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Abstract

We show how a bi-directional grammar can be used to specify and verbalise answer set programs in
controlled natural language. We start from a program specification in controlled natural language and
translate this specification automatically into an executable answer set program. The resulting answer set
program can be modified following certain naming conventions and the revised version of the program
can then be verbalised in the same subset of natural language that was used as specification language.
The bi-directional grammar is parametrised for processing and generation, deals with referring expressions,
and exploits symmetries in the data structure of the grammar rules whenever these grammar rules need to
be duplicated. We demonstrate that verbalisation requires sentence planning in order to aggregate similar
structures with the aim to improve the readability of the generated specification. Without modifications, the
generated specification is always semantically equivalent to the original one; our bi-directional grammar is
the first one that allows for semantic round-tripping in the context of controlled natural language processing.

KEYWORDS: Bi-directional grammars, controlled natural languages, answer set programming, sentence
planning, executable specifications

1 Introduction

There exist a number of controlled natural languages (Sowa 2004; Clark et al. 2005; Fuchs
et al. 2008; Guy and Schwitter 2017) that have been designed as high-level interface languages
to knowledge systems. However, none of the underlying grammars of these controlled natural
languages is bi-directional in the sense that a specification can be written in controlled natural
language, translated into a formal target representation, and then – after potential modifications
of that target representation – back again into the same subset of natural language. This form
of round-tripping under modification is difficult to achieve, in particular with a single grammar
that can be used for processing as well as for generation. In this paper, we show how such a
bi-directional grammar can be built in form of a logic program for a controlled natural language.
We discuss the implementation of a definite clause grammar that translates a controlled natural
language specification into an executable answer set program. The resulting answer set program
can be modified and then verbalised in controlled natural language using the same grammar
exploiting symmetries in the feature structures of the grammar rules. Without modification of
the original answer set program, this leads to a form of round-tripping that preserves semantic
equivalence but not syntactic equivalence. This work has certain similarities with our previous
work (Schwitter 2008) where a bi-directional grammar is used to translate an experimental

https://doi.org/10.1017/S1471068418000327 Published online by Cambridge University Press

http://orcid.org/0000-0001-8998-7005
https://doi.org/10.1017/S1471068418000327


692 R. Schwitter

controlled natural language into syntactically annotated TPTP1 formulas; these annotated for-
mulas are then stored and serve as templates to answer questions in controlled natural language.
The novelty of the presented work is that no such annotated formulas are required; instead a
sentence planner is used that applies different generation strategies. The definite clause grammar
uses an internal format for the representation of clauses for the answer set program. This internal
format is designed in such a way that it can be used for processing and generation purposes
and it respects at the same time accessibility constraints of antecedents for referring expressions.
The grammar of the controlled natural language for answer set programs is more restricted than
a corresponding grammar for first-order formulas, since some linguistic constructions can only
occur at certain positions in particular sentences. However, in contrast to a controlled natural
language that is equivalent to first-order logic, a controlled language for answer set programs
allows us to distinguish, for example, between strong and weak negation using two separate
linguistic constructions for these forms of negation.

The rest of this paper is structured as follows: In Section 2, we recall linguistic prelimi-
naries and sketch the controlled natural language to be used. In Section 3, we briefly review
answer set programming and show how it has been employed for natural language processing,
with a particular focus on controlled natural language processing. In Section 4, we present a
specification written in controlled natural language, discuss the resulting answer set program
and its verbalisation. In Section 5, we present the bi-directional grammar in detail and explain
how symmetries in the feature structures of the grammar rules can be exploited to process
and generate sentences. In Section 6, we introduce the sentence planner and a more complex
specification, and discuss the planning strategies that are applied to the internal format for an-
swer set programs before the bi-directional grammar is used to verbalise an answer set pro-
gram. In Section 7, we summarise the key points of our approach, highlight its benefits, and
conclude.

2 Linguistic Preliminaries

The controlled natural language that we discuss here is based on the one used in the PENGASP

system (Guy and Schwitter 2017). This system translates specifications written in controlled
language into answer set programs but not back again. This is because the grammar of the lan-
guage PENGASP has not been designed with bi-directionality in mind. The language PENGASP

distinguishes between simple and complex sentences. We focus in the following introduction
mainly on those linguistic constructions that occur also in the subsequent example specifications.

2.1 Simple Sentences

Simple sentences in our controlled natural language consist of a subject and a predicate, and
include zero or more complements depending on the verbal predicate. For example, the following
are simple sentences:

1. Bob is a student.
2. Sue Miller works.
3. Tom studies at Macquarie University.

1 http://www.cs.miami.edu/˜tptp/
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4. The Biology book is expensive.
5. There is a student.

