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On a topological Ramsey theorem

Wiesław Kubiś and Paul Szeptycki

Abstract. We introduce natural strengthenings of sequential compactness, the r-Ramsey property
for each natural number r ≥ 1. We prove that metrizable compact spaces are r-Ramsey for all r and
give examples of compact spaces that are r-Ramsey but not (r + 1)-Ramsey for each r ≥ 1 (assuming
Continuum Hypothesis (CH) for all r > 1). Productivity of the r-Ramsey property is considered.

1 Introduction

Let K be a compact space, and let r be a positive integer. Following [2], we say that a
function f ∶ [S]r → K converges to p ∈ K if for every neighborhood U of p, there is a
finite set F such that f ([S/F]r) ⊆ U . Once this happens for some p, we say that f is
convergent.

This notion, for r = 2, was introduced in [2] where the special case of our The-
orem 2.1 was stated and proved. Their main motivation was to obtain idempotents
in compact semigroups K as limits of certain functions f ∶ [ω]2 → K. We show that
a more general notion of a space satisfying the r-Ramsey property (Definition 2.1)
given below is a quite natural strengthening of sequential compactness, and the main
motivation of this paper is to prove some basic facts about this class of spaces and
describe some examples showing that r-Ramsey can be strictly weaker than (r + 1)-
Ramsey.

Our topological terminology is standard, and basic definitions and notions can be
found in [3]. Set-theoretic notation and terminology, including some background on
Ramsey’s theorem, can be found in [5], and for a more detailed analysis of almost
disjoint families, Ψ spaces, and the ideals FINn , we refer the reader to [4].

2 A sequential Ramsey theorem

Theorem 2.1 Let (K , ρ) be a compact metric space, and let f ∶ [ω]r → K be an
arbitrary function, where r > 0 is a natural number. Then there exists an infinite set
B ⊆ ω such that f ↾ [B]r converges to some element of K.
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Proof For each n ∈ ω, choose a finite cover Un of K consisting of balls of radius
2−n . Then Un induces a finite coloring of [ω]r . Inductively, choose infinite sets ω ⊇
A0 ⊇ A1 ⊇ ⋯ such that An is monochromatic for the coloring induced by Un (here we
have used the classical Ramsey’s theorem). Let B be any infinite set such that B/An is
finite for every n ∈ ω. By compactness, f ↾ [A]r is convergent. ∎

The result above motivates the following definition.

Definition 2.1 Let X be a topological space, and let r ∈ ω be positive. We shall say
that X has the r-Ramsey property (or X is an r-Ramsey space) if for every function
f ∶ [ω]r → X, there exist p ∈ X and an infinite set B ⊆ ω such that f ↾ [B]r converges
to p. We shall say that X has the Ramsey property if it has the r-Ramsey property for
every positive r ∈ ω. We will say that the restriction f ↾ B is a convergent subsequence
of f.

Recall that a topological space X is sequentially compact if every sequence in
X has a convergent subsequence, and so the 1-Ramsey property is just sequential
compactness.

Proposition 2.2 Every space with the r-Ramsey property has the (r − 1)-Ramsey
property, whenever r > 1. In particular, every space with the r-Ramsey property for some
r > 0 is sequentially compact.

Proof Assume X has the r-Ramsey property, and fix g ∶ [ω]r−1 → X. Define
f [ω]r → X by setting f (s) = g(s/max s). Let A ∈ [ω]ω be such that f ↾ [A]r
converges to p ∈ X.

Fix a neighborhood U of p. There is F ∈ [A]<ℵ0 such that f (t) ∈ U whenever t ⊆
A/F and ∣t∣ = r. Thus, if s ∈ [A/F]r−1, and k is any element of A above s, then g(s) =
f (s ∪ {k}) ∈ U . ∎

It is useful to note that if f ∶ [S]r → X converges in a sequentially compact X, then
f has a somewhat nice canonical subsequence.

Definition 2.2 A function f ∶ [S]r → X being r-nice is defined recursively.
A f ∶ [S]1 → X is 1-nice if it is convergent. For r > 1, f ∶ [S]r → X is r-nice if:

(1) f is convergent to, say, x,
(2) for every s ∈ [S]r−1, the sequence { f (s ∪ {n}) ∶ n ∈ S/s} is convergent to a point

xs , and
(3) g ∶ [S]r−1 defined by g(s) = xs is (r − 1)-nice.

