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Abstract

A class of convex optimal control problems involving linear hereditary systems with linear
control constraints and nonlinear terminal constraints is considered. A result on the
existence of an optimal control is proved and a necessary condition for optimality is
given. An iterative algorithm is presented for solving the optimal control problem under
consideration. The convergence property of the algorithm is also investigated. To test the
algorithm, an example is solved.

1. Introduction

In [10], a feasible directions algorithm has been devised for solving a class of
nonlinear time-lag optimal control problems with linear control constraints and
nonlinear terminal inequality constraints. This feasible direction algorithm was
first initiated by Polak and Mayne in [7] for an optimal control problem involving
lumped-parameter system, but without time-delayed arguments. The convergence
result of the algorithms reported in [10] and [7] is as follows:

If the sequence of feasible controls generated by the algorithm has an accumu-
lation point in the strong topology of Lx, then it satisfies a necessary condition
for optimality.

Clearly, this convergence result is not satisfactory in the sense that there is no
guarantee of the existence of such an accumulation point.
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94 K. L. Teo, K. H. Wong and Z. S. Wu [2 ]

The main aim of this paper is to obtain a more natural convergence result than
those of [10] and [7]. More precisely, we shall show that the sequence of feasible
controls generated by the feasible directions algorithm has an accumulation point
in the weak* topology of L^. Furthermore, each of these accumulation points is
shown to satisfy a necessary condition for optimality. However, this is possible
only for a special case of [10]. More precisely, our result is only valid for the case
in which the dynamic system is linear.

To demonstrate the efficiency of the algorithm, an example is solved.

2. The problem statement

Consider the following delay-differential equation defined on the fixed time
interval (0, T]:

*(')= EM'M'-*y)+*,(')«('-*,)}, (la)
j-o

where

x s [ * ! , . . . , x n f e R", u = [«! , . . . ,u r ] T e Rr

are, respectively, the state and the control vectors; the superscript T denotes the
transpose; A and 5 are, respectively, n X n and n X r matrix-valued functions
defined on [0, T + hs]. The hj are time delays, ordered so that

0 = h0 < h1 • • • < hs < T; s < 00.

The initial function for the differential equation (la) is

x ( 0 = * ( 0 , te[-h,,0); x(O) = T, (lb)

where <K0 — [<t>i, • • •. 4>n]
r is a given piecewise continuous function from [-hs, 0)

into R", and F is a given vector in R".
Let U be a compact and convex subset of Rr such that for all u e U,

Efu^bi, i = l,...,p, (2)

where Et, i = 1,..., p, are r-vectors and bit i = 1, . . . , p, are real numbers. Let
/?: [-hs, 0) -» Rr be a given piecewise continuous function. Let "2c be the class of
all admissible controls defined by

<2f = {u:u = [uv..., ur]
T is a measurable function defined on [-hs, T]

such that u(t) e U for all t e [0, T] and u(t) = /}(f) for all t e
[-*., 0)}.
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13 ] Optimal control in linear time-lag systems 95

Let ( • , • > and | • | denote, respectively, the usual inner product and norm in a
Euclidean space. For any

n X r matrix A = {^,,,}/=i,...,n>
J-l\..',r

let

IMII=L i\Aj. (3)
, = 1 , = 1

Let L«, (resp. L?) denote the Banach space Lx([-hs, T], Rq) (resp.
Lx([-hs, T], /*')) of all essentially bounded measurable functions (resp. of all
integrable functions) from [-hs,T] into Rq. The norms of L£, and L\ are,
respectively, defined by

||u||oo = esssup | M ( 0 |

and

/ r \u(t)\dt.

