BULL. AUSTRAL. MATH. SOC. Vol. 52 (1995) [487-498]

GENERIC DIFFERENTIABILITY OF LOCALLY LIPSCHITZ FUNCTIONS ON PRODUCT SPACES

J.R. GILES

Although it is known that locally Lipschitz functions are densely differentiable on certain classes of Banach spaces, it is a minimality condition on the subdifferential mapping of the function which enables us to guarantee that the set of points of differentiability is a residual set. We characterise such minimality by a quasi continuity property of the Dini derivatives of the function and derive sufficiency conditions for the generic differentiability of locally Lipschitz functions on a product space.

1. INTRODUCTION

A real valued function ψ on an open subset A of a normed linear space X is *locally* Lipschitz if for each $x_0 \in A$ there exists a $K_0 > 0$ and $\delta_0 > 0$ such that

$$|\psi(x)-\psi(y)|\leqslant K_0\,\|x-y\|\,\, ext{ for all }x,y\in B(x_0;\delta_0).$$

The function ψ is Gâteaux differentiable at $x \in A$ in the direction $y \in X$ if

$$\psi'(x)(y)\equiv \lim_{\lambda
ightarrow 0} \; rac{\psi(x+\lambda y)-\psi(x)}{\lambda}$$

exists and is Gâteaux differentiable at $x \in A$ if it is Gâteaux differentiable at x in all directions $y \in X$ and $\psi'(x)$ is a continuous linear functional on X. The function ψ is Fréchet differentiable at $x \in A$ if it is Gâteaux differentiable at x and the limit is approached uniformly for all $y \in S(X)$. A Banach space X is said to be smoothable if there exists an equivalent norm on X which is Gâteaux differentiable everywhere except at the origin. A Banach space X is an Asplund space if every continuous convex function on an open convex subset of X is Fréchet differentiable on a residual subset of its domain.

The determination of differentiability properties of locally Lipschitz functions is particularly important for applications in optimisation. The differentiability of a locally

Received 28th February, 1995

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

Lipschitz function ψ on an open subset A of a normed linear space X is studied using the Clarke directional derivative

$$\psi^0(x)(y)\equiv \limsup_{\substack{z o x\ \lambda o 0+}} \; rac{\psi(z+\lambda y)-\psi(z)}{\lambda}$$

at each $x \in A$ in the direction $y \in X$ and $\psi^0(x)(y)$ is a continuous sublinear functional in y. The Clarke subdifferential

$$\partial \psi^0({m x}) \equiv ig\{ f \in X^* : f(y) \leqslant \psi^0({m x})(y) ext{ for all } y \in X ig\}$$

at each $x \in A$, is a non-empty weak^{*} compact convex set.

The key result generalising the classical Rademacher Theorem from Euclidean to Banach spaces was given by David Preiss, [14].

PREISS' THEOREM. A locally Lipschitz function ψ on an open subset A of a smoothable (Asplund) space is Gâteaux (Fréchet) differentiable on a dense subset D of A and the Clarke subdifferential is generated by the Gâteaux (Fréchet) derivatives; that is, given $x \in A$

$$\partial \psi^0(x) = igcap_{r>0} \overline{co}^{w^*} \left\{ \psi'(z) : z \in B(x;r) \cap D
ight\}.$$

However, the set of points of differentiability need not be a residual subset of the domain and this can inhibit our analysis.

A set-valued mapping Φ from a topological space A into subsets of a linear topological space X is upper semi-continuous at $a \in A$ if given an open subset W of X such that $\Phi(a) \subseteq W$ there exists an open neighbourhood U of a such that $\Phi(U) \subseteq W$. When Φ is upper semi-continuous on A and $\Phi(a)$ is convex and compact for each $a \in A$ we call Φ a cusco on A. We say that Φ is a minimal cusco on A if its graph does not contain the graph of any other cusco with the same domain.

For a locally Lipschitz function ψ on an open subset A of a normed linear space X, the Clarke subdifferential mapping $x \mapsto \partial \psi^0(x)$ is a weak* cusco on A but is not in general a minimal weak* cusco.

A locally Lipschitz function ψ on an open subset A of a normed linear space X is said to be strictly differentiable at $x \in A$ in the direction $y \in X$ if

$$\lim_{\substack{z \to x \\ \lambda \to 0+}} \frac{\psi(z + \lambda y) - \psi(z)}{\lambda}$$

exists and is said to be strictly differentiable at x if it is strictly differentiable at x in all directions $y \in X$. Further, ψ is said to be uniformly strictly differentiable at x if this

limit is approached uniformly for all $y \in S(X)$. Obviously, if ψ is strictly differentiable at $x \in A$ then ψ is Gâteaux differentiable at x. Further, if ψ is uniformly strictly differentiable at $x \in A$ then ψ is Fréchet differentiable at x.

