MINIMISING QUADRATIC FUNCTIONALS OVER CLOSED CONVEX CONES

M. Seetharama Gowda

Abstract

In this article we show that, under suitable conditions a quadratic functional attains its minimum on a closed convex cone (in a finite dimensional real Hilbert space) whenever it is bounded below on the cone. As an application, we solve Generalised Linear Complementarity Problems over closed convex cones.

1. Introduction

Let H denote a finite-dimensional real Hilbert space. Let T (with adjoint T^{*}) be a linear operator on H, and let K be a closed convex cone in H. Let $q \in H$ and define $f(x)=\langle T x+q, x\rangle$.

If T is coercive on K (that is $\exists \gamma>0$ with $\langle T x, x\rangle \geqslant \gamma\|x\|^{2} \forall x \in K$), then any minimising sequence for the problem, $\min \{f(x): x \in K\}$, is bounded, and hence has a subsequence converging to a limit which minimises $f(x)$ over K.

In this paper, we are interested in a generalisation of the Frank-Wolfe Theorem [1]: If a quadratic function is bounded below on a non-empty polyhedral set then it attains its minimum. Our generalisation of the Frank-Wolfe theorem, to a closed convex cone, is stated in Theorem 1. (See [3, 4] for other generalisations). As an application, we solve a generalised linear complementarity porblem over a cone K.

2. Minimising the functional $f(x)$

In what follows, $q \otimes q$ denotes the operator on H defined by $(q \otimes q)(x)=\langle q, x\rangle q$.
Theorem 1. Suppose that
(i) $x \in K,\langle T x, x\rangle=0$ implies $\left(T+T^{*}\right) x=0$, and
(ii) $\left[\frac{T+T^{*}}{2}+q \otimes q\right](K)$ is closed.

If $f(x)=\langle T x+q, x\rangle$ is bounded below on K then there is an $a_{0} \in K$ such that $f\left(a_{0}\right)=\min _{x \in K} f(x)$.

Proof: Without loss of generality we can assume that $T=T^{*}$. Since the result is trivial if $K=\{0\}$, we assume that $K \neq\{0\}$. Let α be a lower bound for $f(x)$ over

[^0]K. Then, for any $x \in K$ and $\lambda>0,\langle T \lambda x+q, \lambda x\rangle \geqslant \alpha$. Dividing by λ^{2} and letting $\lambda \rightarrow \infty$, we get
\[

$$
\begin{equation*}
\langle T x, x\rangle \geqslant 0 \quad(x \in K) \tag{2.1}
\end{equation*}
$$

\]

Let $M=\operatorname{Ker} T \cap\{q\}^{\perp}=\{x \in H: T x=0 \wedge\langle q, x\rangle=0\}$.
Case 1. : $M \cap K=\{0\}$. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ be a dense subset of K. For $n=1,2, \ldots$, let K_{n} be the closed convex cone generated by $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then, each K_{n} is a polyhedral cone (by definition), $K_{n} \subseteq K_{n+1}$, and given any $k \in K$ there are $y_{n} \in K_{n}$ such that $y_{n} \rightarrow k$ (as $n \rightarrow \infty$). By the Frank-Wolfe theorem (stated in Section 1), applied to T and $K_{n}(n=1,2, \ldots)$ there exists an $a_{n} \in K_{n}$ such that $f(x) \geqslant f\left(a_{n}\right)\left(\forall x \in K_{n}\right), n=1,2, \ldots$. We claim that $\left\{a_{n}\right\}$ is bounded. Suppose not, and without loss of generality, let $\left\|a_{n}\right\| \rightarrow \infty$. Since $a_{1} \in K_{1} \subseteq K_{n}$,

$$
\begin{equation*}
\left\langle T a_{1}+q, a_{1}\right\rangle \geqslant\left\langle T a_{n}+q, a_{n}\right\rangle \geqslant \alpha \quad(n=1,2, \ldots) . \tag{2.2}
\end{equation*}
$$

We can assume that $\frac{a_{n}}{\left\|a_{n}\right\|}$ converges to (say) d. Dividing (2.2) by $\left\|a_{n}\right\|^{2}$ and letting $n \rightarrow \infty$, we get $0 \geqslant\langle T d, d\rangle \geqslant 0$. Therefore $\langle T d, d\rangle=0$. Since $K_{n} \subset K$ and K is a closed cone, $\frac{a_{n}}{\left\|a_{n}\right\|} \in K$ and hence $d \in K$. By condition (i), $T d=0$. Since $\left\langle T a_{n}, a_{n}\right\rangle \geqslant 0(n=1,2, \ldots)($ by 2.1$)$,

$$
\left\langle T a_{1}+q, a_{1}\right\rangle \geqslant\left\langle T a_{n}+q, a_{n}\right\rangle \geqslant\left\langle q, a_{n}\right\rangle \quad(n=1,2, \ldots)
$$

