The Neurobiology of Eating Disorders:
A Resurgence of Investigations
K.A. Halmi

Genetics in Eating Disorders:
State of the Science
C.M. Bulik and F. Tozzi

Neuropeptides in Eating Disorders
D.C. Jimerson and B.E. Wolfe

Leptin Functioning in Eating Disorders
P. Monteleone, A. DiLieto, E. Castaldo, and M. Maj

Exercise “Addiction” in Anorexia Nervosa:
Model Development and Pilot Data

Neuroimaging Studies in Eating Disorders
The most common adverse events included loss of appetite, insomnia, abdominal pain, and emotional lability.

As with other psychostimulants indicated for ADHD, there is a potential for exacerbating motor and phonic tics and Tourette's syndrome. A side effect seen with the amphetamine class is psychosis. Caution also should be exercised in patients with a history of psychosis.
With efficacy that goes beyond adequate symptom control—to help them reach new heights

- Reduces symptoms to a level comparable to that of non-ADHD children
- Effectively addresses the core impairments of ADHD—inattention, hyperactivity, and impulsivity
- Once-daily dosing provides day-long improvement in academic productivity and social functioning

Abuse of amphetamines may lead to dependence. ADDERALL XR is contraindicated in patients with symptomatic cardiovascular disease, moderate to severe hypertension, hyperthyroidism and glaucoma, known hypersensitivity to this class of compounds, agitated states, history of drug abuse, or current or recent use of MAO inhibitors. ADDERALL XR should be prescribed with close physician supervision.
INDICATIONS

ADDERALL XR* is indicated for the treatment of Attention Deficit Hyperactivity Disorder (ADHD). The efficacy of ADDERALL XR in the treatment of ADHD was established on the basis of two controlled, 8-week placebo-controlled clinical trials conducted in children ages 6 to 12 years. The treatment effects obtained with ADDERALL XR in these studies were consistent with the positive results previously obtained withoral ADDERALL* (a racemic mixture of d- and l-amphetamine salts). Consequently, the treatment effects obtained with ADDERALL XR in these studies were consistent with the positive results previously obtained with oral ADDERALL* (a racemic mixture of d- and l-amphetamine salts).

PRECAUTIONS

- The maximum recommended daily dose of ADDERALL XR is 30 mg/day in children 6 to 12 years of age, 20 mg/day in adolescents 13 to 17 years of age, and 15 mg/day in adults. The dose should be titrated gradually and carefully, and the patient should be monitored closely for response and adverse effects.

- The use of ADDERALL XR is generally not recommended in patients with a history of drug abuse. During or within 14 days following the administration of ADDERALL XR, the patient should be observed for any evidence of drug abuse.

- ADDERALL XR should be prescribed or dispensed at one time in order to minimize the potential for drug dependence and overdose. The patient should be instructed to take the medication exactly as directed by the prescriber.

- ADDERALL XR has not been studied in the geriatric population. The use of ADDERALL XR in the elderly population has not been systematically investigated. The safety and efficacy of ADDERALL XR in the elderly population have not been established. In the elderly, the potential for increased sensitivity to the effects of amphetamines should be considered.

- ADDERALL XR has not been studied in patients with a history of drug abuse. During or within 14 days following the administration of ADDERALL XR, the patient should be observed for any evidence of drug abuse.

ADVERSE EVENTS

- The premarketing development program for ADDERALL XR included exposures in a total of 685 participants in clinical trials (615 patients, 70 healthy adult subjects). These participants received ADDERALL XR at daily doses up to 30 mg. The 615 patients (ages 6 to 12) were evaluated in two controlled clinical studies, one open-label clinical study, and one single-dose clinical pharmacology study (N=20). Safety data on all patients are included in the discussion that follows. Adverse reactions were assessed by collecting adverse events, results of physical examinations, vital signs, and laboratory analyses. Children 6 to 17 years of age were included in the controlled clinical trials. Similarly, the cited frequencies cannot be compared with figures obtained from other clinical investigations involving different treatments, uses, and investigators. The cited figures, however, provide some relative indication of overall frequencies of reported events and are useful in the comparison of the relative safety of one drug candidate with that of other drugs of a similar class. The overall frequency of adverse events reported in clinical trials is likely to be overestimated as a result of the inherent tendency to report adverse events and because some adverse reactions are considered by the investigator to be related to the drug treatment. The cited frequencies also reflect the investigators’ awareness of the possibility of drug-related adverse reactions and, in many cases, the use of a more stringent definition of adverse reactions for events that are considered related to the drug treatment. The cited frequencies also reflect the investigators’ awareness of the possibility of drug-related adverse reactions and, in many cases, the use of a more stringent definition of adverse reactions for events that are considered related to the drug treatment.

