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Abstract

A distribution on a Heisenberg type group of homogeneous dimension Q is a biradial kernel of type a if
it coincides with a biradial function, homogeneous of degree a — Q, and smooth away from the identity.
We prove that a distribution is a biradial kernel of type a, 0 < a < Q, if and only if its Gelfand transform,
defined on the Heisenberg fan, extends to a smooth even function on the upper half plane, homogeneous
of degree —all. A similar result holds for radial kernels on the Heisenberg group.
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1. Introduction

Homogeneous distributions play a fundamental role in harmonic analysis. It is well-
known that a distribution on K" is homogeneous of degree or and smooth away
from the origin if and only if its Fourier transform is a homogeneous distribution of
degree — n — a, and is smooth away from the origin. The aim of this paper is to obtain
a similar characterisation in the Heisenberg group setting.

Let N ~ K2m x R* be a Heisenberg type group of homogeneous dimension Q =
2m + 2k. We say that a function f on N is biradial if there exists a function / 0

on K2 such that f(X, Z) = fo(\X\, \Z\) for every (X, Z) in N. A distribution on N
is a biradial kernel of type a if it coincides with a biradial homogeneous function of
degree a — Q, and smooth away from the identity of N.

In this paper we characterise the image under the Gelfand transform of biradial
kernels of type a, 0 < a < Q. Such kernels are involved in many analytic problems.
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298 F. Astengo and B. Di Blasio [2]

Indeed, if 0 < a < Q and l/p — \/q = a/Q, then they are Lp-Lq convolutors.
Moreover, they appear in the functional calculus of many operators, such as the
Heisenberg sublaplacian [11] or the Hodge Laplacian [10]. Other results concerning
homogeneous distributions on the Heisenberg group can be found in [3,4,6-8,12].

To describe the results, we introduce some notation. Let W = K \ {0}, R+ =
(0, +oo) , VL2

+ = {(k, > 0}, and N = {0, 1,2,...}.
The convolution algebra of integrable biradial functions on N is a commutative

Banach algebra and its Gelfand spectrum can be be parametrised by a pair (k, d),
where k is in K+ and d is in N, and by a nonnegative real number £. Since the
subset {£ > 0} of the Gelfand spectrum has zero Plancherel measure, it will be usually
disregarded.

It is easy to see that if AT is a biradial kernel of type a, then its Gelfand transform K
satisfies

K(k, d) = k-a/2K(l,d) for all (X, d) e R+ x N.

Geller [8, Theorem 2.7, Theorem 3.7] characterised the image under the Gelfand
transform of biradial kernels of type a on the Heisenberg group in terms of the
behaviour at infinity of the sequences d i-» A?(l, d). He actually proved this kind of
result for general (not necessarily biradial) kernels on the Heisenberg group. In this
paper we continue this investigation.

If AT is a biradial kernel of type a, we can extend K(k,d) to negative values of k
by

K(k, d) = K(-k, d) for all (k, d) e IT x N,

and we can consider A" as a function defined on the so-called Heisenberg fan, that is,
the subset of K2 given by

(J {(k, = \k\(2d + m), k * 0} ) U {(0, f) e R2 : £ > 0}.
V e N
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We prove that a function i/r : K* x N —> C is the Gelfand transform of a biradial
kernel of type a if and only if it is the restriction to the Heisenberg fan of a smooth
function on R2

+, homogeneous of degree —a/2, and even in the first variable.
When a = 0, we construct the extension F as follows. Inspired by the work

of Muller, Ricci, and Stein [11], we exploit the Poisson summation formula: if (p
is a Schwartz function on the real line whose Fourier transform &ip has compact
support in the interval [—3/4, 3/4] and such that TJ;eZ &<p(x + j) — 1 for any real x,
then <p(0) — 1 and <p(j) = 0 for ; i n Z \ {0}. If K is a biradial kernel of type 0,
we extend in a suitable way the sequences ( J f (± l , d))d to Z, and we define the
function F on the upper half plane by the formula

I T" .,, K(X, j)<p (\ (£-.-m)- j) for all (X, £) € R* x R+;

£ for all (A,£) € {0} x R+.

It easy to see that F is smooth on K* x K+ and that F(X, \X\(2d + m)) = K(X, d),
when A is in K* and d is in N. The most elaborate part is the proof of the smoothness of
the function F on the £-axis; for this it is necessary to know the asymptotic expansion
at infinity of the sequences (K(±l, d))deH (see [8, Theorem 2.7, Theorem 3.7] for the
case where N is the Heisenberg group). The case of biradial kernels of type a, where
0 < a < Q, may be deduced from the case where a = 0.