Clearly, ψ is strictly differentiable at $x \in A$ if and only if $\partial \psi^0(x)$ is singleton. But also, ψ is uniformly strictly differentiable at $x \in A$ if and only if $\partial \psi^0(x)$ is singleton and the subdifferential mapping $x \mapsto \partial \psi^0(x)$ is norm upper semi-continuous at x, [5, p.374]. With certain minimal weak^{*} cuscos we can associate significant residual subsets of the domain.

PROPOSITION 1.1. Consider a minimal weak* cusco Φ from a Baire space A into subsets of the dual X^* of a Banach space X.

- (i) If X is smoothable then Φ is single-valued on a residual subset of A, [15].
- (ii) If X is Asplund then Φ is single-valued and norm upper semi-continuous at the points of a residual subset of A, [12, p.106].

The implications for differentiability of locally Lipschitz functions are immediate.

COROLLARY 1.2. A locally Lipschitz function ψ on an open subset A of a smoothable (Asplund) space X is strictly (uniformly strictly) differentiable on a residual subset of A if the subdifferential mapping $x \mapsto \partial \psi^0(x)$ on A is minimal.

To establish this minimality for the subdifferential mapping can be a problem so there is considerable value in determining properties sufficient to guarantee it. Some work has already been done in this area, [1, 2, 3] and more recently [11].

Here we give a characterisation of minimality for the subdifferential mapping using quasi continuity and provide two sufficiency conditions for minimality on a product space. This in turn enables us to deduce sufficiency conditions for the generic differentiability of locally Lipschitz functions on a product space.

2. A CHARACTERISATION OF MINIMAL SUBDIFFERENTIAL MAPPINGS

The minimality of a cusco has the following useful characterisation, [8, p.252].

LEMMA 2.1. A cusco Φ from a topological space A into subsets of a separated locally convex X is a minimal cusco if and only if for any open set U in A and open half-space W in X where $\Phi(U) \cap W \neq \emptyset$, there exists a non-empty open set $V \subseteq U$ such that $\Phi(V) \subseteq W$.

PROOF: Suppose that Φ is a minimal cusco on A and for an open set $U \subseteq A$ and open half-space W we have $\Phi(U) \cap W \neq \emptyset$. If there exists an $a \in U$ such that $\Phi(a) \subseteq W$ then by the upper semi-continuity of Φ there exists a non-empty open neighbourhood V of a such that $\Phi(V) \subseteq W$. If not, then $\Phi(a) \cap C(W) \neq \emptyset$ for every $a \in U$. Consider the set-valued mapping Ψ from A into subsets of X where

$$\Psi(a) = \left\{egin{array}{cc} \Phi(a)\cap C(W) & ext{ for } a\in U \ \Phi(a) & ext{ for } a
otin U. \end{array}
ight.$$

Then Ψ is a cusco on A whose graph is contained in that of Φ . But this contradicts the minimality of Φ

Conversely, suppose that Φ is a cusco which is not minimal. Then there exists a cusco Ψ whose graph is contained in that of Φ but for some $a_0 \in A$ there exists an $x_0 \in \Phi(a_0) \setminus \Psi(a_0)$. Since $\Psi(a_0)$ is convex and compact there exist disjoint open half spaces W_1 and W_2 such that $\Psi(a_0) \subseteq W_1$, and $x_0 \in W_2$. Since Ψ is upper semicontinuous at a_0 there exists an open neighbourhood U of a_0 such that $\Psi(U) \subseteq W_1$. But then $\Phi(U) \cap W_2 \neq \emptyset$ and $\Phi(a) \cap C(W_2) \neq \emptyset$ for all $a \in U$.

The minimality of a weak* cusco can be characterised by the minimality of associated cuscos into subsets of the real numbers, [11, Proposition 1.4].

LEMMA 2.2. Consider a weak* cusco Φ from a topological space A into subsets of X* the dual of a Banach space X. Then Φ is a minimal weak* cusco if and only if for each $x \in S(X)$ the set-valued mapping T_x from A into subsets of \mathbb{R} where $a \mapsto T_x(a) = \hat{x}(\Phi(a))$ is a minimal cusco.

