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Introduction

Let G be a connected semi-simple algebraic group defined over Q and let I
be a discrete subgroup of Ggr (the subgroup of G consisting of points rational
over R) such that I"\Gr is' compact. The main purpose of the present paper

is to prove that for a certain type of group G there exists an invariant algebraic
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differential from w on G of highest degree defined over Q such that
(*) >fl"\GRwR ='H{'=1Lv(av);

where a,, 1 <» =<1, are integers such that the Poincaré polynomial of the com-
pact from of G is Tl\o; (£%7'+1), L,, 1<» <1, are L-functions determined by
G and wg is the analytic differential form on Ggr induced by .

If, in particular, one takes an arithmetic group as 7, the relation (*) is
equivalent to the rationality of the Tamagawa number (G) for a certain type
of group G. This is Theorem 6.6.

Let us now explain what is meant by a certain type of G. Let G, be the
topological identity component of Ggr, let X be the associated symmetric space:
X =G,/K, K being a maximal compact subgroup of Gy, and let X, be the com-
pact form of X.

First of all, we impose on G the condition that the gaussian curvature of
X is different from zero, or equivalently, that the Euler number of X, is strictly
positive. We shall call this condition (P). By (P), the computation of the
integral in (*) is reduced to the Gauss-Bonnet theorem (cf. (3.3.10)). Inci-
dentally, when X admits the hermitian structure, (P) is automatically satisfied.

Second of all, we have to exclude the worst twisted group, i.e. the trialitarian
form of the second kind of type D;; for this case the relation (*) should be
modified (as for the details, see §6). These are restrictions on G.

On the other hand, as many people believe, one can probably drop the com-
pactness assumption of I'\Ggr by showing that the value of the curvature integral

=the generalized Euler number) is rational whenever I'\Gr is of finite volume,
as Satake has done for symplectic groups [21]; but we shall not go further in
this direction in this paper.

As for the L-fuctions in (*), we have to explain what Galois extension they
belong to. Without loss of generality, we may assume that G is Q-simple, i.e.
G has no proper normal subgroup defined over Q. Then, if we call £ the
smallest field of definition for an absolutely simple factor G of G, we see at
once that G is isogenous over Q to the group Rewq(G) obtained from G by
restricting the field of definition from % to Q. For G, we can attach a finite
Galois extension Ngp (called nuclear field (§1)) whose Galois group is im-

bedded in the group of automorphims of the Dynkin diagram of G. The L-
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functions are then taken from the Galois extension Ngp over k (1.3).

Now, the condition (P) imposed on G takes two parts in this work. On
the one hand, under (P), one can use the Gauss-Bonnet theorem for I'\X and
Xu, effectively; on the other hand, (P) implies that the fields %k, Ng» above
become totally real or totally imaginary; and this fact, together with Weil’s
result: t(SU(n)) =1, makes possible the evaluation (mod. @*) of the L-functions
at ay, 1w =1 (§5)%).

After these preparations, it is not hard to see that the trancendental factors
in both hand sides of (*) are powers of = with the same exponent. In order
to finish the proof of (*) one has to take care of a quadratic number 4(G/Q)"
(§2), which seems to us interesting by itself.

As the readers notice, the quantities in the both hand sides of (*) are
irrelevant to the symmetric space X and hence to the condition (P). It is
quite desirable to prove the equality of type (*) without any assumption on
G. A typical example is the case G = SL(n), n=3, where G is not of type (P)
and Gz\Gr is not compact, and it is well known that the integral (with respect
to a suitable w) is precisely equal to the product of (Riemann) zeta functions
evaluated at 2, 3, ..., n (Minkowski Siegel).

Finally, it is interesting that an invariant of G such as the volume of the
fundamental domain decomposes in the same manner as the corresponding
compact form decomposes into the product of spheres homologically. This
would raise a question: can one define a zeta function {¢ for G so that the
way of decomposition of {g into ordinary L-functions is the same as the way

of decomposition of the compact form into spheres?

0. Notation and conventions

0.1. As usual, Z, Q, R, C are integers, rational numbers, real numbers and

complex numbers, respectively. We shall further use the following notation:

* At this stage I owe a great deal to Shimura; he persuaded me to check every detail
of my method for the case of special unitary group SU(n) relative to the quadratic ex-
tension K/F, where K is totally imaginary and F is totally real. After having done this
experiment, I could find the second meaning of (P) mentioned above. Incidentally, it
turned out that among all groups for which z(G) is known, SU(#n) is the richest group
by which one can evaluate zeta or L-functions in the sense of §5, It seems impossible
to find out e.g. {Q(3) by using algebraic groups,
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F, : the finite field with g elements
Q, :@ the p-adic number field for a prime number p
Zp : the ring of p-adic integers
G, : the additive group of the universal domain
G, ¢ the multiplicative group of the universal domain
K : the algebraic closure of a field K
K* : the multiplicative group of a field K
9(K/Ek): the Galois group of the Galois extension K/%
Aut X © the group of automorphisms of a structure X
Inn G : the group of inner automorphisms of a group G
[S] : the cardinality of a set S

0.2. In the group C* when two numbers a, b are congruent modulo the
subgroup Q* we shall write a~b.

0.3. Let 2 be a universal domain, M(n) be the associative algebra of
matrices of degree n over 2. For any subring 4 (Wwith 1) of 2, M(n), will
denote the subring of M(n) consisting of matrices with coefficients in 4. The
group of units of M(n), will be denoted by GL(n)s. In particular, we put
GL(n) =GL(n)g. When we view M(n), as Lie algebra over 4 by [X, Y]1=
XY — YX, we denote it by 8l(n), and put 8l(n) =8l(n)g. Given a subgroup G
of GL(n), we put Go=GNGL(n),. The same convention will be applied to
a subalgebra § of 9l(n), ie. Gx=06N3a(n),.

0.4. Let 2 be of characteristic zero. To each X< gl(n) there corresponds
a derivation 6(X) of the polynomial ring 2[£], & = (£ij):=i, j=n given by

8(X)P=tr'(grad: P)(£X)),

where grad,P means the matrix (;P ) evaluated at £ =a. Let G be a connected

ai]
algebraic group in GL(#n) defined over a field %, let I(G) be the prime ideal in
2[£] determined by G. Since the map X- 4(X) is a homomorphism as Lie

algebras,
(0.4.1) g={Xel(n), d(X)I(G)SIG)}

becomes a Lie algebra, i.e. the matric Lie algebra of G in the sense of Cheyalley
[8, Chap. Il §8]. Since G is defined over %, 8 is defined over &, or, equivalently,
¢ admits a basis in 8l(n);. Let 2(G) be the function field for G, i.e. the field
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of quotients of £[£J/I(G). From (0.4.1), 8(X) induces a derivation dg(X) of
2(G). Denote by © the Lie algebra over £ of all left invariant derivations of
2(G). Then §g gives an isomorphism dg: ¢ > D and hence induces an isomot-

phism
(0.4.2) (0g)k & 8 > D,

where ®, means the set of derivations defined over k.
Assuming %k =R, denote by G, the topological identity component of the real
Lie group Ggr, and by 6, the Lie algebra of G, in the analytic sense. There is

an isomorphism over R
(0.4.3) a % 3 0r

given by a(X) = (X,.%ij):=i, j=n, where X is a left invariant vector field on G,
and x;; are the coordinate functions on G,. Through (0.4.2), (0.4.3), we shall
often identify isomorphic Lie algebras. E.g. let {Xi, ..., X4} be a basis of
8q, where ¢ is the matric Lie algebra of an algebraic group defined over Q.
Viewing Xis as a basis for ®©q, the dual basis wi, 1<i<d, is a basis for left
invariant algebraic 1-forms on G defined over Q, and w = w; A\ - * - Awg, is a left
invariant algebraic d-form on G, defined over Q. On the other hand, viewing
Xis as a basis for 8, the same procedure gives a left invariant analytic d-form
wr on G,. We shall again denote by wgr the Haar measure on G, determined
by it. In the text, we shall call either w or wr the d-form which is the product

of 1-forms dual to X;, 1<:=d.

1. Nuclear field

1.1. Definition of Ng;

We first recall the non-infinitesimal approach given in [10]. Let G be a
connected semi-simple algebraic group, T° be a maximal torus of G and B be
a Borel subgroup of G containing 7. Denote by T the character module Hom
(T, Gm). A character a € T will be called a root of G with respect to T if
there exists an isomorphism x, of G, with a subgroup £, of G such that

(1.1.1) (Dt = x(a(t))), teT, i1€Ga.