We also consider the case of radial (not necessarily biradial) kernels on the Heisen-
berg group. We first prove our main result in this case (Theorem 6.1), and with
minor modifications deduce the result for biradial kernels on Heisenberg type groups
(Theorem 3.2).

Our paper is organised as follows. Section 2 contains preliminary material on
Heisenberg type groups, in particular on the Gelfand transform of biradial functions.
In Section 3 we describe our result for biradial kernels on Heisenberg type groups.
Section 4 is self-contained and deals with the problem of extending a sequence in
a smooth way and preserving its asymptotic expansion at infinity. The proof of our
results is contained in Sections 5 and 6.

It is a pleasure to thank Giancarlo Mauceri and Fulvio Ricci for many helpful
conversations on the subject of this paper.

2. Heisenberg type groups and the Gelfand transform

2.1. Heisenberg type groups Let n be a two-step real nilpotent Lie algebra endowed
with an inner product (, )„. Write n as an orthogonal sum n = 0 © 3, where 3 is the
center of n.

For each Z in 3, define the map Jz '• t) -> D by the formula

(JZX, Y)n = ([X, Y], Z)n for all X, Y € 0.
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According to Kaplan [9], the Lie algebra n is said to be H-type if, for every Z in 3,

4 = -izi2/o,

where /0 is the identity on u. A connected and simply connected Lie group N, whose
Lie algebra is an H-type algebra, is said to be a Heisenberg type group, or H-type
group for short.

Since n is a nilpotent Lie algebra, the exponential map is surjective. We can then
parametrise the elements of N = expn by (X, Z), for X in D and Z in 3. By the
Baker-Campbell-Hausdorff formula it follows that the product law in N is

(X, Z)(X', Z') = (X + X',Z + Z' + [X, X']/2)

for all X, X' € D and Z, Z' € 3. We denote by dX and dZ the Lebesgue measures
on 0 and on 3 respectively; it is easy to check that dn = dXdZ is a Haar measure
on N. For every unit vector Z in 3, the map Jz defines a complex structure on 0;
therefore t> has even dimension, say 2m. We denote the dimension of the center 3
by k, and by Q = 2m + 2k the homogeneous dimension of N, with respect to the
anisotropic dilations

Dr(X, Z) = (rX, r2Z) for all (X, Z) e N and r > 0.

We fix orthonormal bases {Z?,}2™, of D and {£/,}*=1 of 3. Given V in n, we also
write V for the associated left-invariant vector field, that is,

d
Vf(n)= - / ( / z exp ( rV) )

dt
for all n eN and f eC°°(N).

t=0

Define the sublaplacians Jz?i and JC2 on N by

2m

^ a n d ^ = -

2.2. The Gelfand transform for biradial functions We say that a function f onN
is biradial if there exists a function f0 on IR2 such that f(X, Z) — fo(\X\, \Z\) for
every (X, Z) in N. We recall some facts from [1,2] regarding the Gelfand spectrum ^
of the commutative algebra of biradial integrable functions. It is known that <£ is the
set of bounded spherical functions on N. These are given by the rules

<t>s(X,Z)= f e

f
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for every (X, Z)inN,X > 0,d € N, and £ > 0. As usual, Ld denotes the dlh Laguerre
polynomial of order fl, that is,

Moreover, /i.D and /xi are the surface measures of the unit spheres So and Sh in 0
and 3 respectively, normalized to have mass 1. Therefore <$ can be parametrized by
(IR+ x N) U [0, +oo). Denote by -£?;(0) the eigenvalue of the spherical function </>
with respect to if,, ; = 1, 2. We recall that ^y{4>k,d) = X(2d + m), &2{<t>Kd) = X2,
J = | , and J^W*?) = 0. Define a metric on «? by

Then this metric induces on the Gelfand spectrum <£ the topology of uniform conver-
gence on compact sets.

We define the Gelfand transform / of a biradial integrable function / on N by the
rule

= / f(n)(p(n)dn for all

For the sake of brevity, we shall often identify a spherical function (j>k,d with the
pair (X, d) in K+ x N and fa with the number £ in [0, +oo). According to this iden-
tification we shall write f(X, d) and / ( £ ) instead of f(4>x,d) and f(fa) respectively.