Once again, divide throughout by $\left\|a_{n}\right\|$ and let $n \rightarrow \infty$. Then

$$
\begin{equation*}
0 \geqslant\langle q, d\rangle . \tag{2.3}
\end{equation*}
$$

Since $d \in K,\langle T \lambda d+q, \lambda d\rangle \geqslant \alpha(\lambda \geqslant 0)$. But $T d=0$. Hence $\lambda(q, d\rangle \geqslant \alpha(\lambda \geqslant 0)$. Thus

$$
\begin{equation*}
\langle q, d\rangle \geqslant 0 . \tag{2.4}
\end{equation*}
$$

Since $d \in K$ and $T d=0,(2.3)$ and (2.4) show that $d \in M$. Since $M \cap K=\{0\}, d=0$. This is a contradiction since $\|d\|=1$. Thus, we have proved that $\left\{a_{n}\right\}$ is bounded. Assume, without loss of generality, that $a_{n} \rightarrow a_{0} \in K$. Now for any $x \in K$, there exists $y_{n} \in K_{n}$ such that $y_{n} \rightarrow x$. Since $f\left(y_{n}\right) \geqslant f\left(a_{n}\right)$ for all n, we have $f(x) \geqslant f\left(a_{0}\right)$. Thus a_{0} minimises $f(x)$ over K.

Case 2. : $M \cap K \neq\{0\}$. Let P denote the orthogonal projection from H onto $M^{\perp}=$ $\operatorname{Ran} T+\operatorname{span}\{q\}$. Since (ii) implies that $K+\operatorname{Ker}(T+q \otimes q)=K+\operatorname{Ker} P$ is closed, we see that $P(K)$ is a closed convex cone in M^{\perp}. Let $x \in P(K)$ and $\langle T x, x\rangle=0$.

Upon writing $x=P k$ for some $k \in K$, we see that $\langle T P k, P k\rangle=0$. Since P is a projection and $k-P k \in \operatorname{ker} T$, we have $\langle T k, k\rangle=\langle T P k, P k\rangle=0$. By (i), $T k=0$ which implies that $T(P k)=0$. Hence we have proved that $x \in P(K)$ and $\langle T x, x\rangle=0$ imply $T x=0$. We also have for any $x \in K, f(x)=\langle T x+q, x\rangle=\langle T P x+q, P x\rangle=f(P x)$. Clearly $M \cap P(K)=\{0\}$. Thus by Case 1 , applied to T and $P(K)$, there exists a $b_{0} \in P(K)$ such that $f(z) \geqslant f\left(b_{0}\right)(\forall z \in P(K))$.
Writing $b_{0}=P a_{0}$ for some $a_{0} \in K$, we see that $f(x)=f(P x) \geqslant f\left(b_{0}\right)=$ $f\left(a_{0}\right)(\forall x \in K)$.

The following example shows that if condition (ii) in the above theorem were to be omitted then the result need not be true.

Example. In \mathbf{R}^{3}, let $K=\left\{(x, y, z): x, z \geqslant 0 \wedge 2 x z \geqslant y^{2}\right\} . T$ is defined by $T(x, y, z)=$ $(x, y, 0)$ and $q=(1,1,0)$. Since T is a projection, $\langle T k, k\rangle=0$ implies $T k=0$. For $k=(x, y, z) \in K$, we have $\langle T k+q, k\rangle=x(x+1)+y(y+1)=\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}-\frac{1}{2} \geqslant$ $-\frac{1}{2}$. Hence the quadratic functional $f(k)=\langle T k+q, k\rangle$ is bounded below on K. Now

$$
\begin{aligned}
\inf \{f(x): k \in K\} & =-\frac{1}{2}+\inf \left\{\left\|(x, y)-\left(-\frac{1}{2},-\frac{1}{2}\right)\right\|^{2}:(x, y)=(0,0) \text { or } x>0\right\} \\
& =-\frac{1}{2}+\frac{1}{4} \\
& =-\frac{1}{4}
\end{aligned}
$$

but this inf is never attained, since the distance between $\left(-\frac{1}{2},-\frac{1}{2}\right)$ and the open right half plane $\cup\{(0,0)\}$ is never attained. We finally observe that $(T+q \otimes q) K^{\prime \prime}$ is not closed. (For example, $(1,2,0)$ is a limit point of $(T+q \otimes q) K$ that is not in $(T+q \otimes q) K$.