This condition implies that a« %0 and that x. is uniquely determined up to a
non-zero scalar multiplication in G,. We denote by 4 the set of all roots of
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G with respect to T. We define a subset 4 of 4 by
AB=((I€A, Z/Q;CB>.

Since 45 satisfies the condition for positive roots, we can define a subset Il of
dg consisting of fundamental roots and further the Dynkin diagram D, with
respect to 7, B.

Let f be an isomorphism of another algebraic group G' with G and put
T =fT), B=f""B). Let 4, 45, II' be to G' with respect to 7', B’, what
4, 4r, TI were to G. Denote by 7 the isomorphism 7' 7" given by

F@EA@ =@, teT, teT.

One verifies easily that the map %}, = f~'%, satisfies the condition (1.1.1) for
F(a) and that 7 (4) =4, 7 (4s) =4's, f£(I1)=T1". If, in particular, f is an
automorphism of G such that f(T) =T and f(B) =B, then f induces an
automorphism of the Dynkin diagram D. We shall denote by f. the inverse
of this induced automorphism. For a general f € Aut G, one can find an inner
automorphism # of G such that uf(T) =T, uf(B)=B, Then (uf).,=Aut D
is independent of the choice of # [10, 17-07, Prop. 1]. Hence, we can define
fx€Aut D for any f€ Aut G by f.=(uf)i. One then sees that the map
f-> f« is a homomorphism of Aut G into Aut D whose kernel is Inn G.

Let k& be a perfect field. We say that a connected semi-simple algebraic
group G defined over k is a group of Chevalley type over k if G admits a
maximal torus which is trivial over % (or k-trivial, for short). It is known
that if G is of Chevalley type over £ then every Borel subgroup containing a

k-trivial maximal torus is defined over %z [17].

ProrosiTioN 1.1.2. Let both of G, G' be groups of Chevalley type over a
perfect field k. Let ¢ be an isomorphism defined over k of G' with G. Then

G"¢7 is an inner automorphism of G for every os<=8(k/E).

In fact, let 7, T' be k-trivial maximal tori of G, G’, respectively. There
is then an inner automorphism u, defined over %, of G such that u¢(7T') = T.
Put ¢ = u¢ and B = ¢(B’'), where B’ is any Borel subgroup of G’ containing 7".
By the above remark, all groups T, T, B, B' are defined over #Z. .Hence, the
automorphism ¢"¢~' of G conserves T, B for any s< 4(%/k). However, by the

assumption on 7, T, the action of 8(k/k) on T, T" is trivial, and so ¢° = (¢$)°
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= ¢, from this follows that ¢°¢™* & Inn G, and hence ¢°¢™' = u °¢"¢"'u < Inn G,
q.ed.

CoroLLARY 1.1.3. Let G be a group of Chevalley type over k. For any
f € AutiG (automorphisms defined over k), f°f ' is inmer for any s < 8(k/k).
In other words, we have (f°)y = fuw, c=8(k/k), where * is defined relative to a

k-trivial maximal torus and a Borel subgroup containing it.

As is well-known, given a connected semi-simple algebraic group G defined
over a perfect field k, there is an isomorphism ¢ defined over %2 of G with a

group G of Chevalley type over k.
¢:G3G.
Put fo=¢"¢ ' Aut G. Then one has
Sor=fofx, o vE8(k/R).

From (1.1.3) we see that the map o- (fs)s is a homomorphism of 8(%/k) into
Aut D. We claim that the kernel of this homomorphism is independent of the
choice of G and ¢. In fact, let ¢': GG’ be another isomorphism over % of
G with a group G' of Chevalley type over k2 and put f5=¢"¢'"" and ¢ = ¢¢' .
By (1.1.2) one has (¢°¢™ ")y =1id., and so (fo)s = (¢°¢ s = ((¢9)°(¢¢') Ny =
(0°P @5 s = (o fh¢™ )y, from this follows our assertion. Call g the
kernel of 6 (f5)y. As Aut D is a finite group, ng/x has a finite index in 8(%/k).
We shall denote by e the corresponding finite Galois extension over k and
call it the nuclear field for G over k. Thus the Galois group of Ngi over k
is imbedded in Aut D. The next proposition shows that Ne; is not only in-

variantly attached to G over k but is unchanged under the isogeny.

ProrosiTioN 1.1.4. Let k be a perfect field and let f : G' - G be an isogeny
defined over k of connected semi-simple algebraic groups G, G' defined over k.

Then one has Nowk = Naik.

In fact, let ¢’ be an isomorphism defined over % of G' with a group G' of
Chevalley type over k. Since M =g¢' (Ker f) is central in G', M is contained
in any one of k-trivial maximal torus of G', and so M is imbedded in a product
of a certain number of the group of roots of unity of a finite Galois extension
of k. From this we see that M is defined over k as a zero dimensinal algebraic

group. So we get an isogeny over k: g: G'>G = G'/M, this factor group being
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of Chevalley type over k, and an isomorphism ¢ : G = G such that ¢f = gg¢'.
Now, put f»=¢"¢"", fh=¢""¢'""". Then, f, lies under f}, with respect to the

covering (G', g) over G. One has to verify that
fo€Inn G f,eInn G.

The implication (& ) is trivial. Suppose next that f,(x) =axa™’, ac G. Take
an @'  G' such that g(a’) =a. Then, one has f4(x') = ¢{(x')a's'a’”", x' € G', where
¢(x') are contained in the center of G'. However, { must be trivial because it
is a homomorphism of the connected group into a finite group, which proves
(=).

ProrosiTiON 1.1.5. Let G be a connected semi-simple algebraic group defined
over a perfect field k and let E be a perfect field containing k. Then, one has
Ng/r = ENgjr, the compositum of E and Ngr.

In fact, let ¢ be an isomorphism defined over 2 of G with a group G of
Chevalley type over k. For a ¢ 4(E/E), we have:

o leaves Ng/r elementwise fixed & ¢ < ngr

& ¢ 'elnn G & ¢|% (o restricted on %) € 1k

&> ¢|% leaves Ngi elementwise fixed

& ¢ leaves ENg; elementwise fixed,

which proves our assertion.

ProrosiTiON 1.1.6. Let k be a perfect field and K be a finite extension of
k. Let H be a connected semi-simple algebraic group defined over K and let
G = Rx;1(H), the algebraic group defined over k obtained from H by restricting
the field of definition K to k (cf.[25, p. 41). Let Ne (resp. Nux) be the nuclear
field for G (resp. H) over k (resp. K). Then, Ngm contains Nuix, and Ngp ts

the smallest Galois extension of k containing Nyx.
The proof will be left to the reader.

1.2. Some properties of Ng/»

Let G be a connected semi-simple algebraic group defined over a perfect
field k. By a splitting field for G over k we shall mean an algebraic extension
K of k over which G is isomorphic with a group of Chevalley type over k.

ProrosiTion 1.2.1. The nuclear field N is contained in any splitting field
for G over k.
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In fact, let § be a subgroup of 8(%/%) corresponding to a splitting field K
for G over % and let ¢ : G5 G be an isomorphism defined over K of G with
a group G.of Chevalley type over k. Then, for ¢, we have f,=¢"¢ " =id,
and so s € ng, q.e.d.

The following proposition will give a partial converse of (1.2.1).

ProrositioN 1.2.2. If k is finite, the nuclear field Ng is a splitting field
for G over k.

In fact, let ¢ be an isomorphism defined over 2 of G with a group G of
Chevalley type over k. Let Z be the center of G. Hence Inn,G (inner auto-
morphisms defined oner %) is identified with (G/Z)z. If we restrict the cocycle
fo=¢"¢"" on nue, it becomes a cocycle of 8(%/Ngx) in (G/Z); which is trivial
by Lang’s theorem [13] applied to the connected algebraic group G/Z. So,
there is a »<Inn;G such that f.=u"u"', 6€8(%/Nox) and hence u '¢ is de-

fined over Ng, i.e. Ngi is a splitting field for G over k.