PROOF: Suppose that Φ is a minimal weak^{*} cusco on A. Given $x \in S(X)$ it is easy to see that T_x is a cusco; we show that T_x is minimal. Given $\alpha \in \mathbb{R}$ and an open set U in A such that $T_x(U) \cap (\alpha, \infty) \neq \emptyset$ then for some $a \in U$ and $f \in \Phi(a)$ we have $\hat{x}(f) > \alpha$. Consider W the open half-space, $W \equiv \{f \in X^* : f(x) > \alpha\}$. Now $\Phi(U) \cap W \neq \emptyset$. But since Φ is a minimal weak^{*} cusco, from Lemma 2.1 there exists a non-empty open set $V \subseteq U$ such that $\Phi(V) \subseteq W$. That is, $\hat{x}(\Phi(a)) > \alpha$ for all $a \in V$ which implies that $T_x(V) \subseteq (\alpha, \infty)$. A similar argument applies for subsets of \mathbb{R} of the form $(-\infty, \alpha)$ and we conclude from Lemma 2.1 that T_x is a minimal cusco on A.

Conversely, suppose that Φ is not a minimal weak^{*} cusco on A. Then there exists a weak^{*} cusco Ψ on A whose graph is strictly contained in that of Φ . So there exists an $a_0 \in A$ such that $\Psi(a_0) \subsetneq \Phi(a_0)$ and an $x_0 \in S(X)$ such that max $\widehat{x}_0(\Phi(a_0)) > \max \widehat{x}_0(\Psi(a_0))$. Now consider the two set-valued mappings T_{x_0} and S_{x_0} from A into subsets of \mathbb{R} where $a \mapsto T_{x_0}(a) = \widehat{x}_0(\Phi(a))$ and $a \mapsto S_{x_0}(a) = \widehat{x}_0(\Psi(a))$. Clearly, $S_{x_0}(a) \subseteq T_{x_0}(a)$ for all $a \in A$. However, max $S_{x_0}(a_0) = \max \widehat{x}_0(\Psi(a_0)) < \max \widehat{x}_0(\Phi(a_0)) = \max T_{x_0}(a_0)$ so $S_{x_0}(a_0) \neq T_{x_0}(a_0)$ and we conclude that T_{x_0} is not a minimal cusco on A.

For a locally Lipschitz function ψ on an open subset A of a normed linear space X, the upper Dini derivative of ψ at $x \in A$ in the direction $y \in X$ is

$$\psi^+(x)(y)\equiv \limsup_{\lambda
ightarrow 0+} \; rac{\psi(x+\lambda y)-\psi(x)}{\lambda}$$

and the lower Dini derivative of ψ at $x \in A$ in the direction $y \in X$ is

$$\psi^{-}(x)(y)\equiv \liminf_{\lambda\to 0+} \frac{\psi(x+\lambda y)-\psi(x)}{\lambda}$$

An equivalent formulation for the subdifferential of ψ at $x \in A$ is

$$\partial \psi^0(x) \equiv \left\{ f \in X^* : -(-\psi)^0(x)(y) \leqslant f(y) \leqslant \psi^0(x)(y) ext{ for all } y \in X
ight\}$$

and we note that

$$-(-\psi)^0(x)(y) = \liminf_{\substack{x \to x \ \lambda \to 0+}} \frac{\psi(z+\lambda y) - \psi(z)}{\lambda}$$

It is convenient to express the Clarke directional derivatives in terms of the directional and Dini derivatives, [7, p.837].

LEMMA 2.3. Consider a locally Lipschitz function ψ on an open subset A of a normed linear space X. Given $y \in X$ and $x \in A$,

$$\psi^0(x)(y) = \limsup_{\substack{z \to x \ x \in D_y}} \psi'(z)(y) = \limsup_{z \to x} \psi^+(z)(y)$$

 $-(-\psi)^0(x)(y) = \liminf_{\substack{z \to x \ z \in D_y}} \psi'(z)(y) = \liminf_{z \to x} \psi^-(z)(y)$

where D_y is the set of points in A where ψ is Gâteaux differentiable in the direction y.