Sentence (1) consists of a proper name (Bob) in subject position, followed by a linking verb
(is), and a subject complement (a student). Sentence (2) contains an intransitive verb (works) but
no complement. Sentence (3) contains a transitive prepositional verb (studies at) with a comple-
ment in form of a proper name (Macquarie University) in object position. Sentence (4) consists
of a definite noun phrase (The Biology book) in subject position followed by a linking verb and an
adjective (expensive) as subject complement. Sentence (5) shows that it is possible to introduce
new entities with an expletive there-construction where there acts as filler for the subject.

2.2 Complex Sentences

Complex sentences are built from simpler sentences through coordination, subordination, quan-
tification, and negation:

6. Tom studies at Macquarie University and is enrolled in Information Technology.
7. Bob who is enrolled in Linguistics studies or parties.
8. Tom is enrolled in COMP329, COMP330 and COMP332.
9. Every student who works is successful.

10. It is not the case that a student who is enrolled in Information Technology parties.
11. If a student does not provably work then the student does not work.

In sentence (6), two verb phrases are coordinated with the help of a conjunction (and). In
sentence (7), a subordinate relative clause (who is enrolled in Linguistics) is used in subject
position and two verb phrases are coordinated with the help of a disjunction (or). Sentence
(8) contains a coordination in form of an enumeration (COMP329, COMP330 and COMP332)
in object position. Sentence (9) uses a universally quantified noun phrase (Every student) that
contains a relative clause (who works) in subject positions. In (10), the entire complex sentence
is negated with the help of the predefined construction It is not the case that; and finally in (11),
weak negation (does not provably work) is used in the condition of a conditional sentence and
strong negation (does not work) in the consequent of that sentence.

3 Answer Set Programming and Natural Language Processing

Answer set programming is a modern approach to declarative programming and has its roots in
logic programming, logic-based knowledge representation and reasoning, deductive databases,
and constraint solving (Gelfond and Lifschitz 1988; Baral 2003; Lifschitz 2008; Gebser et al.
2017). The main idea behind answer set programming is to represent a computational problem as
a (non-monotonic) logic program whose resulting models (= answer sets) correspond to solutions
of the problem. Answer set programs consist of clauses that look similar to clauses in Prolog;
however, in answer set programming an entirely different computational mechanism is used that
computes answer sets in a bottom-up fashion. An answer set program consists of a set of clauses
(rules) of the form:

L1 ; ... ; Lk :- Lk+1, ..., Lm, not Lm+1, ..., not Ln.

where all Li are literals or strongly negated literals. The connective “:-” stands for if and separates
the head from the body of the rule. The connective “;” in the head of the rule stands for an
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Every student who works is successful. % C1

Every student who studies at Macquarie University works or parties. % C2

It is not the case that a student who is enrolled in Information % C3

Technology parties.

Tom is a student. % C4

Tom studies at Macquarie University and is enrolled in Information % C5

Technology.

Bob is a student. % C6

Bob studies at Macquarie University and does not work. % C7

Who is successful? % C8

Fig. 1. Successful Student in Controlled Natural Language

epistemic disjunction (at least one literal is believed to be true). The connective “,” in the body
of the rule stands for and and the connective “not” for negation as failure (also called weak
negation). A rule with an empty body and without an if-connective is called a fact, and a rule
without a head is called a constraint. Answer set programming is supported by powerful tools; for
example, the clingo system (Gebser et al. 2017) combines a grounder and a solver. The grounder
converts an answer set program that contains variables into an equivalent ground (variable-free)
propositional program and the solver computes the answer sets of the propositional program.
Answers to questions can then be extracted directly from the resulting answer sets.

Answer set programming is an interesting formalism for knowledge representation in the
context of natural language processing because of its ability to combine strong and weak negation
which offers support for non-monotonic reasoning. Answer set programming has been used
for syntactic parsing in the context of the Combinatory Categorial Grammar formalism (Lieler
and Schüller 2012; Schüller 2013), for semantic parsing and representation of textual informa-
tion (Baral et al. 2011; Nguyen et al. 2015), and for natural language understanding in the context
of question answering (Tari and Baral 2005) and the Winograd Schema Challenge (Schüller
2014; Bailey et al. 2015). In the context of controlled natural language processing, answer set
programming has been used as a prototype of a rule system in the Attempto project (Kuhn 2007;
Fuchs et al. 2008), as a target language for biomedical queries related to drug discovery (Erdem
and Yeniterzi 2009), as a source language for generating explanations for biomedical queries (Er-
dem and Öztok 2015), as a framework for human-robot interaction (Demirel et al. 2016), and as
a target language for writing executable specifications (Guy and Schwitter 2017).

