# AN ADDENDUM TO IDEALS AND HIGHER DERIVATIONS IN COMMUTATIVE RINGS 

## WEI-EIHN KUAN

Let $A=k\left[x_{1}, \ldots, x_{n}\right]$ be a finitely generated ring over a field $k$, and let $\mathfrak{S}_{k}(A)$ be the set of all $k$-higher derivations of $A$. In [1], we obtained some results on prime ideals in $A$ which are differential under $\mathfrak{S}_{k}(A)$. In this Addendum similar results are proved for a complete local ring $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, a homomorphic image of the formal power series ring over a field $k$; that is, algebraic varieties in [1] are replaced by algebroid varieties. We start with some technical remarks.

Remark 1. Let $A^{\prime}$ be a ring and $A \subset A^{\prime}$ be a subring. Let $A^{\prime}[[t]]$ be the ring of formal power series in $t$ over $A^{\prime}$. Let $d \in \operatorname{Hom}\left(A, A^{\prime}[[t]]\right)$ such that for each $a \in A, \quad d(a)=a+d_{1}(a) t+d_{2}(a) t^{2}+d_{3}(a) t^{3}+\ldots+d_{n}(a) t^{n}+\ldots$. Then $\left\{d_{i}\right\}_{i=0}^{\infty}$, where $d_{0}=\mathrm{id}_{A}$, is a higher derivation in $\mathfrak{g}\left(A, A^{\prime}\right)$. Conversely every higher derivation $\left\{d_{i}\right\}^{\infty}{ }_{i=0}^{\infty} \in \mathfrak{S}\left(A, A^{\prime}\right)$ defines a ring homomorphism $d \in \operatorname{Hom}\left(A, A^{\prime}[[t]]\right)$ such that $d(a)=a+d_{1}(a) t+\ldots+d_{n}(a) t^{n}+\ldots$ for each $a \in A$. Let $\mathfrak{H} \subset A, \mathfrak{H}^{\prime} \subset A^{\prime}$ be ideals such that $\mathfrak{H} A^{\prime} \subset \mathfrak{U}^{\prime}$. Consider $A, A^{\prime}$ as topological rings with the $\mathfrak{N}$-adic and $\mathfrak{Y}^{\prime}$-adic topologies respectively. It follows from [3, Lemma 1, p. 334] that $\left\{d_{i}\right\}_{i=0}^{\infty} \in \mathfrak{F}\left(A, A^{\prime}\right)$ is continuous, i.e., every $d_{i}$ is a continuous map.

Remark 2. Let $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be a formal power series ring over a field $k$. Let $\left\{\Delta_{i}\right\}_{i=0}^{\infty}$ be a higher derivation in $\mathfrak{S}_{k}\left(k\left[\left[x_{1}, \ldots, x_{n}\right]\right]\right)$. Let $f\left(x_{1}, \ldots, x_{n}\right) \in$ $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$; then

$$
\Delta_{1}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} f\left(x_{1}, \ldots, x_{n}\right) \cdot \Delta_{1}\left(x_{i}\right)
$$

and for $i \geqq 2$,

$$
\begin{aligned}
& \Delta_{i}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{j=1}^{n} A_{i j}\left(x_{1}, \ldots, x_{n}\right) \Delta_{i}\left(x_{j}\right) \\
&+B_{i}\left(x_{1}, \ldots, x_{n} ; \Delta_{1}\left(x_{1}\right), \ldots, \Delta_{i-1}\left(x_{n}\right)\right)
\end{aligned}
$$

where $A_{i j} \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ and

$$
B_{i} \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right]\left[\left\{\Delta_{l}\left(x_{j}\right) \mid l=1,2, \ldots, i-1 \text { and } j=1,2, \ldots, n\right\}\right] .
$$

Indeed let $\Delta: k\left[\left[x_{1}, \ldots, x_{n}\right]\right] \Rightarrow k\left[\left[x_{1}, \ldots, x_{n}\right]\right][[t]]$ be the ring homomorphism

[^0]given rise by $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$. Then
\[

\left.$$
\begin{array}{rl}
\Delta_{i}\left(x_{1}{ }_{1}\right.
\end{array}
$$ x_{n}^{i_{n}}\right)=coefficient of t^{i} in . ~\left(x_{1}+\Delta_{1}\left(x_{1}\right) t+···\right)^{i_{1}} ···\left(x_{n}+\Delta_{1}\left(x_{n}\right) t+···\right)^{i_{n}} . ~ \$
\]

