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1. Introduction

This paper is chiefly concerned with inequalities for the numbers of sub-
groups of a finite p-group. The following are typical results. Let G be a
p-group of order p", and let nG(pk) denote the number of subgroups of G of
order pk.

(1.1) If A is the elementary abelian group of the same order as G, then
nG(pk) 5S nA(pk) (k = 1, 2, • • • ) . / / equality holds for a value of k such
that 1 < k < a, then G ^ A.

(1.2) / / G is a regular p-group, and if B is the-abelian p-group with the same
basis invariants as G, then nG(pk) f^ nB(pk) (k = 1, 2, • • • ) . / / G has
the same total number of subgroups as B, then G is lattice-4somorphic
to B.

We mention in passing that (at any rate for p = 2, 3) two p-groups may
have the same number of subgroups of each order without being lattice-iso-
morphic. See § 7, figs. 1 and 2.

Results like (1.1) and (1.2) are relevant to the problem of the "lattice
embeddings" of />-groups: a lattice embedding of a group G in a group H is
a meet isomorphism of the lattice of subgroups of G into that of H. Whenever
a p-group G can be lattice-embedded in a p-group H of the same order, the
series of inequalities

nG(p*) 52 nH{pk) {k = 1, 2, • • •)

is a necessary consequence; for such a lattice embedding maps each subgroup
of G onto a subgroup of H of the same order. Lattice embeddings of />-groups
have been recently studied by D. W. Barnes ([1]).

(1.1) immediately suggests the possibility that every p-group G can be
lattice-embedded in the elementary abelian group of the same order; but
Barnes has shown that this is false, even when G is abelian. However, the
problem for groups of exponent p, and the corresponding problem suggested
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by (1.2), remain open. With regard to the latter, Dr. Graham Higman has
pointed out that the answer is affirmative when every subgroup of G which
can be generated by 3 elements has class less than p; this is an immediate
consequence of a theorem of M. Lazard ([7]).

Our method is enumerative, and relies on the properties of the Eulerian
functions of a group (cf. P. Hall, [4]). Let G be any finite group. The w-th
Eulerian function <f>n(G) of G is defined to be the total number of sequences of
n elements of G which generate G. By counting the number of sequences of n
elements of G in two ways, we get the analogue of the Eulerian summation
formula of arithmetic:

(1-3) 1 UH) = \G\\

where summation is over the subgroups H of G. The value of <l>n(G) is given
explicitly by the inversion formula

5>
where fiG is the Mobius function of G (Hall, I.e.; L. Weisner, [9]). For tech-
nical reasons, we shall deal with the Eulerian polynomial <f>(G) of G rather
than the series of Eulerian functions <f>n(G) (n = 1, 2, • • •). <f>(G) is a poly-
nomial, in variables x,y, • • • corresponding to the distinct prime divisors
p, q, • • • of \G\, -which reduces to <f>n{G) for the particular values x = pn,
y = qn,--:

The inequality (1.1) is a fairly easy consequence of (1.3) in the case of a
p-group (§ 4). (1.2) follows similarly from a more general formula in which
<f>n(G) is replaced by another function of Eulerian type (§7). One by-product
of our formulae is the (known) enumeration of the subgroups of given iso-
morphism type in an abelian group.

The above results for />-groups give some information about groups of
composite order, for it is quite easy to get upper bounds (though rather crude
ones) for the numbers of subgroups of a group in terms of the numbers of
subgroups of its Sylow subgroups. E.g. if |G| = paqb • •, and if P,Q, • • are
Sylow subgroups corresponding to the t distinct prime divisors p, q, • •, then

(1.5) n^p^e • • •) ^ |G|'-1«i.(*")ng(/) •

Again, if G is soluble, |G|'~X can be replaced by \G\ in (1.5).
The problem of finding direct generalizations of results like (1.1), (1.2) to

groups of composite order seems to be more difficult. First, our method suc-
ceeds for /(-groups largely because of the simplicity of their Eulerian poly-
nomials—the complexity of <f>(G) depends on the complexity of the Frattini
factor group G/<P(G), which, for a p-gvonp, is elementary abelian. Second, it
is not easy to see which groups are to play the part of the "universal" groups
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A, B in (1.1), (1.2). E.g. the simple group of order 168 has more subgroups
of order 24 than any soluble group of order 168, though less of order 56.
Such considerations suggest that it may be more fruitful to restrict attention
to composition subgroups.

Recently, W. Gaschiitz ([3]) has proved an interesting theorem about the
Eulerian polynomial of a soluble group G, viz. that

(1.6) <f>(G) = P(x)a(y) • • ;

where the polynomials p, a, • • • depend on the chief factors of G. Gaschiitz's
method shows, in fact, that if G is />-soluble, then

(1.7) <f>{G) = P(x)a(y, z , • • • ) ,

where p is determined just as in the soluble case. It would be very interesting
to know whether every group with Eulerian polynomial of the form (1.6) is
necessarily soluble. The concluding § 8 contains several partial results on this
problem. First, a group G has a normal subgroup of prime index p if, and only
if, (x — 1) is a divisor of <f>(G). It is easily deduced that if <j>(G) has the form
(1.6) then G is not perfect, i.e. G' < G. Second, if <f>(G) has the form (1.6) and
/"<?(!) T^ 0, then G is soluble. We remark that, for soluble groups G, /iG(l) ^ 0
if, and only if, the Frattini subgroup of every homomorphic image of G is the
identity (this follows from Gaschiitz's formula for <f>(G)). On the other hand,
fxG(l) — —60 when G is the icosahedral group and /J.G(1) = 0 when G is the
simple group of order 168.