<table>
<thead>
<tr>
<th>Body System</th>
<th>Preferred Term</th>
<th>% Placebo</th>
<th>% ADDERALL XR</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Amphetamine Abuse (psychostimulant)</td>
<td>14%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>Accidental Injury</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Dizziness</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Infection</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Weight loss</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Emotional Lability</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Insomnia</td>
<td>17%</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td>Metabolism/Nutrition</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Weight loss</td>
<td>4%</td>
<td>4%</td>
</tr>
</tbody>
</table>

ADVERSE EVENTS ASSOCIATED WITH DISCONTINUATION OF TREATMENT

- Adverse events associated with discontinuation of treatment in a placebo-controlled study of up to 6 weeks during 24% (4/102) of ADDERALL XR treated patients discontinued due to adverse events (including 3 patients with loss of appetite, one of whom also reported insomnia) compared to 3.7% (5/189) receiving placebo. The most common adverse events associated with discontinuation of ADDERALL XR in controlled and uncontrolled, multiple-dose clinical trials (N=486) are presented below: Over half of these patients were exposed to ADDERALL XR for 12 months or more. Adverse event % of patients discontinuing (N=486)

- **Aphasia (loss of speech)**: 2.9%
- **Anorexia**: 1.5%
- **Weight loss**: 6.0%
- **Emotional lability**: 1.0%
- **Irritability**: 1.0%

ADVERSE EVENTS ASSOCIATED WITH DISCONTINUATION OF TREATMENT

- Adverse events associated with discontinuation of treatment in a placebo-controlled study of up to 6 weeks during 24% (4/102) of ADDERALL XR treated patients discontinued due to adverse events (including 3 patients with loss of appetite, one of whom also reported insomnia) compared to 3.7% (5/189) receiving placebo. The most common adverse events associated with discontinuation of ADDERALL XR in controlled and uncontrolled, multiple-dose clinical trials (N=486) are presented below: Over half of these patients were exposed to ADDERALL XR for 12 months or more. Adverse event % of patients discontinuing (N=486)

- **Aphasia (loss of speech)**: 2.9%
- **Anorexia**: 1.5%
- **Weight loss**: 6.0%
- **Emotional lability**: 1.0%
- **Irritability**: 1.0%

ADVERSE EVENTS ASSOCIATED WITH DISCONTINUATION OF TREATMENT

- Adverse events associated with discontinuation of treatment in a placebo-controlled study of up to 6 weeks during 24% (4/102) of ADDERALL XR treated patients discontinued due to adverse events (including 3 patients with loss of appetite, one of whom also reported insomnia) compared to 3.7% (5/189) receiving placebo. The most common adverse events associated with discontinuation of ADDERALL XR in controlled and uncontrolled, multiple-dose clinical trials (N=486) are presented below: Over half of these patients were exposed to ADDERALL XR for 12 months or more. Adverse event % of patients discontinuing (N=486)

- **Aphasia (loss of speech)**: 2.9%
- **Anorexia**: 1.5%
- **Weight loss**: 6.0%
- **Emotional lability**: 1.0%
- **Irritability**: 1.0%

ADVERSE EVENTS ASSOCIATED WITH DISCONTINUATION OF TREATMENT

- Adverse events associated with discontinuation of treatment in a placebo-controlled study of up to 6 weeks during 24% (4/102) of ADDERALL XR treated patients discontinued due to adverse events (including 3 patients with loss of appetite, one of whom also reported insomnia) compared to 3.7% (5/189) receiving placebo. The most common adverse events associated with discontinuation of ADDERALL XR in controlled and uncontrolled, multiple-dose clinical trials (N=486) are presented below: Over half of these patients were exposed to ADDERALL XR for 12 months or more. Adverse event % of patients discontinuing (N=486)

- **Aphasia (loss of speech)**: 2.9%
- **Anorexia**: 1.5%
- **Weight loss**: 6.0%
- **Emotional lability**: 1.0%
- **Irritability**: 1.0%

