the time being, the power to control the computer rested with the
individual programmer, rather than with the management bureaucracy.

The ambiguous nature of their corporate identity proved to be
something of a mixed blessing for programmers, however. The perceived
lack of managerial control over the programming process provoked
tension within the corporate structure. As the electronic computer became
increasingly central to the social and economic life of commercial
organizations, the exceptional status and practices the computers pro-
grammers began to attract increased an unwelcome attention. The same
personality traits that were seen as indicative of genius could also be seen as
antisocial and subversive. The lack of widely accepted formal methods for
evaluating programmer aptitude and ability weakened their claims to
‘‘professional’’ status: if programming was indeed more art than science, its

18. Ibid.
19. Ibid., p. 90.
20. Bylinsky, ‘‘Help Wanted: 50,000 Programmers’’, pp. 445–556, 141; Charles Lecht, The
Management of Computer Programming Projects (New York, 1967), p. 9.
21. Robert Gordon, ‘‘Review of Charles Lecht, The Management of Computer Programming
Projects’’, Datamation, 14 (1968), pp. 200–202, 200.
22. Robert Gordon, ‘‘Personnel Selection’’, in Fred Gruenberger and Stanley Naftaly (eds), Data
Processing [:::] Practically Speaking (Los Angeles, CA, 1967), p. 88.
23. Conway et al., Business Experience with Electronic Computers, p. 81.

161Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

practitioners could hardly claim the same status as other white-collar
professionals. 24 When John Backus (the IBM researcher best known as the
inventor of the FORTRAN programming language) famously described
programming in the 1950s as ‘‘a black art, a private arcane matter [:::] [in
which] the success of a program depended primarily on the programmer’s
private techniques and inventions’’, he did not intend it to be a
compliment.25 The same qualities that had previously been thought
essential indicators of programming ability, such as creativity and a mild
degree of personal eccentricity, could also be perceived as being merely
unprofessional.

Nevertheless, the long-standing association of programming ability
with creative genius provided individual programmers with a powerful
claim to personal and professional authority. By the end of the 1950s it had
become clear that computer programmers were anything but routine
clerical workers. But what kind of employee did that make them, exactly?
The possession of valuable technical expertise did not automatically
translate into professional standing or even long-term occupational
survival. Other similarly skilled craftsmen had seen their occupations
deskilled or eliminated – a historical fact that computer programmers seem
to be well aware of. Computer programmers in this period seem to have
been aware of their own ambiguous status, and worked to established the
structures of professionalism: academic computer science curriculum,
certification programs, and professional societies.26

S O F T W A R E T U R M O I L

By the beginning of the 1960s, however, developments occurred in both
the technical and social environment of electronic computing that

24. In 1955 IBM introduced its Programmer Aptitude Test (PAT), which correlated perform-
ance in training programs with subsequent performance ratings by project managers and served
for many years as a de facto industry standard. The test was adapted from a psychological
examination developed by the American Council on Education, and included questions about
number series, figure analogies, and arithmetic reasoning. By 1962 an estimated 80 per cent of all
businesses used some form of aptitude test when hiring programmers. Although the IBM PAT
was used by almost 40 per cent of these businesses, numerous alternatives were developed, and
the other 60 per cent used some combination of more than 60 different exams. Although aptitude
tests were accused of being inaccurate, irrelevant, and susceptible to widespread cheating, many
employers continued to use them well into the 1970s. No single test was widely accepted as being
very accurate or definitive, however; they were simply one of the only tools available for dealing
with the problem of programmer labor.
25. Nick Metropolis, J. Howlett and Gian-Carlo Rota (eds), A History of Computing in the
Twentieth Century : A Collection of Essays (New York, 1980), p. 126.
26. Nathan Ensmenger, ‘‘The ‘Question of Professionalism’ in the Computer Fields’’, IEEE
Annals of the History of Computing, 23 (2001), pp. 56–73.

162 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

prompted a re-evaluation and re-negotiation of the computer program-
mer’s proper place in corporate and professional hierarchies. In the first
half of the decade innovations in transistor and integrated circuit
technology increased the memory size and processor speed of computers
by a factor of 10, providing an effective performance improvement of
almost 100. The falling cost of hardware allowed computers to be used for
more and larger applications, which in turn required larger and more
complex software. As the scale of software projects expanded, they became
increasingly difficult to supervise and control. They also became much
more expensive. Large software development projects acquired a reputa-
tion for being behind schedule, over budget, and bug-ridden.

Commercial software development projects changed not only in size
but in character. Whereas the first electronic computers were produced for
military and scientific purposes, the second generation of computers were
designed explicitly for business. In addition to producing general purpose
computers that were relatively reliable and affordable, manufacturers like
IBM could also provide the services and peripherals necessary to integrate
the electronic computer into existing systems and processes. As the
computer became more of a tool for business than a scientific instrument,
the nature of its use – and of its primary user, the computer programmer –
changed dramatically. The projects that business programmers worked on
tended to be larger, more highly structured, and less mathematical than
those involved in scientific computing. The needs of business demanded a
whole new breed of programmers, and plenty of them.

The ‘‘personnel problem’’ posed by the shortage of programmers
quickly assumed crisis proportions. As early as 1961 observers were
already warning of a ‘‘gap in programming support’’ that threatened to ‘‘get
worse [:::] before it gets better’’.27 Five years later ‘‘one of the prime areas
of concern’’ to EDP managers was ‘‘the shortage of capable programmers’’,
a shortage which had ‘‘profound implications, not only for the computer
industry as it is now, but for how it can be in the future’’.28 Large
corporations like IBM struggled to develop costly internal training
programs. Fly-by-night vocational schools sprung up all over the country,
promising golden opportunities but delivering little more than trained
typists.