Remark. Here is a minimisation result that is valid in a reflexive Banach space. Let B be a reflexive Banach space (with dual B^{*}). Let $T: B \rightarrow B^{*}$ be linear and continuous, let K be a closed convex cone in B, and $q \in B^{*}$. Suppose that
(i) K is separable and $0 \notin$ weak-closure $\{x \in K:\|x\|=1\}$,
(ii) $x \mapsto\langle T x, x\rangle$ is weak-lsc on K, and
(iii) $\{x \in K:\langle T x, x\rangle=0,\langle q, x\rangle=0\}=\{0\}$.

If $f(x)=\langle T x+q, x\rangle$ is bounded below on K then f attains its minimum on K. We sketch a proof:
(a) If B is finite dimensional and K is polyhedral, we can identify B (and B^{*}) with (some) $\mathbf{R}^{\boldsymbol{n}}$ and use the Frank-Wolfe Theorem.
(b) If K is polyhedral in B then $X=K-K$ is a finite dimensional subspace of B. Let J denote the inclusion map from X into B. Then $J^{*} T$ maps
X into X^{*}, and $f(x)=\langle T x+q, x\rangle=\left\langle J^{*} T x+J^{*} q, x\right\rangle(\forall x \in K)$. We can now use (a).
(c) If K is a (general) closed convex cone in B then the result is obtained by appropriately modifying the proof of Theorem 1 (and using the fact that a bounded sequence in B has a weakly convergent subsequence).

3. An application to generalised linear complementarity problems

Given T, K, q, we define a Generalised Linear Complementarity Problem as follows:

$$
\begin{aligned}
G L C P(T, K, q): & \text { Find } x_{0} \in K \text { such that }\left\langle T x_{0}+q, k\right\rangle \geqslant 0(\forall k \in K) \\
& \text { and }\left\langle T x_{0}+q, x_{0}\right\rangle=0 .
\end{aligned}
$$

If there is an $x \in K$ such that $\langle T x+q, k\rangle \geqslant 0 \quad(\forall k \in K)$ then we say that $G L C P(T, K, q)$ is feasible. If
(i) $\langle T k, k\rangle \geqslant 0(\forall k \in K)$, and
(ii) $k \in K,\langle T k, k\rangle=0$ implies $\left(T+T^{*}\right) k=0$, then we say that T is copositive plus on K.

Theorem 2. Suppose that

(i) $T=T^{*}$,
(ii) T is copositive plus on K, and
(iii) $(T+q \otimes q) K$ is closed.

Then the feasibility of $\operatorname{GLCP}(T, K, q)$ implies its solvability.
Lemma. Suppose that T is self-adjoint and copositive plus on $C l\left[K+\operatorname{Ker} T \cap\{q\}^{\perp}\right]$. If there is an $a_{0} \in K$ such that $\left\langle T a_{0}+q, k\right\rangle \geqslant 0(\forall k \in K)$, then there is an $\alpha \in \mathbf{R}$ such that $\langle T k+q, k\rangle \geqslant \alpha(\forall k \in K)$.

Proof of the Lemma: Suppose that there exists an $x_{n} \in K$ such that $\left\langle T x_{n}+q, x_{n}\right\rangle \leqslant-n \quad(n=1,2, \ldots)$. Clearly $\left\{x_{n}\right\}$ is unbounded. Without loss of generality, we can assume that $\left\|x_{n}\right\| \rightarrow \infty$ and $d:=\lim \frac{x_{n}}{\left\|x_{n}\right\|}$ exists in K. We have

$$
\begin{aligned}
& \left\langle T x_{n}+q, x_{n}\right\rangle \leqslant 0(n=1,2, \ldots) \quad \text { and } \\
& \left.\left\langle q, x_{n}\right\rangle \leqslant-\left\langle T x_{n}, x_{n}\right\rangle \leqslant 0 \quad(n=1,2, \ldots) \quad \text { (since } T \text { is copositive plus on } K\right) .
\end{aligned}
$$

We see immediately that $\langle T d, d\rangle \leqslant 0$ and $\langle q, d\rangle \leqslant 0$. Since T is self-adjoint and copositive plus on $K,\langle T d, d\rangle \leqslant 0$ implies $T d=0$. Further, since $\left\langle T a_{0}+q, k\right\rangle \geqslant$ $0(\forall k \in K)$ we have

$$
\langle q, d\rangle=\left\langle T a_{0}+q, d\right\rangle \geqslant 0
$$

Thus $\langle q, d\rangle=0$. Hence $d \in M:=\operatorname{Ker} T \cap\{q\}^{\perp}$. If $M=\{0\}$, we have a contradiction since $\|d\|=1$. So assume that $M \neq\{0\}$, and let P be the orthogonal projection from H onto $M^{\perp}(=\operatorname{Ran} T+\operatorname{span}\{q\})$. We observe that
(i) T is copositive plus on $P(K)$,
(ii) $\left\langle T\left(P a_{0}\right)+q, P k\right\rangle=\left\langle T a_{0}+q, k\right\rangle \geqslant 0(\forall k \in K)$, and
(iii) $\left\langle T\left(P x_{n}\right)+q, P x_{n}\right\rangle=\left\langle T x_{n}+q, x_{n}\right\rangle \leqslant-n(n=1,2, \ldots)$.