Note that the fact that g, as defined in the definition, is convergent and converges
to x follows from the convergence of f to x.

Lemma 2.3 If X is sequentially compact, then any convergent f ∶ [S]r → X has an
r-nice convergent subsequence.
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Proof By induction on r. If r = 1, then this follows because X is sequentially com-
pact. Fix r > 1 and f ∶ [S]r → X convergent to some point x ∈ X. Enumerate [S]r−1

as {sk ∶ k ∈ ω}. Define Sk recursively. S0 ⊆ S is such that { f (s ∪ {n}) ∶ n ∈ S0/s0}
converges to xs0 . Moreover, in general, Sk+1 ⊆ Sk is chosen such that { f (sk ∪ {n}) ∶
n ∈ Sk+1/sk} converges to some xsk+1 .

Now, take T to be a pseudo-intersection of the {Sn ∶ n ∈ ω} (i.e., a subset of ω
such that T/Sn is finite for each n) and note that g ∶ [T]r−1 → X defined by g(s) =
xs is defined, and, because f converges to x, so g also converges to x. Therefore,
by our induction hypothesis, g has an (r − 1)-nice subsequence, and the lemma is
proved. ∎

It is easy to prove by induction that the closure of the image of an r-nice convergent
f is countable and so we have the following corollary:

Corollary 2.4 Assume X is a space with the r-Ramsey property, where r ≥ 1. If f ∶
[ω]r → X, then f has a convergent subsequence f ↾ [T]r ∶ [T]r → X such that the
closure of f ([T]r) is countable.

3 Spaces with the Ramsey property

It is clear that the class of all topological spaces with the Ramsey property is stable
under closed subspaces and continuous images. The same applies to the r-Ramsey
property. In order to see that there are arbitrarily large spaces with the Ramsey
property, let κ be any cardinal and consider the Σ-product

Σ(κ) = {x ∈ [0, 1]κ ∶ ∣{α ∶ x(α) /= 0}∣ ≤ ℵ0}.

Note that for any cardinal κ, the closure of every countable subset of Σ(κ) is
compact and metrizable; therefore, Σ(κ) has the Ramsey property. More generally, all
monolithic countably compact spaces have the Ramsey property (recall that a space
X is monolithic if the closure of every countable subset of X is second countable).

Recall that the unboundedness number b is the minimal cardinality of a family F ⊆
ωω which is unbounded with respect to the almost domination <∗, where f <∗ g if
f (n) < g(n) for all but finitely many n ∈ ω.

Theorem 3.1 Every sequentially compact space of character < b has the Ramsey
property.

Proof Suppose X is a sequentially compact space of character < b. We use induc-
tion on r to prove that X is r-Ramsey for every r ∈ ω. Sequential compactness says that
X is 1-Ramsey. Suppose r > 1 and we have already proved that X is (r − 1)-Ramsey. Fix
f ∶ [ω]r → X.

Given a ∈ ω, let fa(s) = f (s ∪ {a}), where s ∈ [ω/{a}]r−1.
We construct inductively a sequence a0 < a1 < ⋯ in ω, a sequence {pn ∶ n > 0} ⊆

X, and a decreasing sequence of infinite sets ω = A0 ⊇ A1 ⊇ ⋯ such that:
(i) an ∈ An and
(ii) fan ↾ [An+1]r−1 converges to pn .
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Suppose n > 0 and a i , A i , and {p i ∶ i < n − 1} have been constructed for i < n. Using
the inductive hypothesis, namely, that X is (r − 1)-Ramsey, we find pn−1 ∈ X and
an infinite set An ⊆ An−1 such that fan−1 ↾ [An]r−1 converges to pn−1. We set an =
min(An/(an−1 + 1)).

Now, let M ∈ [ω]ω be such that {pn ∶ n ∈ M} is convergent to some p ∈ X (here we
have used the sequential compactness of X). Let

B = {an ∶ n ∈ M}.