The widespread programmer labor shortage, combined with a series
of highly publicized software disasters, including the software related
destruction of the Mariner 1 spacecraft and the infamous IBM OS/360
debacle (which cost IBM more than half a billion dollars – four times
the original budget – the single largest expenditure in company history),

27. Robert Patrick, ‘‘The Gap in Programming Support’’, Datamation, 7 (1961), p. 37.
28. Richard Tanaka, ‘‘Fee or Free Software’’, Datamation, 13 (1967), pp. 205–206, 206.

163Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

lent credence to claims that an industry-wide software crisis was
imminent.29

The focus of much of the debate about the burgeoning software crisis
was not so much the computer itself as the computer programmer. In the
late 1960s the venerable consulting company McKinsey & Company
issued a series of reports suggesting that the real reason that most data
processing installations were unprofitable is that ‘‘many otherwise effec-
tive top managements [:::] have abdicated control to staff specialists – good
technicians who have neither the operation experience to know the jobs
that need doing nor the authority to get them done right’’.30 The reports
helped redefine contemporary understandings of the nature and causes of
the software crisis by suggesting that the real ‘‘personnel problem’’ was not
shortage but mismanagement. The solution to ‘‘unlocking the computer’s
profit potential’’, according to McKinsey & Company, was to restore the
proper balance between managers and programmers: ‘‘Only managers can
manage the computer in the best interests of the business. The companies
that take this lesson to heart today will be the computer profit leaders of
tomorrow.’’31

Freed from some of the constraints of earlier technology and eager to
take advantage of a less-skilled (and less-expensive) workforce, managers
began to look for solutions to the software crisis that would eliminate
corporate dependence on the craft knowledge of individual programmers.
New perspectives on these problems began to appear in the industry
literature.

There is a vast amount of evidence to indicate that writing – a large part of
programming is writing after all, albeit in a special language for a very restricted
audience – can be planned, scheduled, and controlled, nearly all of which has
been flagrantly ignored by both programmers and their managers,

argued Robert Gordon in a 1968 review of contemporary software
development practices.32 The professional journals of this period are
replete with exhortations towards better software development manage-
ment: ‘‘Controlling Computer Programming’’; ‘‘New Power for Manage-
ment’’; ‘‘Managing the Programming Effort’’; ‘‘The Management of

29. The Mariner I incident involved a software problem that resulted in the destruction of multi-
million-dollar spacecraft. The IBM OS/360 project, delivered nine months late and riddled with
errors, took an enormous toll on the company, in both personal and financial terms. Its failure
was the subject of one of the most widely read books on software project management, Frederick
Brook’s The Mythical Man-Month (Reading, MA, 1975).
30. McKinsey & Company, ‘‘Unlocking the Computer’s Profit Potential’’, Computers &
Automation, 18 (1969), pp. 24–33, 33.
31. Ibid., p. 33.
32. Gordon, ‘‘Personnel Selection’’, p. 200.

164 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

Computer Programming Efforts’’.33 Although it was admittedly true ‘‘that
programming a computer is more an art than a science, that in some of its
aspects it is a creative process’’, this new perspective on software
management suggested that ‘‘as a matter of fact, a modicum of intelligent
effort can provide a very satisfactory degree of control’’.34

It was the 1968 NATO Conference on Software Engineering that
irrevocably established software management as one of the central
rhetorical cornerstones of all future software engineering discourse. In
the fall of that year a diverse group of influential computer scientists,
corporate managers, and military officials gathered in Garmisch, Ger-
many, to discuss their growing concern that the production of software
had become ‘‘a scare item for management [:::] an unprofitable morass,
costly and unending’’. ‘‘We build software like the Wright brothers built
airplanes’’, complained one prominent participant: ‘‘build the whole thing,
push it off the cliff, let it crash, and start over again’’.35 The solution to the
so-called ‘‘software crisis’’, suggested the conference organizers, was for
software developers to adopt ‘‘the types of theoretical foundations and
practical disciplines that are traditional in the established branches of
engineering’’.36 In the interest of efficient software manufacturing, the
‘‘black art’’ of programming had to make way for the ‘‘science’’ of software
engineering.

By defining the software crisis in terms of the discipline of ‘‘software
engineering’’, the NATO Conference set an agenda that influenced many
of the technological, managerial, and professional developments in
commercial computing for the next several decades. For a number of
conference participants, the key word in the provocative NATO manifesto
was ‘‘discipline’’. For example, in his widely quoted paper on ‘‘mass-
produced software components’’, Douglas McIlroy forcefully articulated
his plan for ‘‘industrializing’’ software production:

We undoubtedly produce software by backward techniques. We undoubtedly get
the short end of the stick in confrontations with hardware people because they are
the industrialists and we are the crofters. Software production today appears in the
scale of industrialization somewhere below the more backward construction
agencies. I think that its proper place is considerably higher, and would like to
investigate the prospects for mass-production techniques in software.37

33. C.I. Keelan, ‘‘Controlling Computer Programming’’, Journal of Systems Management, 20
(January 1969), pp. 30–33; D. Herz, New Power for Management (New York, 1969); Richard
Canning, ‘‘Managing the Programming Effort’’, EDP Analyzer, 6 (1968), pp. 1–15; Charles
Lecht, The Management of Computer Programming Projects (New York, 1967).
34. Keelan, ‘‘Controlling Computer Programming’’, p. 30.
35. R.M. Graham, quoted in Naur et al., Software Engineering: Proceedings of the NATO
conferences, p. 32.
36. Ibid., p. 4.
37. Ibid., p. 7.

165Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

McIroy’s vision of a software ‘‘components factory’’ invokes familiar
images of industrialization and proletariatization. According to his
proposal, an elite corps of ‘‘software engineers’’ would serve as the
Frederick Taylors of the software industry, carefully orchestrating every
action of a highly stratified programmer labor force. And like the engineers
in more traditional manufacturing organizations, these software engineers
would identify themselves more as corporate citizens than as independent
professionals.38

The turn towards management solutions to the software crisis that
followed the 1968 Garmisch Conference reflected a significant shift in
contemporary attitudes towards programmers and other computer
specialists. Indeed, many of the most significant innovations in software
engineering to be developed in the immediate post-Garmisch era were as
much managerial as they were technological or professional. When a
prominent adherent of object-oriented programming techniques spoke of
‘‘transforming programming from a solitary cut-to-fit craft, like the
cottage industries of colonial America, into an organizational enterprise
like manufacturing is today’’, he was referring not so much to the adoption
of a specific technology, but rather to the imposition of established and
traditional forms of labor organization and workplace relationships.39

By reconstructing the software crisis as a problem of management
technique rather than technological innovation, advocates of these new
management-oriented approaches also relocated the focus of its solution,
removing it from the domain of the computer specialist and placing it
firmly in the hands of traditional managers.

A N E W T H E O C R A C Y – O R I N D U S T R I A L

C A R P E T B A G G E R S ?

Prior to the invention of the electronic digital computer, information
processing in the corporation had largely been handled by conventional
clerical staffs and traditional office managers. There had been attempts by
aspiring ‘‘systems managers’’ to leverage expertise in the technical and
bureaucratic aspects of administration into a broader claim to authority
over the design of elaborate custom information processing systems.40 In
certain cases, strong-willed executives were able to use information
technology to consolidate control over lower levels of the organizational
hierarchy. For the most part, however, the use of such technologies did not

38. Ensmenger, ‘‘The ‘Question of Professionalism’’’.
39. Brad Cox, ‘‘There is a Silver Bullet’’, Byte, 15 (1990), p. 209.
40. Thomas Haigh, ‘‘Technology, Information and Power: Managerial Technicians in Corporate
America: 1917–2000’’, (unpublished Ph.D. thesis, University of Pennsylvania, 2002).

166 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

contribute to the rise of a class of technical professionals capable of
challenging the power of traditional management.41

As more and more corporations began to integrate electronic computers
into their data processing operations, however, it became increasingly clear
that this new technology threatened the stability of the established
managerial hierarchy. Early commercial computers were large, expensive,
and complex technologies that required a high level of technical
competence to operate effectively. Many nontechnical managers who
had adapted readily to other innovations in office technology such as
complicated filing systems and tabulating machinery, were intimidated by
computers – and by computer specialists. As the electronic computer
became an increasingly valuable source of institutional and economic
power and authority, programmers and other computer personnel
emerged as influential organizational ‘‘change-agents’’ (to use the manage-
ment terminology of the era).42 This was particularly true of business
programmers. The systems they developed often replaced, or at least
substantially altered, the work of traditional white-collar employees.
Traditional corporate managers, not unsurprisingly, often resented the
perceived impositions of the ‘‘computer boys’’, regarding them as threats
to their position and status.43

The rising power of EDP professionals did not go unnoticed by other
middle-level managers. In a 1967 essay on ‘‘The Impact of Information
Technology on Organizational Control’’, management consultant, Tho-
mas Whisler, warned his colleagues ‘‘it seems most unlikely that one can
continue to hold title to the computer without assuming and using the
effective power it confers’’.44 A decade earlier, Whisler and his colleague
Harold Leavitt had coined the term ‘‘information technology’’, and had
predicted that within thirty years the combination of management science
and information technology would decimate the ranks of middle manage-
ment and lead to the centralization of managerial control.45 His 1967
article suggested that EDP specialists were the direct beneficiaries of such
centralization, which occurred at the expense of traditional managers. He
quoted one insurance executive who claimed that ‘‘There has actually been
a lateral shift to the EDP manager of decision-making from other

41. JoAnne Yates, Control Through Communication: The Rise of System in American
Management (Baltimore, 1989).
42. John Golda, ‘‘The Effects of Computer Technology on the Traditional Role of Manage-
ment’’, (M.A. thesis, Wharton School, University of Pennsylvania, 1965), p. 34.
43. For example, see T. Alexander, ‘‘Computers Can’t Solve Everything’’, Fortune (October
1969), p. 169, and Thomas Whisler, ‘‘The Impact of Information Technology on Organizational
Control’’, in Charles Myers (ed.), The Impact of Computers on Management (Cambridge, MA,
1967), pp. 16–48, 44.
44. Ibid., p. 44.
45. Harold Leavitt and Thomas Whisler, ‘‘Management in the 1980s’’, Harvard Management
Review, 36 (1958), pp. 41–48.

167Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

department managers whose departments have been computerized.’’
Another manager complained about the relative decline of managerial
competence in relationship to computer expertise:

The supervisor [:::] has been replaced as the person with superior technical
knowledge to whom the subordinates can turn for help. This aspect of
supervision has been transferred, at least temporarily, to the EDP manager and
programmers or systems designers involved with the programming [:::] under-
neath, the forward planning function of almost all department managers has
transferred to the EDP manager.46

Information technology, argued Whisler, ‘‘tends to shift and scramble the
power structure of organizations [:::]. The decision to locate computer
responsibility in a specific part of an organization has strong implications
for the relative authority and control that segment will subsequently
achieve.’’47

Whisler was hardly alone in his assessment of the impending danger of
an organizational power shift. In her 1971 book, How Computers Affect
Management, Rosemary Stewart described how computer specialists
mobilized the mystery of their technology to ‘‘impinge directly on a
manager’s job and be a threat to his security or status’’.48 In his 1969 article
‘‘Computers Can’t Solve Everything’’, Thomas Alexander emphasized the
cultural differences that existed between ‘‘computer people’’ and business
managers: ‘‘Managers [:::] are typically older and tend to regard computer
people either as mere technicians or as threats to their position and status –
in either case they resist their presence in the halls of power.’’49 Authors
Porat and Vaughan listed several deprecating titles that managers used to
describe their upstart rivals, including ‘‘the new theocracy’’, ‘‘prima
donnas’’, ‘‘the new breed’’, ‘‘industrial carpetbaggers’’, and ‘‘other similarly
unflattering titles’’.50

