ON M-SYMMETRIC LATTICES

BY
R. PADMANABHAN ${ }^{\mathbf{1}}$)

Introduction. Every \perp-symmetric relatively semi-orthocomplemented lattice is M-symmetric. This answers the Problem 1 in [2] in the affirmative and provides a new proof to a result on \perp-symmetric lattices proved in [2] (Corollary below).
The notation and terminology are as in [2].
Let $\langle L ; \wedge, v\rangle$ be a lattice. Two elements a and b of L are said to form a modular pair, in symbols $a M b$, if

$$
(c \vee a) \wedge b=c \vee(a \wedge b) \text { for every } c \leq b
$$

The relation $a M^{*} b$ is defined dually.
With each element k of L we associate two mappings of L into L, thus: $x \varphi_{k}=$ $x \wedge k$ and $x \psi_{k}=x \vee k$. The following lemma [1, p. 82], connecting the modular relation with certain properties of the above mappings is basic to our discussion.

Lemma [1]. For any two elements a, b of a lattice L, the following statements are equivalent:
(1) The mapping $\varphi_{b}:[a, a \vee b] \rightarrow[a \wedge b, b]$ is onto
(2) $y \psi_{a} \varphi_{b}=y$ for all $y \in[a \wedge b, b]$
(3) The mapping $\psi_{a}:[a \wedge b, b] \rightarrow[a, a \vee b]$ is one-to-one
(4) $a M b$

A lattice L is called M-symmetric if whenever $a M b$ holds we have $b M a$. A lattice L with 0 is called \perp-symmetric if $a \wedge b=0$ and $a M b$ implies $b M a$.

If, in a lattice L with 0 , there exists a binary relation \perp satisfying $a \perp a \Rightarrow a=0$, $a \perp b \Rightarrow b \perp a, a \perp b, a_{1} \leq a \Rightarrow a_{1} \perp b$ and $a \perp b, a \vee b \perp c \Rightarrow a \perp b \vee c$ then the system $\langle L ; \vee, \wedge, \perp\rangle$ is called a semi-ortholattice. A semi-ortholattice is relatively semiorthocomplemented if for every pair of elements (a, b) with $a \leq b$, there exists an element c such that

$$
b=a \vee c \quad \text { and } a \perp c
$$

Finally, let a and b be elements of a lattice L with 0 . An element c is a left complement within b of a in $a \vee b$ if

$$
\begin{equation*}
a \vee b=a \vee c, \quad a \wedge c=0, \quad c M a \quad \text { and } \quad c \leq b \tag{1}
\end{equation*}
$$

${ }^{(1)}$) This research was supported by the National Research Council of Canada.

Theorem. For a relatively semi-orthocomplemented lattice L the following statements are equivalent:
(i) L is M-symmetric
(ii) L is \perp-symmetric
(iii) If $a M b$ then a has a left-complement within b.

Proof. (i) \Rightarrow (ii) is trivial.
(ii) \Rightarrow (iii): Let $a M b$. If $a \wedge b=0$ then $b M a$ and b itself is a left-complement of a.

Let $a \wedge b>0$. Choose a relative semi-orthocomplement c of $a \wedge b$ in b. So we have $(a \wedge b) \vee c=b$ and $a \wedge b \perp c$. Hence $a \wedge b \wedge c=0$ and $a \wedge b M c$ [2, §2]. It follows that $a \vee c=a \vee(a \wedge b) \vee c=a \vee b$ and $a \wedge c=0$. Since $a M b$ and $a \wedge b M c$, Lemma 1 assures that the maps $\varphi_{b}:[a, a \vee b] \rightarrow[a \wedge b, b]$ and $\varphi_{c}:[a \wedge b, b] \rightarrow[0, c]$ are onto. Hence $x \varphi_{b} \varphi_{c}=x \varphi_{c}$ and thus the map $\varphi_{c}:[a, a \vee c] \rightarrow[a \wedge c, c]$ is onto. Again, from Lemma 1, $a M c$. Since $a \wedge c=0$ and L is \perp-symmetric, $c M a$ follows. Thus c is a left complement within b of a in $a \vee b$.
(iii) \Rightarrow (i): Let $a M b$. By (iii) we can choose a left complement c of a in b. Let $y \in$ $[a \wedge b, a] \subseteq[a \wedge c, a]$. By $c M a$ and Lemma 1, there exists an $x \in[c, a \vee c]$ such that $x \varphi_{a}=y$. Thus $x \geq y \geq a \wedge b$ and hence $x \vee c \geq(a \wedge b) \vee c=b$ (i.e.) $x \geq b$ which shows that this x indeed belongs to the interval $[b, a \vee b]$ and hence the mapping $\varphi_{a}:[b, a \vee b] \rightarrow[a \wedge b, a]$ is onto. Thus we get $b M a$.

Corollary [2, Theorem 1.14]. A \perp-symmetric lattice L with 1 satisfying the condition that every element a of L has a complement a^{\prime} such that $a M a^{\prime}$ and $a^{\prime} M^{*} a$ is M-symmetric.

Proof. Such a lattice is relatively semi-orthocomplemented by Lemma 3.6 of [2].

References

1. G. Birkhoff, Lattice theory, 3rd ed., Colloq. Publ., Amer. Math. Soc., Providence, R.I., 1967.
2. F. Maeda and S. Maeda, Theory of symmetric lattices, Springer-Verlag, Berlin, 1970.

University of Manitoba, Winnipeg, Manitoba