4 From Controlled Natural Language to Answer Set Programs and Back Again

Before we discuss the implementation of our bi-directional grammar for answer set programs in
Section 5, we first illustrate how our controlled natural language can be used for specifying and
verbalising answer set programs, and thereby motivate its usefulness.

Figure 1 shows a specification written in controlled natural language. This specification con-
sists of two universally quantified sentences (C1 and C2), a constraint (C3), four declarative
sentences (C4-C7), followed by a wh-question (C8). Note that the two universally quantified
sentences contain an embedded relative clause in subject position; the second one of these
universally quantified sentences (C2) contains a disjunctive verb phrase. The two declarative
sentences (C5 and C7) are complex and contain coordinated verb phrases. Note also that the
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successful(A) :- student(A), work(A). % A1

work(B) ; party(B) :- student(B), study_at(B,macquarie_university). % A2

:- student(C), enrolled_in(C,information_technology), party(C). % A3

student(tom). % A4

study_at(tom,macquarie_university). % A5

enrolled_in(tom,information_technology). % A6

student(bob). % A7

study_at(bob,macquarie_university). % A8

-work(bob). % A9

answer(D) :- successful(D). % A10

Fig. 2. Successful Student as Answer Set Program

proper name Macquarie University in C5 and C7 is used anaphorically and links back to the proper
name Macquarie University introduced in C2. This specification is automatically translated into the
answer set program displayed in Figure 2.

Note that the translation of sentence C1 results in a normal clause (A1) with a single literal
in its head. The translation of sentence C2 leads to a clause with a disjunction in its head (A2),
and the translation of sentence C3 to a constraint (A3). The translation of the two declarative
sentences C4 and C6 results in a single fact (A4+A7) for both sentences, and the translation of the
two coordinated sentences C5 and C7 leads to two facts each (A5+A6 and A8+A9). In the case of C7
one of these facts is strongly negated (A9). Finally, the translation of the wh-question C8 results
in a rule with a specific answer literal (answer(D)) in its head (A10). The user can now modify
this answer set program as illustrated in Figure 3 – as long as they stick to the existing naming
convention.

stressed(A) :- student(A), work(A). % A1'

work(B) ; party(B) :- student(B), study_at(B,macquarie_university). % A2'

:- student(C), enrolled_in(C,information_technology), party(C). % A3'

student(tom). % A4'

study_at(tom,macquarie_university). % A5'

enrolled_in(tom,information_technology). % A6'

student(bob). % A7'

study_at(bob,macquarie_university). % A8'

enrolled_in(bob,linguistics). % A9'

party(bob). % A10'

answer(D) :- stressed(D). % A11'

Fig. 3. Modified Answer Set Program

This modified answer set program contains the following changes: the literal successful(A)
in the head of the clause A1 has been replaced by the literal stressed(A) on line A1'; the new fact
enrolled in(bob,linguistics) has been added to the program on line A9'; the negated literal
-work(bob) on line A9 has been replaced by the positive literal party(bob) on line A10'; and the
literal successful(D) in the body of the clause that answers the question on line A10 has been
replaced by the literal stressed(D) on line A11'. This modified answer set program can now be
automatically verbalised in controlled natural language as illustrated in Figure 4.

https://doi.org/10.1017/S1471068418000327 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000327


696 R. Schwitter

Every student who works is stressed. % C1'

Every student who studies at Macquarie University works or parties. % C2'

It is not the case that a student who is enrolled in Information % C3'

Technology parties.

Tom is a student. % C4'

Tom studies at Macquarie University and is enrolled in Information % C5'

Technology.

Bob is a student. % C6'

Bob studies at Macquarie University and is enrolled in Linguistics. % C7'

Bob parties. % C8'

Who is stressed? % C9'

Fig. 4. Verbalisation of the Modified Answer Set Program in Controlled Natural Language

We observe that the clauses on line A5' and A6' and similarly those on line A8' and A9' of the
modified answer set program have been used to generate a coordinated verb phrase as shown on
line C5' and C7' of Figure 4. This is a form of aggregation that has been executed by the sentence
planner and combines similar structures that fall under the same subject based on the proximity
of the clauses. Alternatively, the sentence planner could use another aggregation strategy and
combine, for example, the clauses on line A4' and A5' or those on line A4' and A5' and A6' into
a verb phrase (more on this in Section 6).