We also prove in § 8, using Gaschiitz's methods, that the number of maxi-
mal subgroups of a soluble group is less than the group order. The same
result for a general finite group would have important consequences. E.g. it
would follow that every group G which cannot be generated by 2 elements
has a proper subgroup H such that \G : H\ < \H\.

2. Sum Functions'"

Let G be a finite group and A an additively written abelian group.
A subgroup function on G to A is a mapping of the lattice of subgroups of G
into A. In the sequel, A is either the group of ordinary integers or the under-
lying group of a polynomial domain over the integers. The notations
Hf^G, H<G, H<]G mean respectively that H is a subgroup of G, a sub-
group of G distinct from G, a normal subgroup of G.

If the subgroup functions g, h satisfy

(2.1) g{H) = J h(K) for all H ^ G,

we call g the sum function of h and write

* For further details on the (known) results of this section see Hall [4], Gaschiitz [3].
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(2-2) * = 2>
For given g, the system of equations (2.1) determines h uniquely; for, if
h(K) is known for all K < H, then h{H) is given by

h{H) = g(H) - 2 h{K).
K<H

We call h the summand function of G and write

(2.3) h = X-ig.

The equations

(2.4) pG(G) = 1, J <"<?(#) = ° whenever H < G,

define the Mobius function fiG of G; fiG is a subgroup function on G to the
group of ordinary integers. It is easily verified that

(2.5) h(G) = 2 fiG(H)g(H)

by showing that g is the sum function of the right hand side.
An explicit formula for fie(H) can be got as follows. Let M1( • • •, Mr be

the maximal subgroups of G (not including G itself). If S = \ilt • • •, i,] is a
subset of / = [1, 2, • •', r], we write

Ms = Mt A Mt A • • • A M <4;

in particular, M^ = G, and Mt is the Frattini subgroup 0(G) of G. Let S#
denote the set of indices * such that H ^ M<. Then

2 (-i)5= 2 (-D5

o
and so
(2.6)

It follows that Ho{H) = 0 unless .ff is an intersection of maximal subgroups
of G; in particular, jiG(H) = 0 unless 0(G) ^ H. In view of (2.6), we may
write (2.5) as

(2.7) h(G) = 2 (-
SI

We remark that if N <i G, N ^ H ^ G, then

(2.8) f*e/y(HIN) = f*G(H).

This is clear from the defining equations (2.4).
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3. The Eulerian Polynomial

Let G be a finite group of order paq" • •, where p, q, • • are distinct primes.
Choose variables x, y, • • corresponding to p, q, • •. (When it is necessary to
indicate the precise correspondence between primes and variables, we shall
write xp, xt, • • instead of x, y, • •.) We define the order polynomial f(G) to be

(3.1) f(G)=f(G;x,y,-')=x"y»-;

and the Eulerian polynomial <f>(G) to be the summand function of f(G):

(3.2) <f>(G) = 2 MH)f(H).

Since fiG(H) = 0 unless H contains the Frattini subgroup &(G) of G, we
have

(3-3)

Thus, e.g., in order to calculate the Eulerian polynomial of a />-group it is
sufficient to know the Eulerian polynomial of an elementary abelian group.

Since <f>n(G) is the summand function of

|G| B = / (G; p n , qn, • •),
we have

(3.4) <f>n(G) = <f>(G; p " , q n , - - ) (« = 0, 1, • •)•

In particular,

Since

<f>(H; 0, 0, • •) =

where fi% is the "dual" Mobius function of G (Hall, [4]). By (3.2),

(3.5) +(G; 0, 0, • •) = fi%(G) =

THEOREM l.t If N <\ G,

(3.6) f(N)<f,(GIN) = 2
HN-G

PROOF. f(N)<f>(GIN) = 2 f(N)fiGlN(KIN)f(KIN)

= I f*G(K)f(K)
KN

= I f*o{K) I <HH)

= I
NH=G Q.E.D.t This theorem is a slight variant of theorem 1 in Gaschutz [3].
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E.g., let G be the symmetric group S4, N its normal subgroup of order 4;
then x\${Sz) = +(St) + 4^(5,), so that ^(S4) = (aj - 4#(S,) -
(z2 - l)(a;| - 4)(*3 — 3). Thus, there are (22 — 1)(24 — 4)(32 — 3) = 216
ordered pairs of generators of 54, (23 — 1)(26 — 4)(33 — 3) = 10080 ordered
triples of generators, etc.

COROLLARY. ^(G/N)\<f>(G).

PROOF. We may assume, by induction on the group order, that each term
on the right of (3.6) except <f>{G) is divisible by <j>(GjN), for

H/H A N ~ G/N if HN = G.

Hence, by (3.6),
<f>(GIN)\+(G).

4. Numbers of Subgroups of a p-Group

In the present section, G is a p-group such that

|C| = pm, \G : 0(G)\ = p".

The significance of the index d is that G can be generated by d, but no fewer,
elements. We shall therefore say that G is a ^-generator group.

Let Ak denote the elementary abelian group of order pk. If A1 is any sub-
group of Ak of order p, there are ph~x Ak_1 's such that A1Ak_1 = Ak. There-
fore, by theorem 1,

HAk) = {x - p
Hence

+ (At) = Xk{x),
where

t-i

(4.i)' xk{x) = n {»- PX)-

Now, G/0{G) ~ Ad. Therefore, by (3.3),

(4.1) <f>(G) = x^Xd{x).