Thus,

$$
\begin{aligned}
& \Delta_{i}\left(x_{1}{ }^{i_{1}} \ldots x_{n}^{i_{n}}\right)=\sum_{j=1}^{n} a_{i j}^{i_{1} \ldots i_{n}} \Delta_{i}\left(x_{j}\right) \\
& \quad+\sum_{\substack{1 \leq l_{k \leq i-1} \\
1 \leq j_{k} \leq n}} a_{l_{1} j_{j} l_{2} j_{2}}^{i_{1} \ldots i_{n}} \Delta_{l_{1}}\left(x_{j_{1}}\right) \Delta_{l_{2}}\left(x_{j_{2}}\right)+\ldots \\
& \\
&
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{1 j}^{i_{1} \ldots i_{n}} \text { are monomials of degree }\left(i_{1}+\ldots+i_{n}\right)-1, \\
& a_{l_{1} \ldots i_{n} j_{2}}^{i_{1} \ldots i_{n}} \text { are monomials of degree }\left(i_{1}+\ldots+i_{n}\right)-2 \text {, and } \\
& a_{l_{1} j_{1} \ldots l_{i-1} j_{i-1}}^{i_{1} \ldots l_{n}} \text { are monomials of degree }\left(i_{1}+\ldots+i_{n}\right)-(i-1) .
\end{aligned}
$$

Thus, if $f\left(x_{1}, \ldots, x_{n}\right) \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right], f\left(x_{1}, \ldots, x_{n}\right)=\sum a_{i_{1} \ldots i_{n}} x_{1}{ }^{i_{1}} \ldots x_{n}{ }^{i_{n}}$, where $\left\{i_{1}+i_{2}+\ldots+i_{n}\right\}$ is monotone increasing.

$$
\begin{aligned}
& \Delta_{i} f\left(x_{1}, \ldots, x_{n}\right)=\sum a_{i_{1} \ldots i_{n}} \Delta_{i}\left(x_{1}{ }^{i_{1}} \ldots x_{n}{ }^{i_{n}}\right) \\
& =\sum a_{i_{1} \ldots i_{n}}\left(\sum_{j=1}^{n} b_{i j}^{i_{1} \ldots i_{n}} \Delta_{i}\left(x_{j}\right)\right. \\
& +\sum_{\substack{1 \leq \\
1 \leq 1 \leq l_{1} \leq i-1 \\
1 \leq j \leq n}} b_{l_{1} j_{j_{1}} l_{2} j_{2}}^{i_{1} \ldots i_{n}} \Delta_{l_{1}}\left(x_{j_{1}}\right) \Delta_{l_{2}}\left(x_{j_{2}}\right)+\ldots \\
& \left.+\sum_{\substack{1 \leq \\
1 \leq j_{k} \leq i-1 \\
1 \leq j \leq n}} b_{l_{1} j_{1} \ldots l_{i-1} j_{i-1}}^{i_{1} \ldots i_{n}} \Delta_{l_{1}}\left(x_{j_{1}}\right) \ldots \Delta_{l_{i-1}}\left(x_{j_{i-1}}\right)\right) \\
& =\sum_{j=1}^{n} A_{i j} \Delta_{i}\left(x_{j}\right)+\sum_{\substack{1 \leq 1 \leq \leq i-1 \\
1 \leq j k \leq n}} A_{l_{1} j_{1} l_{2} j_{2}} \Delta_{l_{1}}\left(x_{j_{1}}\right) \Delta_{l_{2}}\left(x_{j_{2}}\right)+\ldots \\
& +\sum_{\substack{1 \leq l k \leq i-1 \\
1 \leq j \leq j \leq n}} A_{l_{1} j_{1} \ldots l_{i-1} j_{i-1}} \Delta_{l_{1}}\left(x_{j_{1}}\right) \ldots \Delta_{l_{i-1}}\left(x_{j_{i-1}}\right),
\end{aligned}
$$

where $A_{i j}, \ldots, A_{l_{1 j_{1} \ldots l_{i-1} j_{i-1}}} \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$.
Remark 3. Let $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be a complete local ring over a field $k$. Let $\left\{\delta_{i}\right\}_{i=0}^{\infty}$ be a higher derivation in $\mathfrak{S}_{k}\left(k\left[\left[x_{1}, \ldots, x_{n}\right]\right]\right)$. Then for $f\left(x_{1}, \ldots, x_{n}\right) \in$ $k\left[\left[x_{1}, \ldots, x_{n}\right]\right], \delta_{i} f\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} A_{i j} \delta_{i}\left(x_{j}\right)+B_{i}$ where