PROOF: Clearly, $\psi^0(x)(y) \ge \limsup_{z \to x} \psi^+(z)(y) \ge \limsup_{\substack{z \to x \\ x \in D_y}} \psi'(z)(y)$. But also, given $\varepsilon > 0$, in any neighbourhood of x there exists a $z_0 \in A$ and $\lambda_0 > 0$ such that $z_0 + \lambda_0 y \in A$ and

$$rac{\psi(z_0+\lambda_0 y)-\psi(z_0)}{\lambda_0}>\psi^0(x)(y)-arepsilon.$$

Consider ψ restricted to the interval $[z_0, z_0 + \lambda_0 y]$. Since ψ is locally Lipschitz it follows from Lebesgue's Differentiation Theorem that there exists a $0 \leq \lambda_1 \leq \lambda_0$ such that

$$\psi'(z_0+\lambda_1 y)(y)\geqslant \; rac{\psi(z_0+\lambda_0 y)-\psi(z_0)}{\lambda_0}.$$

So $\limsup_{z \to x} \psi^+(z)(y) \ge \limsup_{\substack{x \to x \\ z \in D_y}} \psi'(z)(y) \ge \psi^0(x)(y)$ and our first result follows.

Now for all $x \in A$ and $y \in X$, $-(-\psi)^0(x)(y) = -\psi^0(x)(-y)$ and $\psi^-(x)(y) = -(-\psi)^+(x)(y)$. So $-(-\psi)^0(x)(y) = -\limsup_{\substack{z \to x \\ x \in D_y}} \psi'(z)(-y) = \liminf_{\substack{z \to x \\ x \in D_y}} \psi'(z)(y)$. But also

$$-(-\psi)^{0}(x)(y) = -\limsup_{\substack{z \to x \\ z \in D_{y}}} (-\psi)'(z)(y) = -\limsup_{z \to x} (-\psi)^{+}(z)(y) = \liminf_{z \to x} \psi^{-}(z)(y). \quad \Box$$

J.R. Giles

From Preiss' Theorem we see that for a locally Lipschitz function on an open subset of a smoothable (Asplund) space the subdifferential is generated by the dense set of derivatives of the function and so in this case we have a tighter result.

LEMMA 2.4. Consider a locally Lipschitz function ψ on an open subset A of a smoothable (Asplund) space X. Given $y \in X$ and $x \in A$,

$$\psi^0(x)(y) = \limsup_{\substack{z \to x \\ z \in D}} \psi'(z)(y) = \limsup_{z \to z} \psi^+(z)(y)$$

 $-(-\psi)^0(x)(y) = \liminf_{\substack{z \to x \\ z \in D}} \psi'(z)(y) = \liminf_{z \to x} \psi^-(z)(y)$

where D is the set of points where ψ is Gâteaux (Fréchet) differentiable on A.

Consider a real valued function ϕ on a topological space A. Now ϕ is said to be *quasi upper semi-continuous* at $a_0 \in A$ if given $\varepsilon > 0$ and an open neighbourhood U of a_0 , there exists a non-empty open set $V \subseteq U$ such that $\phi(a) < \phi(a_0) + \varepsilon$ for all $a \in V$, and is said to be *quasi lower semi-continuous* at $a_0 \in A$ if $-\phi$ is quasi upper semi-continuous at $a_0 \in A$ if $-\phi$ is quasi upper semi-continuous at $a_0 \in A$ if given $\varepsilon > 0$ and an open neighbourhood U of a_0 , there exists a non-empty open set $V \subseteq U$ such that $\psi(a) < \phi(a_0) + \varepsilon$ for all $a \in V$, and is said to be *quasi lower semi-continuous* at $a_0 \in A$ if $-\phi$ is quasi upper semi-continuous at $a_0 \in A$ if given $\varepsilon > 0$ and an open neighbourhood U of a_0 , there exists a non-empty open set $V \subseteq U$ such that

$$\phi(a_0) - \varepsilon < \phi(a) < \phi(a_0) + \varepsilon ext{ for all } a \in V,$$

If ϕ is quasi upper semi continuous on a Baire space A then ϕ is continuous on a residual subset of A, [4, p.369].

We now present our characterisation for minimality of the Clarke subdifferential mapping in terms of quasi-continuity. The result is similar to that given in [11, Theorem 2.14].

THEOREM 2.5. For a locally Lipschitz function ψ on an open subset A of a normed linear space X, the following are equivalent.

- (i) the Clarke subdifferential mapping $x \mapsto \partial \psi^0(x)$ is a minimal weak* cusco on A,
- (ii) for each $y \in X$, $\psi^+(x)(y)$ is quasi upper semi-continuous on A,
- (iii) for each $y \in X$, $\psi^{-}(x)(y)$ is quasi lower semi-continuous on A,
- (iv) for each $y \in X$, $\psi'(x)(y)$ is quasi upper semi-continuous on D_y ,
- (v) for each $y \in X$, $\psi'(x)(y)$ is quasi lower semi-continuous on D_y ,

where D_y is the set of points in A where ψ is Gâteaux differentiable in the direction y.