5 Implementation of the Bi-directional Grammar

To implement our bi-directional grammar, we use the definite clause grammar (DCG) formal-
ism (Pereira and Warren 1980; Pereira and Shieber 1987). This formalism gives us a conve-
nient notation to express feature structures and the resulting grammar can easily be transformed
into another notation via term expansion, if an alternative parsing strategy is required (Guy
and Schwitter 2017). Our bi-directional grammar implements a syntactic-semantic interface
where the meaning of a textual specification and its linguistic constituents is established in
a compositional way during the translation of the specification into an answer set program.
Unification is used to map the syntactic constituents of the controlled language on terms and
(partial) clauses of the corresponding answer set program. In our context, a textual specification
A and its verbalisation A′ can be shown to be semantically equivalent, if they both generate the
same answer set program that entails the same solutions.

Our implementation of the grammar relies on four other components that are necessary to
build an operational system: (1) a tokeniser that splits a specification written in controlled natural
language into a list of tokens for each sentence; (2) a writer that translates the internal format
constructed during the parsing process into the final answer set program; (3) a reader that reads
a (potentially modified) answer set program and converts this program into the internal format;
and (4) a sentence planner that tries to apply a number of aggregation strategies, reorganises the
internal format for this purpose, before it is used by the grammar for the generation process.

5.1 Internal Format for Answer Set Programs

The bi-directional definite clause grammar uses an internal format for answer set programs and
a special feature structure that distinguishes between a processing and a generation mode in the
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grammar rules. Depending on this mode, the same difference list (Sterling and Shapiro 1994) is
used as a data structure to either construct the internal format for an input text or to deconstruct
the internal format to generate a verbalisation. The internal format is based on a flat notation that
uses a small number of typed predicates (e.g. class, pred, prop, named) that are associated with
linguistic categories (e.g. noun, verb, adjective, proper name) in the lexicon. This flat notation
allows us to abstract over individual predicate names and makes the processing for the anaphora
resolution algorithm and sentence planner easier. Let us briefly illustrate the form and structure
of this internal format with the help of the following two example sentences:

12. Tom is a student and works.
13. If a student works then the student is successful.

In the case of processing, the tokeniser sends a list of tokens for these two sentences to the
bi-directional grammar that builds up the following internal format during the parsing process
with the help of the information that is available in the lexicon for these tokens:

[['.', [pred(C,work), class(C,student)], '-:', [prop(C,successful)],

'.', pred(A,work), class(B,student), pred(A,B,isa), named(A,tom)]]

As this example shows, the internal format is built up in reverse order; the literals derived from
the first sentence (12) follow the literals derived from the second sentence (13). As a consequence
of this ordering, the arrow operator for the rule (-:) points from the body on the left side of the
rule to the head on the right side. Note that this internal format retains the full stops in order
to separate the representation of individual clauses and uses, in our example, two sublists as
part of the second clause. These sublists constrain the accessibility of antecedents for referring
expressions – in a similar way as postulated in discourse representation theory (Kamp and Reyle
1993; Geurts et al. 2015). This internal format is then automatically translated by the writer into
the final answer set program. In order to achieve this, the writer reverses the order of the clauses,
removes auxiliary literals, and turns the typed representation of literals into an untyped one:

student(tom). work(tom).

successful(C) :- student(C), work(C).

In the case of generation, the clauses of the answer set program are first read by the reader that
reconstructs the flat internal format. Since we use the same data structure (difference list) in the
grammar for processing and generation, the internal format for clauses is now built up in normal
order and not in reverse order as before. This has – among other things – the effect that the arrow
operator (:-) of the rule now points from the body of the rule on the right side to the head on the
left side:

[[named(A,tom), pred(A,B,isa), class(B,student), pred(B,work), '.',

[prop(C,successful)], ':-', [class(C,student), pred(C,work)], '.']]

This reconstructed internal format is then sent to the sentence planner that tries to apply a
number of strategies to aggregate the information in order to generate, for example, coordinated
sentences or to take care of enumerations in sentences. As we will see in Section 6, sentence
planning requires reorganising the internal format to achieve the intended result.

5.2 Overview of Grammar Rules

In this section we introduce the format of the bi-directional definite clause grammar rules. Since
our grammar is a grammar for a controlled natural natural, specific restrictions apply to the
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grammar rules. We distinguish between grammar rules for declarative sentences, conditional
sentences, constraints, and questions. This distinction is important since only certain syntactic
constructions can occur at certain positions in these sentences. For example, a noun phrase in
subject position of a declarative sentence can only be coordinated if this noun phrase is followed
by a linking verb or a noun phrase that occurs in the subject position in the consequent of a
conditional sentence can only have the form of a definite noun phrase. On the interface level,
these syntactic constraints are enforced by a lookahead text editor that guides the writing process
of the user and uses the grammar as starting point to extract the lookahead information (for details
about this interface technology see (Guy and Schwitter 2017)).