$$
A_{i j} \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right]
$$

and $B_{i} \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right]\left[\left\{\delta_{l}\left(x_{j}\right) \mid l=1,2, \ldots(i-1) ; j=1,2, \ldots, n\right\}\right]$. Let
$k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ be the formal power series ring. Let $\pi$ be the canonical surjection from $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ to $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ with $\mathfrak{U}$ as its kernel. Then $\delta$ can be lifted to a higher derivation $\Delta=\left\{\Delta_{i}\right\}_{k=0}^{\infty}$ of $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ such that $\mathfrak{A}$ is differential under $\Delta$. In fact let $\Delta_{i}: k\left[X_{1}, \ldots, X_{n}\right] \rightarrow k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ be a $k$-linear map such that $\Delta_{0}(f(X))=f(X)$ for all $f(X) \in k\left[X_{1}, \ldots, X_{n}\right]$, $\pi\left(\Delta_{i}\left(X_{j}\right)\right)=\delta_{i}\left(x_{j}\right)$ for all $i=1,2, \ldots, j=1,2, \ldots, n$ subjected to Leibnitz's rule. Then $\left\{\Delta_{i}\right\}_{k=0}^{\infty}$ is a higher derivation: $k\left[X_{1}, \ldots, X_{n}\right] \rightarrow$ $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$. Since the $\left(X_{1}, \ldots, X_{n}\right)$-adic completion of $k\left[X_{1}, \ldots, X_{n}\right]$ is $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ therefore it follows from [2, Proposition 2, p. 41] that $\left\{\Delta_{i}\right\}_{i=0}^{\infty}$ can be extended to $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$. Moreover $\Delta_{i}(\mathfrak{H}) \subset \mathfrak{A}$. Since

$$
\Delta_{i}\left(f\left(X_{1}, \ldots, X_{n}\right)\right)=\sum_{j=1}^{n} A_{i j} \Delta_{i}\left(X_{j}\right)+B_{i} \text { where } A_{i j} \in k\left[\left[X_{1}, \ldots, X_{n}\right]\right]
$$

and $B_{i} \in k\left[\left[X_{1}, \ldots, X_{n}\right]\right]\left[\left\{\Delta_{l}\left(X_{j}\right) \mid l=1,2, \ldots, i-1, j=1,2, \ldots, n\right\}\right]$, it follows that $\delta_{i}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=\pi\left(\Delta_{i} f\left(X_{1}, \ldots, X_{n}\right)\right)=\sum \pi\left(A_{i j}\right) \cdot \pi \Delta_{i}\left(X_{j}\right)+$ $\pi\left(B_{i}\right)=A_{i j}\left(x_{1}, \ldots, x_{n}\right) \delta_{i}\left(x_{j}\right)+B_{i}\left(x_{1}, \ldots, x_{n} ; \delta_{1}\left(x_{1}\right), \ldots, \delta_{i-1}\left(x_{n}\right)\right)$ where $A_{i j}\left(x_{1}, \ldots, x_{n}\right) \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ and $B_{i}\left(x_{1}, \ldots, x_{n} ; \delta_{1}\left(x_{1}\right), \ldots, \delta_{i-1}\left(x_{n}\right)\right) \in$ $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]\left[\left\{\delta_{l}\left(x_{j}\right) \mid l=1,2, \ldots, i-1, j=1,2, \ldots, n\right\}\right]$.

Lemma $2^{\prime}$. Let $\mathfrak{D}=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be a complete local ring over a field $k$, let $\mathfrak{p}$ be a prime ideal in $\mathfrak{D}$, and let $\mathfrak{N}=\{x \in \mathfrak{D} \mid x r=0$ for some $r \in \mathfrak{D}-\mathfrak{p}\}$. If $\delta=\left\{\delta_{i}\right\} \in \mathfrak{S}_{k}\left(\mathfrak{D}_{\mathfrak{y}}\right)$, then for every positive integer $m$, there exist $k_{1}, \ldots, k_{m} \in$ $\mathfrak{D} / \mathfrak{R}-\mathfrak{p} / \mathfrak{R}$ such that $\left\{\delta, k_{1} \delta_{1}, \ldots, k_{m} \delta_{m}\right\}$ is a higher derivation of rank $m$ from $\mathfrak{D} / \mathfrak{N}$ to itself.

