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SOME GEOMETRIC CHARACTERIZATIONS OF
INNER PRODUCT SPACES

O.P. KAPOOR AND S.B. MATHUR

There are several geometric characterizations of inner product

spaces amongst the normed linear spaces. Mahlon M. Day's

refinement "rhombi suffice as well as parallelograms", of P.

Jordan and J. von Neumann parallelogram law is well known. There

are some characterizations which employ various notions of

orthogonality. For example, it is known that if in a normed

linear space Birkhoff-James orthogonality implies isosceles

orthogonality then the space is an inner product space;

geometrically it means that if the diagonals of a rectangle, with

sides perpendicular in Birkhoff-James sense, are equal then the

space is an inner product space. In the main result of this note

we improve upon this characterization and show that here unit

squares suffice as well as rectangles.

There are several geometric characterizations of inner product spaces

amongst the normed linear spaces. The Jordan von Neumann parallelogram

law

\\x+yf * \\x-yt = aDlxll^Hj/ll2] for all x and y ,

and its'refinement rhombi suffice

\\x+yf + \\x-yf = k for all x and y with ||x|| = ||y|| = 1 ,

due to Day C2], are among the well known ones. There are some
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characterizations which employ various notions of orthogonality. For

example, it is known that if in a normed linear space Birkhoff-James

orthogonality implies isosceles orthogonality then the space must be an

inner product space. In this note we improve upon this characterization in

the same sense as Day did for the parallelogram law. More explicitly, we

prove that if in a normed linear space X , ||a;|| = \\y\\ = 1 and x

Birkhoff-James orthogonal to y implies x isosceles orthogonal to y

then X must be an inner product space. Geometrically it will mean that

if the diagonals of any unit square, with sides perpendicular in the

Birkhoff-James sense, are equal then X is an inner product space. In the

same vein some previously known characterizations due to Day [2], Kapoor

and Prasad [7] and Holub [3] have been improved upon as corollaries to our

main result. Finally a sufficient condition for strict convexity of a

normed linear space has been proved.

We give briefly the definitions and notations. X is a real normed

linear space and S = {x € X : \\x\\ = l} is the unit ball of X throughout

this note. If x, y € X , x is called isosceles orthogonal to

y(x -L y) ifl \\x+y\\ = Ik-Z/ll ; x is called pythagorean orthogonal to

ip if Wx+yW2 = IMI2 + hW2 ; and a: is Birkhoff-James orthogonal

to y(x \_y) if ||x+/o/|| > ||x|| for all real k . For details of these

orthogonalities one can refer to James [4], [5]. It is well known, James

[5], that if x # 0 and y € X , then there exist numbers c and d such

that x J_ ax + y and dx + y J_ x , and that the Birkhoff-James

orthogonality is symmetric in normed linear space of dimension greater than

or equal to 3 if and only if the space is an inner product space, Day

[']. In [/] Day describes those norms in two-dimensional spaces which have

symmetric Birkhoff-James orthogonality.

In [6], Joly calls the number m(X) = Sup ^f|^'ir . the rectangular

x\y " J/"

constant for the space X . There he notes that V2 S m(X) 2 3 , and that

m{X) = V2 implies the symmetry of Birkhoff-James orthogonality in X ;

consequently X is an inner product space if dimension X > 3 . In [S]

del Rfo and Benftez proved that m(X) - \/2 is a characterizing property of

inner product spaces in two dimensions also. The result will be basic for

our main theorem which follows.
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THEOREM 1. For a normed linear space X the following are

equivalent:

(i) X is an inner product space;

(ii) for x, y € S s x \_y implies x J . y ;

(Hi) m(X) = Sup NfjW* = V2 .
] I|X yn

Proof, (i) implies (ii) is obvious, and (iii) implies (i) is

contained in [8]. We have to prove (ii) implies (iii). This proof

consists of many steps which we give below as lemmas.

LEMMA 1. If X satisfies (ii) of Theorem 1 then X is strictly

convex.