For each u e Lr
x, Let x(u) be the corresponding vector-valued function which

is absolutely continuous on (0, T] and satisfies the differential equation (la)
almost everywhere on (0, T] and the initial condition (lb) everywhere on [-AJ(0].
This function x(u) is called the solution of the system (1) corresponding to
M G Lr

x. In view of Appendix (Bl) of [4], pages 104-106, we observe that x(u)
can be expressed in terms of the Oguztoreli kernel matrix of the second kind,
namely:

x(u)(t) = JV(O,/)r + E

if'{N(r,t)BJ(r)u(r-hj)}dr, (4)

where N(r,t) (the Oguztoreli kernel matrix of the second kind), is the continuous
n X n matrix defined on [0, T] X [0, T] which satisfies the system

^ r J t - h J ) , te[0,T], T 6 [ 0 , r ] , (5a)
y-o

N(T,T) = I (identity matrix), (5b)
JV(T, / ) = 0 for all T > t. (5c)

The terminal inequality constraints may now be stated as follows:

Jm(u)^g'"(x(u)(T))^0, m = l , . . . , / , (6)

where gm :R" -* R, m = 1, . . . , / , are real-valued functions defined on R".
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Clearly, not all controls from °U will satisfy the constraints (6). Let & denote
the class of all those controls from <% such that the constraints (6) are satisfied.
Elements from & are called feasible controls and & is called the class of feasible
controls. In this paper, we assume that & is not empty.

Our optimal control problem, denoted by P, may now be formally stated as
follows:

Subject to the system (1), find a feasible control u e & such that the cost
functional

/•(«) = g°(x(u)(T)) + jT {/(/,*(«)(«)) + uT(t)M(t)u(t)) dt (7)

is minimized over &.
We assume that the following conditions are satisfied.
(Al) Aj, j = 0, . . . , s, are real continuous n X n matrices defined on [0, T + hs\,

Bj, j = 0 , . . . , s, are real continuous n X r matrices defined on [0, T + hs].
(A2) M is a r X r symmetric, positive semidefinite continuous matrix defined

on [0, 7-].
(A3) x -* gm(x), m = 0, . . . , / , ( / , x) -* f(t, x) are continuously differentiate

on R" and [0, T] X R", respectively.

3. Preparatory results

For each u e Lr
M, let the functions Am(w): [-hs, T+ hs]-> R", m = 0,...,l,

be the solution of the adjoint system

K(t)=-iAj(t + hj)\m(t + hj), m = l , . . . , / , r e [ 0 , r ) , (8a)
y = 0

MO = - t Aj(t + hj)\0{t + hj) - vj(t, x(u)(t)), t e [0, r), (8b)

7-0

with the conditions

K(T) = Vxg
m(x(u)(T)), m = 0 , . . . , / , (8c)

U 0 = 0- m = 0 UeK,0), (8d)

and

\m(t) = 0, m = 0,...,l,te[T,T + h,). (8e)

FoUowing a similar approach as that used in the proof of Theorem 3.1 of [12],
it can be shown that the Frechet derivatives of the functionals J°, Jl,...,J' at
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I s 1 Optimal control in linear time-lag systems 97

u ° e Lr
K are , respectively,

r ) ( 0 * , (9a)
-*, \j-oj

t= -IT f t \T
m(u°)(t + h])BJ{t + A,))W(/)<ft, m = l , . . . , / , (9b)

-h, \j = Q )

for all w G Ux.
REMARK 3.1. In view of the problem P, we see that the only non-standard

feature is the inclusion of the terminal inequality constraints on the state
variables. In this situation, one may include the constraints in the Pontryagin
theory, by modifying boundary conditions for Xo as it is done in [3]. Alterna-
tively, one may treat these constraints as those in mathematical programming
problems. The latter approach is adopted in this paper. Thus, we need to calculate
the "gradients" of these constraints. To do so, we take each constraint as a "cost
functional". Then, by applying the usual Pontryagin theory, we can write down
the corresponding "Hamiltonian". On this basis, we obtain readily the corre-
sponding "adjoint system" (cf. 8(a)). The formula for the "gradient" of the
constraint concerned is given in (9b). The reader may find more detail of this idea
in Appendix V of [11], pages 291-292.