ADVERSE EVENTS ASSOCIATED WITH DISCONTINUATION OF TREATMENT

- Adverse events associated with discontinuation of treatment in a placebo-controlled study of up to 6 weeks during 24% (4/102) of ADDERALL XR treated patients discontinued due to adverse events (including 3 patients with loss of appetite, one of whom also reported insomnia) compared to 3.7% (5/189) receiving placebo. The most common adverse events associated with discontinuation of ADDERALL XR in controlled and uncontrolled, multiple-dose clinical trials (N=486) are presented below: Over half of these patients were exposed to ADDERALL XR for 12 months or more. Adverse event % of patients discontinuing (N=486)

- **Aphasia (loss of speech)**: 2.9%
- **Anorexia**: 1.5%
- **Weight loss**: 6.0%
- **Emotional lability**: 1.0%
- **Irritability**: 1.0%

ADVERSE EVENTS ASSOCIATED WITH DISCONTINUATION OF TREATMENT

- Adverse events associated with discontinuation of treatment in a placebo-controlled study of up to 6 weeks during 24% (4/102) of ADDERALL XR treated patients discontinued due to adverse events (including 3 patients with loss of appetite, one of whom also reported insomnia) compared to 3.7% (5/189) receiving placebo. The most common adverse events associated with discontinuation of ADDERALL XR in controlled and uncontrolled, multiple-dose clinical trials (N=486) are presented below: Over half of these patients were exposed to ADDERALL XR for 12 months or more. Adverse event % of patients discontinuing (N=486)

- **Aphasia (loss of speech)**: 2.9%
- **Anorexia**: 1.5%
- **Weight loss**: 6.0%
- **Emotional lability**: 1.0%
- **Irritability**: 1.0%

ADVERSE EVENTS ASSOCIATED WITH DISCONTINUATION OF TREATMENT

- Adverse events associated with discontinuation of treatment in a placebo-controlled study of up to 6 weeks during 24% (4/102) of ADDERALL XR treated patients discontinued due to adverse events (including 3 patients with loss of appetite, one of whom also reported insomnia) compared to 3.7% (5/189) receiving placebo. The most common adverse events associated with discontinuation of ADDERALL XR in controlled and uncontrolled, multiple-dose clinical trials (N=486) are presented below: Over half of these patients were exposed to ADDERALL XR for 12 months or more. Adverse event % of patients discontinuing (N=486)

- **Aphasia (loss of speech)**: 2.9%
- **Anorexia**: 1.5%
- **Weight loss**: 6.0%
- **Emotional lability**: 1.0%
- **Irritability**: 1.0%
July 2004 Volume 9 - Number 7

CNS SPECTRUMS
The International Journal of Neuropsychiatric Medicine

EDITOR
Jack M. Gorman, MD
Mount Sinai School of Medicine
New York, NY

ASSOCIATE AND FOUNDING EDITOR
Eric Hollander, MD
Mount Sinai School of Medicine
New York, NY

INTERNATIONAL EDITOR
Joseph Zohar, MD
Chaim Sheba Medical Center
Tel-Hashomer, Israel

ASSOCIATE INTERNATIONAL EDITORS
EUROPE
Donatella Marazziti, MD
University of Pisa
Pisa, Italy

MID-ATLANTIC
Dan J. Stein, MD, PhD
University of Stellenbosch
Tygerberg, South Africa

FAR EAST
Shigeto Yamawaki, MD, PhD
Hiroshima University School of Medicine
Hiroshima, Japan

CONTRIBUTING WRITERS
Cynthia M. Bulik, PhD
Guido Frank, MD
Katherine A. Halmi, MD
David C. Jimerson, MD
Diane A. Klein, MD
Palmiero Monteleone, MD

MEDICAL REVIEWER
David L. Ginsberg, MD

BOARD OF ADVISORS
NEUROLOGISTS
Mitchell F. Brin, MD
University of California, Irvine
Irvine, CA

Jeffrey L. Cummings, MD
University of California, Los Angeles
Los Angeles, CA

Jerome Engel, Jr., MD, PhD
University of California, Los Angeles
Los Angeles, CA

Mark S. George, MD
Medical University of South Carolina
Charleston, SC

Deborah Hirtz, MD
National Institute of Neurological Disorders and Stroke, NIH
Rockville, MD

Richard B. Lipton, MD
Albert Einstein College of Medicine
Bronx, NY

C. Warren Olanow, MD, FRCPC
Mount Sinai School of Medicine
New York, NY

Steven George Pavlakis, MD
Malmonides Medical Center
Brooklyn, NY

Stephen D. Silberstein, MD, FACP
Thomas Jefferson University
Philadelphia, PA

Michael Trimble, MD, FRCP, FRPsych
National Hospital for Neurology and Neurosurgery
London, United Kingdom