Proof. Let $\mathfrak{D} / \mathfrak{R}=k\left[\left[\bar{x}_{1}, \ldots, \bar{x}_{n}\right]\right]=k[[\bar{x}]]$ where $\bar{x}_{i}=x_{i}+\mathfrak{M}$. By the definition of localization, $\mathfrak{D} / \mathfrak{M}$ is a subring of $\mathfrak{D}_{\mathfrak{p}}$. Let $m$ be a positive integer. For each $j=1,2, \ldots, m, \quad \delta_{j}\left(\bar{x}_{i}\right) \in \mathfrak{D}_{\mathfrak{p}}$, say $\delta_{j}\left(\bar{x}_{i}\right)=u_{i j}(\bar{x}) / v_{i j}(\bar{x})$. Let $d_{j}=\Pi_{i=1}^{n} v_{i j}(\bar{x})$, then $d_{j} \in \mathfrak{D} / \mathfrak{R}-\mathfrak{p} / \mathfrak{R}$. Set $t_{j}=d_{1}{ }^{j} d_{2}{ }^{j} \ldots d_{j-1}{ }^{j} d_{j}$ for $j=1,2, \ldots, m$, we claim that, as additive group homomorphisms $\left\{t_{j} \delta_{j}\right\}_{j=0}^{m} \in$ Hom $(\mathfrak{D} / \mathfrak{R})$. Suffice to check $t_{j} \delta_{j}(f) \in \mathfrak{D} / \mathfrak{N}$. Let $f \in \mathfrak{D} / \mathfrak{R}$, and let $f=\sum a_{i_{1} \ldots i_{n}} \bar{x}_{1}{ }^{i_{1}} \ldots \bar{x}_{n}{ }^{i_{n}}, a_{i_{1} \ldots i_{n}} \in k, t_{j} \delta_{j}(f)=t_{j}\left(\sum_{i=1}^{n} A_{j i} \delta_{j}\left(\bar{x}_{i}\right)+B_{j}\right)$ where $A_{j i} \in \mathfrak{D} / \mathfrak{N} \quad$ and $\quad B_{j} \in \mathfrak{D} / \mathfrak{R}\left[\left\{\delta_{l}\left(\bar{x}_{i}\right) \mid i=1,2, \ldots, n, \quad l=1,2, \ldots, j-1\right\}\right]$. Thus $t_{j} A_{j i} \delta_{j}\left(\bar{x}_{i}\right) \in \mathfrak{D} / \mathfrak{N}$. Since $B_{j}=\mathfrak{D} / \mathfrak{R}$-linear combination of power products of $\delta_{l}\left(\bar{x}_{i}\right)$ involving at most $j$ of $\delta_{l}\left(x_{i}\right)$ counting repeated ones for $i=1,2, \ldots, n ; l=1,2, \ldots, j-1$. Thus $t_{j} B_{j}=d_{1}{ }^{j} d_{2}{ }^{j} \ldots d_{j-1}{ }^{j} d_{j} B_{j} \in \mathfrak{D} / \mathfrak{R}$ also. Hence $t_{j} \delta_{j}(f) \in \mathfrak{D} / \mathfrak{\lambda}$. Now set $k_{i}=\left(t_{1}{ }^{m} \ldots t_{m-1}{ }^{m} t_{m}\right)^{i},\left\{\delta_{0}, k_{1} \delta_{1}, \ldots, k_{m} \delta_{m}\right\} \in$ $\mathfrak{S}_{k}(\mathfrak{D} / \mathfrak{M})$.

Theorem $3^{\prime}$. Let $\mathfrak{D}=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be a complete local ring over a field $k$, let $\mathfrak{p}$ be a prime ideal in $\mathfrak{D}$. If $\mathfrak{p}$ is differential under all $k$-higher derivation of finite rank $m$ for all $m$, then $\mathfrak{p} \mathfrak{D}_{\mathfrak{p}}$ is differential under all $k$-higher derivations of finite or infinite rank.

Proof. Let $\mathfrak{N}$ be the kernel of the canonical surjection $\mathfrak{D} \rightarrow \mathfrak{D}_{\mathfrak{p}}$, and let $\mathfrak{D} / \mathfrak{M}=k\left[\left[\bar{x}_{1}, \ldots, \bar{x}_{n}\right]\right], \mathfrak{D} / \mathfrak{N}$ is a subring of $\mathfrak{D}_{\mathfrak{p}}$. Let $(0)=\cap_{i=1}^{s} \mathfrak{q}_{i}$ be a pri-
mary decomposition of the zero ideal in $\mathfrak{D}$. Suppose $\mathfrak{q}_{i_{t}} \subset \mathfrak{p}$ for $i=1,2, \ldots, t$ and $\mathfrak{q}_{i} \not \subset \mathfrak{p}$ for $i>t$. Then $\mathfrak{R}=\bigcap_{i=1}^{t} \mathfrak{q}_{i}$.

Suppose $\mathfrak{p} \mathfrak{D}_{\mathfrak{p}}$ is not differential under $\mathfrak{S}_{k}\left(\mathfrak{D}_{\mathfrak{p}}\right)$, then there exists a higher derivation $\left\{\delta_{i}\right\} \in \mathfrak{S}_{k}\left(\mathfrak{D}_{\mathfrak{p}}\right)$ such that $\delta_{m}\left(\mathfrak{p} \mathfrak{D}_{\mathfrak{p}}\right) \not \subset \mathfrak{p} \mathfrak{D}_{\mathfrak{p}}$ for some $m \geqq 1$. Suppose $m$ is the least index such that $\delta_{m}\left(\mathfrak{p} \mathfrak{D}_{\mathfrak{p}}\right) \not \subset \mathfrak{p} \mathfrak{D}_{\mathfrak{p}} .\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{m}\right\} \in \mathfrak{V}_{k}\left(\mathfrak{D}_{\mathfrak{p}}\right)$ and is of rank $m$. It follows from Lemma $2^{\prime}$, there exists $t_{0}, t_{1}, \ldots, t_{m} \in \mathfrak{D} / \mathfrak{R}-\mathfrak{p} / \mathfrak{R}$ such that $\left\{t_{i} \delta_{i}\right\}_{i=1}^{m} \in \mathfrak{S}_{k}(\mathfrak{D} / \mathfrak{N})$. For $j<m, t_{j} \delta_{j}(\mathfrak{p} / \mathfrak{N}) \subset \mathfrak{p} \mathfrak{D}_{\mathfrak{p}} \cap \mathfrak{D} / \mathfrak{R}=\mathfrak{p} / \mathfrak{R}$ and $\delta_{m}\left(\mathfrak{p} \mathfrak{D}_{\mathfrak{p}}\right) \not \subset \mathfrak{p} \mathfrak{D}_{\mathfrak{p}}$ yields $t_{m} \delta_{m}(\mathfrak{p} / \mathfrak{R}) \not \subset \mathfrak{p} / \mathfrak{N}$. Let $\mathfrak{D} / \mathfrak{N}=k\left[\left[\bar{x}_{1}, \ldots, \bar{x}_{n}\right]\right]$ and $\bar{\pi}$ be the canonical surjection from the formal power series ring $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ to $\mathfrak{D} / \mathfrak{R} .\left\{t_{0} \delta_{0}, \ldots, t_{m} \delta_{m}\right\}$, can be lifted to