PROOF: (i) \Rightarrow (ii) Given $x \in A$ and $\varepsilon > 0$ and any neighbourhood U of x there exists a non-empty open set $V \subseteq U$ such that

$$\left[-(-\psi)^0(z)(y),\psi^0(z)(y)
ight]\subseteq \left(-\infty,-(-\psi)^0(x)(y)+\varepsilon
ight) ext{ for all }z\in V.$$

Then for each $z' \in V$ there exists an open neighbourhood V' of z' where $V' \subseteq V$ such that

$$\psi^+(z)(y) < -(-\psi)^0(x)(y) + \varepsilon < \psi^+(x)(y) + \varepsilon ext{ for all } z \in V';$$

that is, $\psi^+(x)(y)$ is quasi upper semi-continuous on A.

(i) \Rightarrow (iii) Given $x \in A$ and $\varepsilon > 0$ and any neighbourhood U of x there exists a non-empty open set $V \subseteq U$ such that

$$\left[-(-\psi)^0(z)(y),\psi^0(z)(y)
ight]\subseteq \left(\psi^0(x)(y)-arepsilon,\infty
ight) ext{ for all } z\in V.$$

Then as in (i) \Rightarrow (ii) we deduce that $\psi^{-}(x)(y)$ is quasi lower semi-continuous on A.

(ii) \Rightarrow (iv) and (iii) \Rightarrow (v). It follows from Lebesgue's Differentiation Theorem that D_y is dense in A and so we have these results.

(iv) \Leftrightarrow (v) Given $x \in D_y$, $\psi'(x)(y) = -\psi'(x)(-y)$. So $\psi'(x)(-y)$ is quasi upper semi-continuous on D_y if and only if $\psi'(x)(y)$ is quasi lower semi-continuous on D_y .

(iv) \Rightarrow (i) Given $x \in A$ and $\varepsilon > 0$ and any neighbourhood U of x, by Lemma 2.3 there exists an $x' \in U \cap D_y$ such that

$$\psi'(x')(y)<-(-\psi)^0(x)(y)+\frac{\varepsilon}{2}$$

Since $\psi'(x)(y)$ is quasi upper semi-continuous at x', there exists a non-empty open set $V \subseteq U$ such that

$$\psi'(z)(y) < \psi'(x')(y) + rac{arepsilon}{2} ext{ for all } z \in V \cap D_y.$$

But then

$$\psi^0(z)(y)\leqslant \psi'(x')(y)+rac{arepsilon}{2}<-(-\psi)^0(x)(y)+arepsilon ext{ for all }z\in V.$$

So

$$\left[-(-\psi)^0(z)(y),\psi^0(z)(y)
ight]\subseteq \left(-\infty,-(-\psi)^0(x)(y)+\epsilon
ight) ext{ for all }z\in V.$$

Now $\psi^0(x)(-y) = (-\psi)^0(x)(y)$ and $-(-\psi)^0(x)(-y) = -\psi^0(x)(y)$. So applying our results to $-y \in X$ and $x \in A$ and neighbourhood U of x there exists a non-empty open set $V \subseteq U$ such that

$$\left[-(-\psi)^0(z)(-y),\psi^0(z)(-y)
ight]\subseteq \left(-\infty,-(-\psi)^0(x)(-y)+\varepsilon
ight);$$

that is,

$$\left[-\psi^0(z)(y),(-\psi)^0(z)(y)
ight]\subseteq \left(-\infty,-\psi^0(x)(y)+\varepsilon
ight) ext{ for all } z\in V.$$

So

$$\left[-(-\psi)^0(z)(y),\psi^0(z)(y)
ight]\subseteq \left(\psi^0(x)(y)-arepsilon,\infty
ight) ext{ for all } z\in V.$$

We conclude that the Clarke subdifferential mapping $x \mapsto \partial \psi^0(x)$ is a minimal weak^{*} cusco on A.

Using Lemma 2.4 we have a tighter result for a locally Lipschitz function on an open subset of a smoothable (Asplund) space.

THEOREM 2.6. For a locally Lipschitz function ψ on an open subset A of a smoothable (Asplund) space X, the Clarke subdifferential mapping $x \mapsto \partial \psi^0(x)$ is a minimal weak* cusco on A if and only if for each $y \in X$, $\psi'(x)(y)$ is quasi upper semicontinuous on D, the set of points in A where ψ is Gâteaux (Fréchet) differentiable.