PSYCHIATRISTS
Margaret Altemus, MD
Cornell University Medical College
New York, NY

Steven Charney, MD
National Institute of Mental Health
Bethesda, MD

Dwight L. Evans, MD
University of Pennsylvania
Philadelphia, PA

Siegfried Kasper, MD
University of Vienna
Vienna, Austria

Martin B. Keller, MD
Brown Medical School
Providence, RI

Lorin M. Koran, MD
Stanford University School of Medicine
Stanford, CA

Yves Lecebrerie, MD
Hôpital de la Salpêtrière
Paris, France

Herbert Y. Meltzer, MD
Vanderbilt University Medical Center
Nashville, TN

Stuart A. Montgomery, MD
St. Mary's Hospital Medical School
London, United Kingdom

Charles B. Nemeroff, MD, PhD
Emory University School of Medicine
Atlanta, GA

Humberto Nicolini, MD, PhD
National Mexican Institute of Psychiatry
Mexico City, Mexico

Stefano Pallanti, MD, PhD
University of Florence
Florence, Italy

Katharine Phillips, MD
Brown Medical School
Providence, RI

Harold A. Pincus, MD
Western Psychiatric Institute & Clinic
RAND-University of Pittsburgh Health Institute, Pittsburgh, PA

Scott L. Rauch, MD
Massachusetts General Hospital
Charlestown, MA

Alan F. Schatzberg, MD
Stanford University School of Medicine
Stanford, CA

Thomas E. Schlaepfer, MD
University of Bonn
Bonn, Germany

Stephen M. Stahl, MD, PhD
University of California, San Diego
La Jolla, CA

Norman Sussman, MD, DFAPA
New York University Medical School
New York, NY

Karen Dineen Wagner, MD, PhD
The University of Texas Medical Branch
Galveston, Texas

Herman G.M. Westenberg, MD
University Hospital Utrecht
Utrecht, The Netherlands

Stuart C. Yudofsky, MD
Baylor College of Medicine
Houston, TX

MBL COMMUNICATIONS Corporate Staff
CEO & PUBLISHER
Darren L. Brodeur
ASSOCIATE PUBLISHER
Elizabeth Katz
MANAGING EDITOR
Christopher Naccari
SENIOR EDITOR
Deborah Hughes
DEPUTY SENIOR EDITOR
Jose R. Ralat
ACQUISITIONS EDITORS
Lisa Arrington
Shoshana Bauminger

ASSISTANT EDITOR
Emil J. Ross
PUBLISHING ASSOCIATE
Shelley Wong
CONTROLLER
John Spano
NATIONAL ACCOUNT MANAGER
Kelly J. Staley

INFORMATION TECHNOLOGY
Clint Bagwell Consulting
OFFICE ASSISTANT
Manuel Pavon
CORPORATION COUNSEL
Lawrence Ross, Esq.
Bressler, Amery, and Ross

Volume 9 - Number 7

495

CNS Spectrums – July 2004

https://doi.org/10.1017/S1092852900009548 Published online by Cambridge University Press
Introduction

CNS Spectrums is an Index Medicus journal that publishes original scientific literature and reviews on a wide variety of neuroscientific topics of interest to the clinician on a monthly basis. Our mission is to provide physicians with an editorial package that will enhance and increase their understanding of neuropsychiatry; therefore, manuscripts that address crossover issues between neurology and psychiatry will be given immediate priority.

Scope of Manuscripts

CNS Spectrums will consider and encourage the following types of articles for publication:

Original Research presents methodologically sound original data.

Reviews are comprehensive articles summarizing and synthesizing the literature on various neuropsychiatric topics and presented in a scholarly and clinically relevant fashion. Diagnostic and treatment algorithms should be designed to aid the clinician in diagnosis and treatment. Letters to the Editor will be considered and are encouraged for publication. Letters to the Editor will be considered and are encouraged for publication. All letters will be edited for style, clarity, and length.

Manuscript Submission

General Information Two copies of the manuscript with a letter on the author's letterhead should be submitted to Jack M. Gorman, MD, Editor (or, in Europe, to Joseph Zohar, MD, International Editor), c/o MBL Communications, 333 Hudson Street, 7th Floor, New York, NY 10013. Authors are also required to submit their manuscripts on computer disk in Microsoft Word format. Disks should be labeled with the word processing program, title of paper, and lead author's name. Accepted manuscripts will be edited for clarity and style.

