BULL. AUSTRAL. MATH. Soc. Vol. 39 (1989) [15-20]

MINIMISING QUADRATIC FUNCTIONALS OVER CLOSED CONVEX CONES

M. SEETHARAMA GOWDA

In this article we show that, under suitable conditions a quadratic functional attains its minimum on a closed convex cone (in a finite dimensional real Hilbert space) whenever it is bounded below on the cone. As an application, we solve Generalised Linear Complementarity Problems over closed convex cones.

1. INTRODUCTION

Let H denote a finite-dimensional real Hilbert space. Let T (with adjoint T^*) be a linear operator on H, and let K be a closed convex cone in H. Let $q \in H$ and define $f(x) = \langle Tx + q, x \rangle$.

If T is coercive on K (that is $\exists \gamma > 0$ with $\langle Tx, x \rangle \ge \gamma ||x||^2 \forall x \in K$), then any minimising sequence for the problem, $\min\{f(x): x \in K\}$, is bounded, and hence has a subsequence converging to a limit which minimises f(x) over K.

In this paper, we are interested in a generalisation of the Frank-Wolfe Theorem [1]: If a quadratic function is bounded below on a non-empty polyhedral set then it attains its minimum. Our generalisation of the Frank-Wolfe theorem, to a closed convex cone, is stated in Theorem 1. (See [3, 4] for other generalisations). As an application, we solve a generalised linear complementarity porblem over a cone K.

2. MINIMISING THE FUNCTIONAL f(x)

In what follows, $q \otimes q$ denotes the operator on H defined by $(q \otimes q)(x) = \langle q, x \rangle q$.

THEOREM 1. Suppose that

- (i) $x \in K$, $\langle Tx, x \rangle = 0$ implies $(T + T^*)x = 0$, and (ii) $\begin{bmatrix} T+T^* \\ T+T^* \end{bmatrix}$ (iv) $\begin{bmatrix} T+T^* \\ T+T^* \end{bmatrix}$
- (ii) $\left[\frac{T+T^*}{2} + q \otimes q\right](K)$ is closed.

If $f(x) = \langle Tx + q, x \rangle$ is bounded below on K then there is an $a_0 \in K$ such that $f(a_0) = \min_{x \in K} f(x)$.

PROOF: Without loss of generality we can assume that $T = T^*$. Since the result is trivial if $K = \{0\}$, we assume that $K \neq \{0\}$. Let α be a lower bound for f(x) over

Received 8 March 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

K. Then, for any $x \in K$ and $\lambda > 0$, $\langle T\lambda x + q, \lambda x \rangle \ge \alpha$. Dividing by λ^2 and letting $\lambda \to \infty$, we get

$$(2.1) (Tx, x) \ge 0 (x \in K).$$

Let $M = \operatorname{Ker} T \cap \{q\}^{\perp} = \{x \in H : Tx = 0 \land \langle q, x \rangle = 0\}.$

Case 1. : $M \cap K = \{0\}$. Let $\{x_1, x_2, \ldots, x_n, \ldots\}$ be a dense subset of K. For $n = 1, 2, \ldots$, let K_n be the closed convex cone generated by $\{x_1, x_2, \ldots, x_n\}$. Then, each K_n is a polyhedral cone (by definition), $K_n \subseteq K_{n+1}$, and given any $k \in K$ there are $y_n \in K_n$ such that $y_n \to k$ (as $n \to \infty$). By the Frank-Wolfe theorem (stated in Section 1), applied to T and $K_n(n = 1, 2, \ldots)$ there exists an $a_n \in K_n$ such that $f(x) \ge f(a_n)$ ($\forall x \in K_n$), $n = 1, 2, \ldots$ We claim that $\{a_n\}$ is bounded. Suppose not, and without loss of generality, let $||a_n|| \to \infty$. Since $a_1 \in K_1 \subseteq K_n$,

(2.2)
$$\langle Ta_1 + q, a_1 \rangle \ge \langle Ta_n + q, a_n \rangle \ge \alpha \quad (n = 1, 2, \ldots).$$

