ON M-SYMMETRIC LATTICES

BY

R. PADMANABHAN(¹)

Introduction. Every \perp -symmetric relatively semi-orthocomplemented lattice is *M*-symmetric. This answers the Problem 1 in [2] in the affirmative and provides a new proof to a result on \perp -symmetric lattices proved in [2] (Corollary below).

The notation and terminology are as in [2].

Let $\langle L; \wedge, \vee \rangle$ be a lattice. Two elements *a* and *b* of *L* are said to form a modular pair, in symbols *aMb*, if

$$(c \lor a) \land b = c \lor (a \land b)$$
 for every $c \le b$

The relation aM^*b is defined dually.

With each element k of L we associate two mappings of L into L, thus: $x\varphi_k = x \wedge k$ and $x\varphi_k = x \vee k$. The following lemma [1, p. 82], connecting the modular relation with certain properties of the above mappings is basic to our discussion.

LEMMA [1]. For any two elements a, b of a lattice L, the following statements are equivalent:

- (1) The mapping $\varphi_b: [a, a \lor b] \rightarrow [a \land b, b]$ is onto
- (2) $y\psi_a\varphi_b = y$ for all $y \in [a \land b, b]$
- (3) The mapping $\psi_a: [a \land b, b] \rightarrow [a, a \lor b]$ is one-to-one
- (4) aMb

A lattice L is called *M*-symmetric if whenever aMb holds we have bMa. A lattice L with 0 is called \perp -symmetric if $a \land b=0$ and aMb implies bMa.

If, in a lattice L with 0, there exists a binary relation \perp satisfying $a \perp a \Rightarrow a=0$, $a \perp b \Rightarrow b \perp a$, $a \perp b$, $a_1 \leq a \Rightarrow a_1 \perp b$ and $a \perp b$, $a \lor b \perp c \Rightarrow a \perp b \lor c$ then the system $\langle L; \lor, \land, \perp \rangle$ is called a *semi-ortholattice*. A semi-ortholattice is *relatively semi-orthocomplemented* if for every pair of elements (a, b) with $a \leq b$, there exists an element c such that

$$b = a \lor c$$
 and $a \perp c$

Finally, let a and b be elements of a lattice L with 0. An element c is a left complement within b of a in $a \lor b$ if

(1)
$$a \lor b = a \lor c, \quad a \land c = 0, \quad c M a \text{ and } c \leq b$$

⁽¹⁾ This research was supported by the National Research Council of Canada.

R. PADMANABHAN

THEOREM. For a relatively semi-orthocomplemented lattice L the following statements are equivalent:

- (i) L is M-symmetric
- (ii) L is \perp -symmetric
- (iii) If aMb then a has a left-complement within b.

Proof. (i) \Rightarrow (ii) is trivial.

(ii) \Rightarrow (iii): Let aMb. If $a \land b=0$ then bMa and b itself is a left-complement of a. Let $a \land b > 0$. Choose a relative semi-orthocomplement c of $a \land b$ in b. So we have $(a \land b) \lor c=b$ and $a \land b \perp c$. Hence $a \land b \land c=0$ and $a \land bMc$ [2, §2]. It follows that $a \lor c=a \lor (a \land b) \lor c=a \lor b$ and $a \land c=0$. Since aMb and $a \land bMc$, Lemma 1 assures that the maps $\varphi_b: [a, a \lor b] \rightarrow [a \land b, b]$ and $\varphi_c: [a \land b, b] \rightarrow [0, c]$ are onto. Hence $x\varphi_b\varphi_c=x\varphi_c$ and thus the map $\varphi_c: [a, a \lor c] \rightarrow [a \land c, c]$ is onto. Again, from Lemma 1, aMc. Since $a \land c=0$ and L is \perp -symmetric, cMa follows. Thus c is a left complement within b of a in $a \lor b$.

(iii) \Rightarrow (i): Let aMb. By (iii) we can choose a left complement c of a in b. Let $y \in [a \land b, a] \subseteq [a \land c, a]$. By cMa and Lemma 1, there exists an $x \in [c, a \lor c]$ such that $x\varphi_a = y$. Thus $x \ge y \ge a \land b$ and hence $x \lor c \ge (a \land b) \lor c = b$ (i.e.) $x \ge b$ which shows that this x indeed belongs to the interval $[b, a \lor b]$ and hence the mapping $\varphi_a: [b, a \lor b] \rightarrow [a \land b, a]$ is onto. Thus we get bMa.

COROLLARY [2, Theorem 1.14]. $A \perp$ -symmetric lattice L with 1 satisfying the condition that every element a of L has a complement a' such that aMa' and a' M*a is M-symmetric.

Proof. Such a lattice is relatively semi-orthocomplemented by Lemma 3.6 of [2].

References

1. G. Birkhoff, Lattice theory, 3rd ed., Colloq. Publ., Amer. Math. Soc., Providence, R.I., 1967.

2. F. Maeda and S. Maeda, Theory of symmetric lattices, Springer-Verlag, Berlin, 1970.

UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA

86