DEFINITION 3.1. Let {uk} be a sequence in <2r and let u be an element in

Then, we say that uk -* u (or uk converges to U in the weak* topology) if

fT k ( ) ( ) d fT
J-h,

for all D e LJ.

fT uk(t)v(t)dt^ fT u(t)v(t)dt
J-h J-h

DEFINITION 3.2. Let {«*} be a sequence in Lr
x and let u be an element in Ux.

Then we say that uk -* u in Lr
K (or uk converges to u in the weak * topology in

(T uk{t)v{t)dt^ fT u{t)v(t)dt
J-h, J-h,

for all v G L\.

LEMMA 3.1. Consider the system (1). Let x be considered as a mapping from
into L1^, where the norm in the space L£, is again denoted by \\ • \\x. Then

(i) There exists a positive constant C, independent ofue<%, such that
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(ii) For each t e [0, T]

\x(uk)(t) - x(u)(t)\ -> 0 whenever uk ^>U.

.w*_

(iii) \\x(u ) — X(M)IIOO -» 0 whenever u -> u.

PROOF. The proof of (i) follows easily from (4), (Al) and the definition of W.
The proof of (ii) and (iii) requires (4) and (Al).

LEMMA 3.2. Consider the adjoint system (8). Let Xm be considered as mappings
from <% into L1^. Then

(i) For each m = 0 , . . . , / , there exists a positive constant Cm, independent of
u e <%, such that

IPU«)L<cm.
(ii) For each m — 0 , . . . , / ,

W*

||Am(w*) - Xniu)^ -» 0 whenever w*-> u.

PROOF. Using (8b) and (8c), we deduce from Cauchy's inequality that for all
w e <̂  and for all t e [0, T],

\X0(u)(t)\<\vxg°(x(u)(T))\ + fT ttAj(r + hj)\\\\0(u){r + hj)\dr

+ fT\vxf(r,x(u)(r))\dr, (10)

where || • || is as defined in (3).
Since *(«)(•) is absolutely continuous on [0, T] for each u e Ql, it follows from

Lemma 3.1 and (A3) that there exists a constant Kx > 0, independent of u e <2r,
such that

and

for all / e [0, T].
Thus, we deduce from (10), (8e) and (Al) that

where
K^K^T+l), (12)

S ^ max | ^ ( 0 | | (13)
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171 Optimal control in linear time-lag systems 99

and

(T»(T)dT. (14)

Now, by using the same argument as that used to obtain the inequality (A4) of
[12] (i.e. the inequality (4) in the Appendix of [12]) from the inequality (A2) of
[12], we deduce from (11) that

IIM«)L< £ K2T'Ki/i\ s Co.
i = 0

Similarly, for each m = \,...,l, there exists a positive constant Cm such that

IIU«)L<cm
for all u e <V.

It remains to establish the validity of the second part of the lemma. For this, let
{ M* } be a sequence of controls in W which converge to u in the weak* topology.
Then, by using (8b) and (8c), we deduce from Cauchy's inequality that for any
integer k,

\\0(u
k)(t)-\0(u)(t)\

<\vxg°(x(uk)(T))-Vxg°(x(u)(T))\

Xoiu^ + hj) -\Q(u)(r + hj

-Vj(r,x(u)(r))\dr.

From Lemma 3.1 and (A3), we note that for any given e > 0, there exists an
integer A: > 0 such that for all k > k,

\vxg(x(u")(T)) - Vxg(x(u)(T)) | < e (16)

and

|vx/(/,x(«*)(/))-V,/(/,x(5)(/)) |<e (17)

for all t e [0, T).
On the basis of (15), it follows from (Al), (16) and (17) that

\\\0{uk) - X0(5) I . < K2e + ^ ( f l X o U * ) - Xo(«) \ \ x ) , (18)
where K2, K3 and Ny are defined in (12), (13) and (14), respectively.

