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GENERIC DIFFERENTIABILITY OF
LOCALLY LIPSCHITZ FUNCTIONS ON PRODUCT SPACES

J.R.. GILES

Although it is known that locally Lipschitz functions are densely differentiable on
certain classes of Banach spaces, it is a minimality condition on the subdifferen-
tial mapping of the function which enables us to guarantee that the set of points
of differentiability is a residual set. We characterise such minimality by a quasi
continuity property of the Dini derivatives of the function and derive sufficiency
conditions for the generic differentiability of locally Lipschitz functions on a prod-
uct space.

1. INTRODUCTION

A real valued function ¥ on an open subset A of a normed linear space X is locally
Lipschitz if for each zg € A there exists a Ky > 0 and §p > 0 such that

[¥(z) — ¥(y)] < Ko ||z — y|| for all z,y € B(zo; o).

The function v is Gdteauz differentiable at z € A in the direction y € X if

1/1'(2)(!/) = 113% 1[)(1: + )\'.‘;) - 1/’(2)

exists and is Gdteauz differentiable at z € A if it is Gateaux differentiable at z in all
directions y € X and %¥'(z) is a continuous linear functional on X. The function
is Fréchet differentiable at z € A if it is Gateaux differentiable at z and the limit is
approached uniformly for all y € S(X). A Banach space X is said to be smoothable
if there exists an equivalent norm on X which is Gateaux differentiable everywhere
except at the origin. A Banach space X is an Asplund space if every continuous convex
function on an open convex subset of X is Fréchet differentiable on a residual subset
of its domain.

The determination of differentiability properties of locally Lipschitz functions is
particularly important for applications in optimisation. The differentiability of a locally

Received 28th February, 1995

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 $A2.00+-0.00.

487

https://doi.org/10.1017/50004972700014969 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700014969

488 J.R. Giles [2]

Lipschitz function % on an open subset A of a normed linear space X is studied using
the Clarke directional derivative

¥(z + Ay) —¥(2)

$°(2)(y) = lim sup S

A—0+

at each = € A in the direction y € X and ¥°(z)(y) is a continuous sublinear functional
in y. The Clarke subdifferential

9°(z) = {f € X* : f(3) < ¥(e)(y) for all y € X}

at each z € A4, is a non-empty weak* compact convex set.

The key result generalising the classical Rademacher Theorem from Euclidean to
Banach spaces was given by David Preiss, [14].

PrEISS’ THEOREM. A locally Lipschitz function 1 on an open subset A of &
smoothable (Asplund) space is Gateaux (Fréchet) differentiable on a dense subset D
of A and the Clarke subdifferential is generated by the Gateaux (Fréchet) derivatives;
that is, given z € A

o’(z) = n 2" {'(z) : z € B(z;r) N D}.

r>0

However, the set of points of differentiability need not be a residual subset of the domain
and this can inhibit our analysis.

A set-valued mapping ® from a topological space A into subsets of a linear topo-
logical space X is upper semi-continuous at a € A if given an open subset W of X
such that ®(a) C W there exists an open neighbourhood U of a such that $(U) C W.
When @ is upper semi—continuous on A and ®(a) is convex and compact for each
a € A wecall & a cusco on A. We say that ® is a minimal cusco on A if its graph
does not contain the graph of any other cusco with the same domain.

For a locally Lipschitz function 9 on an open subset A of a normed linear space
X, the Clarke subdifferential mapping z — 8¢°(z) is a weak* cusco on A but is not
in general a minimal weak* cusco.

A locally Lipschitz function % on an open subset A of a normed linear space X
is said to be strictly differentiable at z € A in the direction y € X if

Y(z + Ay) —¥(2)
i )

A~0+4

exists and is said to be strictly differentiable at z if it is strictly differentiable at z in all
directions y € X . Further, ¥ is said to be uniformly strictly differentiable at z if this
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limit is approached uniformly for all y € S(X). Obviously, if 9 is strictly differentiable
at € A then 1 is Gateaux differentiable at z. Further, if ¥ is uniformly strictly
differentiable at z € A then 1) is Fréchet differentiable at z.

Clearly, ¥ is strictly differentiable at =z € A if and only if 8¢°(z) is singleton. But
also, 9 is uniformly strictly differentiable at z € A if and only if 8¢°(z) is singleton
and the subdifferential mapping z — 8%°(z) is norm upper semi—continuous at z, 5,
p-374]. With certain minimal weak* cuscos we can associate significant residual subsets

of the domain.