In view of (4.1), the Euler summation formula for G can be written

(4.2) x°> = ZNrJG)x-'Xr(x),

where Nr>,(G) is the number of r-generator subgroups of G of order p'. The
identity obtained by putting x = 0 in (4.2) is perhaps of some interest:

>tft(G) = 0,
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where ak(G) is the number of elementary abelian subgroups of G of order pk.
Taking G = Am in (4.2), we get

(4.3) as» = 2a>(«f k)Xk(x),
*=o

where

co(m, k) = colm, m - k) =

is the number of subgroups of / lm of order />*. By (2.8) and (3.5), the Mobius
function /x = fxA of Am is given by

Hence the inversion formula corresponding to (4.3) is

(4.4) Xm{x) = f (-l)fcw(w
fc=O

THEOREM 2.

(4.5) to(w, k) = 2 «(s - r, yfe - r)^r('-fc>iVriS(G) (0 ^ & ^ w).

PROOF. Replacing a; by xp~* in (4.3) and then simplifying, we get,
m

(4.5)' zmXt{x) = 2 «>(»
k=0

Using (4.5)', we can write (4.2) as

(4.6) xm = r, 8 k=r

Comparison of the coefficients of Xk(x) in (4.3) and (4.6) now gives the
theorem.

Let nk(G) denote* the number of subgroups of G of order pk, Nk(G) the
number of subgroups of G which can be generated by k (or fewer) elements
and have order ^ pk. Since

nk(G) = 2 Nr>k(G),

Nk(G) = 2 Nr>,(G),

we have

COROLLARY 1. Nk(G) ̂ Nk(Am) = a>(m, k).

COROLLARY 2. nk(G) ̂  nk(Am) = co(m, k).

* The notation nk(G) is more convenient for our present purposes than the systematic
notation nc(/>*) used in § 1.
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Since a>{m, 1) = (pm — 1)1 (p - 1), it is clear that N^G) = Nx{Am) if, and
only if, G has exponent p. On the other hand, if Nk(G) = Nk(Am) and
1 < k < m then G ~ Am. For, by (4.5), Nf3,(G) = 0 whenever 0 < r ^ k
< s. It follows that

(a) every /--generator subgroup of G (r 5S k) has order 5S />*;
(b) every subgroup of G of order />*+1 is elementary abelian.

Let a;, yeG. By (a), and because k 2> 2, |{a;, y}| 5g />*. Therefore, by
(b), {x, y) is contained in an elementary abelian subgroup of G. Hence
x" = yp = xyx~1y~i = 1, and so G is elementary abelian.

Theorem 2 throws some light on the well known enumeration theorems of
/>-group theory. E.g., let CT(G) denote the number of cyclic subgroups of G
of order pT; taking congruences (mod/)2) in (4.5), we get, for 0 < k ^ m,

(4.7) nk(G) + Ck+1(G)P = co(m, k) (mod^),

and so, for 0 < k < m,

(4.8) n k ( G ) + C k + 1 ( G ) p ^ 1 + p (modp*)*

(4.8) is to be compared with the theorems of Kulakoff and Miller that, when
G is non-cyclic, p > 2 and 0 < k < m,

«t(G) = 1 + p (mod/)2),

Ck+i(G) = 0 (mod/)).

Again, if 0 sS k ^ d and if G is not elementary abelian, (4.5) yields the con-
gruence

nm-k{G) = o (« , A) - tf-HM.1.m_»+1(G)^-*+* (mod /»•»-*+*);

2V<«-*+i,m-*+i(G) being the number of subgroups H of G of order />m-*+1 such
that <P(#) = #(G). This is a slight refinement of P. Hall's congruence

»-*(«) = «(*. *) (mod/»"-*+!).
(Cf. Zassenhaus [11]).

5. The Eulerian Polynomial of a Chain

In the present section, G is once more an arbitrary finite group. The
general Eulerian polynomials considered below are, so to speak, "polarized"
forms of the basic Eulerian polynomial <f>(G).

Let

(5.1) & : 1 = Go ̂  Gx ^ • • • ^ Gr = G

be a chain of subgroups, of formal length r, joining the identity to G. If
H ^G, we call

• (4.7) reduces to 1 + p = <o(m, k) (mod/)1) when G is the cyclic group of order pm.
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(5.2) j f : 1 = Ho ^ • • • ^ Hr = H, {Ht = G{ A H)

the subchain of 'S corresponding to H. If H < G, we call

(5.3) gr/Jf : 1 = (G/ff )0 ^ • • • =£ (G/tf )r = G/tf ((G/H)t = GtHjH)

the factor chain of 3? corresponding to G/H. We write tf? -SL^ when H ^ G,
Jif <\ y when H <\ G. Corresponding subgroups and subchains are denoted
by corresponding Italian and script capitals. The following easily proved
facts justify this convention:

(a) if H ^ K ^ G, then JT ^ JT;
(b) if # < G and H ^ if ^ G, then jT/^f ^ ST/JT;
(c) if H <] G, K <l G and H r^ K f^ G, then the natural homomorphism

of (GIH)I(KIH) onto G/# maps (3F/Jf)/(jr/Jf) onto ar/jT.
The subchains corresponding to the subgroups # i f • • • (where H,K, • • •

are permutable), H AK A • • •, {H, K, • • •} are denoted by ^f JT • • •,
J(f AJT A - • •, {JP, Jf, • • •} respectively.

We define now the order, and Eulerian, polynomials of the chain ^ . For
each "link" Gt_x ^ G<( we choose variables xit yit • • • corresponding to the
distinct prime divisors p,q, • • • of \G\. Let

\Gt : G.-il = Pa'qbt • • • (l^i^r),

and let £( stand collectively for the variables xt, yit • • •. Then we define

(5.4) f(9) = f(9; h. • • '. fr) = U Wy\'' • 0.