$$
\left\{\Delta_{0}, \Delta_{1}, \ldots, \Delta_{m}\right\} \in \mathfrak{S}_{k}\left(k\left[\left[X_{1}, \ldots, X_{n}\right]\right]\right)
$$

according to Remark 3 . Let $\mathfrak{M}^{\prime}$ be the pre-image in $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ of $\mathfrak{R}$. Then $\mathfrak{N}^{\prime}$ is $\left\{\Delta_{i}\right\}_{i=1}^{m}$ - differential, i.e. $\Delta_{i}\left(\mathfrak{N}^{\prime}\right\} \subset \mathfrak{N}^{\prime}$. Let $\mathfrak{p}^{\prime}$ and $\mathfrak{q}_{i}{ }^{\prime}$ be the pre-image of $\mathfrak{p}$ and $\mathfrak{q}_{i}$ in $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ for $i=1,2, \ldots, s$ respectively. Then $\mathfrak{R}^{\prime}=$ $\mathfrak{q}_{1}{ }^{\prime} \cap \ldots \cap \mathfrak{q}_{i}{ }^{\prime}$. Let $d \in\left(\cap_{i=t+1} \mathfrak{q}_{i}{ }^{\prime}\right)-\mathfrak{p}^{\prime},\left\{d^{i} \Delta_{i}\right\}_{i=0}^{m}$ is a higher derivation on $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$. Let $\mathfrak{Z}^{\prime}=\bigcap_{i=1}^{s} \mathfrak{q}_{i}{ }^{\prime}$. Then $\mathfrak{X}^{\prime} \subset \mathfrak{Y}^{\prime}$ and $d^{i} \Delta_{i}\left(\mathfrak{H}^{\prime}\right) \subset$ $d^{t} \cdot \mathfrak{X}^{\prime} \subset\left(\mathfrak{q}_{1}{ }^{\prime} \cap \ldots \cap \mathfrak{q}_{t}{ }^{\prime}\right) \cap\left(\mathfrak{q}_{t+1}{ }^{\prime} \cap \ldots \cap \mathfrak{q}_{s}{ }^{\prime}\right)=\mathfrak{Y}^{\prime}$. Hence $\mathfrak{Y} \mathfrak{X}^{\prime}$ is $\left\{d^{i} \Delta_{i}\right\}-$ differential. Thus $\left\{d^{i} \Delta_{i}\right\}_{i=1}^{m}$ induces a higher derivation $\left\{d^{\bar{i}} \Delta_{i}\right\}_{i=1}^{m}$ on $k\left[\left[X_{1}, \ldots, X_{n}\right]\right] / \mathfrak{H}^{\prime}=\mathfrak{D}$. Since $d_{m} \delta_{m}(\mathfrak{p} / \mathfrak{N}) \not \subset \mathfrak{p} / \mathfrak{N}$, therefore $\Delta_{m}\left(\mathfrak{p}^{\prime}\right) \not \subset \mathfrak{p}^{\prime}$. Thus $d^{\bar{m}} \Delta_{m}(\mathfrak{p}) \not \subset \mathfrak{p}$, i.e. $\mathfrak{p}$ is not $\left\{d^{\bar{i}} \Delta_{i}\right\}_{i=1}^{m}$-differential, a contradiction to the hypothesis.