PROPOSITION 1.1. Consider a minimal weak* cusco ® from a Baire space A
into subsets of the dual X* of a Banach space X .

(i) If X is smoothable then ® is single—valued on a residual subset of A,
[15].

(ii) If X is Asplund then ® is single-valued and norm upper semi—continuous
at the points of a residual subset of A, [12, p.106].

The implications for differentiability of locally Lipschitz functions are immediate.

COROLLARY 1.2. A locally Lipschitz function 1 on an open subset A of a
smoothable (Asplund) space X is strictly (uniformly strictly) differentiable on a residual
subset of A if the subdifferential mapping z — 8%°(z) on A is minimal.

To establish this minimality for the subdifferential mapping can be a problem so
there is considerable value in determining properties sufficient to guarantee it. Some
work has already been done in this area, [1, 2, 3] and more recently [11].

Here we give a characterisation of minimality for the subdifferential mapping using
quasi continuity and provide two sufliciency conditions for minimality on a product
space. This in turn enables us to deduce sufficiency conditions for the generic differen-
tiability of locally Lipschitz functions on a product space.

2. A CHARACTERISATION OF MINIMAL SUBDIFFERENTIAL MAPPINGS

The minimality of a cusco has the following useful characterisation, [8, p.252].

LEMMA 2.1. A cusco ® from a topological space A into subsets of a separated
locally convex X is a minimal cusco if and only if for any open set U in A and open
half-space W in X where ®(UYN W # @, there exists a non-empty open set V C U
such that ®(V)C W.

PROOF: Suppose that & is a minimal cusco on A and for an open set U C A
and open half-space W we have @(U)NW # 0. If there exists an a € U such that
®(a) C W then by the upper semi—continuity of ® there exists a non-empty open
neighbourhood V' of a such that (V) C W. If not, then ®&(a) N C(W) # 0 for every
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a € U. Consider the set—valued mapping ¥ from A into subsets of X where

{ P(a)NC(W) foraeU
¥(a) =
¥(a) foradgU.
Then ¥ is a cusco on A whose graph is contained in that of ®. But this contradicts
the minimality of ®

Conversely, suppose that ® is a cusco which is not minimal. Then there exists a
cusco ¥ whose graph is contained in that of & but for some ay € A there exists an
zo € ®(ao) \ ¥(a¢). Since ¥(ap) is convex and compact there exist disjoint open half
spaces W; and W, such that ¥(ao) C Wi, and zo € W,. Since ¥ is upper semi-

continuous at ap there exists an open neighbourhood U of ag such that ¥(U) C W;.
But then ®(U)NW, #0 and $(a) NC(W2) £ 0 forall ac U.

The minimality of a weak* cusco can be characterised by the minimality of associ-
ated cuscos into subsets of the real numbers, [11, Proposition 1.4].

LEMMA 2.2. Consider a weak™* cusco ® from a topological space A into subsets
of X* the dual of a Banach space X . Then ® is a minimal weak* cusco if and only
if for each =z € S(X) the set—valued mapping T, from A into subsets of R where
a+— Ty(a) = Z(P(a)) is a minimal cusco.

PROOF: Suppose that ® is a minimal weak* cusco on 4. Given z € S(X) it is
easy to see that T, is a cusco; we show that T, is minimal. Given @ € R and an
open set U in A such that T,(U) N (a,00) # O then for some a € U and f € $(a)
we have Z(f) > a. Consider W the open half-space, W = {f € X* : f(z) > a}. Now
S(U)NW # 0. But since ® is a minimal weak* cusco, from Lemma 2.1 there exists a
non—empty open set V C U such that (V) C W. Thatis, Z(®(a)) > a forall a e V
which implies that T,(V) C (@,00). A similar argument applies for subsets of R of the
form (—o0,a) and we conclude from Lemma 2.1 that T, is a minimal cusco on A.