When a specification is processed, the text is split up by the tokeniser into a list of lists where
each list contains those tokens that represent a sentence. At the beginning the difference list
that constructs the internal representation for an answer set program has the following form:
[[]]-C, where the incoming part consists of a list that contains an empty list and the outgoing
part consists of a variable; the same applies to the difference list that collects all accessible
antecedents during the parsing process. When an answer set program is verbalised, the incoming
part of the difference list consists of an embedded list of elements that stand for the internal
format of the answer set program; of course, the lists for the tokens and accessible antecedents
are empty at this point. It is important to note that these difference lists are processed recursively
for each sentence or for each clause of an answer set program and that they establish a context
for the actual interpretation.

The following is a grammar rule in definite clause grammar format; it takes as input either a
list of tokens of a declarative sentence and updates the answer set program under construction or
it takes as input a (partial) answer set program and produces a list of tokens that correspond to a
declarative sentence:

s(mode:M, ct:fact, cl:C1-C4, ante:A1-A3) -->

np(mode:M, ct:fact, crd:'-', fcn:subj, num:N, arg:X, cl:C1-C2, ante:A1-A2),

vp(mode:M, ct:fact, crd:'+', num:N, arg:X, cl:C2-C3, ante:A2-A3),

fs(mode:M, cl:C3-C4).

This grammar rule states that a declarative sentence (s) consists of a noun phrase (np) and a
verb phrase (vp), followed by a full stop (fs). This grammar rule contains additional arguments
that implement feature structures in the form of attribute:value pairs that can be directly pro-
cessed via unification. The feature structure mode:M distinguishes between the processing mode
(proc) and generation mode (gen). The feature structure ct:fact stands for the clause type and
specifies that the noun phrase as well as the verb phrase of this rule are used to generate or
process facts. The feature structures cl:C1-C4, cl:C1-C2, cl:C2-C3, and cl:C3-C4 implement a
difference list and are used to construct the internal format for an answer set program or to decon-
struct the internal format of an answer set program to drive the generation of a verbalisation. The
feature structures ante:A1-A3, ante:A1-A2, and ante:A2-A3 implement a second difference list
that stores all accessible antecedents. These accessible literals are continuously updated by the
anaphora resolution algorithm during the parsing process. The feature structure crd:'-' specifies
that the noun phrase of this rule cannot be coordinated and the feature structure crd:'+' that
the verb phrase of this rule can be coordinated. The feature structure num:N deals with number
agreement between noun phrase and verb phrase, while the feature structure arg:X makes the
variable for the entity denoted by the noun phrase in subject position (fcn:subj) available for the
literal described by the verb phrase. Our implementation uses additional feature structures that
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build up a syntax tree and a paraphrase during the parsing process but these feature structures are
not shown in our example to keep the presentation clear and compact.

The following grammar rule is a preterminal rule that is used in the processing mode (proc)
and adds the literal named(X,Name) for a proper name to the outgoing part of the difference list
that constructs the internal format and to the difference list that stores all accessible antecedents:

pname(mode:proc, fcn:F, num:N, arg:X,

cl:[C1|C2]-[[named(X,Name)|C1]|C2],

ante:[A1|A2]-[[named(X,Name)|A1]|A2]) -->

{ lexicon(cat:pname, mode:proc, wform:WForm, fcn:F, num:N, arg:X,

lit:named(X,Name)) },

WForm.

Note that the outgoing list contains all information of the incoming list plus the added literal.
At this point, this addition is only preliminary and the anaphora resolution algorithm will decide
if this literal is new or not. The grammar rule that is used in the generation mode (gen) for proper
names looks very similar to the grammar rule in the processing mode, but now a literal for the
proper name is removed from the incoming list of clauses instead of added to the outgoing list:

pname(mode:gen, fcn:F, num:N, arg:X,

cl:[[named(X,Name)|C1]|C2]-[C1|C2],

ante:[A1|A2]-[[named(X,Name)|A1]|A2]) -->

{ lexicon(cat:pname, mode:gen, wform:WForm, fcn:F, num:N, arg:X,

lit:named(X,Name)) },

WForm.

The grammar rule below translates conditional sentences into the internal format for rules and
the internal format for rules into conditional sentences:

s(mode:M, cl:C1-C3, ante:A1-A3) -->

prep(mode:M, wform:['If'], head:H1-H2, body:B1-B2, cl:C1-C2),

s(mode:M, loc:body, cl:B1-B2, ante:A1-A2),

adv(mode:M, wform:[then]),

s(mode:M, loc:head, cl:H1-H2, ante:A2-A3),

fs(mode:M, cl:C2-C3).