(5.5) W=2-x/(n
The domain of summation in (5.5) is the set of subchains of 'S or, what is
essentially the same, the set of subgroups of G. Thus,

(5.6) 4(9) = 2
HG

Clearly, </>(&) reduces to <f>(G) when r — 1.
As before, $(&) corresponds to a series of (generalized) Eulerian functions.

Let N = (Nlt • •', Nr) be a row of r integers such that Nx ^ 2V2 S: • • • ^
Nr ^ 0. Write

n{ = Nt - Ni+1 ( l ^ i ^ r; N^ = 0),
so that

By an N-sequence for & we shall mean a sequence of Nx elements of G whose first
nr members belong to Gt, next n2 to G2, etc. By a generating N-sequence for 9
we mean an W-sequence for ^ whose members generate G. The N-th Etderian
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function ^w(^) of ® is defined as the total number of generating TV-sequences
for 3?. Let tf 5S &. It is easy to see that the total number of TV-sequences for
J>f is

fN{jT) = /(JT; />"•, A • • .-, fi\ f', • • •).
Also, each TV-sequence for«3f is generating TV-sequence for a unique Jf 5S ̂ f.
Hence

and therefore
(5.7) ^

The fundamental property of the order polynomial is that

(5.8) f{<S)=f{jr)f(<S\JT) (jr < gr).

In fact, since
G,iV/iV = GJNK (K = i - 1, i),

we have the index formula

(5.9) \rt : rM\ \Nt : NM\ = \Gt : GM| (71 = G/iV).

of which (5.8) is an immediate consequence.

In view of (5.8), both (3.3) and theorem 1 carry over to the present case.

(5.10)

where &(&) is the subchain corresponding to

THEOREM 3. If JV < <&,

(5.11) f{jr)^IJT)= 2

It is not in general true that <f>(&I^V)\<f>(&). However, the following result
does include the corollary to theorem 1 as a special case.

COROLLARY. / / Jf <\ <& and, if GK_X ̂  2V ̂  GK for some K, then

PROOF. The proof of the corollary to theorem 1 shows that it is sufficient
to prove the statement:

(5.12) If cKTJf = <$, then ^(Jf/JT AJT) = <j>{^jjV).

(5.12) is proved by showing that the natural homomorphism of KjK AN
onto KN/N = G/2V maps JT/Jf AJT onto <&\Jf; i.e.

(5.13) KtN = G{N ( 0 ^ * ^ r ) .

By hypothesis, GK_t ̂ N ^GK. If i < K, clearly KtN = G(N = TV. If
» ̂  K, ifjiV = (K A G€)iV = (/CiV) A Gt = Gt = G.JV because G,. ̂  iV and

= G. This proves (5.13) and the corollary.
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6. Chains in a p- Group

In this section, G is a p-gronp and 'S the corresponding chain (5.1) of
formal length r. In order to simplify the notation, we observe the following
conventions.

(a) Boldface letters (lower and upper case) stand for row vectors of
length r with non-negative integral components:

m = (m1, • • -, mr), M = (M1, • • •, Mr), • • •
where

m{ ^ 0, Mt ^ 0, • • • (1 ^ i ^ r).

(b) Corresponding lower and upper case vectors m, M are related by:

Mt = 2mt> m< = Mt- Mi+1 (Mr+l = 0) (1 ^ » ̂  r).

Thus, the upper case vectors M are those which satisfy:

M1 ^ M2 ^ • • • ^ Mr ^ Mr + 1 = 0

(c) Inequality m ^ n means that ws ^ »4 (1 ^ i ^ r).
Writing

where
|G,- : G.-^l = pm*
\F : r^l = pD< fT =

we call 'S a D-generator chain of reduced order m. We first set down some
fairly obvious properties of m, D.

(6.1) / / JF is a subckain or factor chain of 'S,

(6.2) m(0(&)) = m{&) - d(&); hence, if 3t ^&,

0 ^ m(^f) — d ( ^ ) g m ( ^ ) — d(^) .

(6.3) / / £>,. = 0, Âen Af< (= w4 H h mr) = 0.
For if D, = 0, then Gi_10{G) = G a n d s o G ^ = G; thus />"' = |G : Gt_t\

The Eulerian polynomial of <& is calculated in much the same way as that
of G, and we therefore omit the proof.

(6.4) If & is a D-generator chain of reduced order m, then

-, xr) = f l z?'-*< Df{ (xt -
The following immediate corollary justifies the term "2)-generator chain".
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(6.5) Let & be a D-generator chain and N an upper case vector. Then
4>N{&) > 0 if, and only if, TV ^ D.

From now on we confine attention to regular chains in the sense of the
following definition.

Definition. 'S is called regular if m(Jf) — D(J^) is upper case for each
Jf ^&. If

then the pair of vectors

is called the signature of Jf.
Clearly, every subchain of a regular chain is regular (though the corre-

sponding statement for factor chains is easily seen to be false). The Eulerian
polynomial of a regular chain of signature (t, D) can be written in the form

(6-6) <f,(9; xlt • • ; xr) = Yt>D{\, ylt • • •, yf)

where
y t = xxx.2 • • • x t (1 ^ i g r),

(6.7) YttD(Zo. *i. • • :*r) = IT ^ "ft1 {Zt ~ P*'*^)-

We remark that m(Jf) — D(Jf) is upper case if, and only if,

«,(Jf) - dfiJt) ^ mi+1(Jf) (1 ^ * ̂  r; mr+1(Jf) = 0)
i.e.