Lettes of Permission to Reproduce Previously Published Material All material reproduced from previously published copyrighted material must be accompanied by a letter of permission from the copyright holder. All such material should include a full credit line (eg, in the figure or table legend) acknowledging the original source. Any citation of unpublished material or personal communication should also be accompanied by a letter of permission for anyone who is not an author of the paper.

Peer Review Authors must provide three to five names of qualified potential reviewers with no conflict of interest in reviewing the work. Contact information with affiliations and e-mail address should be included. Peer review is anonymous.

Manuscript Preparation

Length Reviews and Original Research should not exceed 5,000 words (excluding References). Diagnostic and treatment algorithms should contain an introduction, flowcharts or a series of graphs, and a concise summary. Letters should not exceed 1,500 words. Single Case Reports should not exceed 3,750 words and may be submitted with a photograph, if applicable.

Please note: If your article is Original Research, it should be formatted as: Abstract (100-200 words); Introduction, Methods; Findings; Discussion; Conclusion; References (numbered and comprehensive list).

Spacing and Pagination One space should be left after commas and periods. Manuscripts should be double-spaced and numbered.

Abstract Authors must provide a brief abstract of 100-200 words.

Focus Points Please provide three to six points that dictate the main focus of the manuscript and clearly illustrate what you are trying to convey in the article.

Figures/Tables Please provide original figures and/or tables if content is amenable to it.

References Please use American Medical Association style. References should be superscripted in text, then numbered, and comprehensive in list. See the following examples:

Continuing Medical Education Authors must submit six multiple-choice questions (three Type A and three Type K), with answers.

Copyright Materials are accepted for exclusive publication in CNS Spectrums and become the property of CNS Spectrums. Permission to reproduce material must be obtained from the publisher.

Disclosure of Commercial and Non-Commercial Interests

Authors must include a statement about all forms of support, including grant and pharmaceutical support, affiliations, and honoraria received for past and present material. Such information may, at the editor's discretion, be shared with reviewers. If the article is accepted for publication, the editors will consult with the authors as to whether this information should be included in the published paper.

Submission Checklist

☐ Original manuscript plus one copy, with cover letter on author's letterhead
☐ Copies of permission letters to reproduce previously published and unpublished material
☐ A brief abstract of the article
☐ Six CME multiple-choice questions with answers
☐ Three to six focus points
☐ Disk labeled with the word processing program, title of paper, and lead author's name
☐ Names and affiliations of three to five potential peer reviewers
ed TSH lev*, 3 had similar simultaneous low T4 levels. Cholesterol and triglycerides elevations: In schizophrenia, this relationship to use of SEROQUEL has not been established, other drugs with alpha-adrenergic blocking effects have been. However, epidemiological studies suggest an increased risk of treatment-emergent hyperglycemia-related adverse events reported occurred during treatment with SEROQUEL; they were not necessarily caused by it. Events are (ur-}
NOW FDA approved for MANIA IN BIPOLAR DISORDER

Well Accepted!

Another great reason to prescribe

- Effective so patients improve
- Trusted tolerability so patients can stay on treatment

The safety and efficacy of SEROQUEL in pediatric patients have not been established. Patients should be periodically reassessed to determine the need for continued treatment. Prescribing should be consistent with the need to minimize the risk of tardive dyskinesia, seizures, and orthostatic hypotension. A rare condition referred to as neuroleptic malignant syndrome (NMS) has been reported with this class of medications, including SEROQUEL.

There have been reports of diabetes mellitus and hyperglycemia-related adverse events associated with the use of atypical antipsychotics, including SEROQUEL.

The most common adverse events associated with the use of SEROQUEL were somnolence, dry mouth, dizziness, constipation, asthenia, abdominal pain, postural hypotension, pharyngitis, SGPT increase, dyspepsia, and weight gain.

In bipolar mania trials, withdrawal rates due to adverse events were similar to placebo for SEROQUEL as monotherapy (SEROQUEL 5.7%, placebo 5.1%) and adjunct therapy (SEROQUEL plus lithium or divalproex 3.6%, lithium or divalproex alone 5.9%).

To prevent medication errors, write “SEROQUEL” clearly on your Rx pad. Spell “SEROQUEL” clearly over the phone. Please see Brief Summary of Prescribing Information on following page.