Then, by using the same argument as that used to obtain the inequality (A4) of
[12] from the inequality (A2) of [12], we deduce from (18) that

|X0(«*) - Xo(«) |U *£ £ KJ'Kle/P. = K3B.
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100 K. L. Teo, K. H. Wong and Z. S. Wu 181

Therefore

| |M«*) " M « ) IL "» 0 whenever uk ^ u.

Similarly, for each m = 1 , . . . , / , we have

||*m("*) - ^ m ( " ) L -» 0 whenever uk -» u.

This completes the proof of the lemma.

LEMMA 3.3. For each m = 0 , 1 , . . . , / , and for each w e Ux, J™(w) is continuous
in u with respect to the weak* topology in the sense that

w*

/J?(»v) -• J™(x) whenever uk -* u.

PROOF. The proof follows easily from (9), (Al), (A2) and part (ii) of Lemma
3.2.

LEMMA 3.4. For each m = 0 , 1 , . . . , / , and for each u e < ,̂ /J" (w) is continuous
in w with respect to the weak* topology in U^ in the sense that

w*

J™(wk) -* J™(w) whenever wk -> w in Um.

PROOF. The proof follows easily from (9), (Al), (A2) and part (i) of Lemma 3.2.

4. Existence of optimal control

In this section, we shall show that the optimal control problem has a solution.
More precisely, we have

THEOREM 4.1. / / !F is nonempty, then the problem P has a solution.

PROOF. From part (i) of Lemma 3.1 and the continuity property of x(«)(•), we
can find a compact set Z in R" such that

for all u e <2f and for all t e [0, T], Now, by using this result, together with the
compactness of the set U in Rr and the assumptions (A2) and (A3), it can be
shown (by method of [9]) that the cost functional / ° ( u ) is bounded on <W. Thus,

inf J°{u) = a > -oo.
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191 Optimal control in linear time-lag systems 101

Let {«*} c ^" be a sequence such that

l im/°(«*) = o.
* -»00

Since U is a compact and convex subset of Rr, °U is sequentially compact in the
weak* topology (cf. Theorem 1.6.2 of [11], page 31). Thus, there exists a function
u* e <% and a subsequence of the sequence {uk}, again indexed by k, such that
uk -* u* in the weak* topology as k -* oo.

It remains to show that u* is an optimal control of the problem P. From
Lemma 3.1, (A3) and (6), it follows that, for each m — 1 , . . . , / ,

gm(x(u*)(T)) = hmgm(x(uk)(T))^0.
k-><x>

This means that u* e &'. Again from Lemma 3.1 and (A3), we have

go{x(u*)(T)) = \imj°(x(uk)(T)) (19)

and

[Tf(t,x(u*)(t))dt= lim [Tf(t,x(uk)(t))dt. (20)
' O k -»oo •'0

From (A2), it is clear that the function uT(t)M(t)u(t) is convex with respect to
u. Thus, from Theorem 1.2.14 of [1], page 26, we have

liminf (T {uk)T{t)M{t)uk{t)dt> (T u*T(t)M(t)u*(t) dt. (21)
k -»oo •'0 A)

Now, by virtue of (7), it follows from (19), (20) and (21) that

o = l iminf. / 0(u*)>/0(u*).

Recall that the sequence { uk } c & is chosen such that

l i m / 0 ( M * ) = inf/°(«) = o.
/fc-»OO UGj^

Thus

Uminfy°(«*) = Umy°(«*)= inf/0(«) = a.

Hence

infy°(u)>/°(u*).

But, we have already shown that

«* e^".
Thus it is clear that

J°(u*)= inf

Thus, in turn, implies that u* e ^ is an optimal control for the problem P, as
there could not be any other feasible control which will make J° smaller than
infu6&J°(u), and hence J(u*). Thus, the proof is complete.
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R E M A R K 4 . 1 . By examining the arguments given for Theorem 4.1 , it is easy to
see that !F is sequentially compact in the weak* topology.