Let £>+ and ^_ be the operators defined by

, d+l)- t(k, d)),

$>_TJ,(X, d) = d(f{X, d) - f{X, d - 1))

for every (X, d) in K+ x N and ^ : R+ x N -> C. Moreover, let M+ and M_ be the
operators defined by M+ — dk — X~l@+, and M_ = dk — h~l@—

3. Homogeneous distributions on Heisenberg type groups

Let a be in [0, Q). We say that a distribution K on N is a biradial kernel of type a
if (K, foDr)= r-"(K, f) for all / e Cc°°(A0, and the kernel K coincides with a
smooth biradial function fK on N \ {(0, 0)}. Then the function fK is homogeneous
of degree a — Q and, when a = 0, it satisfies (see [5])

I fKda = 0,
JS(0,\)
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where 5(0, 1) = {(X, Z) € N : |X|4/16 + \Z\2 = 1} and da is the surface measure
induced by the Euclidean measure. Moreover, there exists a constant cK such that
K = p.v.C/jc) + cKS, where p.v. denotes the principal value and S the Dirac mass at
the identity.

It is easy to check that a biradial kernel of type a is a tempered distribution.
Moreover, if AT is a biradial kernel of type a, then its Gelfand transform satisfies
K(k, d) = k~a'2K(l, d) for all d € N, and almost every k e K+.

THEOREM 3.1. Suppose that a is in [0, Q) and f : R+ x N ->> C. The following
conditions are equivalent:

(a) the junction x/r is the Gelfand transform of a biradial kernel of type a on N;
(b) for almost every (k, d) in R+ x H, \(r(k,d) = k-a/2x/r(l, d), and there exists a

sequence (c2;) in C such that for every M > 0

M

f{\, d) = £>2,(2rf + m)-a/2-2J + o(d-2M-a/2), d -> +oo.
j=o

This theorem has been proved by Geller [8, Theorem 2.7, Theorem 3.5] in the
case where N is the Heisenberg group and the homogeneous distributions are not
necessarily biradial. The proof of Theorem 3.1 is given in Section 5: (a) implies (b) is
proved in Lemma 5.1, Proposition 5.2, and Corollary 5.3, while (b) implies (a) follows
by Theorem 3.2.

We say that a function F : R2
+ -*• C is even if F(-k, £) = F(k, £), for every k

in K and f > 0. We propose the following characterisation.

THEOREM 3.2. Suppose that a is in [0, Q) and f : R+ x N -> C. The following
conditions are equivalent:

(a) the function xj/ is the Gelfand transform of a biradial kernel of type a on N;
(c) there exists an even smooth function F on R2

+, homogeneous of degree —all
such that F(k, k(2d + m)) = }Jr(k, d)for almost every (k, d) in K+ x N.

The proof of this theorem is postponed to Section 6. There we actually consider the
case where N is the Heisenberg group and the homogeneous distributions are radial.
Our proof can be adapted to biradial kernels on Heisenberg type groups without
substantial changes. The critical point is the smoothness of the extension F on the
positive £-axis; for the proof of this fact we shall use the results contained in Section 4.

4. Some asymptotic expansions

In this section we explain how to interpolate a sequence in a smooth way, preserving
its asymptotic expansion at infinity. We believe that it should be possible to find in the
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literature some of the arguments treated in this section. However we could not find a
reference and, in order to make this paper self-contained, we include here most of the
proofs of the results needed in the sequel.

4.1. Discrete asymptotic expansions Let a = (a(j))jeI be a two-sided sequence of
complex numbers. Denote by A the finite difference operator acting on the sequence a
by the rule Aa(j) = a(j + l)-a(j) for all j e Z, and by xh the operator of translation
by the integer h, that is, zha(j) = a(j + h) for all j e Z. For any a, b sequences, the
following Leibniz rule holds

(1) A(afe)O) = rMj)^Hj) + Aa(jMj) for all j e Z.

For every fixed h in Z \ {0}, let bh be the sequence defined by

hU) = \ - - forall ; e Z \ { 0 } .

LEMMA 4.1. Suppose that h is in Z \ {0}. Then for every n = 1, 2 , . . .

n - l

YW . " ^ for all j e 1 \ {0, - 1 , . . . , - n } .