(6.8) fn{(0(Jf)) ^ *ni+1(jr) (1 £ * ̂  r).

Examples.
(1) If r = 1, & is regular.
(2) Let G be a regular group of exponent pk (P. Hall [5]). Then the ele-

ments of G of order 5S p* form a subgroup i2t(G) (t = 0, 1, • • •). Consider the
chain

% : 1 = D0(G) ^ Q^G) g • • • ^ fir(G) = G,

where r ^ k. It is known that tn( = w^^) is the number of elements of
order ^ p* in a basis of G. If H ^ G, H is regular and

is the corresponding subchain of 3?. We prove now that 9 is regular.
By the remarks above, it is sufficient to verify (6.8) for 'S. Let K be the

subgroup of G formed by the ^>-th powers of the elements of G, Jf the cor-
responding subchain of 'S. It is known that the number of elements of order
^ p* in a basis of K is the number of elements of order ^ pi+1 in a basis of
G. Therefore, since K j£ <&{G), we have
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mt(0(9)) ^ tnt(jr) = mt+l(9),
as required.

In general, if G is a ^-group in which the elements of order 5S pi form a
subgroup @i(G) for i = 1, 2, • • •, then we shall call a chain

9:1= Q0(G) g Q^G) ^ • • ^ flr(G) = G '

an Q-series of G. The example of the quaternion group shows that an Q-
series need not be regular.

(3) If the regular group G in (2) is abelian then K = 0(G) and so

mt(0(9)) = mt+l(9) (l^i^r);

thus the signature of ^ (and of each subchain) has the form (0, D(@)).
Following P. Delsarte ([2]), we shall call G the abelian group of signature
D(9).

In general, if IS is a regular chain in the />-group G and if J4? fg 'S has sig-
nature (0, D), then we shall say that the subgroup H corresponding to 3?
has zero type with respect to ^ . Since the vector Tn{3^) — D(Jf) is upper
case, H has zero type if, and only if, m^Jf) = DX{J^). Simple examples
show that a regular group may have zero type with respect to its i2-series
and yet not be lattice-isomorphic to an abelian group.

(4) Let

S?* : 1 = G* ^ • • • g G* = G

be any regular chain. Form a new chain

^ : 1 = Go ^ • • • ^ GT = G
by taking

where TV = (A^, • • •, iVr) is upper case. It is easily verified (using (6.8)) that
& is regular.

The results which follow deal with the property of having zero type.

(6.9) Let <& be a regular chain in the p-group G. Then Gt contains every
element of G of order ^ -p* {i = 1, 2, • • •).

PROOF. Let H be a cyclic subgroup of G of order pk <S p*, 34? the cor-
responding subchain of <§. Write

Then

(6.10) m1 ^ wa ^ • • • and 2 mi — >̂

whence wfc+1 = mt+2 = • • • = 0. Thus, H <] Gk ^ Gs.

(6.11) !.<?£ 'S be a regular chain in the p-group G. Then & is an Q-series of G
if, and only if, each cyclic subgroup of G has zero type with respect to 9.
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PROOF. Suppose that the cyclic subgroup H of G has zero type. In the
notation of the previous proof,

m1-D1 = 0, D1 = 1,

so that, by (6.10),
ml = tn2 — •••== mk = 1 .

Hence H is a subgroup of Gk but not of Gk_1. It follows that if every cyclic
subgroup of G has zero type then Gt — G ^ is the set of elements of G
of order pl (i = 1, 2, • • •), i.e. 'S is an i2-series of G. The converse is easily
proved by reversing the steps of the argument.

(6.12) Let 'S be a regular chain in the p-group G and suppose that every sub-
group of G which can be generated by 2 elements has zero type with
respect to 'S. Then, if p > 3, or if G is regular, G is lattice-isomorphic
to an abelian group and & is an Q-series of G.

PROOF. Since every regular 2-group is abelian (Kemhadze [12]), we assume
that p > 2. We first prove, by induction on the order of G, that any two
cyclic subgroups of G permute. We know already (by (6.11)) that ^ is an
.Q-series of G. This implies, in particular, that each Gf is a normal subgroup
of G.

Suppose that the cyclic subgroups X = {x},Y = {y} did not permute. By
induction, {X, Y) = G and so, in particular, D^) = 2. Since G has zero
type, mx{^S) = 2 i.e.

(6.13) \GX\ = P*.

Write \G\ = pa, \X\ — px, \Y\ = p*. If X (say) were 1, we should have
XY = Y or YGlt contrary to the assumption that XY is not a subgroup;
hence X > 1, p > 1.

It is a straightforward matter to verify that the chain

<S' : 1 = G1jGx < G2/G1 < < GrlGx

is regular and that every subgroup of G/Gx which can be generated by 2
elements has zero type with respect to 'S''. By induction, {xGj} and {yGJ
permute, so that

(6.14) XYGX = G.

Consider now the subgroups

X* = {*}, y* = {y»}, H = {X*,Y}, K={X,Y*}.

Since X*, Y* are subgroups of &(G), H, K are proper subgroups of G. By
induction, H = X*Y, K = XY*. If Hx = Gx then, by (6.14), XY = G,
contrary to the assumption that X, Y do not permute. Hence \HX\ = p
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and similarly \KJ = p. Since H, K have zero type, they must be cyclic
groups. Thus, X* = Y* = X A Y. It follows that X = fi, \XY\ = px+1,
and from (6.14) that \XY\ = p'-\ Thus X = a — 2.