Re-enumerating An and pn , we may assume that M = ω.
Note that the set B has the following property: Given a neighborhood U of p, there

is m(U) ∈ ω such that {pn ∶ n ≥ m(U)} ⊆ U . Consequently, for every n ≥ m(U),
there exists ϕU(n) ∈ ω such that f (s) ∈ U whenever s ∈ [B]r is such that min s = an
with n ≥ m(U) and min(s/{an}) ≥ ϕU(n) (the last fact follows from (ii), because
s/{an} ⊆ An+1). Define ϕU(n) arbitrarily for n < m(U).

Let U(p) be a fixed local neighborhood base at p such that ∣U(p)∣ < b. Then
{ϕU ∶ U ∈ U(p)} ⊆ ωω has cardinality < b; therefore, we can find a strictly increasing
function ψ ∈ Bω such that ϕU <∗ ψ for every U ∈ U(p). Now, let C = {ψ(n) ∶ n ∈ ω}.
We claim that C is as required.

Fix U ∈ U(p) and fix s ∈ [C]r such that min s = ak , where k > m(U) and ψ(n) >
ϕU(n) for every n ≥ k. Then f (s) = fak(s/{ak}) ∈ U . This shows that f ↾ [B]r con-
verges to p. ∎

Corollary 3.2 Let X be a sequentially compact space in which the closure of every
countable set is first countable. Then X has the Ramsey property.

Corollary 3.3 Every countably compact linearly ordered space has the Ramsey
property.

Concerning products, it is known that the product of countably many sequentially
compact spaces is sequentially compact. The same proof can be used to show

Theorem 3.4 The product of countably many r-Ramsey spaces is r-Ramsey.

Proof Suppose we are given r-Ramsey spaces X i and

f ∶ [ω]r →∏
i∈ω

X i .

Recursively choose sets B0 ⊇ B1 ⊇ ⋯ so that for each i, π i ○ f ∶ [B i]r → X i converges
to x i . Then it is straightforward to see that if B is any pseudo-intersection of the family
{B i ∶ i ∈ ω}, then f ∶ [B]r →∏i∈ω X i converges to ⟨x(i) ∶ i < ω⟩. ∎

The splitting number, s, can be characterized as the minimal κ such that 2κ
is not sequentially compact (see [7]). The analogous cardinal characteristic of the
continuum that characterizes the r-Ramsey property in Cantor cubes is par and was
introduced by Blass in [1].
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160 W. Kubiś and P. Szeptycki

Definition 3.1 A set A ⊆ ω is almost homogeneous for a partition f ∶ [ω]n → 2 if
there is a finite F ⊆ A such that f is constant on [A/F]n . Furthermore, parn denotes
the smallest cardinal κ such that there is a family of partitions of [ω]n → 2 of size κ
such that no infinite set is almost homogeneous for all of them simultaneously.

First, notice that par1 is just the splitting number s. Moreover, note that if we
consider partitions into some finite number of pieces k, instead of two pieces, we
obtain the same cardinal. Moreover, the following theorem of Blass shows that for
all n ≥ 2, we have that parn = par2.

Theorem 3.5 [1] For each n ≥ 2, parn =min{b, s}.

Now, we prove that the minimal κ such that 2κ is not r-Ramsey is precisely par2.

Theorem 3.6 For each κ < par2, 2κ is r-Ramsey for all r ∈ ω. In addition, 2par2 is not
2-Ramsey.

Proof Fix κ < par2 and fix f ∶ [ω]r → 2κ. For each α < κ, let fα = πα ⋅ f . By the
definition of κ < par2 = parr , there is B ⊆ ω and for each α an iα such that for every
α < κ, there is a finite set F such that fα is constant with value iα on [B/F]r . This just
means that f ∶ [B]r → 2κ converges to (iα)α∈κ as required.

To complete the proof, to see that 2κ is not 2-Ramsey for κ = par2, fix a family
{ fα ∶ α < κ} so that no B ⊆ ω is almost homogeneous for all functions fα . Taking
the product function f = ∏ fα we have, as above, that for no B can f ∶ [B]2 → 2κ
converge. ∎

Corollary 3.7 If b < s, then 2b is sequentially compact but not 2-Ramsey.