First-line treatment

www.SEROQUEL.com
Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
</table>
| 510 | Introduction: The Neurobiology of Eating Disorders: A Resurgence of Investigations
Katherine A. Halmi, MD,
Weill Cornell Medical College |
| 511 | Genetics in Eating Disorders: State of the Science
Cynthia M. Bulik, PhD,
University of North Carolina;
and Federica Tozzi, MD,
University of North Carolina |
| 516 | Neuropeptides in Eating Disorders
David C. Jimerson, MD,
Beth Israel Deaconess Medical Center;
Barbara E. Wolfe, PhD, RN,
Harvard Medical School |
| 523 | Leptin Functioning in Eating Disorders
Palmiero Monteleone, MD,
University of Naples SUN;
Antonio DiLieto, MD,
University of Naples SUN;
Eloisa Castaldo, MD,
University of Naples SUN;
and Mario Maj, MD, PhD,
University of Naples SUN |
| 531 | Exercise “Addiction” in Anorexia Nervosa: Model Development and Pilot Data
Diane A. Klein, MD,
New York State Psychiatric Institute;
Andrew S. Bennet, MD,
Weill Cornell Medical College—The Westchester Division;
Janet Schebendach, MA,
New York State Psychiatric Institute;
Richard W. Foltin, PhD,
New York State Psychiatric Institute;
Michael J. Devlin, MD,
New York State Psychiatric Institute;
and B. Timothy Walsh, MD,
New York State Psychiatric Institute |
| 539 | Neuroimaging Studies in Eating Disorders
Guido Frank, MD,
University of Pittsburgh;
Ursula F. Bailer, MD,
University of Pittsburgh;
Shannan Henry, BS,
University of Pittsburgh;
Angela Wagner, MD,
University of Pittsburgh;
and Walter H. Kaye, MD,
University of Pittsburgh |
Table of Contents

Departments/Monthly Columns

FROM THE EDITOR’S DESK

504 Beyond Misconceptions: Neurobiological and Genetic Associations in Eating Disorders
By Sara E. Gorman and Jack M. Gorman, MD

CLINICAL UPDATES IN NEUROPSYCHIATRY

505 News From the 157th Annual Meeting of the American Psychiatric Association

- Predictors for Eating Disorders in Adolescent Females May Manifest Differently According to Ethnicity
- Continued Donepezil Treatment in Alzheimer’s Disease May Be Beneficial for Behavioral Symptoms
- Long-Term Administration of Rivastigmine Improves Cognitive Performance in Alzheimer’s Disease Patients
- Bupropion Extended-Release May Significantly Decrease Incidents of Seasonal Affective Disorder
- The Assessment of Manic Symptoms Using Rating Scales is Subject to Cultural Interpretation
- Gender Differences a Component in Comorbid Disorders in Adolescents in ADHD

CONTINUING MEDICAL EDUCATION

550 Eating Disorders CME-accredited by Mount Sinai School of Medicine for 3.0 credit hours.

552 August Pretest: Prodromal Schizophrenia

ACADEMIC SUPPLEMENT

Assessing Current Practice in Alzheimer’s Disease

CNS SPECTRUMS ONLINE

This month’s issue of CNS Spectrums, as well as a host of educational resources, enduring materials, and archived issues, is available at www.cnsspectrums.com.
ZONEGRAN is indicated as adjunctive therapy in the treatment of partial seizures in adults with epilepsy. In clinical trials, the most common adverse events that occurred with ZONEGRAN were somnolence, dizziness, anorexia, headache, nausea, and agitation/irritability.

*Can also be dosed twice daily.

Please see brief summary of Prescribing Information on adjacent page.

CONTRIBUTIONS
ZONEGRAN is contraindicated in patients who have demonstrated hypersensitivity to sulfaamides or zonisamide.

WARNINGs
Potentially Fatal Reactions to Sulfonamides: Fatalities have occurred following the ingestion of sulfonamides (sulfamethizide is a sulfonamide) including Stevens-Johnson syndrome, toxic epidermal necrolysis, leukopenia, neutropenia, agranulocytosis, erythroblastopenia, aplastic anemia, and toxic epidermal necrolysis.

Sulfa drugs are contraindicated during pregnancy (see Pregnancy: Pregnancy Category C). Fetal abnormalities or discontinuation of zonisamide immediately. Specific experience with sulfonamide use in pregnancy is limited. There have been no reports of human or animal studies regarding the effects of zonisamide on fertility (see Fertility: Controlled Human Reproduction).

The mechanism for the teratogenic effect in the rat is not known. Studies in both rats and dogs have demonstrated that defects were prominent in both rats and dogs.