Remark 1.2.3. When k is finite, the above two propositions show that
Nk is the smallest splitting field for G over k. If G is simple, Ng;x is at most
quadratic or cubic extension of . The quadratic extension can happen only
for groups of type A; (I=2) D;(I=4) and E;. The cubic extension can happen
only for D,. Let g be the number of elements in 2: k=F,. The-following
table which gives the order of Gg, is due to Chevalley and Steinberg [9, 24]

TABLE 1
type | [Nesp,: Fdl [Gr,]
AI(IZ]_) 1 ql(l+1)/2n£-1(q\d+l_1)
A‘(ng) 2 qt(z+1)/zni=1(qv+l_(__1)»+1)
Bi(1=2) 1 "1 (g?—1)
Ci(iz3) 1 g°TL_ (g?v—1)
Di(1=4) 1 ga-D(g—1) T4 (g —1)
Di(1=4) 2 @1 (g +1) 2L (g2 —1)
Dy 3 ¢ (g'—w)(g*-1)(¢'~w)(g*—1) (0*=1, wl)
Es 1 @(g?—1) (¢ — 1) (¢*—1)(g*—1)(¢g*—1)(g"~1)
Es 2 (@ —-1)(¢*+1)(g°—1)(g*—1)(g°+1) (g'?—-1)
E; 1 q%(g?—1)(gf—1)(g®—1)(g1—1)(g2—1)(g¥—1)(g"~1)
Es 1 (g —1)(g*—1)(g"?—1)(g"—1)(g"¥—1)(g?—1)(g*—1)(g*"~1)
Fy 1 (g —1)(g*—1)(g*~1)(g?—-1)
Gs 1 ¢ (g*—1)(¢*~1)
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and will play an important role in this paper.

When [Ngr, : Fgl =1, ie. when G is already of Chevalley type over Fg,
the expression of [Gg,] in the above table is unified in the following formula
which is valid for any connected semi-simple group G of Chevalley type over
F,:

[GgJ=q"II,-.(g"™ - 1),

where N is the number of positive roots, I is the rank ( =the dimension of
the maximal torus) and a, are integers such that the Poincaré polynomial of
the compact form of the complex semi-simple Lie algebra belonging to the
same type as G is I1i.; (£#97'4+1) (cf. [9]).

1.3. Reduction modulo )

Let %2 be an algebraic number field of finite degree over Q (a number field,
for short), G be a connected semi-simple algebraic group defined over %k and
let Ngjx be the nuclear field for G over k. We denote by G¥ the algebraic
group defined over the residue field £#” at a prime ideal p in % obtained from
G by the reduction modulo p. For almost all p, G'"™ remains connected semi-
simple and so we can define the nuclear field No®p® for GP over E¥. Let
K be a finite Galois splitting field for G over & and ¢ be an isomorphism, de-
fined over K, of G with a group G of Chevalley type over k. By (1.2.1), Nasi
is contained in K. Take a k-trivial maximal torus T of G and a Borel sub-
group B containing 7. Denote by D the Dynkin diagram of G with respect
to T, B. For almost all p, 7%, B® remain k™ -trivial maximal torus and a
Borel subgroup of the group G'® of Chevalley type over k. Denote by D®
the Dynkin diagram of G* with respect to T, B®. Since every character
in T is defined over %, one can define the reduction modulo p of any finite
number of characters, for almost all p. In particular, one sees that, for almost
all p, the map a - a™ induces a one-to-one correspondence of the systems of
fundamental roots for G and G, and thus gives rise to an isomorphism of D
and D® as Dynkin diagrams. Let P be a prime ideal of K lying above 4.
For almost all p, the reduced map ¢'®’ which is defined over the residue field

K® gives an isomorphism of G® with G®. For an f < AutxG, one has
(1.3.1) (feaN® =(fP)(a®™), aeD,

for almost all p. In the following argument, we shall often omit the phrase
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“for almost all p” and so all sentences will make sense only for almost all
primes which do not disturb the smooth argument. Denote by Zp the decom-

position field of P relative to K/k. There is a canonical isomorphism
0 8(K/Zp) S8(K®/EP)

by which corresponds the Frobenius automorphisms. Put f. = ¢"¢ "', s=8(K/k)
and Fs= (¢®)*(¢®)7, seg(K®'/k™). In view of the formula

(¢c)(P)=(¢(PJ)P(O)’ JEQ(K/ZP),
we get
(1-3-2) Fp(o)——-(fa)(P), O‘EQ(K/ZP)

Call & the map 4(K/k)— Aut D given by £(¢) = (f.)« and denote by &p the
restriction of & on fhe decomposition group 8(X/Zp). On the other hand, call
7 the map 8(K® /&™) - Aut D™ given by 7(s) = (Fs),. Also, call = the natural
isomorphism Aut D> Aut D¥ defined by (mr)(a®) = (r())®, « € D, y € Aut

D. From (1.3.1), (1.3.2) one sees that the following diagram is commutative :

g(K/Zp) jli) Aut D
el o, 4
gE® /k?) —> Aut DP.
Now, the field Neyp® corresponds to Kery and Ngr corresponds to Keré.
On the other hand, Ker» = p(Keré&p) = p(Ker £N8(K/Zp)) corresponds to the
residue field ( Ng/k)‘m’ where P is the prime ideal of Ny lying under P and

hence we have (Na/k)‘ss’ = Ng™pp®. Summarizing, we get the following

ProrosiTiON 1.3.3. Let G be a connected semi-simple algebraic group defined
over a number field k. Let ) be a prime ideal of k and P be a prime ideal of
the nuclear field Noj lying above p. Then, for almost all p, the residue field
(Na)™® coincides with the nuclear field Navy ™ for the group G® obtained
Jfrom G by the reduction modulo .

Remark 1.3.4. By (1.2.3), (1.3.3), one can interpret the multiplicative
structure of the order of the finite group Gy in terms of the law of decom-
position of p relative to Nos over k and thus attach to G over k a finite number
of L-functions taken from the Galois extension Ng;x of k. Details will be dis-

cussed in the next section.
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1 4. The number e(G/k)
Let G be a connected semi-simple algebraic group defined over a number
field & Put

qdimG

— A —
e(G/k)—Hp [G},?;))]‘ q-—NkD,

where I1' means the product over almost all prime ideals p in %k for which the
reduced groups G* remain connected and semi-simple. As for the convergence
of the product, see [18, Appendix II]. This number e(G/k) modulo Q* is in-
variantly attached to G over k Let G’ be another connected semi-simple

algebraic group defined over k. Obviously one has
(1.4.1) e(GXG'[k)~e(G/k)e(G'[R).

On the other hand, if G’ is isogenous to G over &, we get
(1.4.2) e(G/k) ~e(G'[R)

because two isogenous groups over a finite field have the same number of
rational points.

We say that a connected semi-simple algebraic group G defined over k is
stmple over k (k-simple, for short), if G has no normal connected algebraic
subgroup defined over k except G and {e}. It is clear that every semi-simple
G is isogenous to a product of k-simple groups Gi;, 1=i<7. From (1.4.1),
(1.4.2), we get

(14:3) e(G/k)~e(G1/k) e E(Gr/k)

Next, let K be a finite extension of k2, H a connected semi-simple algebraic
group defined over K and let G = Rxx(H). One has then

(1.4.4) e(H/K) ~e(G/R).

As for the proof, see e.g. [18, Appendix II].

Assume that G is k-simple and let H be any simple (i.e. Z-simple) factor
of G, K be the smallest field of definition for H containing k. Then, one sees
at once that G is isogenous to the group Rx;(H) over k. By (1.4.3), (1.4.4),
the computation of e(G/k) is reduced to the case where G is simplé.

Let us assume that G is simple. By (1.3.3) the residue field (Ngx)™® is
the nuclear field for G® over k™ for almost all p, and so e(G/k) can be ob-
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tained from Table 1. According to the structure of Aut D, we treat the
following four cases separately.

Case 1. Nek=k
Using the notation in (1.2.3), since >\-1a. =1+ N, we get

(1.4.5) e(G/R) ~TI\-1¢ka,),

where ¢ is the zeta function of 2 All groups of type A;, B; (I1=2), Ci(I=3),
E;, Es, Fy, G» belong to this case.

Case 2. [Nowx:k]l=2

For this case, we denote by Ly (N = Ngi) the L-function with respect to
the character belonging to the quadratic extension. This case can happen only
for types A; (1=2), D; (I=4) and E;.