Conversely, suppose that & is not a minimal weak* cusco on A. Then there
exists a weak* cusco ¥ on A whose graph is strictly contained in that of ®. So
there exists an a9 € A such that ¥(ag) G ®(ao) and an z¢ € S(X) such that max
Zo (P(ao)) > max o (¥(ao)). Now consider the two set—valued mappings Tz, and S,
from A into subsets of R where a — T, (a) = Zo (®(a)) and a — S,,(a) = Zo (¥(a)).
Clearly, Sz,(a) € Tz,(a) for all @ € A. However, max S,,(a9) = maxZo (¥(ao)) <
max Zo (®(ao)) = maxT;,(ao) so Szy(as) # Tzo(ao) and we conclude that T, is not
a minimal cusco on A. a

For a locally Lipschitz function 3 on an open subset A of a normed linear space
X, the upper Dini derivative of ¥ at z € A in the direction y € X is

¥(z + dy) — ¥(=)
A

1/)+(:c)(y) = lim sup
A—04
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and the lower Dint derivative of ¥ at £ € A in the direction y € X is

- _yie ¥z 4 Ay) — ()
$7(z)(y) = liminf 3 :

An equivalent formulation for the subdifferential of ¢ at z € 4 is

84°(2) = {f € X* : ~(~4)°(2)¥) < () < ¥*(2)(v) or all y € X }

and we note that
P(z + Ay) — ¥(2)
3 .

—(~%)"(=)(y) = lim inf

A—04

It is convenient to express the Clarke directional derivatives in terms of the direc-
tional and Dini derivatives, [7, p.837].

LEMMA 2.3. Consider a locally Lipschitz function 1 on an open subset A of a
normed linear space X. Given y€ X and z € A,

¥*(2)(y) = limsup¥'(2)(y) = limsup¥* (2)(y)

~(=9)°(=)(v) = Liminf ¢'(z)(y) = kiminf 4~ (z)(»)

where D, is the set of points in A where ¥ is Gateaux differentiable in the direction
v.
PROOF: Clearly, ¥°(z)(y) > limsupy*(2)(y) > limsupy'(z)(y). But also, given
z—z :E_b:y
€ > 0, in any neighbourhood of z there exists a zgp € A and Ag > 0 such that
zp+ Aoy € A and

(zo + «\(1\31) — ¥(20) > $%(z)(y) — €.

Consider 4 restricted to the interval {29, z9 + A¢y]. Since 1 is locally Lipschitz it follows
from Lebesgue’s Differentiation Theorem that there exists a 0 € A; < A¢ such that

P(20 + Aoy) — ¥(20)
Ao )

¥'(20 + My)(y) >

So ﬁx:lj:p?/)“’(z)(y) > ]jlflj:lp’gb'(z)(y) > 9°(z)(y) and our first result follows.
€Dy

Now for all z € A and y € X, —(—9)(z)(y) = —¥°(z)(—y) and ¥~ (z)(y) =

~(~¥)"(2)(»). So —(~%)°(#)(y) = —limsup¥'(z)(~y) = Liminf $'(z)(y). But also

zZ—T

=(~$)°(2)(y) = ~ limsup (~4)'(z)(v) = - lim sup (—9)" ()(y) = kiminf ¥ ()(y)- 0
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From Preiss’ Theorem we see that for a locally Lipschitz function on an open
subset of a smoothable (Asplund) space the subdifferential is generated by the dense
set of derivatives of the function and so in this case we have a tighter result.

LEMMA 2.4. Consider a locally Lipschitz function v on an open subset A of a
smoothable (Asplund) space X. Given y€ X and z € A4,
¥°(2)(y) = lim sup¢'(2)(y) = Lim sup $*(2)(y)

zeD

~(=%)"(=)(y) = liminf ¥'(2)(y) = liminf ¥ (2)(y)

z€D
where D is the set of points where 1 is Giteaux (Fréchet) differentiable on A.

Consider a real valued function ¢ on a topological space A. Now ¢ is said to be
quasi upper semi—continuous at ap € A if given € > 0 and an open neighbourhood U
of ag, there exists a non-empty open set V C U such that ¢(a) < @(ap) + ¢ for all
a € V, and is said to be quasi lower semi-continuous at a9 € A if —¢ is quasi upper
semi—continuous at ap. The function ¢ is said to be quasi continuous at ap € A if
given € > 0 and an open neighbourhood U of ag, there exists a non—empty open set
V C U such that

d(ao) —e < P(a) < p(ao) +eforall a €V,

If ¢ is quasi upper semi continuous on a Baire space A then ¢ is continuous on a
residual subset of 4, [4, p.369].