Following administration of zonisamide (10, 30, or 60 mg/kg/day) to pregnant dogs during organogenesis, increased numbers of maternal deaths occurred, including serum CPK and aldolase levels. If elevated, in the absence of other cause such as trauma, granulocytopenia, etc., tapering or/or discontinuation of zonisamide should be considered and appropriate therapy initiated. Serum CPK levels and signs and symptoms of pancreatitis should have pancreatic, lipase and amylase levels monitored. If pancreatitis is evident, the drug may be discontinued.

Information for Patients
Patients should be advised as follows:
1. ZONEGRAN may produce drowsiness, especially at higher doses or early in treatment, and the patient should avoid operating other complex machinery until they have gained experience. It is not sufficient to determine whether it affects their performance.
2. Patients should contact their physician immediately if a skin rash develops or seizures worsen.
3. Patients should continue zonisamide immediately if they develop signs or symptoms, such as sudden back pain, abdominal pain, or blood in the urine, that could indicate a dose-related increase in urate, which could lead to gout or reduce the risk of stone formation, particularly in those with a positive family history.
4. Patients should contact their physician immediately if a child has been taking ZONEGRAN and is not sweating as usual.

Because zonisamide can cause hemolytic complications, patients should contact their physician immediately if they develop clinical jaundice, abdominal pain, and/or blood in the urine, that could indicate acute hepatic necrosis, agranulocytosis, aplastic anemia, and other drug-related events.

Drugs that induce liver enzymes can increase the metabolism and clearance of zonisamide. Zonisamide should not be used in patients with epilepsy who are taking enzyme-inducing AEDs such as phenytoin, carbamazepine, or valproate during clinical trials. Zonisamide did not inhibit mixed function oxidase enzymes (cytochrome P450) as measured in human liver microsomal fractions. This is in contrast to the in vitro results (see PRECAUTIONS, Effect on Renal Function Subsection).

Drugs that induce liver enzymes can increase the metabolism and clearance of zonisamide. Zonisamide should not be used in patients with epilepsy who are taking enzyme-inducing AEDs such as phenytoin, carbamazepine, or valproate during clinical trials. Zonisamide did not inhibit mixed function oxidase enzymes (cytochrome P450) as measured in human liver microsomal fractions. This is in contrast to the in vitro results (see PRECAUTIONS, Effect on Renal Function Subsection).

Seizures and Withdrawal: As with other AEDs, abrupt withdrawal of zonisamide can produce seizures. A gradual withdrawal is recommended. The incidence of seizures is difficult to estimate, especially in studies that do not use a standard definition. It is not clear whether the incidence of seizures is increased in patients treated with zonisamide compared to those treated with placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo.

Seizures and Withdrawal: As with other AEDs, abrupt withdrawal of zonisamide can produce seizures. A gradual withdrawal is recommended. The incidence of seizures is difficult to estimate, especially in studies that do not use a standard definition. It is not clear whether the incidence of seizures is increased in patients treated with zonisamide compared to those treated with placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo.

Seizures and Withdrawal: As with other AEDs, abrupt withdrawal of zonisamide can produce seizures. A gradual withdrawal is recommended. The incidence of seizures is difficult to estimate, especially in studies that do not use a standard definition. It is not clear whether the incidence of seizures is increased in patients treated with zonisamide compared to those treated with placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo.

Seizures and Withdrawal: As with other AEDs, abrupt withdrawal of zonisamide can produce seizures. A gradual withdrawal is recommended. The incidence of seizures is difficult to estimate, especially in studies that do not use a standard definition. It is not clear whether the incidence of seizures is increased in patients treated with zonisamide compared to those treated with placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo.

Seizures and Withdrawal: As with other AEDs, abrupt withdrawal of zonisamide can produce seizures. A gradual withdrawal is recommended. The incidence of seizures is difficult to estimate, especially in studies that do not use a standard definition. It is not clear whether the incidence of seizures is increased in patients treated with zonisamide compared to those treated with placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to placebo. Although from studies of open-label treatment, the rate of seizures with zonisamide is not increased compared to plac
The low effect dose for malformations produced peak maternal plasma zonisamide levels (25 ug/mL) about 0.5 times the highest human levels. In cynomolgus monkeys, administration of zonisamide (10 or 20 mg/kg/day) to pregnant animals during organogenesis resulted in embryo-fetal deaths at both doses. The possibility that these deaths were due to malformations cannot be ruled out. The lowest embryo-fetal death dose in monkeys was associated with peak maternal plasma zonisamide levels (5 ug/mL) approximately 0.1 times the highest levels measured in patients at the MRHD.