We can assume that $\bar{d}=\lim \frac{P x_{n}}{\left\|P x_{n}\right\|}$ exists. Then $\bar{d} \in c l P(K),\langle T \bar{d}, \bar{d}\rangle=0$, and $\langle q, \bar{d}\rangle=0$. Writing $\bar{d}=P x$ for some $x \in H$, we get $\langle T x, x\rangle=\langle T \bar{d}, \bar{d}\rangle=0$ and $\langle q, x\rangle=\langle q, \bar{d}\rangle=0$. Now x belongs to $P^{-1}(c l P(K))=c l[K+\operatorname{Ker} P]$. Since T is copositive plus on $c l[K+\operatorname{Ker} P],\langle T x, x\rangle=0$ gives $T x=0$. Thus $T x=0$ and $\langle q, x\rangle=0$. Hence $x \in M$. Since $M=\operatorname{Ker} P$, we have $\bar{d}=P x=0$ contradicting $\|\bar{d}\|=1$. Hence $\langle T k+q, k\rangle$ is bounded below on K.

Proof of Theorem 2: By the feasibility of $\operatorname{GLCP}(T, K, q)$, there exists an $a_{0} \in K$ such that $\left\langle T a_{0}+q, k\right\rangle \geqslant 0(\forall k \in K)$. Thus $2 a_{0} \in K$ and $\left\langle T\left(2 a_{0}\right)+2 q, k\right\rangle \geqslant$ $0(\forall k \in K)$. By (iii), $K+\operatorname{Ker}(T+q \otimes q)=K+\operatorname{Ker} T \cap\{q\}^{\perp}$ is closed. By (ii), T is copositive plus on $K+\operatorname{Ker} T \cap\{q\}^{\perp}$. By the above Lemma, $f(k)=\langle T k+2 q, k\rangle$ is bounded below on K. Now Theorem 1 shows that there is a $k_{0} \in K$ such that $\langle T k+2 q, k\rangle \geqslant\left\langle T k_{0}+2 q, k_{0}\right\rangle(\forall k \in K)$. Since K is a convex cone, $k_{0}+t\left(k-k_{0}\right) \in K$ whenever $k \in K$ and $t \in(0,1]$. We replace k, in the above inequality, by $k_{0}+$ $t\left(k-k_{0}\right)$. Upon expanding the left hand side, we get, after cancellation of suitable terms,

$$
t\left\langle T k_{0}+2 q, k-k_{0}\right\rangle+t\left\langle T\left(k-k_{0}\right), k_{0}\right\rangle+t^{2}\left\langle T\left(k-k_{0}\right), k-k_{0}\right\rangle \geqslant 0 .
$$

We divide throughout by t and let $t \rightarrow 0$. Since T is self-adjoint; we get $\left\langle 2 T k_{0}+2 q, k-k_{0}\right\rangle \geqslant 0(k \in K)$. Hence $\left\langle T k_{0}+q, k-k_{0}\right\rangle \geqslant 0$. Finally, putting $k=0$ and $k=2 k_{0}$ successively, we get $\left\langle T k_{0}+q, k_{0}\right\rangle=0$. Also, $\left\langle T k_{0}+q, k\right\rangle=\left\langle T k_{0}+q, k-k_{0}\right\rangle \geqslant 0$. Thus k_{0} solves the $\operatorname{GLCP}(T, K, q)$.

Remark. Theorem 2 also appears in [2] where one finds a direct proof (without using the quadradic functional). [2] contains more results about Generalized Linear Complementarity Problems.

References

[1] M. Frank and P. Wolfe, 'An alogorithm for Quadratic Programming', Naval Res. Logist. Quart. 3 (1956), 95-110.
[2] M. Seetharama Gowda and T.I. Seidman, 'Generalized Linear Complementarity Problems', UMBC Research Report September 1985, Math. Programming (to appear).
[3] C.J. McCallum, Jr, 'Existence Theory for the Complex Linear Complementarity Problem', J. Math. Anal. Appl. 40 (1972), 738-762.
[4] A.F. Perold, 'A Generalization of the Frank-Wolfe Theorem', Math. Programming 18 (1980), 215-227.

Department of Mathematics
University of Maryland
Baltimore County
Catonsville, Maryland 21228
Unites States of America

[^0]: Received 8 March 1988
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