We now present our characterisation for minimality of the Clarke subdifferential
mapping in terms of quasi—continuity. The result is similar to that given in [11, Theorem
2.14].

THEOREM 2.5. For a locally Lipschitz function i on an open subset A of a
normed linear space X , the following are equivalent.

(i) the Clarke subdifferential mapping z — 04°(z) is a minimal weak* cusco
on A,
(ii) for each y € X, ¥*(z)(y) is quasi upper semi—continuous on A,
(iii) for each y € X, ¥~ (z)(y) is quasi lower semi—continuous on 4,
(iv) for each y € X, ¥'(z)(y) is quasi upper semi-continuous on D,
(v) for each y € X, ¥'(z)(y) is quasi lower semi-continuous on Dy,
where D, is the set of points in A where v is Giteaux differentiable in the direction
y.
PROOF: (i) = (ii) Given z € A and € > 0 and any neighbourhood U of = there
exists a non-empty open set V C U such that

[~(=9)°(2)®), ¥°(2)(w)] € (~o0,~(~#)°(2)(w) +¢) forall z € V.
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Then for each z' € V there exists an open neighbourhood V' of z' where V' CV such
that

¥ (2)(y) < —(—9)(2)(¥) + € < ¥ (2)(y) + € for all z € V;

that is, 9 (z)(y) is quasi upper semi-continuous on 4.
(i) = (i) Given = € A and € > 0 and any neighbourhood U of z there exists a
non—-empty open set V C U such that

[~(=4)"(2)(w), #°(2)(3)] € (#*(=)(w) — € 00) for all z € V.

Then as in (i) = (ii) we deduce that ¥~ (z)(y) is quasi lower semi—continuous on 4.
(i) = (iv) and (ili) = (v). It follows from Lebesgue’s Differentiation Theorem
that D, is dense in A and so we have these results.

(iv) & (v) Given z € Dy, ¢¥'(z)(y) = —¢'(2)(—y). So ¥'(z)(—y) is quasi upper
semi—continuous on Dy if and only if ¥'(2)(y) is quasi lower semi—continuous on D, .

(iv) = (i) Given z € A and £ > 0 and any neighbourhood U of z, by Lemma 2.3
there exists an 2’ € U N D, such that

¥(=)(w) < ~(—#)(2)) + 5.

Since ¥'(z)(y) is quasi upper semi—continuous at z', there exists a non—empty open
set V C U such that

¥(2)(v) <¥'(2)w) + 5 forall z€ VN Dy
But then
1»[’0(2)(’!/) <YP'(e)y) + % < —(—1/))0(1:)(y) +eforall ze V.
So
[-(—¢)°(2)(y),¢°(2)(y)] - (—oo,—(—zp)°(::)(y) + e) for all z € V.

Now 9°(z)(~y) = (~%)’(2)(¥) and —(-¥)"(z)(y) = —4°(2)(y). So applying our
results to —y € X and z € A and neighbourhood U of z there exists a non—empty
open set V C U such that

[~ (=) (2)(=9),#°(2)(-9)] € (00, ~(—)"(2)(~9) +¢);
that is,

[~4°(2)@), (~9)°(2)®)] € (~o0,~$°(2)(w) +€) forall z € V.
So

[—(-¢)°(Z)(y),¢°(2)(y): Cc (1/)0(2)(}/) - 6,00) forall ze€ V.
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We conclude that the Clarke subdifferential mapping z +— 8¢°(z) is a minimal weak*
cuscoon A. 0

Using Lemma 2.4 we have a tighter result for a locally Lipschitz function on an
open subset of a smoothable (Asplund) space.

THEOREM 2.6. For a locally Lipschitz function 1) on an open subset A of a
smoothable (Asplund) space X, the Clarke subdifferential mapping z — 8¢%%(z) is a
minimal weak* cusco on A if and only if for each y € X, ¥'(z)(y) is quasi upper semi-
continuous on D, the set of points in A where v is Gateaux (Fréchet) differentiable.

The proof in one direction follows from Theorem 2.5 (i) = (iv). In the other
direction it is similar to Theorem 2.5 (iv) = (i) but using Lemma 2.4.

A locally Lipschitz function 1 on an open subset A of a normed linear space X
is strictly differentiable at ¢ € A in the direction y € X if and only if ¥¥(z)(y) is
continuous at z [7, p.837). Using the fact that, given z € A, ¥ (z)(y) is continuous
in y, [6, p.207] and the generic continuity of quasi upper semi—continuous functions,
we can make the following deduction.