Let $k$ be a field $X_{1}, \ldots, X_{n}$ indeterminates over $k, \Sigma=k\left(\left(X_{1}, \ldots, X_{n}\right)\right)=$ quotient field of $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$. Let $u=\left\{u_{i j} \mid i=1,2, \ldots, n ; j=1,2, \ldots, \infty\right\}$ and $t$ be indeterminates over $\Sigma$. The mapping $q: k\left[\left[X_{1}, \ldots, X_{n}\right]\right] \rightarrow$ $k\left[\left[X_{1}, \ldots, X_{n}\right]\right][u][[t]]$ defined by the substitution $X_{i} \rightarrow X_{i}+\sum_{j=1}^{\infty} u_{i j} t^{j}$ is a continuous $k$-homomorphism. Let

$$
a \in k\left[\left[X_{1}, \ldots, X_{n}\right]\right], a=\Sigma a_{i_{1}, \ldots, i_{n}} X_{1}^{i_{1}} \ldots X_{n}^{i_{n}}
$$

Then

$$
\begin{aligned}
& q(a)=\sum a_{i_{1} \ldots i_{n}}\left(X_{1}+\sum_{j=1}^{\infty} u_{1 j} t^{j}\right)^{i_{1}} \ldots\left(X_{n}+\sum_{j=1}^{\infty} u_{n j} t^{j}\right)^{i_{n}} \\
&=\sum a_{i_{1} \ldots i_{n}} X_{1}^{i_{1}} \ldots X_{n}^{i_{n}}+q_{1}(a) t+\ldots+q_{j}(a) t^{j}+\ldots
\end{aligned}
$$

where $q_{j}(a) \in k\left[\left[X_{1}, \ldots, X_{n}\right]\right][u]$. Set $q_{0}=$ identity map on $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$. Then, by Remark $1,\left\{q_{j}\right\}_{j=1}^{\infty} \in \mathfrak{S}_{k}\left(k\left[\left[X_{1}, \ldots, X_{n}\right]\right], k\left[\left[X_{1}, \ldots, X_{n}\right]\right][u]\right)$, and $q_{j}$ 's are continuous for all $j$. By Remark $2, q_{j}\left(k\left[\left[X_{1}, \ldots, X_{n}\right]\right]\right) \subset$ $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]\left[\left\{u_{i t} \mid l=1,2, \ldots, j-1, \quad i=1,2, \ldots, n\right\}\right]$. Let $\mathcal{D}=$ $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be a complete local domain over a field $k, \Sigma=k\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ its quotient field. Let $\bar{u}=\left\{\bar{u}_{i j} \in \Sigma[i=1,2, \ldots, n, j=1,2, \ldots, \infty\}\right.$ be a collection of elements in $\Sigma$. Let $u_{j}=\left\{u_{i \eta} \mid l=1,2, \ldots, j ; i=1,2, \ldots, n\right\}$ and let $\bar{u}_{j}=\left\{\bar{u}_{i l} \mid l=1,2, \ldots, j ; i=1,2, \ldots, n\right\}$. Let

$$
\pi^{(j)}: k\left[\left[X_{1}, \ldots, X_{n}\right]\right]\left[u_{j}\right] \rightarrow k\left[\left[x_{1}, \ldots, x_{n}\right]\right]\left[\bar{u}_{j}\right] \subset \Sigma
$$

be the canonical $k$-homomorphism such that $\pi^{(j)}\left(X_{i}\right)=x_{i}$ and $\pi^{(j)}\left(u_{i l}\right)=$
$\bar{u}_{i l}$ for $l=1,2, \ldots, j$, and $i=1,2, \ldots, n$. Let $f\left(X_{1}, \ldots, X_{n}\right) \in$ $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$. We say $\bar{u}=\left\{\bar{u}_{i j}\right\}$ is a set of solutions of $q_{j}(f)=0$ if and only if $\boldsymbol{\pi}^{(j)}\left(q_{j}(f)\right)=0$. The notations $\pi^{(j)}, q_{j}$ are to be used in the following.

Lemma $3^{\prime}$. Let $\mathfrak{D}=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be a complete local domain over a field $k$, $\Sigma$ its quotient field. Let $\mathfrak{N}=\left(f_{1}, \ldots, f_{r}\right) \subset k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ be the kernel of the canonical homomorphism $k\left[\left[X_{1}, \ldots, X_{n}\right]\right] \rightarrow \mathfrak{D}$. If $\delta=\left\{\delta_{i}\right\} \in \mathfrak{S}_{k}(\Sigma, \Sigma)$ then the set $\left\{\bar{u}_{i j} \in \Sigma \mid \bar{u}_{i j}=\delta_{j}\left(x_{i}\right), i=1,2, \ldots, n ; j=1,2, \ldots, \infty\right\}$ is a set of solutions of the equation

$$
\begin{equation*}
q_{\jmath}\left(f_{m}\right)=0, \quad m=1,2, \ldots, r, j=1,2, \ldots, \infty \tag{3'}
\end{equation*}
$$

Conversely, if a subset $\left\{\bar{u}_{i j} \mid i=1,2, \ldots, n, j=1,2, \ldots, \infty\right\}$ of $\Sigma$ is a family of solutions of $\left(3^{\prime}\right)$, then there is a higher derivation $\delta=\left\{\delta_{j}\right\} \in \mathfrak{F}_{k}(\Sigma, \Sigma)$ such that $\delta_{j}\left(x_{i}\right)=\bar{u}_{i j}$ for $i=1,2, \ldots, n, j=1,2, \ldots, \infty$.