TABLE 2
type e(G/k) (mod. Q%)
A (1=2) ck(z)LN/k(3)ck(4)....{%j/’kflﬁi): b odd
Di (I1=4) Luavi(l) TR, C(20)
Es Ci(2) Ly 1e(5)8r(6)8k(8) L /i(9)Cx(12)

Case 3. [Ngpr:kl=3

This case can happen only for the type D:. We denote by % the character
belonging to the cubic extension which sends a geunerator of the Galois group
to w, a primitive cubic root of 1. As before we put V= Ngz. From Table 1

we see that

e(G/k) ~ Lyx(X, 4) Ly (¥, 4)Ck(2)Ck(6).
By virtue of the relation {y(4) = Cx(4)Ly(X, 4)Lyk(7, 4), we get
(1.4.6) e(G/R) ~ Cx(4)Ck(4) T Ch(2)Ck(6).

Case 4. [Nep : k]=6

This case can happen only for the type D;. We again put N = Ng;. The
Galois group 8(N/k) is isomorphic with S;, the symmetric group on three
letters. Let M be the intermediate quadratic extension of . Thus N/M is a
Galois cubic field. Let X be the character of this cubic extension which sends
a generator to o as before and let ¥* be the character of 4(N/k) induced by
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X. Since X* takes values in Q, we have (X)*=2* From Table 1, we see that
e(G/k) ~ Ly(X*, 4)Ck(2)Ck(6).
By a theorem on induced characters, we get
Lym(Z, 4) = Lyp(X*, 4) = Lyp( (0™, 4) = Lyu (Y, 4).

On the other hand, we have

Cw(4) = Cu(4) LT, ) Loy (%, 4).
Hence, we get
(1.4.7) e(G/R) ~&y(4)"Cu(4) 7 Ch(2)Ck(6).

1.5. Property (P)

We shall introduce in this section a property called (P) for a connected
semi-simple algebraic group defined over a number field 2 As we shall see
later on, this property will take two parts (topological and arithmetical) in
our theory. We first recall some elementary facts.

Let G be a connected real semi-simple Lie group with finite center, g be
the Lie algebra of G and let ¢© be the complexification of §: ¢°=CQ@Rg4. By
an involution of 8¢ we mean an involutive sesquilinear automorphism ¢ of ¢
with respect to C/R. . We denote by ¢ the involution of ¢ over ¢ given by
6w(1® X) =1® X. For an involution ¢, put

n ={XeaC (X)) =X},

this being a real form of °. An involution ¢ will be called compact if it

satisfies the following two conditions:

(].51) teo = Lot
(1.5.2) U, is a compact Lie algebra.

Denote by % the set of all compact involutions of g°. As is well known, ¥ is
non-empty. For an (= %, let U. be the connected compact Lie group whose
Lie algebra is u, and let K. be the analytic subgroup of G whose Lie algebra
is t.=0Nu,. The map ¢~ K, gives a bijection of ¥ with the set of all maximal
compact subgroups of G. For two involutions ¢, ¢/ € €, one can find an element
g€ G such that

(1.5.3) ! =Ad(g)C(Ad(g)©),
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where Ad(g)€ means the automorphism of ¢€ obtained from Ad(g) by linearity.
We have then

(1.5.4) ne = Ad(g)u., 1/ = Ad(g)t. and K. =gK.g ™"

Fixing once for all a compact involution ¢ of ¢¢, put u=u, t=t, U=U.,
K=K,. Also put,

X=G/K, X,=U/K.

In view of (1.5.3), (1.5.4) all spaces U, K, X, X, are invariantly attached to
G. For simplicity, we call X the symmetric space attached to G and call U
(resp. X,) the dual of G (resp. X).

It is known that the Euler number E(X.) of the compact space X, is non-
negative and that E(X,) is positive if and only if rank U =rank K ([20, p. 17]).
When that is so, dim X, ( =dim X) is even ([2, p. 552, Satz IV]).

Now, let G be a connected semi-simple algebraic group defined over a
number field 2 Let «;, 1<ist be places at infinity of %, k., be the com-
pletion of %2 with respect to o;. Denote by G; the identity component of the
topological group Gk, Viewing G; as a real semi-simple Lie group, we denote
by X; the symmetric space attached to G; and by (X;), its dual. We shall
say that G is of type (P) over k if the Euler numbers E((X;).) are positive

for all 7, 1=:<¢.

ProrposiTiON 1.5.5. If there is a comnected semi-simple algebraic group G
defined over a number field k over which G is of type (P), then k is a totally
real field.

In fact, suppose that % is not totally real. Let o, say, be a complex place
of k: k.,=C. Then G,=Gc is a complex Lie group. Denote by 8, the complex
Lie algebra of Gi by 4, the Lie algebra 8, viewed as a real Lie algebra. Take
any compact involution ¢ of 8; and define an involution ¢ of g€ by (A® X) =
1®u(X), X=4g. One verifies at once the condition (1.5.1). On the other
hand, one has, for X, Y& g,

(X +V=1QY)=u(X) —V-1Qua(Y),

and hence n, =1u,+vV—1®y—1u,, which shows that u is compact, ie. ¢ is
compact (cf. (1.5.2)) and that f,=u,Ng =u N (1, +y—1u,) =u,. Denote by
t a maximal abelian subalgebra of . Then, obviously, t+vV—1®Vy—1t is an

https://doi.org/10.1017/5S002776300001206X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001206X

294 TAKASHI ONO

abelian subalgebra of u., and so rank u. >rank f,, i.e. E((X1),) =0, g.e.d.

ProrosiTiON 1.5.6. Groups G and G' are of type (P) over k if and only if
GxG' is of type (P) over k.

In fact, let @;, 8; be Lie algebras of Gr.,, Gk, respectively. Then 8;x g} is
the Lie algebra of (G x G')g,, and one can take a compact involution of (g;xa})C
which is the product of such involutions on each factor. Our assertion follows
at once from the fact that the Euler number of the product space is the product

of the Euler numbers of each space.

ProrosiTion 1.5.7. If G' is tsogenous to G over k and if one of the groups
is of type (P) over k, thenm the other one is cf type (P) over k.

In fact, using the notation in (1.5.6), an isogeny induces an isomorphism
of Lie algebras g/ with ¢;, and so the “equal rank” property is invariant under
the isogeny.

ProrosiTion 1.5.8. Let K be a finite extension of k and let H be a con-
nected semi-simple algebraic group defined over K. Then, H is of type (P) over
K & Rep(H) is of type (P) over k.

In fact, for an infinite place « of %k, denote by o;, 1<i=<s, be infinite

places of K lying above «. Then we have an isomorphism
(Rgp(H) g, = I1i..Hx,;

[25, p. 91, from this our assertion follows at once.

CoroLLARY 1.5.9. Let G be k-simple, let H be any simple factor of G and

let K be the smallest field of definition for H containing k. If G is of type (P)
over k, ther K is totally real.

In fact, G is isogenous to Rk (H) and so H is of type (P) over K by
(1.5.8). Our assertion then follows from (1.5.5).

1.6. Chevalley basis

Let G be a connected semi-simple algebraic group defined over a field %
of characteristic zero and 7" be a maximal torus of G defined over k Let g, b
be Lie algebras of G, T, respectively. If G is imbedded in GL(%), the Lie
algebras 6, ) are defined over k2 as linear subvarieties of the ambient Lie

algebra 6((%). To each character &£ € 7' = Hom (T, G), there corresponds the
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differential d2: §)—> G, If, in particular, a & T is a root in the sense of 1.1,
one verifies easily that da becomes a root of ¢ with respect to the Cartan
subalgebra f) in the ordinary sense®™ and that the map « -> da gives a one-to-
one correspondence between the root systems in two senses. From now on,
we shall identify these two root systems and denote again by 4 the set of all
roots of G (resp. @) with respect to T (resp. §). For a root a € T ,it is easy
to see that «°, s=8(R/k), is again a root. Through the identification, one can
define the action of a(%/k) on the infinitesimal roots by (da)’ =da’. Thus
9(%/k) permutes the elements in 4. Notice that if X, < 83 is a root vector for
a, X2 is a root vector for «°, a = 4, 0 € 8(%/k).

Let B be the Killing form of 8. For a root a € 4, we denote by H) the

element in §7 determined by the condition
B(H., H) =a(H) for all He .

Since B is left fixed by 4(%/k), ie. B(X', Y*)=B(X, V)", X, Y< 8z, s=a(k/k),
we get

(1.6.1) Ha’ = (H)°, o<=8(k/k).

From this we get

(1.6.2) La’, B =Xa, B>, a,BE4d
because <a, 8>( = B(H., H;) by definition) is a rational number. For a € 4, we
shall put
(1.6.3) H.o= 2 H

e * T la,a)
From (1.6.1), (1.6.2), we get
(1.6.4) Ho=(H,)", o=6(R/R).