4 Examples

In this section, we give some examples of spaces with the k-Ramsey property that
do not have the (k + 1)-Ramsey property. The first example of a 1-Ramsey (i.e.,
sequentially compact) not 2-Ramsey is in ZFC, but for larger k, we assume the Con-
tinuum Hypothesis (CH). All of the examples are of the form K(A) = α(Ψ(A)), the
Alexandrov–Urysohn compactum formed by taking the one-point compactification
of the Ψ-space determined by an almost disjoint family A of infinite subsets of ω.
Infinite sets a, b ⊆ ω are said to be almost disjoint if a ∩ b is finite. If A is a family of
subsets of ω that are pairwise almost disjoint, then the space Ψ(A) = ω ∪Awhere the
points of ω are isolated and a neighborhood base for a ∈ A is given by sets of the form
{a} ∪ (a/n). It is well known that K(A), the one-point compactification of Ψ(A), is
sequentially compact (see [4] for more on almost disjoint families and Ψ-spaces).

If A is a maximal almost disjoint (mad) family, then K(A) is not even 2-Ramsey.

Example 4.1 Let A be an infinite maximal almost disjoint family on [ω]ω . Then
the Alexandrov–Urysohn compactum K(A) is a compact and sequentially compact
space failing the 2-Ramsey property.
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Proof For convenience, we assume that A ⊆ [ω × ω]ω and {n} × ω ∈ A for each
n ∈ ω. Thus,

K(A) = (ω × ω) ∪ {pA ∶ A ∈ A} ∪ {∞},

where we write pn instead of p{n}×ω . Then ω × ω is the set of isolated points,
K(A)/{∞} is locally compact, and a basic neighborhood of pA is {pA} ∪ (A/F),
where F ∈ [A]<ω .

Let f ∶ [ω]2 → K(A) be defined by f ({k, l}) = ⟨k, l⟩, where k < l. Now, it is easy
to see that this f witnesses the failure of 2-Ramsey, because for any S ⊆ ω infinite,
the closure of f ([B]2) in Ψ(A) is infinite, and because A is mad, it follows that the
closure is uncountable. Therefore, by Corollary 2.4, K(A) cannot be 2-Ramsey.

We now describe, for each r > 1, an r-Ramsey not (r + 1)-Ramsey compact space
of the form K(A). We state a few lemmas about these properties in these types of
spaces. ∎

Lemma 4.2 For any almost disjoint family A on a countable set I of isolated points,
K(A) is r-Ramsey if and only if for any f ∶ [ω]r → I, there is B ⊆ ω such that f ↾ [B]r
converges.

Proof The property is clearly necessary. For sufficiency, note that for any f ∶ [ω]r →
K(A), one can find B such that either f ([B]r) ⊆ A (in which case, because any infinite
subset converges, one can easily find B′ ⊆ B witnessing r-Ramsey) or f ([B]r) ⊆ I, as
required. ∎

Lemma 4.3 K(A) is r-Ramsey if for every f ∶ [ω]r → I, there is an infinite B ⊆ ω such
that

A ↾ f ([B]r) = {p ∈ A ∶ p ∩ f ([B]r) is infinite}

is of size less than b.

Proof If we can find such a B, then the closure of the subset f ([B]r) in K(A)
has countable character at all points of A and character less than b at ∞, and so
by Theorem 3.1, this subspace is r-Ramsey, and so we can find B′ ⊆ B on which f
converges. ∎

We now turn to a construction of an r-Ramsey example of an Alexandrov–
Urysohn compactum that is not (r + 1)-Ramsey.

We first need some basic properties of the Fubini product of the ideal FIN. Recall
that FIN is the ideal of finite subsets of ω and, for each n > 1, FINn is the ideal on ωn

defined recursively by

A ∈ FINn if {k ∈ ωn−1 ∶ { j ∶ k ⌢ j ∈ A} is infinite} ∈ FINn−1 .

The following lemma is easily proved using the definition.
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162 W. Kubiś and P. Szeptycki

Lemma 4.4 For any X ⊆ ωn , if X /∈ FINn , then there is a T ⊆ X such that T forms an
everywhere ω-splitting tree. That is, letting Ti = {x ↾ i ∶ x ∈ T}, for each i < n and each
s ∈ Ti , {t ∈ Ti+1 ∶ t ↾ i = s} is infinite.

Now, we need the following lemma.

Lemma 4.5 For any function f ∶ [ω]n → ωn+1, there is a B ⊆ ω infinite such that
f ([B]n) ∈ FINn+1.