5. Subproblem

For the problem P, we want to minimize the cost functional /°(w), subject to
constraints Jm(u) < 0, m = 1,. . . , / , which have been built as part of the adjoint
system (i.e. (8a) and (8c)-(8e)). We shall do this by a "feasible direction" method
similar to that of [10] (and hence [7]). Thus, at each iteration of the algorithm, it is
required to calculate a search direction which decreases J°, while pointing into
the region specified by (6). Each of these search directions corresponds to a
subproblem which is itself an optimal problem and can be solved by a standard
convex program (Meyer-Polak proximity algorithm, see [6], pages 234-238). In
what follows, we shall formulate the subproblem and describe an algorithm to
solve it.

For any e > 0 and u e &, let /„(«) denote the e-active index set, i.e.

/ , («) - {0} U{m e { 1 , . . . , / } : / » ( « ) >-e). (22)

for any subset / of the set {0,1,. . . , /}, let \pr: &-* R be defined by

4>i(u)= min max{/„""(*>)},

where

<%- u = {v - u:v e <%}

= {v.v e. <%} - u.

In view of Lemma 4.1 of [13], it is clear that for each u £ j , there exists a
" - u such that

,M«)= max {/„"•«)}.
me/

The subproblem can now be stated as:

Problem (Ps). For each u e SF and e > 0, find a search direction w" e <% — u
which minimizes

jnax {Ju
m(w)},

i.e.,
m a x iJum

max {/„"«)}.
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[ l i ] Optimal control in linear time-lag systems 103

To present an algorithm for solving this problem, we need some preparation.
Let nu

c denote the cardinality of the set 7e" and let It
u = {/(I), /(2),..., i(q)},

where q = n" and /(I) , . . . , j(^) are arranged in the natural order with /(I) = 0.
Let

{ r (23)

Since <W — u is convex and compact in the weak* topology, it follows from
Lemma 3.4 that C" is a compact and convex subset of Rq.

The Meyer-Polask proximity algorithm requires a subprocedure for finding a
point £"c G C" which minimizes (c, £) subject to £ e C£" for each c s
[cl5 . . . , c ] r e U9. From (9) and (23), this is equivalent to finding a search
direction w"c e <% - u which minimizes

over all w G ^ - « and for all t e [-/ij, T], where A,w, A: = 1,... ,q, is the
solution of the corresponding system (8).

LEMMA 5.1. Let c be a given constant vector in Rq, where q = n". Then, for each
u e &, there exists a w"c e % - u such that

min ( f EcXW(«)('

W = ( t E cftxT(*,(«)(' + , , ,
for all t^ [-hs,T].

(c,!«c><<c,£>

(ii) /or a// { e C.", wAe« £e
u,c s [(€.",e)i, • • •, (€.",e) ,]

 T with

(ilc)ksJm«c),k-i..-,q-

PROOF. The proof follows as a special case of Lemma 4.1 of [10].

Now, let

where b(u, e) e i?9 denotes the vector

where ^ = n" and for each y = 1 n"c, e} denotes the jth unit vector in Rn"
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In what follows, £ will denote a point in C" and TJ a point in D"a. Then, the
Meyer-Polak proximity algorithm can be used to determine the least value of a
such that C" n D"a # 0 and to determine a point in the intersection. Let | " be
such a point in the intersection. Then

We can now present the Meyer-Polak proximity algorithm for determining

ALGORITHM 5.1.

DATA: U <= &, e > 0, /e(w).

Step 0. Set | ° = O.Set w° = 0.
Compute b = b(u, e).
Set TJ° = b.
Set a0 = max{b/. j = 1,2,..., < } .
Set / = 0.

Step 1. If | | ( - VI = 0, stop.
Else set a1' = £'' - TJ1.

2. Compute we
u
a, and ^%..

Step 3. If (o',{'> < (°',i), set a1+1 = a', t\' = if.
Else set ai+1 = min{a: De

u
aD H *_0, a> a'},

where H = {y G Rn": (y,o') = (£,,a')}.
Compute any 17' e DJ n //.