We can assume that $\frac{a_n}{\|a_n\|}$ converges to (say) d. Dividing (2.2) by $\|a_n\|^2$ and letting $n \to \infty$, we get $0 \ge \langle Td, d \rangle \ge 0$. Therefore $\langle Td, d \rangle = 0$. Since $K_n \subset K$ and K is a closed cone, $\frac{a_n}{\|a_n\|} \in K$ and hence $d \in K$. By condition (i), Td = 0. Since $\langle Ta_n, a_n \rangle \ge 0$ (n = 1, 2, ...) (by 2.1),

$$\langle Ta_1 + q, a_1 \rangle \ge \langle Ta_n + q, a_n \rangle \ge \langle q, a_n \rangle \quad (n = 1, 2, \ldots).$$

Once again, divide throughout by $||a_n||$ and let $n \to \infty$. Then

$$(2.3) 0 \geqslant \langle q, d \rangle.$$

Since $d \in K$, $\langle T\lambda d + q, \lambda d \rangle \ge \alpha$ $(\lambda \ge 0)$. But Td = 0. Hence $\lambda \langle q, d \rangle \ge \alpha$ $(\lambda \ge 0)$. Thus

$$(2.4) \qquad \qquad \langle q,d\rangle \geqslant 0$$

Since $d \in K$ and Td = 0, (2.3) and (2.4) show that $d \in M$. Since $M \cap K = \{0\}$, d = 0. This is a contradiction since ||d|| = 1. Thus, we have proved that $\{a_n\}$ is bounded. Assume, without loss of generality, that $a_n \to a_0 \in K$. Now for any $x \in K$, there exists $y_n \in K_n$ such that $y_n \to x$. Since $f(y_n) \ge f(a_n)$ for all n, we have $f(x) \ge f(a_0)$. Thus a_0 minimises f(x) over K.

Case 2. : $M \cap K \neq \{0\}$. Let P denote the orthogonal projection from H onto $M^{\perp} = \text{Ran } T + \text{span}\{q\}$. Since (ii) implies that $K + \text{Ker}(T + q \otimes q) = K + \text{Ker } P$ is closed, we see that P(K) is a closed convex cone in M^{\perp} . Let $x \in P(K)$ and $\langle Tx, x \rangle = 0$.

Upon writing x = Pk for some $k \in K$, we see that $\langle TPk, Pk \rangle = 0$. Since P is a projection and $k - Pk \in \ker T$, we have $\langle Tk, k \rangle = \langle TPk, Pk \rangle = 0$. By (i), Tk = 0 which implies that T(Pk) = 0. Hence we have proved that $x \in P(K)$ and $\langle Tx, x \rangle = 0$ imply Tx = 0. We also have for any $x \in K$, $f(x) = \langle Tx + q, x \rangle = \langle TPx + q, Px \rangle = f(Px)$. Clearly $M \cap P(K) = \{0\}$. Thus by Case 1, applied to T and P(K), there exists a $b_0 \in P(K)$ such that $f(z) \ge f(b_0)$ ($\forall z \in P(K)$). Writing $b_0 = Pa_0$ for some $a_0 \in K$, we see that $f(x) = f(Px) \ge f(b_0) = f(a_0)$ ($\forall x \in K$).

The following example shows that if condition (ii) in the above theorem were to be omitted then the result need not be true.

Example. In \mathbb{R}^3 , let $K = \{(x, y, z) : x, z \ge 0 \land 2xz \ge y^2\}$. T is defined by T(x, y, z) = (x, y, 0) and q = (1, 1, 0). Since T is a projection, $\langle Tk, k \rangle = 0$ implies Tk = 0. For $k = (x, y, z) \in K$, we have $\langle Tk+q, k \rangle = x(x+1)+y(y+1) = (x+\frac{1}{2})^2 + (y+\frac{1}{2})^2 - \frac{1}{2} \ge -\frac{1}{2}$. Hence the quadratic functional $f(k) = \langle Tk+q, k \rangle$ is bounded below on K. Now

$$\inf\{f(x): k \in K\} = -\frac{1}{2} + \inf\{\left\| (x, y) - \left(-\frac{1}{2}, -\frac{1}{2}\right) \right\|^2 : (x, y) = (0, 0) \text{ or } x > 0\},\$$
$$= -\frac{1}{2} + \frac{1}{4}$$
$$= -\frac{1}{4}$$

but this inf is never attained, since the distance between $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ and the open right half plane $\cup\{(0, 0)\}$ is never attained. We finally observe that $(T + q \otimes q)K$ is not closed. (For example, (1, 2, 0) is a limit point of $(T + q \otimes q)K$ that is not in $(T + q \otimes q)K$.)

Remark. Here is a minimisation result that is valid in a reflexive Banach space. Let B be a reflexive Banach space (with dual B^*). Let $T: B \to B^*$ be linear and continuous, let K be a closed convex cone in B, and $q \in B^*$. Suppose that

- (i) K is separable and $0 \notin$ weak-closure $\{x \in K : ||x|| = 1\}$,
- (ii) $x \mapsto \langle Tx, x \rangle$ is weak-lsc on K, and
- (iii) $\{x \in K : \langle Tx, x \rangle = 0, \langle q, x \rangle = 0\} = \{0\}.$

If $f(x) = \langle Tx + q, x \rangle$ is bounded below on K then f attains its minimum on K. We sketch a proof:

- (a) If B is finite dimensional and K is polyhedral, we can identify B (and B^*) with (some) \mathbb{R}^n and use the Frank-Wolfe Theorem.
- (b) If K is polyhedral in B then X = K K is a finite dimensional subspace of B. Let J denote the inclusion map from X into B. Then J^*T maps

M. S. Gowda

X into X^* , and $f(x) = \langle Tx + q, x \rangle = \langle J^*Tx + J^*q, x \rangle$ ($\forall x \in K$). We can now use (a).

(c) If K is a (general) closed convex cone in B then the result is obtained by appropriately modifying the proof of Theorem 1 (and using the fact that a bounded sequence in B has a weakly convergent subsequence).

3. AN APPLICATION TO GENERALISED LINEAR COMPLEMENTARITY PROBLEMS

Given T, K, q, we define a Generalised Linear Complementarity Problem as follows:

GLCP(T, K, q): Find $x_0 \in K$ such that $\langle Tx_0 + q, k \rangle \ge 0$ $(\forall k \in K)$, and $\langle Tx_0 + q, x_0 \rangle = 0$.

If there is an $x \in K$ such that $\langle Tx + q, k \rangle \ge 0$ $(\forall k \in K)$ then we say that GLCP(T, K, q) is feasible. If

- (i) $\langle Tk, k \rangle \ge 0$ ($\forall k \in K$), and
- (ii) $k \in K$, $\langle Tk, k \rangle = 0$ implies $(T + T^*)k = 0$, then we say that T is copositive plus on K.

THEOREM 2. Suppose that

- (i) $T = T^*$,
- (ii) T is copositive plus on K, and
- (iii) $(T + q \otimes q)K$ is closed.

Then the feasibility of GLCP(T, K, q) implies its solvability.

LEMMA. Suppose that T is self-adjoint and copositive plus on $Cl[K + \text{Ker } T \cap \{q\}^{\perp}]$. If there is an $a_0 \in K$ such that $\langle Ta_0 + q, k \rangle \ge 0$ $(\forall k \in K)$, then there is an $\alpha \in \mathbb{R}$ such that $\langle Tk + q, k \rangle \ge \alpha$ $(\forall k \in K)$.

PROOF OF THE LEMMA: Suppose that there exists an $x_n \in K$ such that $\langle Tx_n + q, x_n \rangle \leq -n$ (n = 1, 2, ...). Clearly $\{x_n\}$ is unbounded. Without loss of generality, we can assume that $||x_n|| \to \infty$ and $d := \lim \frac{x_n}{||x_n||}$ exists in K. We have

$$\langle Tx_n + q, x_n \rangle \leq 0 \quad (n = 1, 2, ...)$$
 and
 $\langle q, x_n \rangle \leq -\langle Tx_n, x_n \rangle \leq 0 \quad (n = 1, 2, ...)$ (since T is copositive plus on K).

We see immediately that $\langle Td, d \rangle \leq 0$ and $\langle q, d \rangle \leq 0$. Since T is self-adjoint and copositive plus on K, $\langle Td, d \rangle \leq 0$ implies Td = 0. Further, since $\langle Ta_0 + q, k \rangle \geq 0$ ($\forall k \in K$) we have

$$\langle q, d \rangle = \langle Ta_0 + q, d \rangle \ge 0.$$

Thus $\langle q, d \rangle = 0$. Hence $d \in M$: = Ker $T \cap \{q\}^{\perp}$. If $M = \{0\}$, we have a contradiction since ||d|| = 1. So assume that $M \neq \{0\}$, and let P be the orthogonal projection from H onto $M^{\perp}(= \operatorname{Ran} T + \operatorname{span}\{q\})$. We observe that