Proof By induction on n. When n = 1, we can find B such that f (B) is either
contained in a column {k} × ω or is a partial function. In either case, f (B) ∈ FIN2.

For the inductive step, fix f ∶ [ω]n → ωn+1 and fix k0 ∈ ω arbitrary. Define fk0 ∶
[ω/k0 + 1]n−1 → ωn+1 by fk0(s) = f ({k0} ∪ s). By our inductive assumption, there is
an infinite B1 ⊆ ω/k0 + 1 such that:
(∗) the projection of fk0([B1]n−1) onto any n coordinates of ωn+1 is in FINn .
Let k1 =min(B1) and continue recursively constructing {k i , B i} so that for each i,
k i =min(B i) and
(∗) the projection of fk i ([B i+1]n−1) onto any n coordinates of ωn+1 is in FINn .
Now, let B = {k i ∶ i ∈ ω}. Since (ω + 1)n+1 is r-Ramsey for all r, we may, by possibly
shrinking B, assume that f ∶ [B]n → (ω + 1)n+1 converges to some x.

CASE 1. x(i) = ω for all i < n + 1. In this case, if f ([B]n) is not in FINn+1, then
there is an everywhere ω-splitting tree T ⊆ f ([B]n) witnessing this. Fix z ∈ T and
consider k = z(0). Since f ∶ [B]n → (ω + 1)n+1 converges to x, there is an N such that

f ([B/N]n) ⊆ (ω/k + 1)n+1 .

Therefore, f ([B/N]n) is disjoint from T ′ = {s ∈ T ∶ s(0) < N}. Note that the pro-
jection of T ′ onto ωn+1/{0} is not in FINn . Furthermore, T ′ is covered by the set
f ({s ∈ [B]n ∶ min s < N}), but for each k i < N , the projection of the sets f ({s ∈ [B]n ∶
min s = k i}) onto ωn+1/{0} is in FINn , a contradiction.

CASE 2. There is i such that x(i) /= ω. In this case, there is some N such that

f ([B/N]n) ⊆ {z ∈ (ω)n+1 ∶ z(i) = x(i)}.

In addition, this completes the proof because {z ∈ (ω)n+1 ∶ z(i) = x(i)} is in
FINn+1. ∎

Now, fix r > 1 and we will need to assume CH. We build an almost disjoint familyA
on ωr+1 so that for the function G ∶ [ω]r+1 → ωr+1 defined by G(x) = ⟨x(0), . . . , x(r)⟩
where x = {x(0), . . . , x(r)} is the increasing enumeration of x, G will have no
convergent subsequence B.

To simplify some notation for any B, let

B↑n = {k ∈ Bn ∶ k(i) < k(i + 1) for all i < n − 1}.

Lemma 4.6 SupposeA is an almost disjoint family on ωr+1. For the function G defined
as above, B is a convergent subsequence for G with limit∞ in K(A) if and only if for
every a ∈ A, there is an n such that a ∩ (B/n)↑r+1 = ∅.
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Proof Directly from the definitions. ∎

Theorem 4.7 Assume CH. For each r > 1, there is an almost disjoint family A on ω
such that K(A) is r-Ramsey but not (r + 1)-Ramsey.

Proof We will construct A = {aα ∶ α < ω1} an almost disjoint family on ωr+1 by
defining each aα by recursion on α. We start by letting {an ∶ n ∈ ω} be an enumeration
of the disjoint family

{{k} × ω ∶ k ∈ ωr}.

Note that each an ∈ FINn+1 and
(∗) any x that is almost disjoint from all the an is also in FINn+1.

We enumerate as {Bα ∶ ω ≤ α < ω1} all infinite subsets of ω and fix an enumeration

{ fα ∶ ω ≤ α < ω1} = (ωr+1)
[ω]r

.

Recall our plan that G ∶ [ω]r+1 → ωr+1 should have no convergent subsequence.
Suppose that at some stage α of the construction, we have defined {aβ ∶ β < α} and

infinite sets {Xβ ∶ ω ≤ β < α} such that:
(1) For all ω ≤ β < α, fβ([Xβ]r) ∈ FINn+1.
(2) For all β < γ < α, aβ ∩ aγ is finite.
(3) For all ω ≤ β < γ < α, ( fβ([Xβ]r)) ∩ aγ is finite.
(4) For all ω ≤ β < α and all n < ω, aβ ⊆∗ G([Bβ/n]r+1).
To define aα and Xα , note first, by clause (∗) and (1) above, it follows that

H = { fβ([Xβ]r) ∶ β < α} ∪ {aβ ∶ β < α} ⊆ FINn+1 .