It is not difficult to understand why many managers came to fear and
dislike computer programmers and other software specialists. In addition
to the usual suspicion with which established professionals generally
regarded unsolicited changes in the status quo, managers had particular
reasons to resent EDP departments. The unprecedented degree of
autonomy that corporate executives granted to ‘‘computer people’’ seemed
a deliberate affront to the local authority of departmental managers. ‘‘All
too often management adopts an attitude of blind faith (or at least hope)
toward decisions of programmers’’, complained one management-oriented

46. Whisler, ‘‘The Impact of Information Technology on Organizational Control’’, p. 44.
47. Ibid., p. 48.
48. Rosemary Stewart, How Computers Affect Management (Cambridge, MA, 1971), p. 196.
49. Alexander, ‘‘Computers Can’t Solve Everything’’, p. 169.
50. Avner Porat and James Vaughan, ‘‘Computer Personnel: The New Theocracy – or
Industrial Carpetbaggers’’, Personnel Journal, 48 (1968), pp. 540–543.

168 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

computer textbook.51 As a result of the ‘‘inability or unwillingness of top
management to clearly define the objectives of the computer department
and how it will be utilized to the benefit of the rest of the organization’’,
many operational managers ‘‘expect the worse and, therefore, begin to
react defensively to the possibility of change’’.52 The adoption of computer
technology threatened to bring about a revolution in organizational
structure that carried with it tangible implications for the authority of
managers: ‘‘What has not been predicted, to any large degree, is the extent
to which political power would be obtained by this EDP group. Top
management [:::] have abdicated their responsibility and let the ‘computer
boys’ take over.’’53

As Thomas Haigh has suggested, it was during the late 1950s that the
concept of management information (and computerized management
information systems) was developed; by the beginning of the 1960s the
computer had become not just a tool to be managed, but also a tool for
management.54 A whole host of new would-be management experts,
including systems men, operations research experts, and management
consultants emerged to threaten the professional authority of middle-level
managers. The frequent association of ‘‘computer boys’’ with external
consultants only compounded the resentment of regular employees.

There were other reasons why traditional managers felt threatened by
computers and computer specialists. The continuous gap between the
demand and supply of qualified computer personnel had in recent years
pushed up their salary levels faster than those of other professionals and
managers. It also provided them with considerable opportunities for
horizontal mobility, either in pursuit of higher salaries or more challenging
positions. These opportunities were often resented by other, less mobile
employees. In addition, the unprecedented degree of autonomy that
corporate executives granted to ‘‘computer people’’ seemed a deliberate
affront to the local authority of departmental managers. In the eyes of
many nontechnical managers, the personnel most closely identified with
the digital computer ‘‘have been the most arrogant in their willful disregard
of the nature of the manager’s job. These technicians have clothed
themselves in the garb of the arcane wherever they could do so, thus
alienating those whom they would serve.’’55

In response to these perceived challenges to their authority, managers
developed a number of interrelated responses intended to restore them to
their proper roles in the organizational hierarchy. The first was to define

51. Michael Barnett, Computer Programming in English (New York, 1969), p. 3.
52. Porat and Vaughan, ‘‘Computer Personnel: The New Theocracy’’, p. 542.
53. Golda, ‘‘The Effects of Computer Technology’’, p. 34.
54. Haigh, ‘‘Inventing Information Systems’’.
55. Datamation editorial, ‘‘The Thoughtless Information Technologist’’, Datamation, 12 (1966),
pp. 21–22, 21.

169Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

programming as an activity, and by definition programmers as profes-
sionals, in such a way as to assure it and them a subordinate role as mere
technicians or service staff workers. The rhetoric of management literature
reinforced the notion that computer specialists were self-interested,
narrow technicians rather than future-minded, bottom-line-oriented good
corporate citizens. ‘‘People close to the machine can also lose perspective’’,
argued one computer programming ‘‘textbook’’ for managers. ‘‘Some of
the most enthusiastic have an unfortunate knack of behaving as if the
computer were a toy. The term ‘addictive’ comes to mind [:::].’’56

Managers emphasized the youthfulness and inexperience of most pro-
grammers. They cited aptitude tests and personality profiles (often of
questionably scientific validity) that suggested that computer program-
mers were particularly antisocial, that they ‘‘preferred to work with things
rather than people’’, as examples of the ‘‘immaturity’’ of the computer
professions.57

Another common strategy for deprecating computer professionals was
directly to challenge their technical monopoly. If working with computers
was in fact not all that difficult, then dedicated programming staffs were
superfluous. One of the alleged advantages of the COBOL programming
language frequently touted in the literature was its ability to be read,
understood – and perhaps even written – by informed managers.58 In its
‘‘Meet Susie Meyer’’ advertisements for its PL/1 programming language,
the IBM Corporation asked its users an obviously rhetorical question:
‘‘Can a young girl with no previous programming experience find
happiness handling both commercial and scientific applications, without
resorting to an assembler language?’’ The answer, of course, was an
enthusiastic ‘‘Yes!’’ Although the advertisement promised a ‘‘brighter
future for your programmers’’, (who would be free to ‘‘concentrate more
on the job, less on the language’’) it also implied a low-cost solution to the
labor crisis in software. The subtext of appeals like this were non-too-
subtle: If pretty little Susie Meyer, with her spunky miniskirt and utter lack
of programming experience, could develop software effectively in PL/1, so
could just about anyone.

Experienced managers stressed the critical differences between ‘‘real-
world problems’’ and ‘‘EDP’s version of real-world problems’’.59 The
assumptions about programmers embedded in the infamous McKinsey
reports – that they were narrowly-technical, inexperienced, and ‘‘poorly
qualified to set the course of corporate computer effort’’ – resonated with

56. Barnett, Computer Programming in English, p. 5.
57. For example, see Dallis Perry and William Cannon, ‘‘Vocational Interests of Computer
Programmers’’, Journal of Applied Psychology, 51 (1967), pp. 28–34.
58. Gordon, ‘‘Review of Charles Lecht’’, p. 85.
59. Harry Larson, ‘‘EDP – A 20-Year Ripoff!’’, Infosystems, 21 (1974), pp. 26–30, 28.