Let IT ={ai, ..., a;} be a system of fundamental roots. Then so is the

transform I1° ={af, ..., af}. Since H,;, 1=i=</, form a for the module of

co-weights ([9, p. 16]) one can take {H, )=i= as a part of Chevalley basis.
Thus, let

(Hopy 156<1, X., a = 4)

* When a is given by (1.1.1), Xe=dxs (1) serves as a root vector in the sense of
infinitesimal theory.
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be a Chevalley basis for gz, where X,, « € 4, are subject to the conditions
described in [9, p. 24, Th. 1], ie.

[Xa, X—a] = Ha, a e 4
[Xa, X,«] = No, 5 Xo+s if a, B, a+Be 4,

(1.6.5)

where N,,;= = (p+1), p being the maximum of integers i=0 such that
B—ixE 4.

Now, let G be a group of Chevalley type over k. and T be a k-trivial
maximal torus. Since @(%/k) acts on T trivially, one has a° = a for all a € 4,
s€8(k/k). Hence H,, a € 4, are left fixed by ¢(%/k) (cf. (1.6.4)). We shall
next modify X., « € 4, so that all these are again left fixed by 8(%/k). To do
this, define numbers &,(¢), a € 4, s €3(k/k), by

(X.)” = (o) X
If we fix a, e.(o) satisfy
(1.6.6) ea(07) = eu(0)7eu(t), o, vE8(R/R),

ie. (e.(0)) is a cocycle of 8(%/k) in (R)*. On the other hand, if we fix 4, we
see from (1.6.4), (1.6.5) that

e-alo) = eala) ™! for a € 4,
(1.6.7) '
carp(0) = ea(a)ep(o) if a, B, +BE 4.
Let II = {ai, ..., a;} be a system of fundamental roots and let a = S imiai

be the unique expression of a« € 4 with m; € Z. For each «a;, let a4, be a solution
of (1.6.6), ie. e,;(0) =ak;’, and put a, = I1i.,a7" when a = >)i.,m;a;. Then,
from (1.6.7) we see that a. is a solution of (1.6.6): e.(¢) =aL°. Hence
Y, =a.X, are left fixed by @(%k/k). Obviously, Y,, a € 4, satisfy (1.6.5).
Therefore the existence of Chevalley basis which is invariant under 8(Z/k) is
settled.

From now on, whenever G is of Chevalley type over k, we shall understand
by a Chevalley basis of the Lie algebra § of G a Chevalley basis in the usual

sense which ts already a basis for 8.

We next want to associate a compact involution to a Chevalley basis.
Taking C as a universal domain, let G be a connected semi-simple algebraic

group defined over R, ¢ be the Lie algebra of G and let {H,,, 1=i<1], X., a € 4}
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be a Chevalley basis of § with respect to a Cartan subalgebra % of ¢ defined
over R. Obviously ¢ is the complexification of gg and we denote as before by
t the involution of 8 over 8gr: «(X)=X, X=¢. Define u, by the relation

00(X:) = Xo = %, X5, a € 4, and put
(1.6.8) «(H,,) = — H,,, (X)) = — |the| X—s.

One then easily verify that ¢ is a compact involution of §. We shall call this
involution the compact involution of § associated with a Chevalley basis { Hy;, Xo}
of 8. If, in particular, G is of Chevalley type over R and {H,, X.) is a
Chevalley basis (in the strict sense above) for the Lie algebra g of G, then
%y =1, « € 4, because the Chevalley basis is already a basis for ggz, and the

associated involution is given by
(1.6. 9) {(Hai) == '—Ha,-, ((Xa) = _‘X—-a.

For a complex semi-simple Lie algebra 8, we denote by Int ¢ the identity
component of the topological group Aut 8. Now, assume that G is a group of
Chevalley type over R which is simple. Let ¢, ¢ be involutions of g defined
above. Then A =y = is an automorphism of g. We shall ask the question:
whether A= Intg or A¢Intg?. In view of the structure of Aut g/Int g it is
enough to consider the cases A; (I=2), D; (I=4) and E;. For these cases,
all roots have the same length and from (1.6.3), (1.6.9), we get

(1.6.10) A(Hoy) = Hog;, A(XD)*= — Xoy.

First of all, we see at once that det A = ( —1)'*" where N denotes the number
of positive roots. If g is of type D; (I: odd =5), then [+ N =7 is odd, and so
A< Intg. Next, we consider the case Fs. Since A fixes h ={H,,} as a whole,
A induces a linear transformation A* of h* =Hom (h, C) given by A*(1)(H)
=AMA(H)), Heh, 2€h*. From (1.6.10) we see that (A™")*(a) = — « for all
ac 4. Now, if A is in Int g, (A™"* must be contained in the Weyl group.
However, it is known that in the case E; there is no element w in the Weyl
group such that w(a)= —a for all a4 (See [10, 19-08, line 12 from the
bottom]). Thus we have A < Int g for E,. Thirdly, we consider the case A4;
(1=2), Since g is isomorphic to 8((/+1), by taking the standard Chevalley
basis of 8((I+1) (see e.g. [19]1) we see that A(X)= —'X, Xeg, and hence
A< Int g. Lastly, let g be of type D; (I; even =Z4). We may put
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) , B _(0 I
g={Xea(2D), ‘XS+ SX =0}, S-(I, o)'

Then, by taking the standard Chevalley basis (see [19]), we see that A(X)=—"'X,
Xeg. Hence, A(X)= —‘X=SXS'. However, one has S SO(S) because
‘SSS=S and ! is even. Hence A(X) = Ad(S)X and so A< Int g. Summarizing,

we get the following

ProrosiTION 1.6.11. Let G be a simple group of Chevalley type over R, let
to be the involution of the Lie algebra g of G over gg and let ¢ be the compact
involution o}‘" g associated with a Chevalley bassis of g. Then the automorphism
A =t = 1ty s mot contained in Int g if and only if g is one of types A; (1=2),
D; (I: odd =5) or E;.

1.7. Effect of (P) on Ngp

We first consider algebraic groups over R. Let G be a connected semi-
simple algebraic group defined over R and let ¢ be an isomorphism, defined
over C, of G with a group G of Chevalley type over R. We see that f =g¢¢~"
is an automorphism of G such that ff =id. Let 9, g be Lie algebras of G, G,
respectively. Since d¢ = dp, we see that df =d¢(dg)™" and that dfdf =id..
For simplicity, we put df = F, this being an automorphism of g. As before,
we denote by ¢« the involution of g over gg: «w(X) =X, X g, by ¢ the compact
involution of g associated with a Chevalley basis and put A = ¢« =t,. To the
equality

#(Gr) ={x€ G, f(x)=x}

corresponds the equality as Lie algebras over R:
do(8r) ={Xe g, F(X)=X).

From now on, we put 4, = d¢(4r), this being a real form of g. If we define an
involution ¢; of g by ¢ =«F, 8 is nothing but the set of fixed points by ¢.
Furthermore, denote by * a compact involution of g=¢C. By definition, ¢*
satisfies the following conditions:

u =%, w*={Xeg M X) = X} is compact. We put 4, = ;" =/, Aut g.
Since involutions ¢, ¢* of g are both compact, there is a J in Int g such that
¢=J* ([11, p. 158, Cor. 7.3]). We get then the relation:

(1.7.1) A== (o) (™) (*) = FA,)J, JeIntg.
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Now, put G, = (GRr)., the topological identity component of Gg, and assume
that

(%) The Euler number E(Xy)>0,

where X, is the compact space dual to the symmetric space attached to Gy.
Since 8r =§; as real Lie algebras, the assumption (%) is equivalent to say that
rank 9, =rank f, where t=g, Nu* Thus, let t be a Cartan subalgebra of §
which is also contained in t. Since A; leaves f elementwise fixed, it leaves {C,
a Cartan subalgebra of g, elementwise fixed and so A; is contained in Int g
([14, 16-03, Prop. 11). Hence, under (#), we see from (1.7.1) that

(1.7.2) Acslhht ge= Felnt g.

Now, let Ngr be the nuclear field for G over R, this being either R or C.

Obviously, we have
(1.7.3) Ngr=R & feInn G.

However, since we have f=Inn G& F=df €Int g, we get from (1.7.2) the
following relation

(1.7.4) Ner=R& AcInt g (under (#)).
Combining (1.7.4) with (1.6.11), we get
ProrosiTioN 1.7.5. Let G be a connected simple algebraic group defined

over R satisfying the condition (4)- Then Nggr=C if and only if G is one of
types A; (1=22), D; (I: odd =25) or E;.