It is now clear that X* is a central normal subgroup of G of index />3 and
order ^ £. The factor group G/X* is non-commutative and is generated by
the elements xX*, yY* of order p; it is therefore the non-commutative group
of order p3 and exponent p. Writing u = yxy~xx~x, we have:

yuy-i-u-1 = c, xuz-i-u-1 = d (c,deX*), |{M^*}| = p,

(6.15) xayffe{uX*} if, and only if, a = / 5 = 0 (mod/)).

Since yp, x" are in the centre of G, cv = dp = cl*)up — 1. Therefore, since
p > 2, up = 1.

It follows from the above and (6.13) that

(6.16) G1 = {u,x*a~*}.

On the other hand, a direct calculation shows that

(xy)p = «<?'a;I>y

and therefore, if p > 3,

This also holds if p = 3, for then G is regular and so

{xyf = 3?y%u*a&l'd*y = a^y3.

Hence, in all cases, for a suitable choice of the generators x, y, we have
xyeGt. This contradiction to (6.15) and (6.16) establishes our result.

It now follows that any two subgroups of G permute and thence that the
lattice of subgroups of G is modular. Since p > 2, G is lattice-isomorphic to
an abelian group (M. Suzuki [8]). Q.E.D.

(6.12) is not true for non-regular 2- and 3-groups, as the .G-series in the
following groups showt:

(6.17) G = {x, y, u} of order 34; x9 = u3 = x3^ = [x, u] = 1,
[y, x] = u, [y, u] = y3.

(6.18) G = {x, y) of order 2r+2 ^ 24; a:2' = y* = 1, [y, »] = y2.
(6.19) G = {*, y} of order 2r+2 ^ 26; a;2' == y4 = 1, [y, *] = ^a;2'"*.

These examples are all "minimal" in the sense that every proper subgroup
of G is lattice-isomorphic to an abelian group. G itself is not lattice-isomorph-
ic to an abelian group because (in each case) Gj{xp} is the group of order p3

generated by 2 elements of order p.
We end this section by deriving the analogue of (4.5)' for the polynomials

Yt,D (cf. (6.7)).

t Is, /] stands for the commutator sts^t-1.
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LEMMA. Let d, D, s, t be integers 2> 0. Then
d-l

(6.20) x* n (x-yp°+x) = I ZO{d,D,s,t;i,j)yt-'+< ft (x-ypD+'+>>),
A-0 <-0 i-0 /t-0

(6.21) 6(d, D, s, t; i, j) = (o(s, i)co(d, i)co(t, j)

(For the notation co(k,l), Xk(x) see (4.1)', (4.3)'.)

PROOF. It is easily proved by induction that
min(d,»)

Xd(z)X,(z)= 2 «(<*. i)*>(s. i)

Combining this formula with (4.5)', we get

z<Xd(z)X,(z) = 2 ^ I X M W J I
i-0 i-0

Finally, dividing through by X,(z), then putting z = xyrXip-D and simpli-
fying, we get (6.20).

THEOREM 4.

(6.22) Yt,D{z», • • ;zr) = I (l n PA'. V)) 4l+Dl~Ul Yo, i/(*0, " • ', «,).

ie;Acre (cf. (6.21))

&(/, I/) = B(dK, DK+1, UK+1-DK+1, TK+DK+1-UK+1;iK,uK-dK + iK) (1 <K^r),

and where summation is over the vectors U, i such that

(6.23) D ^ U ^ T + D,

(6.24) dK-uK5S,-.^ min (rf«,£7^-DK+1,TK + DK-UK) (l^K^r).

(D, U, • • • are the upper case vectors corresponding to d,u, • • •; Dr+1,
Ur+1, • • • are taken to be zero.)

PROOF. Let us change the variables of summation from i, U to i and
/ = a + / — d. Then (6.22) becomes the final formula P x of a series
Pr+1, PT, • • -, Px defined as follows: P^ is the trivial formula 1 = 1; Pp

(1 ^ p ^ r) is the formula

fl #Y. = 2 z^^1" fr ZA', /)
where
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and where summation is over the indices iK, jK (/> ̂  K ^r) which satisfy

0 ^ iK ^ min (dK, JK+1 -

Now, by the lemma,

(6.25) J P - i + T t t + , Yp_x = J z f x p

where summation is over the indices ip_x, j p_x such that

0 ^ ip-i ^ min (dp^lt Jp — Ip),

Multiply both sides of Pp by z^Yp_x, and using (6.25), we get Pp_x.
The theorem follows by induction.

COROLLARY. Let G be the abelian p-group of (Delsarte) signature T. Then
the number of subgroups of G of signature U (5S T) is

(6.26) Q(T, U) = I I o>{TK ~ UK+1, i

In fact, taking D = 0 in (6.22), we get

Yt>0= 2 Q(T,U)Y0U,

which is essentially the Euler summation formula for the J2-series of G.
Formulae equivalent to (6.26) have been given by Delsarte [2], Kinosita

[6], Yeh [10].

7. Numbers of Subgroups of a p-Group

We are now in a position to generalize the results of § 4. Throughout the
present section,

(7.1) ^ : 1 = Go ^ Gi ^ • • • ^ Gr = G

is a regular chain, of formal length r, in the ^>-group G. m = m{{&) is the
reduced order of <&. B is the abelian group of signature m, and

(7.2) 38 : 1 = Bo < Bx ^ • • • ̂  BT = B

an fi-series of B. Since tn[fg) = m(£8), we have

(7.3) f{?) = f(®).

THEOREM 5. Let iVy,j = Ny, j(5?) denote the number of subchains of 'S of
signature (y, 4). Then

(7.4) Q(m, t / )= 2 P(y, A; U)NY,A (U ^ m),

r
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where Q(m, U) is given by (6.26) and /S(y, A; U) is the coefficient of
^+/>l~UlY0,u in the expansion (6.22) of Yy,A.