COROLLARY 2.7. For a locally Lipschitz function i on an open subset A of a
separable Banach space X , if the subdifferential mapping z +— 8v°(z) is minimal then
v is strictly differentiable on a residual subset of A.

We should note that such a result is not true for non-separable spaces. On
£o the semi-norm p defined for z = {z1,22,... ,Zn,...} by p(z) = limsup|z,|,
has a minimal subdifferential mapping = — 8p(z), but p is nowhere Giteaux dif-
ferentiable, [12, p.13]. Further, the converse of Corollary 2.7 does not hold in
general. Pompeiu [13], has given an example of a real valued differentiable func-
tion 9 with a bounded non-negative derivative on an interval (a,b) where the sets
{z € (a,b) : ¥'(z) = 0} and {z € (a,d) : 9'(z) > 0} are both dense in (a,b). Clearly at
each point of {z € (a,b) : ¥'(z) > 0}, ¥' is not quasi lower semi~continuous and so the
subdifferential mapping z — 8%°(z) is not minimal. However, since ¥ is differentiable
on (a,b), 9 is strictly differentiable on a residual subset of (a,b), [6, p.210].

At this stage it is worth noting that a real valued differentiable function % on an
interval (a,b) with derivative ¥’ continuous almost everywhere, has %' quasi continuous
on (a,b), [9, p.974], and so has a minimal subdifferential mapping z — 84°(z). On
the other hand there exists a real-valued function ¥ on (e,b) with bounded derivative
which is quasi continuous on (a,5) but where the derivative is discontinuous on a set
of positive measure, [9, p.975].

A locally Lipschitz function v on an open subset A of a normed linear space X
is said to be pseudo-reqular at = € A in the direction y € X if v (z)(y) = ¥°(z)(v)
and pseudo-regular at z if it is pseudo-regular at = in all directions y € X. Since
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¥°(z)(y) = limsupy¥(z)(y), it follows that 3 is pseudo-regular at z € A in the

direction y € X if and only if ¥ (z)(y) is upper semi—continuous at z, [7, p.836]. So
we can make the following deduction, {11, Theorem 2.5].

COROLLARY 2.8. A locally Lipschitz function ¢ which is pseudo-regular on
an open subset A of a normed linear space X , has a minimal subdifferential mapping
z > M(z) on A.

3 MINIMAL SUBDIFFERENTIAL MAPPINGS ON PRODUCT SPACES

Given topological spaces X,Y and Z and a function 6 from X X Y into Z, we
define for p € X, the function 8, from Y into Z where

0»(y) = 6(p,y)

and for ¢ € Y, the function 8, from X into Z where

8q(2) = 6(z,9)-

The following lemma relates separate and joint quasi continuity modelled on the proof
of a similar result, 10, p.39].

LEMMA 3.1. Consider a real valued function § on X x Y where X is a Baire
space and Y is second countable. If 8, is quasi upper semi-continuous on Y for all
z € X and 8, is both quasi upper and quasi lower semi-continuous on X for all y €Y
then 8 is quasi upper semi-continuouson X x Y.

PROOF: Suppose that 6 is not quasi upper semi—continuous at (p,q) € X x Y.
Then there is an » > 0 and a neighbourhood U x V of (p,q) such that in every
non—empty open subset of U x V there exists an (z,y) such that

0(z,y) > 0(p,q) + .

Since 8, is quasi upper semi~continuous at p, there exists a non—empty open set E C U

such that
T

0(z,q) < 0(p,q) + 3 forall z € E.

Consider V a countable base for Y and {V, : n € N} those elements from V contained
in V. For each n € N, write

A, = {:c € E:0(z,y) <0(:c,q)+§foran‘y€vn}-
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Consider z € E. Since 8, is quasi upper semi—continuous at ¢ there exists a non—
empty open set F C V such that 8(z,y) < 6(z,q) +7/3 for all y € F. But there exists

00
k € N such that V; CF. So z € A; and E = J4,.
1

Consider E' a non-empty open subset of £ and n € N. Then E' xV, CU x V,
and there is a (z',y') € E' x V,, such that 6(z',y') > 0(p,q) + r. Since 0,y is quasi
lower semi-continuous at z', there exists a non—-empty open set E” C E' such that

0(z,y') > 0(z',y') - g for all z € E".