Step 4. Compute | l + 1
 G [£',$% TJ G [TJ'.TJ'] such that _

| | '+i _ ^i+ij = niinjH - TJ|:£ e WA"],V ^h', V1]}-
Set w'+1 = w1 + (w1 - w')|£' - € / + W - Si-
Set 1 = 1 + 1.
Go to Step 1.

REMARK 5.1. For each 1, | ' , which is a point in Ce
u, is generated by w' G ty - u,

i.e.

REMARK 5.2. From Remark 4.5 of [10], there exists an integer i0 > 0 such that
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[13] Optimal control in linear time-lag systems 105

Let 4>e(u)> te(u) and *V denote maxt{(|''°)4}, max^Tj'0)^} and w'°, respec-
tively. Then <//"(")> ^e(w) and w", which can be computed in a finite number of
iterations, satisfy

and

.(«) = max {/>«)}.

6. An algorithm

In this section, we shall present a feasible direction algorithm for solving the
problem P and study its convergence properties.

ALGORITHM 6.1.

DATA: a, 0 e (0,1) and e' > 0.

Step 0. Select a « ° e J ; set / = 0.

Step 1. Set £0 = e'; set y = 0.

Step 2. Compute, using Algorithm 5.1, a search direction w"', together with

Step 3. If ^e («') > -e;/2, set £J+1 = )3ey, set j =j + 1 and
go to Step 2.
If 4>t («'') < -ey/2, proceed.

Step 4. Compute the smallest integer k such that

J°{ul) < apktej(u'), (24)

( ^ ) 0, m = l , . . . , /7 . (25)

Step 5. Set u1+1 = «' + i8*wt< Set i = i + 1 and go to Step 1.
In what follows, our aim is to study the convergent property of the Algorithm

6.1. To be more precise, we shall show that the sequence of feasible controls
generated by the feasible directions Algorithm 6.1 has an accumulation point in
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the weak* topology and that each of these accumulation points satisfies a
necessary condition for optimality. Note that this weak* convergence develop-
ment is similar to that given in [9] and [8]. However, there is no constraint on the
state variables in [9], while the terminal inequality constraints on the state
variables are only linear in [8]. In the present paper, we allow the terminal
inequality constraints to be nonlinear. Furthermore, the technique used in this
paper and that in [9] and [8] are completely different. To be more precise, a
control parametrization technique is used in [9] and [8], while a feasible direction
method is used here in the present paper.

Let

For any feasible control u € 3>, let

e(u) = max{e :£€(u) < -e /2 , e = 0ke', A: = 0 , 1 , . . . } .

and let k(u) be the smallest non-negative integer satisfying (24) and (25).

LEMMA 6.1. For any subset I of (he index set { 0 , 1 , . . . , / } , ^f(-) is upper
semicontinuous with respect to the weak* topology. {In other words, if the sequence
{ uk} converges to u in the weak* topology, then, for any given e > 0, there exists
an integer k > 0 such that for all k > k, \pj(uk) < *pj(u) + e).

PROOF. The proof is similar to that given for Lemma 5.1 of [10], except that
Remark 3.2 and Lx topology of [10] are, respectively, replaced by Lemma 3.3
and the weak* topology in the proof of the present lemma.

DEFINITION 6.1. Let e > 0 be given. Then, for any m e {1 , . . . , /} , the corre-
sponding terminal inequality constraint of (6) is said to be e-active at u e "U if
m e Ie(u). (For the definition of /e(u), see (22).) (That is, if Jm{u) =
gm(x(u)(T)) > -e.)

LEMMA 6.2. Let {«'} be an infinite sequence in & converging to u e 3) in the
weak* topology. Then, there exists an e > 0 and an integer i0 such that

e(w') 3* e > 0

for all i > i0.
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PROOF. Following a similar approach as that given for Lemma 5.2 of [13], we
get for each w e 9 \ 3),

i(«) > e(u), (26)

where

e(«)smax{e:^/<(ll)(«)< -e, e = j8V, k = 0,1,2,...}. (27)

It remains to show that there exists an e > 0 and an integer /0 such that

e(n') > I > 0 (28)

for all / > i0. For then by replacing u by u' in (26), the conclusion of the lemma
follows easily from (28) and (26).