PROOF. Let us denote the Eulerian polynomial (6.6) by Ytto- Then,
by the Euler summation formulae for <§, 38,

V

and so, by (7.3) and theorem 4,

Since the F© u a r e linearly independent, (7.4) follows. Q.E.D.

LEMMA. /? = /9(y, 4; (/) is a positive integer whenever F ^ U f£ Z7 + A,
IfU=F+A,P=l.IfU^F+A (and F^USF + A), either Ny,a = 0
or / ?= 0 (mod/)).

PROOF. The first two statements are seen by inspection. To prove
the third, we show that if U =£ F + A and Ny,A ^ 0 then each term
/?(/) = ITic/5«W i n t n e sum 0 = 5>^(') is divisible by /> (cf. (6.22)).

Suppose, contrary to our assertion, that P(i) ^ 0 (mod p) for some value
of i. By (6.21) and (6.22),

(7.4)' (rK + AK -

iKAK+1 = 0

By assumption, Fx -\- Ax — Ux ^ 0 for some value X. By (7.4)', ix = 1 or 0.
If ix = 1, then, by (7.4)', Ax+1 — 0. By (6.3) and since Ny,a ^ 0, TA+1 +
Ax+1 = 0. Therefore, since U fS, F -\- A, Ux+1 = 0. This is impossible for,
by (6.24), ix g Ax+1 + Vx+1. Hence ix = 0. By (7.4)', <5A = Ux+1 = 0. Since
A sS t/, JA+1 = 0 and so Ax = dx + ^A+I = 0. Arguing as before, we get
Ux = Fx + Ax = 0, contrary to the assumption that Fx -f- Ax — Ux ^ 0.
This establishes the lemma.

Write AT

l/=

nt(G) =

n(G) =I«t(G).
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In words: Ny is the number of subchains which have a generating U-
sequence and reduced order ^ U; ny is the number of subchains of reduced
order U; Nk, nk are the functions already considered in § 4; n(G) is the total
number of subgroups of G. Clearly,

Nv(@) = nv(a) = Q(m, U).

The following two results are immediate consequences of theorem 5 and
the lemma.

(7.5) Either nv(&) <Nv{^) <ii(m, U) or nv{<3) = Nv{<&) = Q{m, U).

(7.6) nv{9) = Q{m, U) (mod/)).

The congruence class of Q(m, U) modulo p is easily determined. Suppose
that U, # 0 but Ux = 0 for all X > s. Then, by (6.26), Q = 1 (mod p) if
wA = Ux for X — 1, • • •, s — 1, and Q ̂  0 (mod/>) otherwise. Hence we
have

(7.7) nv{^) = 1 or 0 (mod p) according as U is, or is not, the signature of a
subgroup of B which lies between two consecutive members of its Q-
series.

(7.8) Nk(G) f^Nk(B), with equality if, and only if, every subgroup of G
which has order > pk and can be generated by k elements has zero type
with respect to <S (Cf. § 6, example (3)).

PROOF. By the definition of Nk and theorem 5, we have

Nk(G) = 2 N

(7.9) Nk(B)= ^ O(m.U)

Now, if the vectors y, A satisfy Ax ^ k ̂  2 (A + <̂)> then the vector V
defined by

F, = min (k, rt + At) (1 ̂  i ^ r)

is upper case and satisfies

(7.10) V1^k^Vi, J^V^T+4.

In view of (7.9), Nk(G) ^ Nk(B) with equality if, and only if, the conditions

(7.11) ^ i ^ * ^ 2 ( r , + J«). NYIA(&)^0,

imply that

(a) (7.10) has a unique solution V;
(b) /3(y, J ; V) = 1, i.e., by the lemma, V= T + J .
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We remark now that (7.11) and either of the two conditions

(7.i2) I(ri + Ai) = k, r = o,

imply (a) and (b). On the other hand, if neither of the two conditions (7.12)
holds then (7.11) does not imply (a) and (b); for it is easy to see that there
exists an upper case vector R such that

A ̂  R ^ r + A, 2 Ri = 2 (A + *i) - 1.
and then the equations

Vi = min(k,Ri) (l^i^r)

define a solution V of (7.10) distinct from F + A.
It follows that Nk(G) = Nk(B) if, and only if, the conditions

A^*<2(A+A). r*o,
imply that Ny,A(&) = 0. This is precisely the condition for equality stated
in (7.8).

(7.13) nk(G) ^ nk(B), with equality if, and only if, every subgroup H of G
which satisfies 2 D^Jti?) rgi k has order 5S pk.

Thus, the conditions for equality in (7.8) and (7.13) are

Ax ^ k < J (P.. + At) and T^0^> NY,/X = 0,

2Ai^k<Z(ri + A,) => Ny.A = 0,
respectively. Obviously, the equality Nk(G) = Nk(B) implies the equality
nk(G) = nk(B). We omit the proof of (7.13), which is similar to that of (7.8).

(7.14) The number of subgroups of G which can be generated by k elements
cannot exceed the number of subgroups of B which can be generated by
k elements. Each of the following is a necessary and sufficient condition
for equality:
(i) nx(G) = nx(B) (X = 1, • • •, k - 1) and Nk(G) = Nk(B);
(ii) every subgroup of G which can be generated by k elements has zero
type with respect to <S.

This follows easily from the results above and the fact that the number of
subgroups of G which can be generated by k elements is 2*-o nx{^) + ^*(G)«
The next result is an immediate consequence.