The feature structures cl:C1-C3, cl:C1-C2, and cl:C2-C3 implement again a difference list
and are used to construct or deconstruct the internal format of a rule. The two feature struc-
tures cl:H1-H2 and cl:B1-B2 implement another difference list that provides the relevant data
structures for the head and body of the rule. The feature structures ante:A1-A3, ante:A1-A2,
and ante:A2-A3 are used as before to store those antecedents that are currently accessible. The
overall structure for the rule as well as the structure of the head and the body for the rule become
available via the following preterminal grammar rules:

prep(mode:proc, wform:WForm,

head:[[]|C2]-[Head, Body, C3|C4],

body:[[]|C1]-C2,

cl:C1-[[Body, '-:', Head|C3]|C4]) -->

{ lexicon(cat:prep, wform:WForm) },

WForm.

prep(mode:gen, wform:WForm,

head:C2-[[]|C1],

body:[Body, Head, C3|C4]-[[]|C2],
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cl:[[Head, ':-', Body|C3]|C4]-C1) -->

{ lexicon(cat:prep, wform:WForm) },

WForm.

The first rule is used for processing and the second one for generation. In the case of processing
a conditional sentence, first the body of a rule is constructed and then the head. Constructing the
body of a rule starts with an empty list ([]) and takes the already processed context in list C1
into consideration for anaphora resolution. During the parsing process literals are added to the
empty list, and the resulting outgoing list (C2) then builds the new context for processing the
head of the rule. The processing of the head of the rule starts again with an empty list and
results in an outgoing list that consists of a list (Head) that contains the head literals and a list
(Body) that contains the body literals. Note that the variable C3 stands for a list that contains the
previously processed context. These elements are then combined in a rule in the outgoing part
of the difference list ([[Body, '-:', Head|C3]|C4]) that build up the clauses for the answer set
program. It is interesting to see that we end up in the case of generation with feature structures
that are symmetric to processing. In the case of generation, a rule is deconstructed into a body
(Body) and a head (Head), and then the body is first processed followed by the head. Note that the
successful processing of the body results in an empty list ([]) in the outgoing difference list, the
same happens after the processing of the head. We observe that all grammar rules for preterminal
symbols are symmetric, including grammar rules that process cardinality quantifiers (cqnt) such
as exactly Number Noun, at least Number Noun, and at most Number Noun:

cqnt(mode:proc, wform:WForm, num:N,

lit:[[]|C]-[Lit|C],

cond:[[]|C]-[Cs|C],

cl:[[]|C]-[H|C]) -->

{ lexicon(cat:cqnt, mode:proc, wform:WForm, num:N, lit:Lit, cond:Cs, cl:H) },

WForm.

cqnt(mode:gen, wform:WForm, num:N,

lit:[Lit|C]-[[]|C],

cond:[Cs|C]-[[]|C],

cl:[H|C]-[[]|C]) -->

{ lexicon(cat:cqnt, mode:gen, wform:WForm, num:N, lit:Lit, cond:Cs, cl:H) },

WForm.

The two rules above take part in the processing and generation of clauses with a cardinality
constraint in the head: Lower1 { Lit:Ds } Upper2 :- BODY. Here the expression Lit:Ds is a
conditional literal consisting of a basic literal (Lit) and one or more domain predicates (Ds).

5.3 Anaphora Resolution

Proper names and definite noun phrases can be used as referring expressions in the controlled
natural language PENGASP. In our case the list structure of the internal representation constrains
the accessibility of antecedents for referring expressions. In particular, a referring expression can
only refer to an expression in the current list or to an expression in a list superordinate to that
list. A list that encloses the current list is superordinate to it; and in addition, a list in the body of
a rule is superordinate to the list in the head of the rule, but not vice versa.

The following grammar rule processes a definite noun phrase and checks whether this definite
noun phrase introduces a new entity or whether it is used anaphorically. After processing the
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determiner (det) and the noun (noun), the grammar rule calls the anaphora resolution algorithm
for definite noun phrases (def) and updates the internal format:

np(mode:M, loc:body, crd:'-', fcn:subj, num:N, arg:X,

cl:C1-C4, ante:A1-A3) -->

det(mode:M, num:N, def:'+', cl:C1-C2),

noun(mode:M, num:N, arg:X, cl:C2-C3, ante:A1-A2),

{ anaphora_resolution(def, M, X, C1, C3, C4, A1, A2, A3) }.