For z € E",
2
8(z,y') > 8(=',¥) — 3 > 0(p,q) + 5 > 8(z,0) + 5.

But since y' € V,, then =z € A, and so E" N A, = 0. Therefore, A4,, is nowhere dense
and E is of first Baire category. This contradicts the fact that X is a Baire space. [

This Lemmma with Theorem 2.5 gives an improved sufficiency theorem for minimal
subdifferential mappings of locally Lipschitz functions on certain product spaces.

THEOREM 3.2. Consider a locally Lipschitz function v on a product space X x
Y where X and Y are Banach spaces and Y is separable. The subdifferential mapping
(z,y) — 6¢°(z,y) is minimal on X x Y if given (u,v) € X X Y, for each p € X,
¥*(p,y)(u,v) is quasi upper semi-continuous on Y and for each ¢ €Y, ¥*(z,q)(u,v)
is both quasi upper and quasi lower semi-continuous on X .

From Theorem 3.2 and Proposition 1.1 we can deduce the following generic differ-
entiability properties of locally Lipschitz functions on a product space.

CoroLLARY 3.3. Consider a locally Lipschitz function v a product space X X
Y where X and Y are Banach spaces and Y is separable and 1 satisfies the hypothesis
of Theorem 3.2.

(i) If X is smoothable, then 9 is strictly differentiable on a residual subset
of X xY.

(i) If X is Asplund and Y has separable dual, then v is uniformly strictly
differentiable on a residual subset of X x Y .

ProoOF:

(i) If X is smoothable and Y is separable, then Y is smoothable and so
X x Y is smoothable.

(it) If X is Asplund and Y has separable dual, then closed separable sub-
spaces of X x Y have separable duals and X x Y is Asplund, [12, p.32].

Our result now follows from Proposition 1.1 and Corollary 1.2. 0
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Theorem 3.2 provides a test for minimality for locally Lipschitz functions on a
product space using the behaviour of associated functions on each of the component
spaces. Qur other theorem gives a similar result using the behaviour of derivatives in
component directions.

THEOREM 3.4. Consider a locally Lipschitz function 3 on an open subset A of
a smoothable (Asplund) product space X x Y where X and Y are Banach spaces.
The subdifferential mapping (z,y) — ¢°(z,y) is minimal on A if one of ¥'(z,y)(u,0)
and ¥'(z,y)(0,v) is upper semi—continuous on D and the other is quasi upper semi—

continuous on D where D is the set of points in A where v is Giteaux (Fréchet)
differentiable.

PROOF: Given (u,v) € X xY and (z,y) € D then

¥'(z,9)(x,v) = ¥'(2,y)(4,0) + ¢'(2,)(0,v).

It follows that %'(z,y)(u,v) is quasi upper semi—continuous on D and Theorem 2.6
gives our result. O

In particular, ¥ satisfies the hypothesis of this theorem when 1 is pseudo-regular
on X x Y, in directions (»,0) and (0,v), [6, p.837]. So Theorem 3.4 can be considered
to be a generalisation of Corollary 2.8.

From Theorem 3.4 and Proposition 1.1 we can deduce generic differentiability prop-
erties. '

CorROLLARY 3.5. A locally Lipschitz function i on an open subset A of a
smoothable (Asplund) product space X xY where X and Y are Banach spaces and
satisfies the hypothesis of Theorem 3.4, has 1 strictly (uniformly strictly) differentiable
on a residual subset of A.

It is a classical result that a real valued locally Lipschitz function on Euclidean space
with continuous partial derivatives at a point is strictly differentiable at the point. A
proof of this follows from the more general local result.

THEOREM 3.6. Consider a locally Lipschitz function 1 on an open subset A
of a a product space X X Y where X and Y are normed linear spaces. If v is
strictly differentiable at (z9,yo) in both directions (u,0) and (0,v) then 1 is strictly
differentiable at (zo,%0)-

PRrOOF: Consider f € 8¢°(zo,y0)- Since ¥ is strictly differentiable at (z¢,%0) in
directions (u,0) and (0,v) then

f(’U:, 0) = 1/)0(30,3/0)(“:0) and f(o’v) = ¢0(307y0)(0’v)'

So f(u,v) = %°(z0,%0)(u,v) and we conclude that 8¢°(zo,y,) is singleton. 0
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