170 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

many corporate managers.60 They provided a convenient explanation for
the burgeoning software crisis. Computer department staffs, although
‘‘they may be superbly equipped, technically speaking, to respond to
management’s expectations’’, are ‘‘seldom strategically placed (or manage-
rially trained) – to fully assess the economics of operations or to judge
operational feasibility’’.61 Only the restoration of the proper balance
between computer personnel and managers could save the software
projects from a descent into ‘‘unprogrammed and devastating chaos’’.62

In much of the management literature of this period, computer
specialists were often cast as self-interested peddlers of ‘‘whizz-bang’’
technologies. ‘‘In all too many cases the data processing technician does
not really understand the problems of management and is merely looking
for the application of his specialty.’’63 The 1969 book New Power for
Management emphasized the myopic perspective of programmers: ‘‘For
instance, a technician’s dream may be a sophisticated computerized
accounting system; but in practice such a system may well make no major
contribution to profit.’’64 Others attributed to them even more Machia-
vellian motives: ‘‘More often than not the systems designer approaches the
user with a predisposition to utilize the latest equipment or software
technology – for his resumé – rather than the real benefit for the user.’’65

Calling programmers the ‘‘Cosa Nostra’’ of the industry, the colorful
former-programmer turned technology management consultant H.R.J.
Grosch warned managers to ‘‘refuse to embark on grandiose or unworthy
schemes, and refuse to let their recalcitrant charges waste skill, time and
money on the fashionable idiocies of our racket’’.66 Like many of his
management-oriented colleagues, he argued that programmers needed to
‘‘accept reality, not to rebel against it’’. Many of the technological,
managerial, and economic woes of the software industry became wrapped
up in the problem of programmer management.

The idea that the so-called ‘‘software crisis’’ could largely be attributed
to mismanagement by technicians served a dual purpose for traditional
middle-level managers. First of all, it placed them solidly in the role of
corporate champion. Many of the most prominent software engineering
methodologies developed in the immediate post-Garmisch-conference era

60. Datamation Editorial, ‘‘Trouble [:::] I Say Trouble, Trouble in DP City’’, Datamation, 14
(1968), p. 21, 21.
61. Herz, New Power for Management, p. 169.
62. Robert Boguslaw and Warren Pelton, ‘‘Steps: A Management Game for Programming
Supervisors’’, Datamation, 5 (1959), pp. 13–16.
63. W.R. Walker, ‘‘MIS Mysticism (Letter to Editor)’’, Business Automation, 16 (1969), p. 8.
64. Herz, New Power for Management, p. 169.
65. H.L. Morgan and J.V. Soden, ‘‘Understanding MIS Failures’’, Data Base, (Winter 1973), pp.
157–171, 159.
66. Herb Grosch, ‘‘Programmers: The Industry’s Cosa Nostra’’, Datamation, 12 (1966), p. 202.

171Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

were management-related or driven. Secondly, this particular construction
of the software crisis provided an unflattering image of the computer
specialists vis-à-vis management. By representing programmers as short-
sighted, self-serving technicians, managers reinforced the notion that they
were ill-equipped to handle ‘‘big-picture’’, mission-critical responsibilities.
After all, according to the McKinsey reports, ‘‘Only managers can manage
the computer in the best interests of the business.’’67 And not just any
managers would do: only those managers who had traditional business
training and experience were acceptable, since ‘‘managers promoted from
the programming and analysis ranks are singularly ill-adapted for
management’’.68

T H E S T R U G G L E F O R O C C U P A T I O N A L T E R R I T O R Y

To many observers of computer revolution of the late twentieth century –
both historians and practitioners alike – the emergence of new, manage-
rially-oriented, ‘‘rational’’ solutions to the software crisis marked ‘‘a major
cultural shift in the perception of programming’’, the welcome beginning
of a new era in which software development ‘‘started to make the transition
from being a craft for a long-haired programming priesthood to becoming
a real engineering discipline’’.69 In this conventional and essentially
Chandlerian interpretation, an important but immature industry, driven
by the changing economics of commercial computing and guided by well-
established managerial and organizational principles, simply restructured
itself along the lines of traditional industrial manufacturing. In the internal
language of the software engineering discipline, an ‘‘inversion in the
hardware-software cost ratio curve’’ occurred in the mid-1960s that clearly
demanded a managerial response.70 Put more simply, the cost of the actual
computers went down at the same time that the cost of using them
(developing and maintaining software) went up. By the end of the decade
the expenses associated with commercial data processing were dominated
by software maintenance and programmer labor rather than equipment
purchases. And since the management of labor fell under the traditional
domain of the middle-level manager, these managers quickly developed a
deep interest in rationalizing the practices of their computer programmers.

67. McKinsey & Company, ‘‘Unlocking the Computer’s Profit Potential’’, p. 33.
68. J.L. Ogdin, ‘‘The Mongolian Hordes versus Superprogrammer’’, Infosystems, 20 (1973), pp.
20–23, 20.
69. Martin Campbell-Kelly and William Aspray, Computer: A History of the Information
Machine (New York, 1996), p. 201.
70. Barry Boehm, ‘‘Software and its Impact: A Quantitative Assessment’’, Datamation, 19
(1973), pp. 48–59. See also Michael Mahoney, ‘‘Software: the Self-Programming Machine’’, in
Atsushi Akera and Fred Nebeker (eds), From 0 to 1: An Authoritative History of Modern
Computing (New York, 2001).

172 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

For labor historians and historians of technology the story is a little
more complicated. If we take seriously the claim – widely accepted in both
disciplines – that technologies and technological systems represent more
than just the ‘‘one best way’’ to accomplish a particular function but are
also the embodiment of very specific social, political, and power relation-
ships, then the ongoing debate about the software crisis assumes a much
larger significance. Computer programmers are in many ways the
paradigmatic ‘‘knowledge workers’’ of postindustrial society.71 At the
very least, they play a central role in the development of the computerized
information systems that have become ubiquitous components of the
modern work environment, whether office building, retail establishment,
mechanic’s shop, or assembly line. Surely then it is crucial that we
understand the nature of the computer programmer’s work, if only to
understand the politics of the technologies that they build. As Shoshona
Zuboff argues in her book In the Age of the Smart Machine: The Future of
Work and Power, ‘‘computer based technologies are not neutral; they
embody essential characteristics that are bound to alter the nature of work
within our factories and offices, and among workers, professionals, and
managers’’.72 What then are the ‘‘essential characteristics’’ of software and
software development that shape our understanding of work, identity, and
power in the information technology industry (and the many industries
that rely on information technology)? How can we understand the social
and occupational history of the computer programmer in terms of a larger
debate about the role of information technology in organizational
transformation?

One possible interpretation of the burgeoning software crisis of the late
1960s and the emergence of new management-oriented solutions to the
problem of software production might situate these developments within
the context of a larger struggle between labor and the forces of capital.
Indeed, the few scholarly treatments of software workers that do exist
adopt this approach. Building on the work of Harry Braverman and David
Noble, the labor historian Philip Kraft argued in his 1977 book
Programmers and Managers: The Routinization of Computer Program-
ming in the United States, that ‘‘programmers, systems analysts, and other
software workers are experiencing efforts to break down, simplify,
routinize, and standardize their own work so that it, too, can be done
by machines rather than people’’. Cloaked in the language of progress and
efficiency, the imposition of increasingly rigorous management controls
on the process of programming was envisioned primarily as a means of

71. Daniel Bell, The Coming of Post-Industrial Society (New York, 1973).
72. Shoshana Zuboff, In the Age of the Smart Machine: The Future of Work and Power (New
York, 1988).

173Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

disciplining and controlling a recalcitrant work force.73 Joan Greenbaum,
in her 1979 study of ‘‘Management Theory and Shopfloor Practice in Data-
Processing Work’’ arrived at a similar conclusion.74

A superficial reading of the management literature of this period, with
its confident claims about the ability of performance metrics, development
methodologies, and automatic programming languages to reduce corpo-
rate dependence on individual programmers, might suggest that this is
indeed a straightforward story of the routinization and degradation of
programmer labor. Certainly, the twentieth century is replete with such
stories. In fact, many of the software management methodologies
proposed in late 1960s do indeed represent ‘‘elaborate efforts’’ that ‘‘are
being made to develop ways of gradually eliminating programmers, or at
least reduce their average skill levels, required training, experience, and so
on’’.75 Their authors would have been the first to admit it.

If computer programming had remained, as was originally intended, a
form of glorified clerical labor, then the deskilling hypothesis might serve a
more useful interpretive function. There is an existing literature on the
routinization and feminization of clerical work.76 As we have seen,
however, computer programmers in this period generally managed not
only to maintain their status and autonomy, but also improbably to extend
it. What began as low-status, clerical, and feminized labor emerged as one
of the most well-paid, highly romanticized, and stereotypically masculine
of white-collar occupations. Writing in 1971, the occupational sociologist
Enid Mumford actually lauded data processing as one area ‘‘where the
philosophy of job reducers and job simplifiers – the followers of Taylor –
has not been accepted’’.77 More than four decades after corporate managers
first began their attempts to rationalize software development along the
lines of traditional manufacturing, computer programming remains a
distinctively craft-oriented and idiosyncratic discipline. Although com-
plaints about the quality and reliability of software still plague software
developers – the rhetoric of crisis continues to dominate discussions about
the health and future of the industry – it is clear that computer
programmers in the 1960s were active participants in the struggle to
define the boundaries of their own professional competence and authority.

An alternative interpretation might view this history in terms of the

73. Philip Kraft, Programmers and Managers: The Routinization of Computer Programming in
the United States (New York, 1977), p. 32.
74. Joan Greenbaum, In the Name of Efficiency: Management Theory and Shopfloor Practice in
Data-Processing Work (Philadelphia, PA, 1979).
75. Kraft, Programmers and Managers, p. 26.
76. Sharon Strom, Beyond the Typewriter: Gender, Class and the Origins of Modern American
Office Work, 1900–1930 (Urbana, IL, 1992); Margery Davies, Woman’s Place is at the
Typewriter: Office Work and Office Workers, 1870–1930 (Philadelphia, PA, 1982).
77. Enid Mumford, Job Satisfaction: A Study of Computer Specialists (London, 1972).

174 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

professionalization literature. During the 1950s and 1960s many white-
collar occupations attempted to professionalize, and computer program-
mers were no exception.78 They established professional societies, codes of
ethics, and certification and curriculum standards.79 Belonging to a
profession provided an individual with a ‘‘monopoly of competence’’,
the control over a valuable skill that was readily transferable from
organization to organization.80 Professionalism provided a means of
excluding undesirables and competitors; it assured basic standards of
quality and reliability; it provided a certain degree of protection from the
fluctuations of the labor market; and it was seen by many workers as a
means of advancement into the middle class.81 Programmers in particular
saw professionalism as means of distinguishing themselves from ‘‘coders’’
or other ‘‘mere technicians’’. Corporate managers generally embraced the
concept of professionalism. It appeared to provide a familiar solution to
the increasingly complex problems of programmer management: ‘‘The
concept of professionalism’’, argued one personnel research journal from
the early 1970s, ‘‘affords a business-like answer to the existing and future
computer skills market’’.82 The rhetoric of professionalism was ideologi-
cally neutral, and appealed to a wide variety of individuals and interest
groups. Professionalization was one of several widely adopted strategies
for dealing with the software crisis.83

Thinking in terms of professionalization provides several benefits. It
allows us to locate the history of computer programming in a familiar
literature, and it provides a number of useful explanatory devices. One of
the most useful is the sociologist Andrew Abbott’s ‘‘ecological’’ model for
understanding professional change and development. In The Systems of
Professions: An Essay on the Division of Expert Labor, Abbott describes
the ‘‘jurisdictional struggles’’ that occur among groups of professionals
struggling for control over a particular occupational territory.84 In
Abbott’s model, professions are fluid organisms able to adapt and expand
when occupational niches become available to them and to respond and
defend themselves when their particular territory becomes threatened by

78. Harold Wilensky, ‘‘The Professionalization of Everyone?’’, American Journal of Sociology,
70 (1964), pp. 137–158.
79. Ensmenger, ‘‘The ‘Question of Professionalism’’’.
80. Magali Sarfatti Larson, The Rise of Professionalism: A Sociological Analysis (Berkeley, CA,
1977).
81. Robert Zussman, Mechanics of the Middle Class: Work and Politics Among American
Engineers (Berkeley, CA, 1985).
82. Personnel Journal Editorial, ‘‘Professionalism Termed Key to Computer Personnel
Situation’’, Personnel Journal, 51 (February 1971), pp. 156–157.
83. Nathan Ensmenger, ‘‘From ‘Black Art’ to Industrial Disciple: The Software Crisis and the
Management of Programmers’’, (unpublished Ph.D thesis, University of Pennsylvania, 2001).
84. Andrew Abbott, The Systems of Professions: An Essay on the Division of Expert Labor
(Chicago, IL, 1988).

175Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

competitors. Disruptive new technologies often allow for the creation of
new niches or the expansion of existing occupational territory. It is clear
that this is in part what happens with the electronic computer in the late
1950s. As the electronic digital computer technology became an increas-
ingly important tool for corporate control and communication, existing
networks of power and authority were uncomfortably disrupted. The
conflicting needs and agendas of users, manufacturers, managers, and
programmers all became wrapped up in highly public struggle for control
over the occupational territory opened up by the technology of
computing.

This professionalization narrative is not entirely satisfactory, however.
Despite their best efforts to establish the institutional structures of a
profession, computer programmers were never able to achieve widespread
professional recognition. They were unable, for example, to develop two
of the most defining characteristics of a profession: control over entry into
the profession and the adoption of a shared body of abstract occupational
knowledge – a ‘‘hard core of mutual understanding’’ – common across the
entire occupational community. They failed to convince employers
sufficiently of the value of professionalism, and were often divided among
themselves over issues involving academic standards and certification
requirements. Complaints about the lack of professional standards among
computer programmers continue to play a central role in discussions about
the nature and causes of the software crisis. Despite the widespread
adoption of the rhetoric of software engineering, most computer
programmers are not engineers and would not identify themselves as
such. Although the ‘‘question of professionalism’’ continues to be a very
live issue in the programming community, in general computer program-
mers are not in general considered to be professionals.85

So if not professionals, managers, or clerical support staff, what exactly
are computer programmers? How can does their unique history tell us
about larger patterns in work practices and the organizational of labor in
the late late twentieth century?

Perhaps the most useful way to think about the computer programmer is
as a technician. As the organizational theorist Stephen Barley has
suggested, technicians are a relatively recent addition to the pantheon of
occupations.86 Although technicians do not fit easily into the interpretive
framework of either labor history or the sociology of professions, they
represent the fastest growing sector of the American labor force. They
include such occupations as radiological technicians, science technicians,
engineering technicians, and medical technicians. Their work often

85. Ensmenger, ‘‘The ‘Question of Professionalism’’’.
86. Stephen Barley, ‘‘Technicians in the Workplace: Ethnographic Evidence for Bringing Work
Into Organization Studies’’, Administrative Science Quarterly, 41 (1996), pp. 404–441.

176 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

transgresses traditional occupational boundaries; according to Barley,
technicians ‘‘often wear white collars, carry briefcases, and conduct
sophisticated scientific and mathematical analyses. Yet they use tools,
work with their hands, make objects, repair equipment, and, from time to
time, get dirty.’’87 They are often – albeit at times grudgingly – granted a
great deal of autonomy by their employers.88 Like computer program-
mers, technicians occupy an ambiguous occupational space that is difficult
to categorize.

Also like computer programmers, technicians serve as mediators
between the technological and social architectures of the organization.
Technicians are often responsible for building, repairing, and monitoring
the complex systems that keep a company running. Because they play a
support role that is tangential to the core business of the organization and
generally possess skills radically different from those of their colleagues,
they are often seen as foreigners to the worksite.89 Traditional employees
often resent their dependence on technicians and consider them insuffi-
ciently subservient.90. Like the ‘‘computer boys’’ of the late 1960s,
technicians often wield power disproportionate to their official position
in the occupational hierarchy.

There are a number of other similarities between Barley’s description of
technicians and the history of the computer programmer. Although they
are generally well-educated and rely heavily on scientific or engineering
training, technicians also value intuition and craft knowledge. They tend to
learn on the job, rather than from formal academic or vocational training
programs. They make extensive use of social networks and community-
based systems of information exchange. Their expertise is often local and
idiosyncratic and difficult to communicate or define as a set of abstract
principles.91

It seems clear from these descriptions that computer programmers can
be considered as a type of technician. In fact, this seems to be the most
useful way to make connections between software workers and other
forms of technical labor. It captures the tension inherent in the practices of
software development: the curious coexistence of high technology and
artisanal sensibilities; the inability of programmers to conform to
conventional professional, scientific, or engineering categories; the
persistent attempts by corporate managers to restructure software

87. Ibid., p. 412.
88. Stacia Zabusky and Stephen Barley, ‘‘Redefining Success: Ethnographic Observations on the
Careers of Technicians’’, in Paul Osterman (ed.), Broken Ladders: White Collar Careers
(Oxford, 1996), pp. 185–214.
89. Barley, ‘‘Technicians in the Workplace’’, p. 422.
90. Ibid., p. 430.
91. Ibid., p. 427.

177Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

development along the lines of traditional manufacturing; the remarkable
persistence of the forty-year-old software crisis.

By looking beyond simplistic explanations of computer programmers as
either degraded ‘‘software factory’’ workers or failed software engineers –
or as sui generis exceptions to larger historical patterns – we can recapture
the broader relevance of the history of information technology to social
and labor history. Thinking of computer programmers as technicians
allows us to locate them in a larger historical context. They are both like
and unlike traditional workers, and both the similarities and differences are
revealing.

At the very least, the history of computer programmers provides a
reinterpretation of what has generally been treated as a purely technical
debate; it suggests that corporate workers, managers, and computer
programmers have been active participants in shaping the technology of
electronic computing. Like any new technological innovation, the
computer could not simply be inserted, unchanged and unnoticed, into
the well-established social, technological, and political systems that
comprised modern corporate and academic organizations. Just as the
computer itself was gradually reconstructed, in response to a changing
social and technical environment, from a scientific and military instrument
into a mechanism for corporate control and communication, modern
businesses and universities had to adapt themselves to the presence of a
powerful new technology. Over the course of the 1950s and 1960s, the
identity of the computer programmer was continually invented and
reinvented in response to a changing social and technical environment.
Embedded into all of the major technical innovations of period was a
particular model of what the users/programmers of these inventions
should look like. Was the idealized computer programmer a routinized
laborer in a Taylorized ‘‘software factory’’ or a skilled, autonomous
professional? Should programmers base their occupational identity on the
model of the engineer/scientist or the certified public accountant? Should
they emphasize craft technique or abstract knowledge? Did they need to
be college educated or simply a vocational school graduate? Should they be
male or female? The answers to each of these questions had significant
implications for the role of electronic computing – and of computing
professionals – in modern corporate and academic organizations. It is no
wonder, therefore, that they were not readily resolved in this, or for that
matter any other, period in the history of computing.

E P I L O G U E

In the years since the 1960s the software industry has only continued to
expand. A recent study by the Bureau of Labor Statistics shows that, since
1972, employment in the computer services industries (which includes

178 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

software and associated services) has grown 300 per cent.92 There are now
at least 1.9 million computer services workers in the United States alone.
Even discounting the recent boom (and subsequent bust) in the informa-
tion technology sector, software and its associated services remains one of
the largest and fastest growing industries in the United States.

The obvious importance of the industry to the national and global
economy suggests that computer programmers are a worthy object of
continued study. The recent debate over the information technology
worker supply, which has implications for a wide range of funding,
education, and immigration policy issues, revealed a surprising lack of
basic information about the size and structure of the information
technology labor market.93 It is clear, however, that many of the
institutional structures that continue to inform our understanding of
information technology and information technology workers – academic,
professional, and technological – took their shape in the period discussed
in this paper. In many ways the basic framework of the debate about the
software crisis has remained essentially unchanged in the decades since the
1960s. In an industry characterized by change, the rhetoric of crisis has
proven remarkably persistent.

In recent years the debate about the software crisis has gone global.
Competition from Asia, both in terms of an influx of Asian programmers
entering the United States on H1-B and L1 visas, as well as the movement
of software development projects to offshore ‘‘software factories’’, has
created new tensions within the computing community. Many of the
questions about certification, professionalization, and workplace control
that dominated discussions about software workers in the 1960s have re-
emerged, this time around couched in terms of fears of foreign competition
and national security. These are discussions that have occurred in the past,
but always in regard to blue-collar manufacturing jobs, not skilled white-
collar occupations. Many of the organizational tensions associated with
computerization projects have been further complicated by questions of
race and nationalism. There has been a renewed interest in unionization
among information technology workers, a development that had pre-
viously been strongly resisted by both employers and aspiring technical
professionals.94

Because computer programmers confound so many of the traditional

92. William Goodman, ‘‘The Software and Engineering Industries: Threatened by Technological
Change?’’, unpublished technical report (1996).
93. Peter Freeman and William Aspray, The Supply of Information Technology Workers in the
United States (Washington DC, 1999).
94. From the 1960s onward, movements to unionize computer programmers emerge
periodically, but none acquired any significant momentum. Like many aspiring professionals,
programmers generally resisted unionization efforts, and the constantly expanding demand for
new programmers discouraged any attempts to erect barriers of entry to the occupation.

179Technology and the Politics of Organizational Transformation

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

categories of historical and sociological analysis, they suggest new ways to
re-evaluate the role of the computer in late twentieth-century society.
Much of the literature on the computer, from the earliest days of
computing to the present, has focused on its ‘‘revolutionary’’ potential.
And yet, more than thirty years after the first NATO Conference on
Software Engineering, advocates of a more industrial approach to software
development still complain that the ‘‘vast majority of computer code is still
handcrafted from raw programming languages by artisans using techni-
ques they neither measure nor are able to repeat consistently’’.95 The study
of the computer in the context of work practices, occupational conflict,
and organizational politics allows us to explore not only change but
continuity, and to link the history of the computer to a larger body of labor
and social history, as well as to contemporary issues of concern to a broad
range of audiences.

95. W. Gibbs, ‘‘Software’s Chronic Crisis’’, Scientific American, (September 1994), p. 86.

180 Nathan L. Ensmenger

https://doi.org/10.1017/S0020859003001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0020859003001305

	INVENTING THE COMPUTER PROGRAMMER
	THE ORIGINS OF PROGRAMMING
	THE ``BLACK ART'' OF PROGRAMMING
	SOFTWARE TURMOIL
	A NEW THEOCRACY -- OR INDUSTRIAL CARPETBAGGERS?
	THE STRUGGLE FOR OCCUPATIONAL TERRITORY
	EPILOGUE