Moreover, for every sequence a = (a(j))jeI,

A ( f l V* ) 0) = f l V*O} [J2 Ar,a J 0) for all j e Z.
\p=0 / p=\ \q=0 I

PROOF. The first identity is true when n = 1. Let n > 2 and suppose that the first
identity holds true when n = k — 1. If _/ is in Z \ {0, — 1 , . . . , — k], then, when n = k,

k-\ k-2

d=0

]{j +k-\)
k

The second property is true when n = 1, because

Aa(j + 1)].
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Let n > 2, and suppose it holds true when n = 1 , . . . , it — 1. Then by the discrete
Leibniz rule, when n = k,

A ( f l xpa J 0) = A ( \ \ xpa • xka\ (j)
\P=O I \p=o /

= r, ( f ] xpa\ 0')Artfl0") + A (fj W (j)(rka)(j)
\P=O / \p=o /

= (f\*pA U)^rka(j) + Y\rPa(j) \Y Ar,a] (j)(rkaKj)
\p=l I p=\ \q=0 J

\p=l I \q=0 I

as required. •

For every n in N, let Tn denote the operator defined by the recurrence relation:

Toa(j) = a(j) for all j e I,

Tna(j) = J i (~J + 'w )Ar,-ia0') n > 1 and for all j € Z.

THEOREM 4.2. Suppose that a = ( a ( j ) ) ; € / w a sequence of complex numbers. If
the limits lirriy^oo Tna(j) = (— l)"yn, n € N, exist ancf are finite, then, for every n
in N,

a{j) = yo + - + ••• + - „ + o { \ j \ - " ) \j\ - • + 0 0 .

PROOF. The case where n = 0 is trivial, therefore we may suppose that n > 1.
By the discrete Leibniz rule and evaluating the sum of a telescopic series, we obtain
when h is a fixed nonnegative integer

a(h) = yo-Y^ AaO") = Yo~J2 Abh(j)Tia{j)
j=h j=h

+00 +00

= yo - J^ A (&*7\fl) (» + J2b"U
j=A j=h

+00
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When n > 1, define the sequence rn by

305

for all h > 0.
j=h

Then rn(h) — o(h ") when ft -> +oo, because

+00 .

* E î
+00

= E ̂.
;=* J=«

»Uju + »
1 1

= c—
We prove by induction that

(2) ^

We have just proved that this formula holds when n = 1. Suppose it holds when
n = k — 1. Remember that by Lemma 4.1 we have

-i-i

Tka(j)= [E
so that

= (-1)* E 6 ^ - 7 + 1)fe"^' + 2 ) • • "**0" + « - l)Art_iaO)

+00 k-\ k-l

j=h d=\

1-1

_d=0

+ o o / * l \

= (-1)* Y, A I F [ Xdbh ) 0">r*fl0")
+00 /t-1

A 0") - (-1)*
+00 t - 1

+0O t

= S + (-

that is, equation (2) holds when n = k, as required. The case h -> —oo can be treated
in a similar way. •

https://doi.org/10.1017/S1446788700014336 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014336


306 F. Astengo and B. Di Blasio [10]

4.2. From discrete to continuous asymptotic expansions In this subsection we
make repeated use of the Poisson summation formula

(3) J2 / ( ' + j)e-2nm+i) = Yl &f® + J^2^' for dl '• * e K'
jel jel

where / is an integrable function on R with Fourier transform

&f{g) = I f{t)e-2ni'Sdt for all £ e 01.
J*

Fix a Schwartz function cp whose Fourier transform has compact support in
[-3/4, 3/4], and such that £ \ r f &<p(t + j) = 1 for all r 6 R. By applying the
Poisson summation formula to the function ^<p we obtain

(4) J > + y ) - l (forall|e l i) . j ; ^ m _

Suppose that (a(j))jez is a bounded sequence of complex numbers, and let h = 0, 1.
Inspired by [11], we define the function Ah on OS by the rule

Ah(t) = J^aUMt - (j + h/2)) for all r € 01.
jel

Then, by the above mentioned properties, the function Ah interpolates the sequence a,
that is, Ah(j + h/2) = a(j) for every integer j . Being the convolution of a Schwartz
function cp and a tempered distribution supported on the integers or the half-integers,
the functions Ao and Ax are smooth (and slowly increasing), and for every n in N

A<n)(O = J2a(j)(pM{t - (j + h/2)) for all f e R, h = 0, 1.
jel

Let 0 denote the differential operator defined by

(5) 0/(f) = t2f'(t) for all t € R and / € C°°(R).

THEOREM 4.3. Lef /i i>e m {0, 1}. Suppose that the sequence (a(j))j€l has the
asymptotic expansion at infinity

and define the function Ah on R as above. Then Ah is smooth, the following limits
exist and

(6) l i m (@nAh)(t) = ( - l ) " n \ y n for all n e N .
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Note that (6) is equivalent to the fact that Ah has the asymptotic expansion at infinity

Ah{t) = y0 +
 Y-j + £ + • • • + Yfn + o{\tr), \t\ -+ +oo.

The proof of Theorem 4.3 is based on the following four lemmata.