That means after processing of a definite noun phrase and temporarily adding the correspond-
ing literal (for example, class(X,student)) to the outgoing part (C3) of the difference list, the
anaphora resolution algorithm checks, whether an accessible literal already exists in the data
structure C1 or not. If one exists, then the variable (X) of the newly added literal is unified with
the variable of the closest accessible antecedent and the temporarily added literal is removed
from the outgoing part of the difference list C3; resulting in C4. If no accessible antecedent exists,
then the definite noun phrase is treated as an indefinite one and the new literal is not removed.
The anaphora resolution algorithm also updates the list of accessible antecedents (A3) at the same
time that can then be used to generate a list of referring expressions for the user interface.

The same grammar rule is used in the case of generation to decide whether a definite noun
phrase can be generated or not. Since the internal data structure is reduced during the generation
process, the anaphora resolution algorithm uses the list of accessible antecedents (A1) that is built
up in parallel to check if a definite noun phrase can be generated or not.

6 Sentence Planner

In the case of generation, the reader first reads the answer set program and reconstructs the
internal format. The sentence planner then tries to apply a number of aggregation strategies (Re-
iter and Dale 2000; Horacek 2015). Aggregation requires to reorganise the internal format of
the answer set program. Remember that the internal format relies on a flat notation. In order to
reconstruct this internal format for the modified answer set program in Figure 3, the reader has to
add literals of the form named(Var,Name) to the internal representation for each constant (proper
name) that occurs in the answer set program. After this reconstruction process, the result looks,
for example, as follows for A5' and A6':

[[..., named(F,tom),

pred(F,C,study_at),

named(C,macquarie_university), '.',

named(F,tom),

prop(F,E,enrolled_in),

named(E,information_technology), '.', ...]]

In the next step, the sentence planner tries to apply a suitable aggregation strategy using this
reconstructed representation as a starting point. One possible strategy is to identify identical
literals that can occur in the subject position (for example, named(F,tom)) and literals with the
same number of arguments (for example, pred(F,C,study at) and prop(F,E,enrolled in)) that
can occur in the predicate position, and aggregate these literals in order to generate a coordinated
verb phrase. In our case, the sentence planner generates the following internal structure for verb
phrase coordination:
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[[..., named(F,tom),

pred(F,C,study_at),

named(C,macquarie_university),

prop(F,E,enrolled_in),

named(E,information_technology), '.', ...]]

The sentence planner only aggregates up to three literals in predicate position and takes the
number of their arguments and their proximity into consideration. That means no more than three
verbs/relational adjectives with the same number of complements are currently coordinated in
order to achieve good readability of the resulting specification.

In many cases the reconstruction of the internal structure is more complex and the sentence
planner needs to select among the available strategies. We illustrate why this is the case with the
help of the graph colouring problem (Gebser et al. 2012). The graph colouring problem deals
with the assignment of different colours to nodes of a graph under certain constraints as specified
in controlled natural language in Figure 5:

The node 1 is connected to the nodes 2, 3 and 4. % C1

The node 2 is connected to the nodes 4, 5 and 6. % C2

The node 3 is connected to the nodes 1, 4 and 5. % C3

The node 4 is connected to the nodes 1 and 2. % C4

The node 5 is connected to the nodes 3, 4 and 6. % C5

The node 6 is connected to the nodes 2, 3 and 5. % C6

Red is a colour. % C7

Blue is a colour. % C8

Green is a colour. % C9

Every node is assigned to exactly one colour. % C10

It is not the case that a node X is assigned to a colour % C11

and a node Y is assigned to the colour

and the node X is connected to the node Y.

Fig. 5. Graph Colouring Problem in Controlled Natural Language

This specification shows the use of enumerations in object position (C1-C6). It also uses explicit
variables (X and Y) in C11 to distinguish noun phrases that have the same form but denote different
entities. The translation of this specification results in the answer set program in Figure 6. This
program does not keep all the information that is available in the internal format. In the internal
format, integers (1-6) are represented with the help of literals of the form integer(Var,Integer)

but result in integer arguments (for example, node(1)) in the answer set program and variables
(X and Y) are represented via literals of the form variable(Var,VariableName) which are not
necessary anymore in the answer set program after anaphora resolution.

Generating a verbalisation that starts from the answer set program in Figure 6 requires again
first the explicit reconstruction of the internal representation by the reader. For example, this
reconstruction looks as follows for A4':

[[..., class(D,node), integer(D,4), prop(D,A,connected_to), class(A,node),

integer(A,1), '.',

class(D,node), integer(D,4), prop(D,B,connected_to), class(B,node),

integer(B,2), '.', ...]]
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node(1). connected_to(1,2). node(2). connected_to(1,3). node(3). % A1'

connected_to(1,4). node(4).

connected_to(2,4). connected_to(2,5). node(5). connected_to(2,6). % A2'

node(6).

connected_to(3,1). connected_to(3,4). connected_to(3,5). % A3'

connected_to(4,1). connected_to(4,2). % A4'

connected_to(5,3). connected_to(5,4). connected_to(5,6). % A5'

connected_to(6,2). connected_to(6,3). connected_to(6,5). % A6'

colour(red). % A7'

colour(blue). % A8'

colour(green). % A9'

1 { assigned_to(A,B) : colour(B) } 1 :- node(A). % A10'

:- node(C), assigned_to(C,D), colour(D), node(E), assigned_to(E,D), % A11'

connected_to(C,E).