We now come back to our original situation: let 2 be a number field and
let G be a k-simple algebraic group defined over k. Since all simple factors
of G are of the same type, we may mention the type of G. The following is

a main result of this section.

THEOREM 1.7.6. Let G be a k-simple algebraic group over a number field
B, Non be the nuclear field for G over k. Assume that G is of type (P) over
k. Then k is totally real and Ng is totally real or totally imaginary. More
precisely, we have
Nk is totally imaginary & G is of type Ar 1=2), D (I: odd =5)

or Es.
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Proof. That k is totally real follows from (1.5.9).. Next, let H be any
simple factor of G and K be the smallest field of definition for A containing
k. Hence G is isogenous to Rgn(H). In view of (1.1.4), (1.1.6), (1.5.8), we
may assume without loss of generality that G is already %-simple. Let oy,
1<i<t, be all infinite places of . Then the group G viewed as an algebraic
group defined over k-, (=R) satisfies the condition (#) for all 7, 1<i<t.
Hence, by (1.7.5), the reality or the imaginarity of Ne.; is independent of 7,
and depends only upon the type of G. From (1.1.5) we have Nok.; = Bo;Nojk-
Therefore Ng;i is totally real or totally imaginary. The rest of the theorem

follows from (1.7.5), q.ed.

2. Discriminant

2.1. The number u(G/k)

Let % be a field of characteristic zero and let G be a connected semi-simple
algebraic group defined over k2 Let ¢ be an isomorphism defined over % of G
with a group G of Chevalley type over k Put fo=¢°¢"", s=08(k/k). Then
dfs=dp’dp”" is an automorphism of the Lie algebra g of G. Suppose that ¢’
is another isomorphism of G with a group G' of Chevalley type over k. Let
fo=¢"¢'"" and let ¢ be an isomorphism of G’ with G such that ¢¢' = ¢. Since
¢°¢™" is in Inn G by (1.1.2), we see at once that det(dfs) =det(df.). Now,
(dfs) is a cocycle of 8(k/k) in Aut g and det(df,) = +1, we get a homo-
morphism ¢—det(df,) of 8(k/k) into the group { +1}, which is invariantly
attached to G over k. We shall denote by Mg the extension of 2 which cor-
responds to the kernel of s—det(df,). Obviously, Me; is at most quadratic
over k. We denote by u(G/k) a solution of the cocycle (det(df,)):

det (df,) = u(G/k)°"".
Hence we have
Mar = k(u(G/R)).

Needless to say, #(G/k) modulo £* is an invariant of G over k. If G' is another

connected semi-simple algebraic group defined over k, one has clearly
(2.1.1) 2(GXG'/R) = u(G/R)u(G'/E)  mod. E*

On the other hand, if G’ is isogenous to G over %, we have
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(2.1.2) u(G/B) = u(G'/E)  mod. E*,
because ©(G/k) depends only upon infinitesimal data.

' ProrosiTiON 2.1.3. Notation being as above, let Ng;x be the nuclear field
for G over k. Then My is a subfield of Ng.

In fact, if a ¢ =8(%/k) is in the group nem corresponding to Ny, then one
has f,<Inn G, hence df, < Int g and so det (df,) =1. q.e.d.

CoroLLARY 2.1.4. If [Ngx : k] is odd, then u(G/k) k™.

In fact, Mo is at most quadratic extension of %, q.e.d.

Remark 2.1.5. Suppose that G is simple. Then, one has u(G/k) € k* for
groups of type Ai, Bi (I=2), C, (123), £, Es, Fi, G, because [Nap : k1=1.
If G is of type Ds and [Nep : k] =3, one also has u(G/k) € E*.

We shall next give another interpretation of the map o-det{(dfs). In
general, let f be an automorphism of a connected semi-simple algebraic group
G in characteristic zero. In 1.1, we associated with f an automorphism f, &
Aut D, D being the Dynkin diagram with respect to a maximal torus T and
a Borel subgroup containing T. We have first defined f, for such an f that
fIT)=T, f(B)=B, and put fyx=(F)"", where f :T->T is the dual of f
restricted on 7. Let %) be the Lie algebra of T. The conditions f(T) =1,
f(B) = B imply that df induces an automorphism of the infinitesimal Dynkin
diagram dD of the Lie algebra of G in the same way as f induces fi. Let us
denote the induced automorphism of dD by (df)s, which can, of course, be
defined for any f= Aut G. It is clear that the identification of D with dD
under a->da (cf. the beginning of 1.6) identifies fi with (df).. We shall

denote by sign f, the sign of fi as a permutation on D.
ProrposiTion 2.1.6. Using the above notation, one has
det (df) =sign f for f= Aut G.

In fact, without loss of generality, we may assume that f(T) =T, f(B) =B.
Let IT = {ai, ..., a;} be the system of fundamental roots relative to T, B, and
let {H,, 1=i<!l, X,, ac 4} be a Chevalley basis of the Lie algebra 8 of G
with respect to the Lie algebra Y) of 7. We have then

(2.1.7) df(H.) = Hrewn, 1=is<l,
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(2. 1. 8) df( Xa) = uaXf*(a) with UaUh~o0 = 1, x e Jd.

Let =44 24"+ 210" be the decomposition of § into eigen spaces (a>0
a>0

a=>0
l
means that a = 2 mai with m; =0). By the assumption, the automorphism df
i=1

leaves each of §, 4" = 21¢% ¢~ = 3147 invariant. Accordingly, we have

a>0 a>0

det (df) = det (df |9 det (df 167)det (df|g7),

where we see at once that det(df|8")det(df|67) =1 from (2.1.8), and our

assertion follows from (2.1.7).
ProrosiTioN 2.1.9. Using the above notatioh, we have
w(Glk) € B* & (f,)4 are even permutations for all s = 8(F/k).
In fact, we have
w(G/R) € B* & det(df,) =1 for all s =8(k/k)
& sign(f,) =1 for all o =8(E/B).

Remark 2.1.10. Suppose that G is simple. One can then determine the
field Mo/ by looking at the Dynkin diagram. In view of (2.1.4), it is enough

to consider the case where [ Ngs - k] is even.

Case (1) [Ner:kl=2
In this case, the only non-trivial (fs), comes from the non-trivial auto-

morphism of the quadratic extension.

Type A; (1=2). We have

12 - -1-11

11-1 2 1)=(-1W“”% o °—>,

sign(

and so Mgk =k or Nen according as 1=0,1 or 1=2,3 (mod. 4).
Type D; (I1=4). We have

s (1 A 1—-2 1—-1 1 ) 1 a1 oy @le3 Glep Gf=y
ion —_— -— s O — 0 —. —D—O—O,
& 1 2--+-71-2 [ [-1

o
al

and SO Ma/k = Na/k.
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Type E;. We have

=1, o—o—o0o—o—o,

123456) @ az @3 @3 oE
543216

sign(

o
a6

and so Myr=~k.

Case (ii) [Newx:k1=6

This happens for Dy. Since the Galois groupe of Ngk
over k is isomorphic to Aut D=S;, some (f5)4 is an odd
permutation. Hence, from (2.1.9), we see that Mg is the
unique quadratic subextension of Ng.

We shall next give one more interpretation of the

303

ay o3

N a S
NS
I

o ag

number u(G/k) which will be used in the analytical consideration. Let u(G/k)

which will be used in the ‘analytical consideration. Let G, ¢, G, 4, g be as

before (see the beginning of 2.1), let

(2.1.11) {H,,1<igl X,, ac 4}

be a Chevalley basis for g with respect to a Cartan subalgebra of g defined
over k. For simplicity, we put ¢ =d¢, F,=¢"¢"( =df,), s=8(E/k). We shall
often denote by (Y3, ..., Ya}, d=dim g, the basis (2.1.11). Since (F,) is a
cocycle, by Hilbert theorem 90, there is a matrix M < GL(d)z such that

(2.1.12) (Fo(YD), o .., Fs(Ya) =Yy, ..., YOM’M ™.

Since det F, = det (df,), we have

(2.1.13) w(G/k) =det M  mod. &%
Using this M, define a basis {Xj, . .., X4} of ¢ by the relation
(2.1.14) (W(X), ..., (X)) =(Yy, ..., Yd)M.