The proof in one direction follows from Theorem 2.5 (i) \Rightarrow (iv). In the other direction it is similar to Theorem 2.5 (iv) \Rightarrow (i) but using Lemma 2.4.

A locally Lipschitz function ψ on an open subset A of a normed linear space X is strictly differentiable at $x \in A$ in the direction $y \in X$ if and only if $\psi^+(x)(y)$ is continuous at x [7, p.837]. Using the fact that, given $x \in A$, $\psi^+(x)(y)$ is continuous in y, [6, p.207] and the generic continuity of quasi upper semi-continuous functions, we can make the following deduction.

COROLLARY 2.7. For a locally Lipschitz function ψ on an open subset A of a separable Banach space X, if the subdifferential mapping $x \mapsto \partial \psi^0(x)$ is minimal then ψ is strictly differentiable on a residual subset of A.

We should note that such a result is not true for non-separable spaces. On ℓ_{∞} the semi-norm p defined for $x \equiv \{x_1, x_2, \ldots, x_n, \ldots\}$ by $p(x) = \limsup |x_n|$, has a minimal subdifferential mapping $x \mapsto \partial p(x)$, but p is nowhere Gâteaux differentiable, [12, p.13]. Further, the converse of Corollary 2.7 does not hold in general. Pompeiu [13], has given an example of a real valued differentiable function ψ with a bounded non-negative derivative on an interval (a, b) where the sets $\{x \in (a, b) : \psi'(x) = 0\}$ and $\{x \in (a, b) : \psi'(x) > 0\}$ are both dense in (a, b). Clearly at each point of $\{x \in (a, b) : \psi'(x) > 0\}$, ψ' is not quasi lower semi-continuous and so the subdifferential mapping $x \mapsto \partial \psi^0(x)$ is not minimal. However, since ψ is differentiable on (a, b), ψ is strictly differentiable on a residual subset of (a, b), [6, p.210].

At this stage it is worth noting that a real valued differentiable function ψ on an interval (a, b) with derivative ψ' continuous almost everywhere, has ψ' quasi continuous on (a, b), [9, p.974], and so has a minimal subdifferential mapping $x \mapsto \partial \psi^0(x)$. On the other hand there exists a real-valued function ψ on (a, b) with bounded derivative which is quasi continuous on (a, b) but where the derivative is discontinuous on a set of positive measure, [9, p.975].

A locally Lipschitz function ψ on an open subset A of a normed linear space X is said to be *pseudo-regular* at $x \in A$ in the direction $y \in X$ if $\psi^+(x)(y) = \psi^0(x)(y)$ and *pseudo-regular* at x if it is pseudo-regular at x in all directions $y \in X$. Since $\psi^0(x)(y) = \limsup_{\substack{z \to x}} \psi^+(z)(y)$, it follows that ψ is pseudo-regular at $x \in A$ in the direction $y \in X$ if and only if $\psi^+(x)(y)$ is upper semi-continuous at x, [7, p.836]. So we can make the following deduction, [11, Theorem 2.5].

COROLLARY 2.8. A locally Lipschitz function ψ which is pseudo-regular on an open subset A of a normed linear space X, has a minimal subdifferential mapping $x \mapsto \partial \psi^0(x)$ on A.

3 MINIMAL SUBDIFFERENTIAL MAPPINGS ON PRODUCT SPACES

Given topological spaces X, Y and Z and a function θ from $X \times Y$ into Z, we define for $p \in X$, the function θ_p from Y into Z where

$$\theta_p(y) = \theta(p, y)$$

and for $q \in Y$, the function θ_q from X into Z where

$$\theta_q(x) = \theta(x,q)$$

The following lemma relates separate and joint quasi continuity modelled on the proof of a similar result, [10, p.39].

LEMMA 3.1. Consider a real valued function θ on $X \times Y$ where X is a Baire space and Y is second countable. If θ_x is quasi upper semi-continuous on Y for all $x \in X$ and θ_y is both quasi upper and quasi lower semi-continuous on X for all $y \in Y$ then θ is quasi upper semi-continuous on $X \times Y$.