LEMMA 4.4. Suppose that b — (b(j))jez is a sequence of complex numbers, van-
ishing at infinity and <t> is any Schwartz function on K. Then

lim
ki->+oc

PROOF. Let e > 0. Since b vanishes at infinity, there exists a Je > 0 such that
\b(j)\ < s for any j such that |y| > Je. Since <t> is a Schwartz function, there exists a
constant C > 0 such that \Q>(t)\ < C/ ( l + \t\)3 for every t in K. Hence, for every t
such that |?| > 1/e, we conclude that |<t>(f)l < eC/(\ + \t\)2. Now we divide the
sum into two parts and evaluate each part separately. Let |/| > \/e + Je. Note that,
if 171 < Jc, then \t - j \ > \t\ - \j\ > 1/e. Therefore,

- j)
jeZ

< s

jel

Since the function t e jel 1/(1 + \t — j \ ) 2 has period 1 and is continuous, it

•is uniformly bounded. This proves the lemma.

Here and in the sequel we set fl/ea J; = !•

LEMMA 4.5. Let f be a smooth function on K. For every n = 1, 2 , . . . ,

n

Q"f)(t) = J2enjtn+JfU)(t) far all t

£> f ° r e v e / y ; = 1 , • • • , « •

PROOF. The formula is obviously true when n = 1. Moreover, #„,) = n! and, by
our conventions, 9nn = 1 for every n = 1,2, Suppose that the formula holds
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when n = k — 1. Then for every t in H,

(O*/)(0 = r2(0*-7)'(O
k-\

= ekAtk+lf\t)

So we only need to prove that for j = 2,... ,k—l,9kj = (k—l+j)9k-hj + Ok_lj_i,
which follows easily using the identity (*"*) = (*~J) - (*~2). D

LEMMA 4.6. Suppose that p,r,s are nonnegative integers and h = 0, 1. Then for
every x in R the sum

^(x - (j + h/2))

is equal to (-l)sp\(p
r_)xs+r~p ifs<p<s + r and0 otherwise.

PROOF. These identities can easily be derived from the Poisson summation for-
mula (3), where t = 0 and £ = h/2, applied to the function / , where

ah) \e'1''iXU ( £ ) (M"(^""V)(«))] , « in R. •
Finally, we mention the following properties of binomial coefficients.

LEMMA 4.7. For every n = 1, 2 , . . . , every p G N and every s = 0 , . . . , n — 1,

(7)
9=0

(8)
q=0

PROOF. This is routine. •

We can now prove the main result of this section, that is, Theorem 4.3.
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PROOF. Consider first the case where n = 0. By equation (4) we can write

Ah{t) = y0

aU) ~ Yo)<p{t ~ (j + h/2)) =

since a(j) — y0 — o(l) when j —> oo and by Lemma 4.4. Therefore in the following
we may and shall suppose that yo = 0. Let n > 1. By Lemma 4.5 we need to evaluate
the limit of (@"Ah)(t) as |;| tends to +oo, that is, of the following:

n

p=\ jel

n n+p

p=l q=0

X

jel

Since the sequence a — (a(j))j€z has an asymptotic expansion, (®"Ah) (t) is equal
to

x (t - (j + h/2))n+p-"{j + h/2)"^\t - (j + h/2))
n n+p q

p=l q=0 r=0

By Lemma 4.4, the remainder R2(t) tends to zero as |r| ->• +oo. Moreover by
Lemma 4.6 we can evaluate the series in R\(t). The sum is 0 unless 1 < r < n < q,
and we may write Ri(t) = £"= 1 yrt"~rRlr. Equation (6) follows, if we show that
Rir = (— l)"nl when r = n and R\,r = 0 otherwise.
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Remembering the form of the coefficients 0np in Lemma 4.5, and by Lemma 4.7,
we obtain

n n+p

p=\

where Pr-i(p) is a polynomial in p of degree r — 1 and leading coefficient 1. Since
for any n > 1 and j = 0, . . . , « — 1, we have

{ ( - l y - ' C n - 1)!, if j=n-I,

we conclude that /?i,n = (—l)"n!. Moreover, if r is in { 1 , . . . , « - 1}, then r — 1 <
n - 2 < n - 1, and Rhr = 0. D

5. Proof of Theorem 3.1

In [1] we proved that a function V : t + x N -* C such that \jr(X, d) = X-a/2\jr(\,d),
for almost every (A., d) in R+ x N, is the Gelfand transform of a biradial kernel of
type a on the //-type group Af if and only if for every n, j in N, the following limits

(9) lim da/2+n+J \MlMJ_r/,] (1, d) = ( - l ) J + n lim <f/2+n+> [AT M ^ l (1, <*)

exist and are finite. Note that

l_p=o
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LEMMA 5.1. Let K be a biradial kernel of type 0. Then there exist complex
numbers cp j = 0, 1, 2 , . . . , such that for every M > 0

K{\,d) = ^2cj(2d + m)-J +o(d~M), d -+ +oo.
j=o

PROOF. By Theorem 4.2 all we need to prove is that the limits limd^.+0O TnK{\, d)
exist and are finite. Clearly T0K(l,d) = K(l,d), so the case where n = 0 is
straightforward.