Proof: $f_{m}\left(x_{1}, \ldots, x_{n}\right)=0$ for $m=1,2, \ldots, r$. Since $\delta=\left\{\delta_{j}\right\} \in \mathfrak{W}_{k}(\Sigma, \Sigma)$, $\delta_{j}\left(f_{m}\right)=0$. By Remark $2,0=\delta_{i}\left(f_{m}\right)=\sum_{j=1}^{n} A_{m j i}\left(x_{1}, \ldots, x_{n}\right) \delta_{j}\left(x_{i}\right)+B_{m}$ where $A_{m j i}\left(x_{1}, \ldots, x_{n}\right) \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ and $B_{m} \in k\left[\left[x_{1}, \ldots, x_{n}\right]\right]\left[\left\{\delta_{l}\left(x_{i}\right) \mid l=\right.\right.$ $1,2, \ldots, i-1, i=1,2, \ldots, n\}] \subset \Sigma$. Therefore $\left\{\delta_{j}\left(x_{i}\right) \mid i=1,2, \ldots, n\right.$, $j=1,2, \ldots, \infty\}$ solves the system $q_{j}\left(f_{m}\right)=0$ in $\Sigma$.

Conversely, if $\left\{\bar{u}_{i j} \mid i=1,2, \ldots, n, j=1,2, \ldots, \infty\right\} \subset \Sigma$ form a family of solutions to the system $q_{j}\left(f_{m}\right)=0$. Then we can find a $\delta=\left\{\delta_{j}\right\} \in \mathscr{S}(\Sigma, \Sigma)$ such that $\delta_{j}\left(x_{i}\right)=\bar{u}_{i j}$ as follows: For $g\left(X_{1}, \ldots, X_{n}\right) \in k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$, and for $j \geqq 1$, set $\delta_{j}\left(g\left(x_{1}, \ldots, x_{n}\right)\right)=\pi^{(j)}\left(q_{j}\left(g\left(X_{1}, \ldots, X_{n}\right)\right)\right.$, where $\pi^{(j)}, q_{j}$ are the same as defined in the preceding. $\delta_{j}$ is well defined and $\left\{\delta_{j}\right\} \in$ $\mathfrak{S}_{k}\left(k\left[\left[x_{1}, \ldots, x_{n}\right]\right], \Sigma\right)$ and $\delta_{j}\left(x_{i}\right)=\bar{u}_{i j}$. By [2, Lemma 2, p. 35], $\left\{\delta_{j}\right\}$ can be extended to $\Sigma$.

The following theorem shows that simple algebroid sub-varieties of an algebroid variety yield non-differential ideals.

Theorem $4^{\prime}$. Let $\mathfrak{D}=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be a complete local ring containing a field $k$. Let $\mathfrak{p} \subset \mathfrak{D}$ be a non-minimal prime ideal such that $\mathfrak{D}_{\mathfrak{p}}$ is a regular local ring. Then $\mathfrak{p} \mathfrak{D}_{\mathfrak{p}}$ is not differential under $\mathfrak{S}_{k}\left(\mathfrak{D}_{\mathfrak{p}}, \mathfrak{D}_{\mathfrak{p}}\right)$.

Proof. Let $\mathfrak{N}$ be the kernel of the canonical homomorphism $\mathfrak{D} \Rightarrow \mathfrak{D}_{\mathfrak{p}}$. Let $\hat{\mathfrak{D}}_{\mathfrak{p}}$ be the completion of $\mathfrak{D}_{\mathfrak{p}}$, then it is well known from [ $\mathbf{5}$, Corollary, p. 307] that $\hat{D}_{p}=K\left[\left[t_{1}, \ldots, t_{r}\right]\right]$, a formal power series ring over a field $K$ with $K \cong \mathfrak{D}_{\mathfrak{p}} / \mathfrak{p} \mathfrak{D}_{\mathfrak{p}}$. Without loss of generality, we may assume $K$ contains $k$. It follows from Lemma $3^{\prime}$, by taking $\bar{u}=\left\{\bar{u}_{i j} \mid \bar{u}_{11}=1\right.$ and $\bar{u}_{i j}=0$ for $i=1,2, \ldots, r$ and $j=2,3, \ldots, \infty\}$, and noting that $\mathfrak{N}$ in the Lemma $3^{\prime}$ is the zero ideal, that there exists a higher derivation $\left\{\delta_{j}\right\}_{j=0}^{\infty} \in \mathfrak{S}_{K}\left(\hat{\mathfrak{D}}_{\mathfrak{p}}, \hat{\mathfrak{D}}_{\mathfrak{p}}\right)$ such that $\delta_{j}\left(t_{i}\right)=\bar{u}_{i j}$. Let $\mathfrak{D} / \mathfrak{N}=k\left[\left[\bar{x}_{1}, \ldots, \bar{x}_{n}\right]\right]$, we may assume $t_{1} \in \mathfrak{D} / \mathfrak{N}$. Let $\mathfrak{N}=\left(f_{1}, \ldots, f_{s}\right) k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ be the kernel of the canonical homomorphism $k\left[\left[X_{1}, \ldots, X_{n}\right]\right] \Rightarrow k\left[\left[\bar{x}_{1}, \ldots, \bar{x}_{n}\right]\right]$. Then the system $\sum f_{m i}{ }^{\prime}(\bar{x}) \delta_{1}\left(x_{i}\right)=0$, $\sum t_{1 i}{ }^{\prime}(\bar{x}) \delta_{1}\left(x_{i}\right)-1=0$ where $f_{m i}{ }^{\prime}=\partial f_{m} / \partial X_{i}, t_{1 i}{ }^{\prime}=\partial t_{1}(X) / \partial X_{i}$ with $t_{1}(X)$
being a representative of $t_{1}$ in $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$, and for each $j=2,3, \ldots, \infty$ the linear system $\sum_{j=1}^{n} A_{m j i} d_{j}\left(\bar{x}_{i}\right)+B_{m}=0$ where $m=1,2, \ldots, s, A_{m j i} \in$ $k\left[\left[\bar{x}_{1}, \ldots, \bar{x}_{n}\right]\right]$ and