(7.15) The following conditions are equivalent:
(i) nk(G) = nk(B) for all k;

(ii) Nk(G)=Nt(B) for all k;
(iii) n(G) = n(B);
(iv) every subgroup of G has zero type with respect to IS.

Together with (6.12), these results give
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(7.16) Suppose thai p > 3 or that G is regular. Then the following conditions
are equivalent:

(i) the total number of subgroups of G equals the total number of sub-
groups of B;

(ii) the number of subgroups of G which can be generated by 2 elements
equals the number of subgroups of B which can be generated by
2 elements;

(iii) <& is an Q-series of G and G is lattice-isomorphic to B.

Fig. l(a)

Fig. l(b)

The subgroup lattices in figures 1, 2 show that (7.16) (i) does hot imply
(7.16) (iii) when G is a non-regular 2- or 3-group. Fig. la is the Abelian
group of type (22, 22), fig. lb the group (6.18) of order 2*. Fig. 2a is the
Abelian group of type (3a, 32), fig. 2b the group (6.17) of order 3*.
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Fig. (2a)

Fig. 2(b)

8. The Eulerian Polynomial of a Group of Composite Order

We end with some remarks on soluble and />-soluble groups. Let G be a
group of order paqh • • •, where p, q, • • • are distinct primes, and let x, y, • • •
be the variables in the Eulerian polynomial corresponding to p,q, • • •
respectively. Let N be a normal subgroup of G of order n. By theorem 1 and
induction on the group order

where % involves only those variables which correspond to prime divisors of
n. Hence, if G be ^-soluble,
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(8.1)

and if G be soluble,

(8.2) <f>(G) = P{x)a{y)x{z) • • -.

The last result is due to W. Gaschiitz ([3]).
Gaschiitz's method for determining the factors p, a, • • • when G is soluble

applies equally well to determine the factor p when G is />-soluble. Suppose
that G is />-soluble and consider the factors in a given chief series for G.
Such a factor HjK is said to be complemented when HjK is complemented in
G/K. Now, since G is ^-soluble, either \HjK\ is prime to p or HjK is an
elementary abelian p-gronp. In the latter case, HjK may be regarded, in the
usual way, as an irreducible G-module; as such, it is a vector space over its
field, E, of endomorphisms. If \E\ = p' and dimB {HjK) = /, then \HjK\

Under the relation of G-module isomorphism, the complemented chief
factors of p-powex order fall into a certain number of equivalence classes, say
Co, Clt • • •, Cr. Suppose that Co consists of the (complemented) factors on
which G acts trivially. Suppose also that Ct has kt members and that the
values of e, f corresponding to these members are et, /,- {i = 0, 1, • • •, r).
Suppose finally that the product of the orders of the uncomplemented chief
factors of ^-power order is p'. Then

(fco-ln(
i=0

It is easily proved that in any finite group the index of each maximal sub-
group divides the order of at least one chief factor. Thus, in a ^-soluble
group, the index of each maximal subgroup is either a power of p or prime
to p. Let mv{G) denote the number of maximal subgroups of G of />-power
index (> 1), and write

Pa = {Pk" - l)KP - !)• Pi = {pe<lf'+k')~p"f')l{pei - 1) (* = 1, • • •, r).

Gaschiitz's method shows that

(8-4) m,(G)=ipt;
i=0

and, more precisely, that the number of maximal subgroups of index pk is

2 Pi-

Now, it is easily verified that

/if ^ p{p'*/'k' — l)l(p — 1) (0 ^ * ^ r).
Therefore, since

r

0
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we have (for a ^-soluble group G)

(8.5) m,(G) ^ P(J>" - l)l(p - 1).

Suppose now that G is soluble. It is easily proved that

P(Pa ~ VHP ~ 1) + lit" - !)/(? - 1) + • • • < g
unless g is a prime power. Therefore, if tn(G) denotes the total number of
maximal subgroups of G, we have

(8.6) m(G) = m,(G) + ma{G) + • • • < g.

It would be interesting to know whether (8.6) is valid for all finite groups.
((8.5) is certainly not universally true: the simple group of order 168 has
14 subgroups of index 7.)

It seems likely that every group with Eulerian polynomial of the form
(8.2) is soluble, though I have not been able to prove this. The remarks
which follow bear on this question.

(8.7) p\ \G : G'\ if, and only if, (x - l)\<f>(G).

PROOF. If G has a normal subgroup of index p, then, by theorem 1,
(x — l)\<f>(G). Conversely, suppose that G has no normal subgroup of index
p. Then the number of groups in each conjugacy class of subgroups of
p-power index is divisible by p. Comparing coefficients of y"ze • • • in the
sum formula

f(G; 1, y , z, • • •) = 2 <f>(H; 1, y , z, • • •),
Q

we see that the coefficient of yhzc • • in <f>(G; 1, y, z, • •) is = 1 (m
and so (a; — l)f<£(G).

(8.8) COROLLARY. / / <f>(G) has the form (8.2), G' < G.
In fact, if G is not .cyclic, <£i(G) = 0. Hence one of p(l), ff(l), • • • is zero

and so one of (x ~ 1), (y — 1), • • • divides <f>(G). By (8.7), G' < G.

(8.9) If <f>(G) has the form (8.2) and fiG(l) ^ 0, G is soluble.
In fact, since

M l ) = HG: 0. 0, • • •) = P(OMO) • • •,
the coefficients of y*^ • • •, afz? • • •, in <f>{G) are non-zero. Hence, by (3.2),
G has subgroups of each order g\pa, gjqh, • • • and so, by Hall's theorem,
is soluble.
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