We prove that for any positive integer n

(11) TnK(l,d) = J ] Pj(d)[MJ_K](l,d + n),

where P, is a polynomial of degree at most j . From this the lemma follows.
The case where n = 1 is easy, since

TxK{\,d) =d(d+ l)(K(l,d+l)- K(l,d)) = -dM_K(\,d+ 1).

Let us suppose equation (11) holds when n = k — 1. By the discrete Leibniz rule (1),
when n — /t we obtain that TkK(l,d) equals

7 = 1

Pj(d)AMi_K(l,d + k- 1).

Note that

AM'_K{\, d + k - l ) = -—-S>-Mj_K{\, d + k)
d + k

1

d + k

-MJ_+lK(l,d
d+k ~ v ' ' d+k

Therefore TkK(l,d)is equal to

d 4 ^ — —
- 2 _ ) ( - P ; ( ^ ) M ^ + I A : ( 1 , J + it) + ((d + k)APj(d) - jPj(d)))MJ_K(l,d + k)
K

7 = 1

/ ^ r n \ -

= I 2^ Pj+i(d)MJ_+l + d[(d + k)APj(d) - jPj(d)]M{ I K(l, d + k).
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Let Pj(d) = ajdj + Qj-\(d) for some polynomial Qj-i of degree j — 1. It is easy
to check that APj(d) = jajdj~x + AQj_i(d), therefore the degree of the polynomial
(d + k)APj (d) - j Pj (d) is at most j - I . •

In the following proposition we prove that c2j+i = 0, j = 0, 1, 2 , . . . , where c, are
the coefficients defined in Lemma 5.1.

PROPOSITION 5.2. Suppose that K is a biradial kernel of type 0. Then there exist
complex numbers c2j, j =0,1,2, .... such that for every M > 0

M

, d) = m) -2j o(d~2M), d -> +oo.

PROOF. Using the notation of Lemma 5.1 we shall prove that cy = {—\)'Cj.
By equation (9), where n = 0, and by (10), we obtain

(12) lim dj

d->+oo ]>

= (-l)J lim d1

d-*+oo P=O

(hd).

For every q in N, let gq be the sequence defined by gq(d) = (2d + m) q for all d € N,
and let (a,) be a sequence of complex numbers. We claim that, when 1 < j < M,

(13) f\
LP=O

aqgq) =
\q=l

where r}ft = —ax and, if 1 < j < q, there exist rational numbers np,qj, depending
only on p, q, j , such that

If this holds, we may concludethat \imd_>+ood!2)± K (1, d) = — Ci/2 and, when 7 > 1,

lim d>
d—*-+oo

-P=0

= lim dJ

d-f+oo

j - i

LP=O \q=\

(d)
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\ p=l /

By (12), we obtain c\ = —C\ and

Hpj jcp = j\Cj + y~]iApjj(—l)pcp for all j ;
P=\ P=I

By induction on j it follows easily that c ; = (—l)jCj for every j in N.
We now prove the claim, that is, equation (13). It is easy to check that

oo

®±g«{d) = -ngn(d) + E (i1)"""/
p=n + l

Moreover, when M > n > 1 and d —> +oo, we have

( M \
E a 9 ^ ) id) = -nangn(d)
9=« /

M I 9-1

q=n+\\ p=n

where

We shall prove the claim by induction on j . Suppose that j = 1. By (14), we
obtain

( M \ M

9=1 / 9=1
where rjf, = — ax and, when q > 1,

9-1

Suppose that the thesis holds when 7 = k — 1. Then when j = k, by (14), we obtain

f 1 ( ) = (* - 1 + ^±) ( E <*-i^ M )
.P=0 J \9=1 / \9=*-l

9 = *
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where

P=k-\

p=l

The proof is now complete. •

COROLLARY 5.3. Let a be in [0, Q) and suppose that K is a biradial kernel of type a.
Then there exist complex numbers c2j, j = 0, 1, 2 , . . . , such that for every M > 0

M

K(\,d) = J2c2jQd + my2'-"12 + o(d-2M~a/2), d -> +oc.
j=o

PROOF. Suppose that K is a biradial kernel of type a. Then J£"I2K is a biradial
kernel of type 0 and for almost every {X, d) in U.+ x N

K(X, d) = ^l2K(k, d)[k{2d + m)]""2.