$$
B_{m} \in k\left[\left[\bar{x}_{1}, \ldots, x_{n}\right]\right]\left[\left\{\delta_{l}\left(\bar{x}_{i}\right) \mid l=1,2, \ldots,(j-1), i=1,2, \ldots, n\right\}\right]
$$

have solution set $=\left\{\delta_{j}\left(x_{i}\right) \mid i=1,2, \ldots, n ; j=1,2, \ldots, \infty\right\}$ in $\hat{\mathfrak{D}}_{\mathfrak{p}}$. Thus by $[\mathbf{4}$, Lemma p. 39], the linear system $q_{1}\left(f_{m}\right)=0, m=1,2, \ldots, s$ and $q_{1}\left(t_{1}(X)\right)-1=0$, and for each $i=2, \ldots, \infty$ the linear system $q_{j}\left(f_{m}\right)=0 m=1,2, \ldots, s$ have solutions set $\bar{u}=\left\{\bar{u}_{i j} \mid i=1,2, \ldots, n ; j=1,2, \ldots, \infty\right\} \subset \mathfrak{D}_{\mathrm{p}}$. Thus it follows from Lemma $3^{\prime}$ that there is a higher derivation $\left\{\delta_{j}{ }^{\prime}\right\}_{j=0}^{\infty} \in \mathfrak{S}_{k}\left(\mathfrak{D} / \mathfrak{N}, \mathfrak{D}_{\mathfrak{p}}\right)$, such that $\delta_{j}{ }^{\prime}\left(t_{1}\right)=1$. Extending $\left\{\delta^{\prime}\right\}_{j=0}^{\infty}$ to $\mathfrak{D}_{\mathfrak{p}}$ we have thus a higher derivation $\left\{\delta^{\prime}\right\}_{n=0}^{\infty} \in \mathfrak{W}_{k}\left(\mathfrak{D}_{\mathfrak{p}}\right)$ such that $\delta_{1}{ }^{\prime}\left(\mathfrak{p} \mathfrak{D}_{\mathfrak{p}}\right) \not \subset \mathfrak{p} \mathfrak{D}_{\mathfrak{p}}$.

I would like to thank the referee for his comments.
Added in proof. W. C. Brown and the author have noted that Example 3 in [1] is incorrect. A correct example is as follows: Let $k$ denote a field of characteristic two. Set $\mathscr{O}=k[[X]]$, the power series ring in one indeterminate $X$ over $k$. We can define a higher derivative $D=\left\{\delta_{i}\right\}$ on $\mathscr{O}$ by setting $\delta_{i}(X)=1$ for all $i \geq 1$. Then $\delta_{2}\left(X^{2}\right)=1$, but there exists no subring $\mathscr{O}_{1} \subset \mathscr{O}$ such that $X^{2}$ is analytically independent over $\mathscr{O}_{1}$ and $\mathscr{O}=\mathscr{O}_{1}\left[\left[X^{2}\right]\right]$.

Thus, the conjecture mentioned in [1] before Example 3 is false even for regular local rings.

## References

1. W. Brown and W. Kuan, Ideals and higher derivations in commutative rings, Can. J. Math. 24 (1972), 400-415.
2. N. Heerema, Convergent higher derivations on local rings, Trans. Amer. Math. Soc. 132 (1968), 31-44.
3. W. Kuan, A note on a lemma of Zariski and higher derivations, Proc. Amer. Math. Soc. 42 (1974), 333-340.
4. A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. Jour. Math. 89 (1967), 22-42.
5. O. Zariski and P. Samuel, Commutative algebra, Vol. 2 (New York, 1960).

Michigan State University, East Lansing, Michigan


[^0]:    Received December 15, 1975 and in revised form, September 10, 1976.