In a mouse embryo-fetal development study, treatment of pregnant mice with zonisamide (50, 100, or 200 mg/kg/day) during the period of organogenesis resulted in increased incidences of fetal malformations (skeletal) and/or craniofacial defects in all dose tested. The low dose was approximately 1.5 times the MRHD on a mg/m² basis. In rats, incidences of all malformed fetuses (cardiovascular defects and variations [persistent ductus of thyrocoid, decreased ossification]) were observed among the offspring of dams treated with zonisamide (20, 60, or 200 mg/kg/day) throughout organogenesis at all doses. The low effect dose is approximately 0.2 times the MRHD on a mg/m² basis.

Perinatal death was increased among the offspring of rats treated with zonisamide (50, 100, or 600 mg/kg/day) from 10 days of gestation to term. The highest dose was approximately 1.1 times the MRHD on a mg/m² basis. In addition, there has been an increased perinatal mortality rate among the offspring of rats treated with zonisamide (125, 250, or 500 mg/kg/day) from gestation day 16 through organogenesis at all doses. The low effect dose is approximately 0.1 times the MRHD on a mg/m² basis. Rarely, perinatal deaths have been observed among the offspring of rats treated with zonisamide (50, 100, or 200 mg/kg/day) from 10 days of gestation to term. The highest dose was approximately 1.1 times the MRHD on a mg/m² basis. In rats, cardiovascular malformations were found in newborn animals with zonisamide (125, 250, or 500 mg/kg/day). The low effect dose for malformations produced peak maternal plasma zonisamide levels (25 ug/mL) approximately 0.1 times the highest levels measured in patients at the MRHD.

Perinatal death was increased among the offspring of rats treated with zonisamide (50, 100, or 600 mg/kg/day) from 10 days of gestation to term. The highest dose was approximately 1.1 times the MRHD on a mg/m² basis. In addition, there has been an increased perinatal mortality rate among the offspring of rats treated with zonisamide (125, 250, or 500 mg/kg/day) from gestation day 16 through organogenesis at all doses. The low effect dose is approximately 0.1 times the MRHD on a mg/m² basis. Rarely, perinatal deaths have been observed among the offspring of rats treated with zonisamide (50, 100, or 200 mg/kg/day) from 10 days of gestation to term. The highest dose was approximately 1.1 times the MRHD on a mg/m² basis. In rats, cardiovascular malformations were found in newborn animals with zonisamide (125, 250, or 500 mg/kg/day). The low effect dose for malformations produced peak maternal plasma zonisamide levels (25 ug/mL) approximately 0.1 times the highest levels measured in patients at the MRHD.

Perinatal death was increased among the offspring of rats treated with zonisamide (50, 100, or 600 mg/kg/day) from 10 days of gestation to term. The highest dose was approximately 1.1 times the MRHD on a mg/m² basis. In addition, there has been an increased perinatal mortality rate among the offspring of rats treated with zonisamide (125, 250, or 500 mg/kg/day) from gestation day 16 through organogenesis at all doses. The low effect dose is approximately 0.1 times the MRHD on a mg/m² basis. Rarely, perinatal deaths have been observed among the offspring of rats treated with zonisamide (50, 100, or 200 mg/kg/day) from 10 days of gestation to term. The highest dose was approximately 1.1 times the MRHD on a mg/m² basis. In rats, cardiovascular malformations were found in newborn animals with zonisamide (125, 250, or 500 mg/kg/day). The low effect dose for malformations produced peak maternal plasma zonisamide levels (25 ug/mL) approximately 0.1 times the highest levels measured in patients at the MRHD.

Perinatal death was increased among the offspring of rats treated with zonisamide (50, 100, or 600 mg/kg/day) from 10 days of gestation to term. The highest dose was approximately 1.1 times the MRHD on a mg/m² basis. In addition, there has been an increased perinatal mortality rate among the offspring of rats treated with zonisamide (125, 250, or 500 mg/kg/day) from gestation day 16 through organogenesis at all doses. The low effect dose is approximately 0.1 times the MRHD on a mg/m² basis. Rarely, perinatal deaths have been observed among the offspring of rats treated with zonisamide (50, 100, or 200 mg/kg/day) from 10 days of gestation to term. The highest dose was approximately 1.1 times the MRHD on a mg/m² basis. In rats, cardiovascular malformations were found in newborn animals with zonisamide (125, 250, or 500 mg/kg/day). The low effect dose for malformations produced peak maternal plasma zonisamide levels (25 ug/mL) approximately 0.1 times the highest levels measured in patients at the MRHD.