- (i) T is copositive plus on P(K),
- (ii) $\langle T(Pa_0) + q, Pk \rangle = \langle Ta_0 + q, k \rangle \ge 0 \ (\forall k \in K), \text{ and}$
- (iii) $\langle T(Px_n) + q, Px_n \rangle = \langle Tx_n + q, x_n \rangle \leq -n \ (n = 1, 2, ...).$

We can assume that $\overline{d} = \lim \frac{Px_n}{\|Px_n\|}$ exists. Then $\overline{d} \in clP(K)$, $\langle T\overline{d}, \overline{d} \rangle = 0$, and $\langle q, \overline{d} \rangle = 0$. Writing $\overline{d} = Px$ for some $x \in H$, we get $\langle Tx, x \rangle = \langle T\overline{d}, \overline{d} \rangle = 0$ and $\langle q, x \rangle = \langle q, \overline{d} \rangle = 0$. Now x belongs to $P^{-1}(clP(K)) = cl[K + \text{Ker }P]$. Since T is copositive plus on cl[K + Ker P], $\langle Tx, x \rangle = 0$ gives Tx = 0. Thus Tx = 0 and $\langle q, x \rangle = 0$. Hence $x \in M$. Since M = Ker P, we have $\overline{d} = Px = 0$ contradicting $\|\overline{d}\| = 1$. Hence $\langle Tk + q, k \rangle$ is bounded below on K.

PROOF OF THEOREM 2: By the feasibility of GLCP(T, K, q), there exists an $a_0 \in K$ such that $\langle Ta_0 + q, k \rangle \ge 0$ ($\forall k \in K$). Thus $2a_0 \in K$ and $\langle T(2a_0) + 2q, k \rangle \ge 0$ ($\forall k \in K$). By (iii), $K + \text{Ker}(T + q \otimes q) = K + \text{Ker} T \cap \{q\}^{\perp}$ is closed. By (ii), T is copositive plus on $K + \text{Ker} T \cap \{q\}^{\perp}$. By the above Lemma, $f(k) = \langle Tk + 2q, k \rangle$ is bounded below on K. Now Theorem 1 shows that there is a $k_0 \in K$ such that $\langle Tk + 2q, k \rangle \ge \langle Tk_0 + 2q, k_0 \rangle$ ($\forall k \in K$). Since K is a convex cone, $k_0 + t(k - k_0) \in K$ whenever $k \in K$ and $t \in (0, 1]$. We replace k, in the above inequality, by $k_0 + t(k - k_0)$. Upon expanding the left hand side, we get, after cancellation of suitable terms,

$$t(Tk_{0}+2q, k-k_{0})+t(T(k-k_{0}), k_{0})+t^{2}(T(k-k_{0}), k-k_{0}) \geq 0.$$

We divide throughout by t and let $t \to 0$. Since T is self-adjoint, we get $\langle 2Tk_0+2q, k-k_0 \rangle \ge 0$ $(k \in K)$. Hence $\langle Tk_0+q, k-k_0 \rangle \ge 0$. Finally, putting k = 0 and $k = 2k_0$ successively, we get $\langle Tk_0+q, k_0 \rangle = 0$. Also, $\langle Tk_0+q, k \rangle = \langle Tk_0+q, k-k_0 \rangle \ge 0$. Thus k_0 solves the GLCP(T, K, q).

Remark. Theorem 2 also appears in [2] where one finds a direct proof (without using the quadradic functional). [2] contains more results about Generalized Linear Complementarity Problems.

References

- M. Frank and P. Wolfe, 'An alogorithm for Quadratic Programming', Naval Res. Logist. Quart. 3 (1956), 95-110.
- [2] M. Seetharama Gowda and T.I. Seidman, 'Generalized Linear Complementarity Problems', UMBC Research Report September 1985, Math. Programming (to appear).
- C.J. McCallum, Jr, 'Existence Theory for the Complex Linear Complementarity Problem', J. Math. Anal. Appl. 40 (1972), 738-762.

[6]

[4] A.F. Perold, 'A Generalization of the Frank-Wolfe Theorem', Math. Programming 18 (1980), 215-227.

Department of Mathematics University of Maryland Baltimore County Catonsville, Maryland 21228 Unites States of America

20