Fig. 6. Graph Colouring Problem as Answer Set Program

The sentence planner then reorganises this internal format in order to prepare for enumerating
the integers (1, 2) of those nodes in object position that have the same subject and the same
property name. In our case, this results in the following internal representation:

[[..., class(D,node),

integer(D,4),

prop(D,A,connected_to),

class(A,node),

integer(A,1),

prop(D,B,connected_to),

class(B,node),

integer(B,2), '.', ...]]

The grammar rules are ordered in such a way that priority is given to enumeration for this
structure and not to verb phrase coordination. In our case, the original sentence C4, here repeated
as (a), is generated and not the sentence (b):

a. The node 4 is connected to the nodes 1 and 2.
b. The node 4 is connected to the node 1 and is connected to the node 2.

In the case of A11', the reconstruction process is more complex since the clause in the answer
set program contains two literals (node(C) and node(E)) with the same name. These literals need
to be distinguished on the level of the controlled natural language with the help of variable names.
That means literals of the form variable(Var,VariableName) that represent variable names need
to be added to the internal representation:

[[..., ':-', [class(O,node), variable(O,'X'),

prop(O,P,assigned_to),

class(P,colour),

class(Q,node), variable(Q,'Y'),

prop(Q,P,assigned_to),

class(P,colour),

class(O,node), variable(O,'X'),

prop(O,Q,connected_to),

class(Q,node), variable(Q,'Y')], '.', ...]]
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In order to generate a verbalisation that distinguishes between indefinite and definite noun
phrases in the same way as illustrated in C11 of Figure 5, the first occurrence of the literals that
generate an indefinite noun phrase (for example, class(O,node), variable(O,'X')) are added
to the outgoing difference list that maintains all accessible antecedents, so that this information
can be looked up later from that list to decide whether a definite noun phrase can be generated or
not if the same literals occur a second time in the internal representation.

7 Conclusion

In this paper, we presented a bi-directional grammar for the controlled natural language PENGASP.
This grammar uses the definite clause grammar formalism and allows us to translate a specifica-
tion written in controlled natural language into an answer set program using a difference list as
main data structure. This answer set program can then be translated (after potential modifications)
back again into a controlled language specification. The same grammar rules can be used for
processing and for generation; only those grammar rules that process preterminal symbols and
add literals to or remove literals from the difference list need to be duplicated. However, these
grammar rules have a nice symmetric structure that reflects the processing and generation task.
The grammar also deals with referring expressions and resolves these expressions during the
parsing process. The generation process requires sentence planning and allows us to generate
semantically equivalent specifications if the answer set program has not been modified. If the
program has been modified, then round-tripping is still possible as long as we stick to the same
naming convention. The presented approach allows domain specialists who may not be familiar
with answer set programming to specify and inspect an answer set program on the level of a
controlled natural language. To the best of our knowledge, this is the first bi-directional grammar
of a controlled natural language that can be used to process and verbalise answer set programs.

References

BAILEY, D., HARRISON, A., LIERLER, Y., LIFSCHITZ, V. AND MICHAEL, J. 2015. The Winograd
Schema Challenge and Reasoning about Correlation. Working Notes of the Symposium on Logical
Formalizations of Commonsense Reasoning.

BARAL, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press.

BARAL, C., DZIFCAK, J., GONZALEZ, M. A. AND ZHOU, J. 2011. Using Inverse λ and Generalization
to Translate English to Formal Languages. Proceedings of the Ninth International Conference in
Computational Semantics, 35–44.

CLARK, P., HARRISON, P., JENKINS, T., THOMPSON, J. AND WOJCIK, R. 2005. Acquiring and Using
World Knowledge using a Restricted Subset of English. The 18th International FLAIRS Conference
(FLAIRS’05), 506–511.

DEMIREL, E., GUR, K. D., AND ERDEM, E. 2016. Human-Robot Interaction in a Shopping Mall: A CNL
Approach. CNL 2016, 111–122.

ERDEM, E. AND YENITERZI, R. 2009. Transforming controlled natural language biomedical queries into
answer set programs. Proceedings of the Workshop on BioNLP, 117–124.
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