To begin, we note that u £ Si. Thus, there exists a S = /?*>e' such that
I / / / Q ( S ) («) < -S. Hence, there exists an E! = flkle' such that ^/ ( 5 ) (u) < -5 for all
e e [0, e j . Let e2 = minle^fi]. Then, it is clear that

and hence

e(S) > e2 > 0. (29)

From Lemma 3.1 and (A3), it follows that there exists a positive integer i1 such
that for all / > iu x(u')(T) is sufficiently close to x(u)(T) for no additional
constraints to become e(ii)-active. On this basis, we can deduce that, for all

Thus, for all / > /1;

*#rt.,(«')(«') < * / (» ' ' ) .

Since ^/,(-) is upper semicontinuous, there exists integer io> ii such that

for all / > /0. Therefore

*/w.,(.')(«'')<^W.',(«l)<-Ms), (30)

for all / > i0. Thus, from (27), (30) and (29), we get

e(ii ') > j8e(«) > )3e2 = e > 0,

for all i > /0. Hence (28) holds and the proof of the lemma is complete.
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LEMMA 6.3. Let {«'} be an infinite sequence of feasible controls converging to
u & Sd in the weak* topology. Then, there exists a S > 0 and positive integers k
and i0 such that for alii > i0,

where

PROOF. The proof is similar to that given for Proposition 3 of [7], except that
Proposition 2 and 'the uniform continuity of Vg°() on any L™[0,1] bounded
set' in the proof of Proposition 3 of [7] are being replaced, respectively, by
Lemma 6.2 and Lemma 3.2 (ii) in the proof of the present lemma.

COROLLARY 6.1. For any u' &&\@, the computation of i(u') and k(u') in
Algorithm 6.1 requires only a finite number of iterations.

THEOREM 6.1. Ifu* e 3? isan optimal control of the problem P, then u* e 3.

PROOF. The proof is similar to that given for Corollary 5.2 of [13], except that
Lemma 5.2 of [13] is replaced by Lemma 6.3 in the proof of the present theorem.

THEOREM 6.2. Let {«'} be a sequence of feasible controls generated by Algorithm
6.1. Then, either the sequence is finite, in which case the algorithm jams in the inner
loops of Step 2 and Step 3, and the last element of the sequence is in 3, or the
sequence is infinite and possesses at least one weak* accumulation point, where each
of these weak* accumulation points is also in 3.

PROOF. From Corollary 6.1, we note that the algorithm can jam only if the last
u' is in 3). Therefore, it remains to prove the second part of the theorem. Suppose
that {M1} is infinite. Since & is sequentially compact in the weak* topology
(Remark 4.1), we conclude that the sequence possesses at least one weak*
accumulation point in !F. Now, let u* e 3? be a ^'-accumulation point of {M1}.

Then, there exists a subsequence { u'w } of the sequence { u'} such that u ' w -» u*
as k -* oo. Since {V(u')} is monotonically decreasing, it follows that

/°(«'<*+1>) - / ° (u' W ) < ^°("I(*)+1) - J0(u'(k>). (31)
Suppose that u* is not in 3). Then for sufficiently large k, we obtain from
Lemma 6.3 and (31) that

-8 ) (32)
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where S > 0 is a constant independent of integers i(k), k = 1,2, However,
J°(u'w) is a bounded and monotonically decreasing sequence of real numbers,
and hence is convergent. Thus, by taking limit in (32), we obtain 0 < -S. This is a
contradiction and hence the proof is complete.

REMARK 6.1. From Remark 5.1 of [13], we recall that the convergence result of
Theorem 6.2 is valid only if the initial control of Algorithm 6.1 is a feasible
control.