Therefore, the family

{G([Bα/n]r+1)/H ∶ n ∈ ω, H ∈H}

has an infinite pseudo-intersection. Let aα be any such pseudo-intersection, and it
directly follows that aα satisfies the inductive hypotheses (2)–(4). Therefore, we need
only define Xα to satisfy (1), but that there is such an Xα follows from Lemma 4.5.

This completes the construction ofA = {aα ∶ α < ω1}. To see that it is r-Ramsey, by
Lemma 4.2, we need only consider functions f ∶ [ω]r → ωr+1, and each such f appears
as an fα . For each α by inductive hypothesis (3), we have that

{a ∈ A ∶ a ∩ fα([Xα]r) is infinite}

is countable. And so by Lemma 4.3, it follows that K(A) is r-Ramsey. On the other
hand, to see that G has no convergent subsequence, first note that if any Bα were
to form a convergent subsequence for G, then it would need to converge to ∞.
Indeed, for all n, we have {ak ∶ ∣ak ∩G([Bβ/n]r+1)∣ = ℵ0} is infinite and so for no n
is G([Bβ/n]r+1) ⊆∗ aα for any α < ω1. And now, inductive hypothesis (4) implies, by
Lemma 4.6, that no Bα is a convergent subsequence for G and so K(A) is not (r + 1)-
Ramsey. ∎

https://doi.org/10.4153/S0008439522000170 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000170
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5 Questions

We finish with the following questions.

Question 1 Does there exist a space with the r-Ramsey property and without the
(r + 1)-property assuming only ZFC? Here r > 1.

Note that all our examples of r-Ramsey and not (r + 1)-Ramsey spaces (which
required CH) are Fréchet–Urysohn, but the ZFC example that was not 2-Ramsey,
being a K(A) where A is mad, is not Fréchet–Urysohn. However, a similar example
could be constructed from a completely separable mad family. The main idea is to start
with a completely separable mad family on ω × ω as in the construction of Example
4.1. Then, deleting an infinite set from each A ∈ A other than the fixed columns
{n} × ω will still give an example that fails to be 2-Ramsey, but it will be Fréchet–
Urysohn because it is nowhere mad (see [4] for the definitions of completely separable
and nowhere mad). So we have the following example.

Example 5.1 Assuming the existence of a completely separable mad family, there is
an almost disjoint A such that K(A) is Fréchet–Urysohn and not 2-Ramsey.

Although the existence of a completely separable mad family is a relatively weak
one (e.g., it follows from c < ℵω or s ≤ a; see [4]), we ask the following question.

Question 2 Does there exist a ZFC example of a Fréchet–Urysohn compact space
without the Ramsey property?

We know that a product of any countable family of r-Ramsey spaces is r-Ramsey,
and we have characterized when 2κ is r-Ramsey. Moreover, h is the minimal κ such
that a product of fewer than κ many sequentially compact spaces is sequentially
compact [6], and we conjecture the same holds for r-Ramsey. The cardinal h has
many equivalent formulations, but the one most relevant here is that h is the minimal
cardinality of a collection F of mad families on ω, so that any infinite X ⊆ ω has
infinite intersection with at least two elements of some family from F (see [1]). This
characterization also makes clear that h ≤ par2.

The proof that the product of fewer than h sequentially compact spaces is sequen-
tially compact also shows the same for r-Ramsey, but the family of sequentially
compact spaces whose product is not sequentially compact given in [6] are, in fact,
Alexandrov–Urysohn compacta over mad families, and, as we have seen, these spaces
are not even 2-Ramsey. Therefore, if μ is the minimal cardinal for productivity of the
class of 2-Ramsey spaces, then h ≤ μ and we conjecture that μ = h.

Question 3 Characterize the minimal cardinal κ satisfying the product of fewer
than κ many r-Ramsey spaces is always r-Ramsey.
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