Proof. Assuming X is not strictly convex choose [5, Theorem H.3],

x, y (. S such that x _[_ y and ay + x J_ y where a > 0 is chosen to be

the largest such number. The function $(i) = ||x+iz/|| is a convex function

of t with <)>(t) = 1 for 0 2 t 5 a and §{t) is strictly increasing

with t for t 2 a . By hypothesis we have ||x+y|| = \\x-y\\ and

||(ct+l)y+x|| = ||(a-l)i/+x|| which implies that <))(l) = <(>(-l) and

<t>(a+l) = <t>(a-l) . Thus 0 < a < 1 . Now

•(o-l) = ||(a-l)y+x|| = ||(a/2)(x+2/)+(l-(a/2))(x-i/)|| 5 ||x+i/||

= <}>(1) = ||(l-(a/2))((a+l)y+x)+(a/2)((a-l)y+x)|| £ (]>(a-l)

which yields a contradiction. Hence X has to be strictly convex.

LEMMA 2. If X satisfies (ii) of Theorem 1 then Birkhoff-James
orthogonality is symmetric.

Proof. If not, let x J_ y and ax + y ]_ x for x, y (. S and
a > 0 . Let B = ||ax+y|| ; then 1 = \\y\\ = \\ax+y-ax\\ > ||ax+y|| = 6 > a .
Putting ||x+i/|| = \\x-y\\ = a and ||(0+a)x+i/|| = \\{&-a)x-y\\ = 2? we see that

b = ||(3-a)x-t/|| = ||((e-a-l)/2)(x+j/)+((B-a+l)/2)(x-i/)|| s a .

Similarly we can obtain a S b . Thus we have

\\x+y\\ = lk-j/|| = IKS+COX-H/II = iKB-cOx-yil

which is false since X is strictly convex.

LEMMA 3. If X satisfies (ii) of Theorem 1 then it satisfies the
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condition

x, y € 5 , x [_ y implies \\x+y\\ = \\x-y\\ = y/2 .

Proof. Let ||x|| = \\y\\ = 1 , x ]_ y . F i r s t l y we wi l l show that

x + y j_ x - y . If not , l e t x + ay J_ x - y , where in view of the

symmetry of orthogonality we may assume 0 < a < 1 . Let ||:c+ai/|| = B-, and

\\x-y\\ = B2 = \\x+y\\ ; c lear ly B2 2 ^ .

We may further assume that X i s a plane and introduce a coordinate

system with x = ( l , 0) and y = (0, 1) ; then x + ay = ( l , a) and

x - y = ( l , - l ) . Using the resul t of Day [/, p. 330] that u = [u , u }

and v = [v v ) are orthogonal i f and only if \u V -u v \ = i|w||||v|| , we

obtain 3 Bp = 1 + a . Moreover from hypothesis we have

d:

which yields B. 5 aB2

= \\x*y\\ =

so that a$ 5 B, .

In view of these inequal i t ies ( l ) becomes

= H(B2-B1)aH-(aB2+61)i/||

which contradicts strict convexity unless B-, = Bp But then a = 1 .

Therefore, x + y J_ x - y and ||r+z/|| = ||x-!/|| = V2 .

Proof of Theorem 1. Let x J_ U ^ e a n v P a i r of non-zero vectors. Put

Fit) = 0 5 t <
t \\y\\+\\x\\

Fit) is differentiable because X is smooth. Symmetry of orthogonality

and str ict convexity gives smoothness. Let q'ix, y) denote the Gateaux

derivative of the norm at x in the direction of y . For an extreme

value of F , t must be such that
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q'(t2y+x,y) = ||j,||-J .
t2\\y\H\x\\

By using the symmetry of orthogonality and the fact that x J_ y , that i s ,

q'(x, y) = 0 , we obtain q'[t2y+x, ||t/||x-||x||j/) = 0 , that is

[t2y+x] Kllxlly-Hyllx) .

This shows that there is only one extreme value of F(t) for t > 0 ,

which by Lemma 3 corresponds to t = jj—H- and the extreme value is

FU) _ IINMLvH _
F(t> extreme " 2||»||||i/|| "

which must be a minimum. Thus

Then

m(X) = Sup ̂ } f 5 V2 .

Hence m(X) = V2 , which was to be proved.

We now give refinements of some of the earlier known results of Day

[2], Kapoor and Prasad [7] and Holub [3] as a corollary to Theorem 1.