It is easy to see that X7 = X, for all 7 and o, ie. {X;} is already a basis for

g:. Let B, B be Killing forms of 8. g, respectively. Clearly, one has B(X, Y)

=B(¢X, ¢Y), X, Y=6. Hence, from (2.1.14) we get

(2.1.15) det (B(X;, X;)) =det(B(Y;, Y;))(det M)2.

Let 4™ (resp. 47) be the set of positive (resp. negative) roots of g deter-

mined by IT={ay, ..., a;} and let N be the number of elements in 4".
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Arranging (Y, ..., Y4} in the order {H.;, X., X-«, ...} we see that the
matrix (B(Y;, Y;)) has the form

j B(Ha‘, Haj)

0 B(X,, X-.)
B(X,, X-.) 0

A simple computation then show that

(2.1.16) det (B(Yi, Y;)) = ( — 1)¥2CIT -1 Kaiy aid ™ Tlasola, a2,

where C = det (gé:f’——%) is a positive integer. The right hand side of (2.1.16)
I J
is a rational number which depends only upon the type of g. From now on,

we shall put
(2.1.17) q(®) = (= D2C M akaiy > Tz o<ax, a7

for a semi-simple Lie algebra 8 in characteristic zero. Clearly, one has (g x¢')
= q(8)g(9') where ¢' is another semi-simple Lie algebra. If we take arbitrary

basis { X!} of 8., we have
det (B(X:, X})) =det(B(X;, X;)) mod. (£*)2
Hence, from (2.1.13), (2.1.15) we get
ProrosiTioN 2.1,18. Let {X:} be any basis of 8, then we have
det (B(Xi, X)) = q(@)u(G/k)*  mod. (F)".
In other words, one can define u(G/k) by
(2.1.19) #(G/k) = (det (B(Xi, X7))g(8)™)""  mod. &,

We now want to consider the effect of Rk;. Let K be a finite extension
of k, H be a connected semi-simple algebraic group defined over K and let
be the Lie algebra of H. Let

a(k/k) =8(k/K)or+ + -+ +8(k/K)a,, 0=L[K:E],

be the right cosets decomposition where we put ¢ =id. Let {Xi}i=i=s be a
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basis of Hx. Then {X7*} will be a basis of §z% , where §°* is the Lie algebra
of H°* which is defined over K°. Since g(9) = ¢(§°*), we see from (2.1.19)
that

(2.1.20) uw(H/K)™ = +a™det(B(X;, X)°)"q(9))""*, ac K* 1<v» <9,

where B being the Killing form of Y). Put G = Rx(H). By definition, there is
a map p : G- H, defined over K, such that G is isomorphic over % with the
product H**x -+ -+ X H"® under the map == (»°"),=,=s. We shall again denote
by == (»°) the isomorphism of the Lie algebra 8= Rx;(})) of G with the
product §% x - - - x§)°%, obtained by differentiation. In this situation, we know
(and can prove easily) that p induces a one-to-one map of 4, with Yz, which
is an isomorphism as Lie algebras over k. Let {wj}=j= be a basis of K/k.
Then {w;X;}, 1<i<d, 1<j=<34, is a basis for hx as a vector space over k.
Call Z;; the inverse image of w;X; under the map p restricted on ¢.. Hence
{Z;i} is a basis of 8,. We have

w(Zii) = (0iXi, 07 X2, . .., 0]X79)
=wi(X;, 0, . ... 0+ (0, X", ..., 0+ 4030, - - - ,X79)
Since (0, - -+, X?¥, -+, 0),1=i=d, 1=» <4, form a basis of h% x - - - x §7%,

denoting by B', B the Killing forms of 6, §, respectively, we get
(2.1.21)  det(B'(Zj, Zpir)) = (det (07) ) TI ., det (B(Xi, X))
From (2.1.19), (2.1.20), (2.1.21), we see that

1(G/R) = (det (")) Il (H/K)™  mod. E*.

If, in particular, £k =Q and if we take as w;, 1 <7 =<4, an integral basis of
K, then

det (w?¥) = 4¥*, 4 is the discriminant of K,
and hence, we have
(2.1.22) w(G/Q) ~ 4 1. p(H/K)™,  d=dim H.

Therefore, if Mux=K, we have u(G/Q)~ 4%*, since ITS-, u(H/K)°* = Nxjou( H/K)
€ Q. On the other hand, if Mg is quadratic over K, by taking a basis {w;, pw;}
of Mgx over Q, where {1, p} is a basis of Mg over K, we see easily that

I3 u(H/K)® ~ 43?, 4y being the discriminant of M = Mux, and so we get
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ProrosiTiON 2.1.23. Let K be a number field, H be a connected semi-simple
algebraic group defined over K and let G = Rg;o(H). Put Max = K(u(H/K)).

Thern we have

V) i Max =K

u(G/Q) ~{
/ A3 H)”Al]ézH/K if [Myx: K1=2.

2.2. Discriminant 4(G/Q)
Let G be a connected semi-simple algebaic group defined over Q. We

simply put
4G/Q) = u(G/Q) P (=Nciru(G/Q))

and call this the discriminant of G over Q, Thus, the positive rational number
4(G/Q) mod. (Q*)? is invariantly attached to G over Q. From (2.1.1), (2.1.2),

we get
(2.2.1) 4(GxGF/Q) = 4(G/Q4(G'/Q) mod. ("),
(2.2.2) 4(G/Q) = 4(G'/Q) mod. (Q%)?

when G’ is isogenous to G over Q. Using the notation in (2.1.23), we get

lAKl(dlmH)M if MH/K =K

(2.2.3) 4(G/Q)M? ~{
/ IAKl(dlmH)/ZlAMH/KlUZ if [MH/K . K] = 2.

We shall now interpret the number 4(G/Q) in connection with a compact
involution of the Lie algebra g of G. Let {Xi, ..., Xq4) be any basis of gq.
Since ¢ is the complexefication of 8r, one can take a compact involution ¢ of 4.
Let B be the Killing form of 8. One sees that the hermitian form given by

(2.2.4) B(X, V)= —-B(X,Y), X,Yeg

is positive definite. Since ¢ leaves 8r invariant, ¢ induces on gg an automorphism

(r and hence det (r = = 1. One has then

det (B.(X;, X;)) = =det (B(X;, rX;)) = = det(B(X;, X;)).
Since det(B.(X;, X;)) is positive, we get from (2.1.18) the following
(2.2.5) det (B.(X;, X7))"*~|q(8) |V 4(G/Q)"".

Conversely, (2.2.5) will serve as an alternative definition of 4(G/Q). This

formula will play a role in the next section.
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Remark 2.2.6. We give here a list of the number 4(G/Q)'* when G=
Rxq(H) with H simple. The results follow from (2.2.3) together with the
determination of Mu/x given in (2.1.10). As usual, we put dim H=[+2N.

Case 1. Ngx=K
From (2.1.4) we get Mux = K, and so 4(G/Q)"*~ | 4¢|"*.

Case 2. [Nyx:K]=2
This case can happen only for types A; (1=2), D; (I=4) and E;

TABLE 3
type My x 4(G/Q) (mod. Q*)
A (1=0,1 mod. 4) K | 4 |12
Ar (1=2,3 mod. 4) Nnx |4k |Y12 | dugyx |12
D (1=4) Nk | di |12 dwvgyx |12
Es K 1

Case 3. [Nux:K1=3
This happens for type D;. Again we have Myx =K by (2.1.4). Hence
we have 4(G/Q)'*~1.

Case 4. [Nax:K]=6
Again G is of type D;. We have shown in (2.1.10) that Mg/ is the unique

quadratic subextension of Nmx. Hence we get 4(G/Q)"*~ | duyx 1"

3. Homogeneous spaces

3.1. Compact involution
Let G be a connected semi-simple Lie group with finite center, let 8 be the
Lie algebra of G. For a compact involution ¢ of 8%, we have put u, = {X< g°,
«(X) =X} and t.=6Nu, (cf. 1.5). We also defined the hermitian form B. on
g€ by
B(X, V)= - B(X,(Y), X Ye

where B is the Killing form of 4¢ (cf. (2.2.4)). If B. takes real values on a
real subspace 8 of 8€, it induces a positive definite bilinear form (B.); on 3.
For a subspace & of 3 we shall denote by 8¢ the orthogonal complement of &

with respect to (B:)s. For example, one can take 3 =g since one has
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Bz(X, Y) = - B(X, lY) = "B({oX, HoY)
= = B(owX, «Y)=-B(X,:Y)=B(X,Y), XYea

In this case, we have I =gNvV—11u, and the direct sum ¢ =%, + % is known as
the Cartan decomposition of ¢ with respect to ¢. On the other hand, if one
takes & = U, one has i = vy —11% and the decomposition 1, =1, + v —1t is known
as the dual of the Cartan decomposition of 4. If two compact involutions ¢, ¢

are connected by (1.5.3), we have
B.(Ad(2)¢(X), Ad(@)C(Y)) =B.(X,Y), X, Y

from which follows, for example, that for a given basis {Xi, ..., X4} of g,
the positive real number det. (B.(X;, X;)) is independent of the choice of «.