The thesis follows from Proposition 5.2. EH

6. Proof of Theorem 3.2 in the Heisenberg group case

In this section we prove the analogue of Theorem 3.2 in the case where the ho-
mogeneous distributions are radial and k = 1, that is, N is the Heisenberg group of
real dimension 2m + 1; the proof of Theorem 3.2 for biradial kernels on Heisenberg
type groups is analogous (see the remark at the end of this section). We recall that a
function f on N is said to be radial if there exists a function /0 on K x 3 such that
f(X, Z) = fo(\X\, Z) for every (X, Z) in N.

We denote by Mm the Heisenberg group of real dimension 2m + 1. We refer to [2]
for details on spherical functions on the Heisenberg group Hm that are related to the
Gelfand pair (Hm, U(m)). We only mention that in this case they are parametrized
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by a pair (X,d), where A. is in W and d in N, and by a nonnegative real number £.
If we identify the pair (X, d) with the point (A., \X\(2d + m)) in R2 and £ with the
point (0, £) and use the Euclidean topology in E2, then we obtain the compact open
topology on the Gelfand spectrum. What we prove for radial kernels of type a is the
following theorem.

THEOREM 6.1. Suppose that a is in [0, Q) and iff : K' x N -> C. The following
conditions are equivalent:

(a') the function ijr is the Gelfand transform of a radial kernel of type a on Hm;
(c') there exists a smooth function F on K^, homogeneous of degree —a/2 such that
F(X, \X\(2d + m)) = ir(X, d) for almost every (X, d) in K* x N.

We first prove that (a') implies (c') when a — 0, using Geller's asymptotic ex-
pansion [8]: \jr is the Gelfand transform of a radial kernel of type 0 on HP if and
only if

M

^2 ~M), d) = f(X/\X\, d) = ^2(X/\X\)JCj(2d + m)~j + o(d~M), d -> +oo.
j=0

The result for kernels of type 0 will follow from Proposition 6.2. Then we will extend
this result to radial kernels of type a in Corollary 6.3.

The proof of (c') implies (a') is standard and outlined in Proposition 6.4.

PROPOSITION 6.2. Letf : W x N -» C and suppose that f(X, d) = i//(X/\X\, d)
for almost every (X, d) in K* x N. If there exist complex numbers Cj, j = 0, 1, 2, . . . ,
such that

M

f{±\,d) = J2(±iycj(2d + myJ + o(d~M), d -+ +oo,
j=o

then there exists a smooth function F on R2
+, homogeneous of degree 0, such that

F{X, \X\(2d + m)) = i]/{X,d)for almost every (X,d) € K* x N.

PROOF. First we extend the definition of ir(X, j) to negative integers j by letting

\f(-X, -j - m) for all X G R+, j < -m,
is(X, j) = {

[0 for all Xe K \ j e { - 1 , - 2 , . . . . - m + 1}.

We define F : K^ -» C by the rule

fe)) fora11 (*.£)erxR+,F(x ? ) = ( ^
I Co for all (A.,^) e {0} x K+,
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where (p is as in Section 4.2. By the properties (4) of the function <p

F(k, \k\(2d + m)) = ir(k, d), for all d e N, and X e R+.

Moreover, it is easy to see that F is in C°°(R+ x R+) and homogeneous of degree 0.
To apply the results of Section 4, we introduce the following notation. Let h = m
(mod 2) and define the two-sided sequences a* by the rules

and fl-0-) =

for all 7" € 1. The way we have extended the definition of yj/(X, j) to negative
integers j implies that the sequences a* have asymptotic expansions of the form

As in Section 4, let A* denote the function

Af(t) = ^2,a^(j)(p(t - (j + h/2)) for all t e K.

Then for every £ > 0,

Co

if A < 0 .

By Theorem 4.3, the functions A% are C°°(K) and

(15) lim (®"At) (t) = te\)nn\2-ncn for all n e N,
( - • + 0 0 V 7

where, as before, 0 denotes the differential operator defined by

O/(r) = t2f'(t) for all r e 01 and / 6 C°°(K).

I f / i s defined b y / ( 0 = / ( I / O , for every* in K*, then (/)(n)(0 = ( - l )" (©"/ ) ( l /0
for every r in R*.