REMARK 6.2. Since the problem considered in this paper is a special case of that
considered in [10], an initial feasible control can be easily found by using the
approach reported in Section 6 of [10]. More precisely, by using the control
parametrization technique, this problem of obtaining an initial feasible control is
reduced to the one amenable to the application of the algorithm in page 210 of
[5].

7. An illustrative example

Consider the problem of minimizing

f[()]
subject to the delay-differential equation

x(t) = x(t - 1) + u(t), / e ( 0 , 3 ] ,
with the initial condition

x(t) = l, / e [ - l , 0 ] ,
and the terminal inequality constraints

gl(x(u)(3))=[x(u)(3))2-0.03^0, (33a)

g2(x(u)(3)) = O.O6+[x(u)(3)}Uo, (33b)

where u is the control function with values in [-3,3].
Let the above problem be denoted by Q. This problem is adapted from that

considered in Example 4.1 of [2], page 189. More precisely, there are no control
constraints and terminal inequality constraints in the original problem. Let the
original problem be denoted by Q. From [2], we know that the optimal control of
the unconstrained problem Q is

(8(-(t-2)2/2-3/2), re [0,1]
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where S is given (approximately) by

8 = 0.56231.

The optimal cost is approximately 1.7338.
Note that u* satisfies the control constraints and that both of the terminal

inequality constraints are also satisfied when u = «*. Thus, u* is also the optimal
control of the problem Q.

The problem Q is to be solved in two stages as described below. For both
stages, the combination of the fourth order Runge-Kutta integration scheme
together with the method of steps is used to integrate the system forward in time
and the adjoint system backward in time, both over the interval [0,3j, which is
divided into 300 netpoints.

STA GE 1: To find a feasible control.
Let the interval [0,3] be divided into 5 subintervals such that the length of each

interval is equal to 0.6. Using the initial control equal to zero throughout each of
the subintervals (note that this control is not a feasible control because
g2(x(0)(3)) = 37.9678 > 0), a feasible control u° was found by using the proce-
dure mentioned in Remark 6.2. It takes 70 iterations of the algorithm of [5], where
the parameters a and b are chosen to be 0.01 and 0.5, respectively. This feasible
control «° is

=

' -1.6886,
-1.1728,
-0.8307,
-0.5723,

,-0.5538,

/ e [0,0.6)
/ e [0.6,1.2)
r e [1.2,1.8)
/ e [1.8,2.4)
r e [2.4,3.0).

(34)

STAGE 2: To find an optimal control.
Using M° as the initial feasible control and the parameters (a, /?, e) =

(0.2,0.8,0.01) (respectively (a, fi, e) = (0.2,0.8,0.005)), the 'optimal' cost ob-
tained by the combination of Algorithm 5.1 and Algorithm 6.1 after 70 (respec-
tively 100) iterations is 1.7339 (respectively 1.7341). These values are extremely
close to the true optimal cost 1.7338.

For the case e = 0.01, the constraint (33b) was £-active on 57 occasions
throughout the 70 iterations. For the case e = 0.005, the constraint (33b) was
c-active on 27 occasions throughout the 100 iterations. Numerical results are listed
in Tables 7.1 and 7.2. Graphs of ulo(t) with (a,0,e) = (0.2,0.8,0.01) and the
true optimal control are plotted in Figure 1 and Figure 2, respectively.
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Figure 1. ulo(t) a = 0.2, (3 = 0.8, e = 0.01
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Figure 2. The true optimal control.
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TABLE 7.1 Numerical Results
' a = 0.2, 0 = 0.8, £ = 0.01
^ Initial Control is defined by (34)

[201

1

10
20
30
40
50
60
70

J(u')

1.7404
1.7376
1.7350
1.7342
1.7341
1.7339
1.7339

TABLE 7.2 Numerical Results

I a = 0.2,
\ Initial

8 = 0.08 e = 0.005 ^
Initial Control is defined by (34) j

i

10
20
30
40
50
60
70
80
90
100

1.7406
1.7380
1.7354
1.7348
1.7374
1.7346
1.7345
1.7342
1.7341
1.7341
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