COROLLARY 1. A normed linear space X is an inner product space if

it has any one of the following properties:

(i) x, y € S , x _[_£ y implies x J_ y ;

(ii) x, y i S 3 x _[_ y implies x I y ;

(Hi) x, y (. S , x \ y implies x J_ y .

Proof. (i) Assuming that the space is not strictly convex, choose

x, y € S and the largest a > 0 such that 6j/+xJ_y, Qy + x £ S , for

all -a < B S a . We claim that x J. y . The function ||x+s|| - ||x-s||

varies continuously between -2 and 2 , as z moves from -x to x

along the curve S which is the intersection of 5 and the span of x

and y . Hence there is a z = ax + by in S , b 5 0 , such that
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||x+s|| = ||x-z|| . The hypothesis implies that x J_ ax + by ,

1 = \\x±ay\\ = \\{b+aa/b)x±{a/b)(ax+by)\\ 2 \{b+aa/b)\ ,

b 2 \b+aa\ .

This leads to a contradiction unless a = 0 and b = 1 , and hence
x _L \l • Similarly it can be proved that ?>y + x j. y for -a 5 6 5 a .

It is easily seen that a 2 1 .

Putting <(>(£) = I|£#+E|I we note that 4>(t) is a convex function with

$(*) 2 1 , <f)(-a) = <J>(a) = 1 , *(1) = <f>(-l) > *(*) is strictly

decreasing for -°° < t 5 -a and strictly increasing for a £ t < °° , and

<|>(a+l) = <J>(a-l) which is not possible since a + 1 > 1 and

-1 £ a-1 5 0 . Therefore, the space must be strictly convex.

To complete the proof we show that our hypothesis implies the

hypothesis (ii) of Theorem 1. Let x, y (. S , x J_ y , choose a and b

as above such that ax + by J. y with a 2 0 ; hence ax + by J_ y and

from strict convexity it follows that a = 1 and b = 0 .

The proof of (ii) is immediate from Theorem 1, and (iii) implies (ii)

can be proved following the lines of the proof of (i) above.

REMARK. The property (i) of-Corollary 1, without the condition that

x, y i. S , has been given as property (M) by Day [2, p. 155].

COROLLARY 2. If x, y Z S , x \_y implies \\x+y\\2 + \\x-y\\2 = k ,

then X is an inner product space, provided Birkhoff-James orthogonality

is assumed to be symmetric.

Proof. Let x, y € S and x J_ y ; choose [9, Lemma l] a where

0 < a £ 1 such that x + ay J_ x - ay . Put ||x+aj/|| = 6. and

||x-cn/|| = 62 • The hypothesis gives

and

Ik+z/ll2 + \\x-y\\2

whence
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(2) k,y2 »

Also,

\\x+y\\ = \\[(a+l)/2a){x+ay)+[(a-l)/2a){x-ay)\\

gives \\x+y\\ > [(a+l)/2a)$1 ; s imi lar ly , \\x-y\\ > ((a+l)/2a)B2 and,

therefore,

(3)

(2) and (3) imply a = 1 and Bx = B2 = V2 .

Thus we have t , j f S and x ]_ y implies \\x+y\\ = ||a:-t/|| = V2 and

hence, by Theorem 1, we get the r e s u l t .

If the symmetry i s not there in Corollary 2 we do not know how to

prove i t , though we feel i t should be t rue . Without symmetry of

orthogonality we can s t i l l prove that the space i s s t r i c t l y convex in the

following theorem.

THEOREM 2. If x 1 y implies ||x+j/||2 + \\x-yf = 2|>| |2+| |i , | |2] then

X is strictly convex.

Proof. Let ||x|| = ||y|| = ||(x+j/)/2|| = 1 . I t can be easily seen that

(x+y)/2 l_x . Choose a such tha t {x+y)/2 J_ct((x+y)/2) + x . But i t can

be shown that a = -1 and then x + y J_ x - y . Now we have

8 = \\x+y+x-yf + \\x+y-x+y\\2 = 2[||x-H/||2+||x-j/||2] = 8 + 2\\x-yf

which implies that x = y , and the proof i s complete.
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