For the sake of brevity, for every « in N, denote by Sn the operator acting on smooth
functions / on K by S n / ( 0 = tnf{n)(t) for all t € R. From Lemma 4.5, it follows
that for every smooth function / on R and j > 1,

( D ^ ^ / X O for all r 6
s = l
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Therefore, by (15), for every n in N and j > 1,

j

(16) l̂irn^ 3;(0MJ)(O = |t|limo^(-iy+I0;,,r
J(0"+'A2:)(O = 0.

We now prove that F is smooth on the positive £-axis. First of all, using (15)
where n = 0, it is easy to prove that F is continuous. Straightforward computations
show that

/f)(3,A+)(£/2*) i fA>0,

0 if A. = 0,dtF(k,$)=
if A < 0.

This partial derivative is continuous, because if (A.,£) -> (0, £0)
 m ^+» t n e n

|?| = |£/2A.| -> +oo and one can use (16) where n = 0 and j = 1. As for the
derivative in the ^.-direction, one can easily evaluate

vn k\ f(2/?)(©A,)(?/2A) if k > 0,
t (k , t ) = <

l(2/f)(©A-)(^/2A) ifA<0.
Moreover, by (15),

2 • ±\ !

Therefore F has continuous partial derivatives.
When P = (Pi, ..., p2s) is a multi-index in N2i of length r, we denote by d^ the

operator 3f'9^ • • • d^'~'d(!2'. In a similar way, using (15) and (16), one can prove
by induction on r that, if ^2]~}0P2j+i = n and p = r — n, then when £ > 0 the
derivative d^F(k, f) equals

C—2">"

j=0

and 3^F is continuous with 3^F(0, | ) = «!cM(-n) • • • (—n - p + \)/%n+p. •

COROLLARY 6.3. Let a be in [0, Q) and suppose that \fr : K* x N —>• C satisfies
f(k, d) = \k\-"/2\l/(k/\k\, d) for almost every (k, d) in W x N. //^ere exist complex
numbers c,, 7 = 0, 1, 2 , . . . , 5«c/i that

M

i) = y^(±l)JCj(2rf + m)~'~al2 + o(J~M~a/2), d -> +00,
7=0
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then there exists a smooth function F on R2^, homogeneous of degree —a/2, such that
F(k, \k\(2d + m)) = ii(k, d) for almost every (A., d) € W x N.

PROOF. The function fa : K* x N ->• C defined by

iro(k,d) = (\k\(2d + m))a/2xlr(k,d) for all (A,d) € K* x N

satisfies the hypothesis of Proposition 6.2. Therefore, there exists a smooth function H
on R2

+, homogeneous of degree 0 such that H(k, \k\(2d + m)) = y*"o(A, <sQ for almost
every (k, d) in 01* x N. We define F(k, f) = //(A, £ ) r ° / 2 for all (k, §) 6 R*.. The
function F satisfies the required conditions. •

PROPOSITION 6.4. Letabein[O, Q). IfF : R2
+ -> C is a smooth and homogeneous

function of degree —a/2, then there exists a radial kernel K of type a on HP such that
F(k, \k\(2d + m)) = K(k, d) for almost every (k, d) in R* x N.

PROOF. AS in [13, page 242] we fix a function 0 in Cf(IR), with support in [1/2, 4]
and such that Yl+j=-oo $(2J'£) = 1 for all £ > 0. We define the radial functions Kj :
HP -)• C, ; in Z, by the rules

K0(k, d) = F(k, \k\(2d + m))<t>(\k\(2d + m)),

Kj(k,d) = 2ia/2K0(2
jk,d) = <t>(2j\k\(2d + m))F(k, \k\(2d + m))

for all (k, d) e K* x N. As in [1, Lemma 7.1] one can prove that the series Y^=-oo Ki
convergesin^'toabiradialkernel^oftypea. Finally, F(k, \k\(2d+m)) = K(k,d)
for almost every (A., d) € K* x N, as required. •

REMARK. In the case of biradial kernels K on Heisenberg type groups N, the
function \jr = K is initially defined in l + x N. We extend it to obtain an even
function on K' x N. Moreover, remember that in the asymptotic expansion we
have c2j+\ = 0, j = 0, 1, 2 , . . . by Proposition 5.2. The proofs of Proposition 6.2
and Corollary 6.3 then show that F is an even smooth function on R+, as stated in
Theorem 3.2. Analogously, Proposition 6.4 adapts to biradial kernels on Heisenberg
type groups by requiring that the function F is even.
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