PROOF: Suppose that θ is not quasi upper semi-continuous at $(p,q) \in X \times Y$. Then there is an r > 0 and a neighbourhood $U \times V$ of (p,q) such that in every non-empty open subset of $U \times V$ there exists an (x,y) such that

$$heta(x,y) \geqslant heta(p,q) + r.$$

Since θ_q is quasi upper semi-continuous at p, there exists a non-empty open set $E \subseteq U$ such that

$$heta(x,q) < heta(p,q) + rac{r}{3} ext{ for all } x \in E.$$

Consider \mathcal{V} a countable base for Y and $\{V_n : n \in \mathbb{N}\}$ those elements from \mathcal{V} contained in V. For each $n \in \mathbb{N}$, write

$$A_n \equiv \left\{ x \in E : \theta(x,y) < \theta(x,q) + rac{r}{3} ext{ for all } y \in V_n
ight\}.$$

J.R. Giles

Consider $x \in E$. Since θ_x is quasi upper semi-continuous at q there exists a nonempty open set $F \subseteq V$ such that $\theta(x,y) < \theta(x,q) + r/3$ for all $y \in F$. But there exists $k \in \mathbb{N}$ such that $V_k \subseteq F$. So $x \in A_k$ and $E = \bigcup_{i=1}^{\infty} A_n$.

Consider E' a non-empty open subset of E and $n \in \mathbb{N}$. Then $E' \times V_n \subseteq U \times V_n$ and there is a $(x',y') \in E' \times V_n$ such that $\theta(x',y') \ge \theta(p,q) + r$. Since $\theta_{y'}$ is quasi lower semi-continuous at x', there exists a non-empty open set $E'' \subseteq E'$ such that

$$heta(x,y') > heta(x',y') - rac{r}{3} ext{ for all } x \in E''.$$

For $x \in E''$,

$$heta(x,y') > heta(x',y') - rac{r}{3} \geqslant heta(p,q) + rac{2r}{3} > heta(x,q) + rac{r}{3}.$$

But since $y' \in V_n$ then $x \notin A_n$ and so $E'' \cap A_n = \emptyset$. Therefore, A_n is nowhere dense and E is of first Baire category. This contradicts the fact that X is a Baire space.

This Lemma with Theorem 2.5 gives an improved sufficiency theorem for minimal subdifferential mappings of locally Lipschitz functions on certain product spaces.

THEOREM 3.2. Consider a locally Lipschitz function ψ on a product space $X \times Y$ where X and Y are Banach spaces and Y is separable. The subdifferential mapping $(x,y) \mapsto \partial \psi^0(x,y)$ is minimal on $X \times Y$ if given $(u,v) \in X \times Y$, for each $p \in X$, $\psi^+(p,y)(u,v)$ is quasi upper semi-continuous on Y and for each $q \in Y$, $\psi^+(x,q)(u,v)$ is both quasi upper and quasi lower semi-continuous on X.

From Theorem 3.2 and Proposition 1.1 we can deduce the following generic differentiability properties of locally Lipschitz functions on a product space.

COROLLARY 3.3. Consider a locally Lipschitz function ψ a product space $X \times Y$ where X and Y are Banach spaces and Y is separable and ψ satisfies the hypothesis of Theorem 3.2.

- (i) If X is smoothable, then ψ is strictly differentiable on a residual subset of $X \times Y$.
- (ii) If X is Asplund and Y has separable dual, then ψ is uniformly strictly differentiable on a residual subset of $X \times Y$.

Proof:

- (i) If X is smoothable and Y is separable, then Y is smoothable and so $X \times Y$ is smoothable.
- (ii) If X is Asplund and Y has separable dual, then closed separable subspaces of $X \times Y$ have separable duals and $X \times Y$ is Asplund, [12, p.32].

Our result now follows from Proposition 1.1 and Corollary 1.2.

Π

Theorem 3.2 provides a test for minimality for locally Lipschitz functions on a product space using the behaviour of associated functions on each of the component spaces. Our other theorem gives a similar result using the behaviour of derivatives in component directions.

THEOREM 3.4. Consider a locally Lipschitz function ψ on an open subset A of a smoothable (Asplund) product space $X \times Y$ where X and Y are Banach spaces. The subdifferential mapping $(x, y) \mapsto \partial \psi^0(x, y)$ is minimal on A if one of $\psi'(x, y)(u, 0)$ and $\psi'(x, y)(0, v)$ is upper semi-continuous on D and the other is quasi upper semicontinuous on D where D is the set of points in A where ψ is Gâteaux (Fréchet) differentiable.

PROOF: Given $(u, v) \in X \times Y$ and $(x, y) \in D$ then

$$\psi'(x,y)(u,v) = \psi'(x,y)(u,0) + \psi'(x,y)(0,v).$$

It follows that $\psi'(x,y)(u,v)$ is quasi upper semi-continuous on D and Theorem 2.6 gives our result.