3.2. Volume element

We first consider the following general situation. Let G be a Lie group,
H a closed connected subgroup, ¢, §) the corresponding Lie algebras. Assume
that there is a positive definite bilinear form 8 : 4 X6~ R such that

(3.2.1) Ady;(H) leaves B invariant.

Denote by §* the orthogonal complement of §) with respect to 8. Then §=
h+ 5t (direct), and since Ads(H) acts on Y, it acts also on §)*. Let M=G/H
and let = be the natural map G- M. Through the identification by dr of §*
with M, (the tangent space at 0 = n(e), e being the identity of G), the action
of Adg(H) on §* coincides with the natural action of H on M,, and so the
restriction Byt of B on §' produces naturally a G-invariant metric gu on M.
We denote by g¢, g the metrics on G, H, respectively, induced by f, By in a
natural manner. We denote by dM, dG, dH the corresponding volume elements.
Let {X1, ..., X}, {Yy, ..., Y.} be bases of 5, )* and let {Zi, ..., Z.},
v = A+ p, be the basis of g consisting of {X;, Y;}, taken jointly. Let {&, ..., &),
Oy o v oy b, {C1, . .., &) be invariant 1-forms dual to the above bases of
B, H*, 4. Then, viewing »is as forms on M through the identification §* = M,

we get

dH = (det (By(Xi, X)) N8N+« A&
dM = (det (B2 (Y3, Y) )i <o+ Ay
dG = (det (B(Zi, Z)))"G N =+ + NG,

From these, if we use the same symbol for the positive invariant measure cor-
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responding to the volume element, we see that the three invariant measures

dG, dH, dM are coherent with respect to making the quotient, i.e.
(3.2.2) [ rgac=\ au{ rignan
G M H

for a function f(g) on G.

Coming back to our original situation in 3.1, let G be a connected semi-
simple Lie group with finite center. Fixing once for all a compact involution
¢ of g%, we put u=u, =t =gNu_ Denote by K, U the connected compact
Lie groups corresponding to t, u, respectively. Let T be a maximal torus of
U. Asin 1.5, we put X=G/K, X, =U/K. We also put V=U/T.

Let B be the positive definite hermitian form on ¢¢ with respect to the
fixed involution ¢ and let (B.)g, (B.)u be the positive definite bilinear forms
on ¢, u, respectively, induced by B.. Since Ads(K) (resp. Ady(K)) leaves
(B.)g (resp. (B.)u) invariant, the procedure described above defines invariant
metrics on G, U, K, X, Xu, T and V. The volume elements and the correspond-
ing invariant measures will be denoted by dG, dU, dK, dX, dX., dT and dV.
From the remark at the end of 3.1, we see that dG does not depend on the
choice of ¢ and depends only upon B, i.e. dG is intrinsic (and so are dU, dK,
dX, dXu, dT and dV). From (3.2.2) we get

(3.2.3) SUdU - LuquSKdK - SdeSTdT.

3.3. Generalized Euler number

Let M be an orientable riemannian manifold of even dimension m =2m,
with a metric g. Denote by 2(M) the corresponding Euler form on M. We
put

E(M) = SMQ(M).

The Gauss-Bonnet theorem says that when M is compact the integral is in-
dependent of the choice of ¢ and is equal to the Euler number E(M) in the
ordinary sense ([1], [71). In terms of the curvature tensor R on M, 2(M)
can be written as follows. Using a basis {Xi, . .., Xm} for the vector fields

on an open set of M, put

Rijkl=g(R(;’Yi: Xj)Xl: Xk): 1§1: j: k: Il=m
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and

1

(M) = Zm“m! det (g( Xiy X?) ) gE(M)e{V)R}“""Z"LVZ e Rﬂm—ll‘m"m—ﬂ'wn

here >) means the summation over all indices ui, »;; and &* is the sign
K,y

function of (u)=(w, ..., #m). Then (M) is a function on M and will be

called the curvature of M. One has then
(3.3.1) 2(M) =2 A k(M)dM,

where Am =22l (m!) 'z™, the surface-area of the unit m-sphere, and dM
is the volume element of M determined by g.

Consider now the homogeneous spaces X, X, and V endowed with rieman-
nian structures described in 3.2. First of all, we have dim V=2N, where N
is the number of positive roots of 8¢. We know that E(V)=[W(U)], where
W(*) means the Weyl group of a compact Lie group * ([5, II, p. 337, Th.
24.3]). Next, as for the space X, we always assume that

(%) E(X.)>0.

This condition imples that dim X = dim X, = m = 2m, and that E(X,,) = [W(U)]/
[W(K)] ([3, p. 191, line 5 from the bottom]). Thus, all spaces X, X, and V
are of even dimension and one can define x(X), x(X.) and x(V). These
functions are all constants because we are dealing with invariant metrics on
homogeneous spaces. By virtue of the Gauss-Bonnet theorem applied to Xu,
V and by the relation (3.3.2) below, these constants are different from zero.
Let = be the natural map of G (resp. U) onto X (resp. X,) and put 0= n(e).
Then, dr = (dr). identifies the tangent space X, (resp. (Xu)o) with the subspace
18 (resp. "=y —11%) which is the orthogonal complement of t with respect to
(B.)g (resp. (B)u). In this situation, the curvature tensor R on X (resp. Xu)

is determined by its value at 0 by the formula

R(X,Y)Z=-[[X,Y1,2), X Y, Zct® (resp. t*)
([11, p. 180, Th. 4.2]). From this and the definition of the curvature, we get
(3.3.2) £(Xy) = (—1)™k(X).

Applying the Gauss-Bonnet theorem to compact manifolds X, and V, we
get
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. 2k( X)) _ [wD]
(3.3.3) _Affx.,dX” =S TWiEK]
2k(V)

(3.3.4)

S av=twn

Now, let I" be a discrete subgroup of G. Then I" acts on X properly dis-

continuously. We assume that

(3.3.5) aG is finite
\e¢
and that
(3.3.6) I' acts on X without fixed points.

Because of (3.3.6), I'\X becomes a manifold. The riemannian structure on X
induces naturally such a structure on I"\X; we denote again by dX the volume
element of I'\X. Since the structure of X and I'\X coincides locally, we have
k(N\X) =xk(X). In view of (3.3.5), the number E(I'\X) is finite and is given
by

(3.3.7) E(\Y) =~2—';§mi)g dx.

\x

By a simple consideration on fundamental domains, we get from (3.2.2)

(3.3.8) dG = SF\Xngde.

r\e

From (3.3.2), (3.3.3), (3.3.4), (3.3.7), (3.3.8), we get

nJG= W]

(3.3.9) \ (= D™EW\X)[W(K)]

\ av.
U
Furthermore, using (3.4.9) below, we get

(=12l Y g(@) " LW(K)] la, >
(.8.10 [ dG= Ea(O) LW D] I &3S

~7* ¥ q(8) M E(I\X),

E(I'\X)

where q(8) is given by (2.1.17).

3.4. Volume of U

In view of (3.2.3), we shall compute the volume of T and V separately.
When the Lie group G is compact, then G= K = U and the formula (3.4.9)
below will give the volume of any connected compact semi-simple Lie group
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with respect to the volume element determined canonically by the Killing form.
(For this case, ¢ is the only compact involution and one has (B.)g= — Bg).

(i) Volume of T

Let t be the Lie algebra of 7. The map exp; t— T is a covering homo-
morphism with the discrete kernel L. The module L is Z-free of rank /= dim
T. Let {Ti, ..., Ti} be a basis for L. By expressing T s as linear combi-
nations of an orthonormal basis with respect to the positive definite form — B

on t, one sees easily that
(3.4.1) { ar=(det (- B(T:, TH)™
Jr

As before, denote by <1, > the inner product on the dual space (1°)* given
by <4, &> = B(H', H!), where H, 1€ is determined by the condition B(H}, H)
=A(H) for all H=tC. