THE STRUCTURE OF A GROUP OF PERMUTATION POLYNOMIALS

GARY L. MULLEN and HARALD NIEDERREITER

(Received 24 November 1983; revised 31 January 1984)

Communicated by R. Lidl

Abstract

Let G_q be the group of permutations of the finite field F_q of odd order q that can be represented by polynomials of the form $ax^{(q+1)/2} + bx$ with $a, b \in F_q$. It is shown that G_q is isomorphic to the regular wreath product of two cyclic groups. The structure of G_q can also be described in terms of cyclic, dicyclic, and dihedral groups. It also turns out that G_q is isomorphic to the symmetry group of a regular complex polygon.

1. Introduction

Let F_q be the finite field of order q. Then every mapping from F_q into itself can be uniquely represented by a polynomial in $F_q[x]$ of degree less than q, and composition of mappings corresponds to composition of polynomials mod($x^q - x$) (see [9, Chapter 7]). In particular, every group of permutations of F_q can be represented by a set of polynomials in $F_q[x]$ of degree less than q that is closed under composition mod($x^q - x$). According to a well-known definition (see [8, Chapter 4], [9, Chapter 7]), a polynomial f over F_q for which the corresponding polynomial mapping $c \in F_q \rightarrow f(c)$ is a permutation is called a permutation polynomial of F_q. Numerous papers have been written on the structure of permutation groups represented by a given group of permutation polynomials of F_q under composition mod($x^q - x$); see for example Carlitz [1].

© 1985 Australian Mathematical Society 0263-6115/85 $A2.00 + 0.00

164
Fryer [6], Lausch and Nöbauer [8, Chapter 4], Lidl and Niederreiter [9, Chapter 7], Nöbauer [12], and Wells [15], [16].

In the present paper we determine the structure of a group of permutation polynomials that was discovered recently by Niederreiter and Robinson [11]. In Remark 2 on page 205 of that paper it is pointed out that for odd q the set of polynomials in $F_q[x]$ of the form $ax^{(q+1)/2} + bx$ with $a, b \in F_q$ is closed under composition mod$(x^q - x)$. In particular, the set of permutation polynomials of F_q of this form is a group under composition mod$(x^q - x)$, and we shall denote this group by G_q. We will establish some preparatory results in Section 2. These will enable us to determine the structure of G_q in Section 3. In fact, several descriptions of the structure of G_q will be given. We are grateful to the referee for pointing out that G_q can also be described in terms of wreath products.

It is convenient to identify a polynomial over F_q with the corresponding polynomial mapping, so that an identity $f = g$ with $f, g \in F_q[x]$ means $f \equiv g$ mod$(x^q - x)$. Throughout the rest of this paper, q will be an odd prime power and n will denote the value $(q - 1)/2$. The group G_q can then be described as the group of permutations of F_q of the form $ax^{n+1} + bx$ with $a, b \in F_q$.

2. Preparatory results

We determine first the order of the group G_q. We write $|G|$ for the order of a finite group G.

Lemma 1. $|G_q| = 2n^2$.

Proof. Let N be the number of permutations of F_q of the form $f(x) = x^{n+1} + bx$ with $b \in F_q$. Clearly, $f(x)$ is a permutation of F_q if and only if $af(x)$ is a permutation for $a \in F_q$, $a \neq 0$. If $a \neq 0$ is fixed, then the set of polynomial mappings $ax^{n+1} + bx$ with $b \in F_q$ also contains exactly N permutations. If $a = 0$, then bx is a permutation if and only if $b \neq 0$. It follows that

\begin{equation}
|G_q| = (q - 1)N + q - 1 = (q - 1)(N + 1) = 2n(N + 1).
\end{equation}

By Theorem 5 of [11], $x^{n+1} + bx$ is a permutation polynomial of F_q if and only if $\psi(b^2 - 1) = 1$, where ψ is the quadratic character defined by $\psi(0) = 0$ and $\psi(c) = 1$ or -1 depending on whether c is a nonzero square or a nonsquare in F_q.

https://doi.org/10.1017/S1446788700023016 Published online by Cambridge University Press
Consequently,

\[
N = \sum_{\substack{b \in F_q \\ b \neq \pm 1}} \frac{1}{2} [1 + \psi(b^2 - 1)] = -1 + \frac{1}{2} \sum_{b \in F_q} [1 + \psi(b^2 - 1)]
\]

\[
= \frac{q - 2}{2} + \frac{1}{2} \sum_{b \in F_q} \psi(b^2 - 1) = \frac{q - 3}{2} = n - 1,
\]

where we used Theorem 5.48 in [9] to evaluate the character sum. The lemma follows now from (1).

In order to determine the structure of \(G_q\), we make use of the following law of composition observed in [11, p. 205]: if \(f_1(x) = ax^{n+1} + bx\) and \(f_2(x) = cx^{n+1} + dx\) with \(a, b, c, d \in F_q\), then

\[
(f_1 \circ f_2)(x) = (ae + bc)x^{n+1} + (ah + bd)x,
\]

where \(\circ\) denotes composition and

\[
e = \frac{1}{2}(c + d)^{n+1} + \frac{1}{2}(d - c)^{n+1}, \quad h = \frac{1}{2}(c + d)^{n+1} - \frac{1}{2}(d - c)^{n+1}.
\]

We construct now a special element of \(G_q\) which will prove useful in the sequel. We recall that a generator of the cyclic multiplicative group of \(F_q\) is called a primitive element of \(F_q\).

Lemma 2. Let \(r\) be a primitive element of \(F_q\). Then

\[f(x) = \frac{1}{2}(1 - r^2)x^{n+1} + \frac{1}{2}(1 + r^2)x\]

is an element of \(G_q\) of order \(n\).

Proof. For \(g(x) = ax^{n+1} + bx\) with \(a, b \in F_q\) we calculate \(g \circ f\). The appropriate values of \(e\) and \(h\) from (3) are \(e = \frac{1}{2}(1 + r^2)\) and \(h = \frac{1}{2}(1 - r^2)\), so that (2) yields

\[
(g \circ f)(x) = \frac{1}{2} \left[a(1 + r^2) + b(1 - r^2) \right] x^{n+1} + \frac{1}{2} \left[a(1 - r^2) + b(1 + r^2) \right] x.
\]

A straightforward induction on \(m\) shows then that the \(m\)-fold composition \(f^m\) is given by

\[
f^m(x) = \frac{1}{2}(1 - r^{2m})x^{n+1} + \frac{1}{2}(1 + r^{2m})x.
\]

It follows that \(f^m\) is the identity mapping if and only if \(r^{2m} = 1\), and since the order of \(r\) is \(2n\), the least positive \(m\) for which \(f^m\) is the identity mapping is \(m = n\). In particular, \(f\) is a permutation of \(F_q\) and thus an element of \(G_q\).

Let \(r\) be a fixed primitive element of \(F_q\) and let \(X\) denote the element of \(G_q\) constructed in Lemma 2. Furthermore, let \(Y\) be the element of \(G_q\) given by the linear permutation polynomial \(rx\) of \(F_q\). This notation will be used throughout the rest of this section.
Lemma 3. Every element of G_q can be represented uniquely in the form X^iY^j with $0 \leq i < n, 0 \leq j < 2n$.

Proof. Since $|G_q| = 2n^2$ by Lemma 1, it suffices to show that the elements $X^iY^j, 0 \leq i < n, 0 \leq j < 2n$, are all distinct. Suppose $X^iY^j = X^kY^l$ with $0 \leq i, k < n$ and $0 \leq j, l < 2n$, where we can assume (without loss of generality) that $i > k$. With $m = i - k$ we get then $X^m = Y^{l-j}$, so that X^m is represented by a linear polynomial. The formula for X^m in (4) shows that this is only possible if $r^{2m} = 1$. Since $0 \leq m < n$, it follows that $m = 0$, hence $i = k$. Then $Y^j = Y^l$, and since Y is an element of order $2n$, we get $j = l$, and the proof is complete.

The following lemma gives a set of generators and relations for the group G_q. The symbol 1 will henceforth also denote the identity element of a group. The correct interpretation of the symbol 1 will always be clear from the context.

Lemma 4. $G_q = \langle X, Y | X^n = Y^{2n} = (X^{-1}Y)^2 = 1, XY^2 = Y^2X \rangle$.

Proof. The fact that X and Y generate G_q follows already from Lemma 3. Now $X^n = 1$ follows from Lemma 2 and $Y^{2n} = 1$ is clearly satisfied. Moreover, $X^{-1} = X^{n-1}$ is represented by

$$\frac{1}{2}(1 - r^{2(n-1)})x_{n+1} + \frac{1}{2}(1 + r^{2(n-1)})x = \frac{1}{2}(1 - r^{-2})x_{n+1} + \frac{1}{2}(1 + r^{-2})x$$

according to (4). Hence $X^{-1}Y$ and $Y^{-1}X$ are both represented by

$$\frac{1}{2}(r^{-1} - r)x_{n+1} + \frac{1}{2}(r^{-1} + r)x$$

since $r^n = -1$. This implies $(X^{-1}Y)^2 = 1$. The remaining relation $XY^2 = Y^2X$ can be checked easily.

On the basis of the relations in Lemma 4 we can calculate the group law for G_q.

Lemma 5.

\[
(X^iY^j)(X^kY^l) = \begin{cases}
X^{i+k}Y^{j+l} & \text{if } j \text{ is even}, \\
X^{i-k}Y^{j+l+2k} & \text{if } j \text{ is odd}.
\end{cases}
\]

Proof. The first part of (5) is clear since Y^2 commutes with X by Lemma 4. Next we note that $(XY^{-1})^{-k} = YX^kY^{-1}$, and since $XY^{-1}Y^{-1} = (XY^{-1}Y)^{-2} = XY^{-2}$ by the third relation in Lemma 4, we have

$$YX^k = (XY^{-1}Y^{-1})^{-k}Y = (XY^{-2})^{-k}Y = X^{-k}Y^{2k+1}.$$

The second part of (5) follows now, since for odd j we get

\[
(X^iY^j)(X^kY^l) = X^iY^{j-1}YX^kY^l = (X^iY^{j-1})(X^{-k}Y^{2k+l+1}) = X^{i-k}Y^{j+l+2k},
\]

where we used the first part of (5) in the last step.
3. The structure of the group

We convert now the presentation in Lemma 4 into a simpler one. It is clear that G_q is also generated by X and $R = X^{-1}Y$. From Lemma 4 we have $R^2 = 1$, and the relation $XY^2 = Y^2X$ can be rewritten as $X(XR)^2 = (XR)^2X$, or $(XR)^2 = (RX)^2$. From the fact that X commutes with $(XR)^2$, one obtains easily by induction that $(XR)^{2k} = (X^kR)^2$ for all positive integers k. In particular, the relation $Y^{2n} = 1$ in Lemma 4 follows. Hence G_q has the presentation

$$G_q = \langle X, R | X^n = R^2 = 1, (XR)^2 = (RX)^2 \rangle.$$

Thus G_q is the group $n[4]2$ in the notation of Coxeter and Moser [4]. More generally, for any positive integer m the group $m[4]2$ is defined by

$$m[4]2 = \langle X, R | X^m = R^2 = 1, (XR)^2 = (RX)^2 \rangle.$$

The relation $(XR)^2 = (RX)^2$ can also be interpreted to say that X commutes with $RXR = R^{-1}XR = X^k$. It follows now from Theorem 5 in Johnson [7, Chapter 15] that the presentation of $m[4]2$ is the same as the presentation of the regular wreath product $C_m \wr C_2$, where C_m denotes the cyclic group of order m. Thus we have shown the following result.

Theorem. The group G_q of all permutations of F_q of the form $ax^{n+1} + bx$ with $a, b \in F_q$ is isomorphic to the regular wreath product $C_n \wr C_2$, where $n = (q - 1)/2$. More generally, the group $m[4]2$ is isomorphic to the regular wreath product $C_m \wr C_2$ for all positive integers m.

The groups $m[4]2$ have been studied in the literature in connection with the theory of symmetries of regular complex polytopes (see [3]). In particular, as indicated by Shephard [13], [14], the group $m[4]2$ can be viewed as the symmetry group of the complex polygon with m^2 vertices (θ_1, θ_2), where θ_1 and θ_2 run independently through the complex mth roots of unity. Further details regarding the precise definitions of regular complex polytopes and their groups of symmetries can be found in [3]. Crowe [5] gives an alternative interpretation of $m[4]2$ as a group of equivalence classes of quaternion transformations. The groups $m[4]2$ belong also to the family of complex reflection groups; see the paper of Cohen [2] in which the notation $G(m, 1, 2)$ is used for $m[4]2$.

For odd m the group $m[4]2$ has the direct product form $D_m \times C_m$, where D_m is the dihedral group of order $2m$; see [4, p. 78]. This fact can also be deduced from the description of $m[4]2$ as the regular wreath product $C_m \wr C_2$. Indeed, Theorem
7.1 of Neumann [10] shows that \(C_m \wr C_2 \) has a nontrivial direct product decomposition. An inspection of the proof of this theorem yields a direct factor \(Q \) isomorphic to \(C_m = \langle \alpha \rangle \) and a direct factor \(P \) consisting of all pairs \((b, f)\) with \(b \in C_2 = \langle \beta \rangle \) and \(f: C_2 \to C_m \) being a mapping satisfying \(f(1)f(\beta) = 1 \). Now \(P \) is generated by \(S = (\beta, f_0) \) and \(T = (1, f_1) \), where \(f_0(1) = f(\beta) = 1 \), \(f_1(1) = \alpha \), \(f_1(\beta) = \alpha^{-1} \), and \(S \) and \(T \) satisfy the relations \(S^2 = T^m = (ST)^2 = 1 \), so that \(P \) is isomorphic to \(D_m \). If \(m[4]2 \) is given by the presentation in Lemma 4 (with \(n \) replaced by \(m \)), then the direct factors \(P \) and \(Q \) can be identified explicitly. Using the group law in Lemma 5, one verifies that \(P = \{ X^{-j}Y^j: 0 \leq j < 2m \} \) is a normal subgroup of \(m[4]2 \) with generators \(S = X^{-1}Y \) and \(T = X^{-2}Y^2 \) and relations \(S^2 = T^m = (ST)^2 = 1 \), so that \(P \) is isomorphic to \(D_m \). Furthermore, \(Q = \langle Y^2 \rangle \) is a normal cyclic subgroup of \(m[4]2 \) of order \(m \), and \(P \cap Q = \{1\} \) since \(m \) is odd. Moreover, \(|PQ| = |P||Q| = 2m^2 \), the order of \(m[4]2 \), hence \(m[4]2 \) is isomorphic to \(P \times Q \). In particular, \(G_q \) is isomorphic to \(D_n \times C_n \) with \(n = (q - 1)/2 \) provided that \(q \equiv 3 \pmod{4} \).

For even \(m \) the group \(m[4]2 \) can also be described in terms of cyclic and dicyclic groups. Let \(C_{2m} = \langle \gamma \rangle \) be an abstract cyclic group of order \(2m \), and let

\[
E_m = \langle \delta, \epsilon | \delta^m = \epsilon^2 = (\delta \epsilon)^2 \rangle
\]

be an abstract dicyclic group of order \(4m \) with generators \(\delta \) and \(\epsilon \) of orders \(2m \) and \(4 \), respectively (compare with [4]). Then \(C_{2m} \) has the subgroup \(C_m = \langle \gamma^2 \rangle \) of index 2, and \(E_m \) contains the dicyclic group

\[
E_{m/2} = \langle \delta^2, \epsilon (\delta^2)^{m/2} = \epsilon^2 = (\delta^2 \epsilon)^2 \rangle
\]

as a subgroup of index 2. Hence \(C_m \times E_{m/2} \) is a normal subgroup of \(C_{2m} \times E_m \), and \(H_m = L_m(C_m \times E_{m/2}) \) is a subgroup of \(C_{2m} \times E_m \), where \(L_m \) is the cyclic subgroup of \(C_{2m} \times E_m \) generated by \((\gamma, \delta^{-1}) \). The elements of \(H_m \) can be represented uniquely in the form \((\gamma^{2a+d}, \delta^{2b-de^c}) \) with \(0 \leq a < m, 0 \leq b < m, 0 \leq c < 2, 0 \leq d < 2 \). One constructs a mapping \(\varphi: H_m \to m[4]2 \) by using the presentation of \(m[4]2 \) in Lemma 4 (with \(n \) replaced by \(m \)) and setting

\[
\varphi(\gamma^{2a+d}, \delta^{2b-de^c}) = X^{-2b+d+mc/2-c} \gamma^{2a+2b+c}.
\]

By an elementary but lengthy calculation based on the group law in Lemma 5 one shows that \(\varphi \) is an epimorphism with kernel \(K_m = \langle (\gamma^m, \delta^m) \rangle \). Therefore, \(m[4]2 \) is isomorphic to \(H_m/K_m \). This description of \(m[4]2 \) for even \(m \) is more explicit than the one given in Crowe [5].
References