In particular, ψ satisfies the hypothesis of this theorem when ψ is pseudo-regular on $X \times Y$, in directions (u,0) and (0,v), [6, p.837]. So Theorem 3.4 can be considered to be a generalisation of Corollary 2.8.

From Theorem 3.4 and Proposition 1.1 we can deduce generic differentiability properties.

COROLLARY 3.5. A locally Lipschitz function ψ on an open subset A of a smoothable (Asplund) product space $X \times Y$ where X and Y are Banach spaces and ψ satisfies the hypothesis of Theorem 3.4, has ψ strictly (uniformly strictly) differentiable on a residual subset of A.

It is a classical result that a real valued locally Lipschitz function on Euclidean space with continuous partial derivatives at a point is strictly differentiable at the point. A proof of this follows from the more general local result.

THEOREM 3.6. Consider a locally Lipschitz function ψ on an open subset A of a a product space $X \times Y$ where X and Y are normed linear spaces. If ψ is strictly differentiable at (x_0, y_0) in both directions (u, 0) and (0, v) then ψ is strictly differentiable at (x_0, y_0) .

PROOF: Consider $f \in \partial \psi^0(x_0, y_0)$. Since ψ is strictly differentiable at (x_0, y_0) in directions (u, 0) and (0, v) then

$$f(u,0) = \psi^0(x_0,y_0)(u,0)$$
 and $f(0,v) = \psi^0(x_0,y_0)(0,v)$.

So $f(u,v) = \psi^0(x_0,y_0)(u,v)$ and we conclude that $\partial \psi^0(x_0,y_0)$ is singleton.

[11]

J.R. Giles

References

- J.M. Borwein, 'Minimal cuscos and subgradients of Lipschitz functions', in Fixed point theory and its applications (Pitman Research Notes 252, 1991), pp. 57-81.
- [2] J. Borwein, S. Fitzpatrick and P. Kenderov, 'Minimal convex uscos and monotone operators on small sets', Canad. J. Math. 43 (1991), 461-476.
- [3] G. de Barra, S. Fitzpatrick and J.R. Giles, 'On generic differentiability of locally Lipschitz functions on Banach space', Proc. Centre Math. Anal. Austral. Nat. Univ. 20 (1988), 39-49.
- [4] J.R. Giles and M.O. Bartlett, 'Modified continuity and a generalisation of Michael's selection theorem, Set-Valued Anal. 1 (1993), 365-378.
- [5] J.R. Giles and S. Sciffer, 'Continuity characterisations of differentiability of locally Lipschitz functions', Bull. Austral. Math. Soc. 41 (1990), 371-380.
- [6] J.R. Giles and S. Sciffer, 'Locally Lipschitz functions are generically pseudo-regular on separable Banach spaces', Bull. Austral. Math. Soc. 47 (1993), 205-212.
- [7] J.R. Giles and S. Sciffer, 'Generalising generic differentiability properties from convex to locally Lipschitz functions', J. Math. Anal. Appl. 188 (1994), 833-854.
- [8] J.R. Giles and W.B. Moors, 'A continuity property related to Kuratowski's index of non-compactness, its relevance the the drop property and its implications for differentiability theory', J. Math. Anal. Appl. 178 (1993), 247-268.
- [9] S. Marcus, 'Sur les fonctions dérivées, intégrables, au sens de Riemann et sur les dérivées partialles mixtes', Proc. Amer. Math. Soc. 9 (1958), 973-978.
- [10] N.F.G. Martin, 'Quasi-continuous functions on product spaces', Duke Math. J. 28 (1961), 39-44.
- [11] W.B. Moors, 'A characterisation of minimal subgradients of locally Lipschitz functions', Set-Valued Anal. (to appear).
- [12] R.R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Math. 1364 (Springer-Verlag, Berlin, Heidelberg, New York, 1993).
- [13] D. Pompeiu, 'Sur les fonctions dérivées'', Math. Ann. 63 (1907), 326-332.
- [14] D. Preiss, 'Fréchet derivatives of Lipschitz functions', J. Funct. Anal. 91 (1990), 312-345.
- [15] D. Preiss, R.R. Phelps and I. Namioka, 'Smooth Banach spaces, weak Asplund spaces and monotone or usco mappings', Israel J. Math. 72 (1990), 257-279.

Department of Mathematics The University of Newcastle New South Wales 2308 Australia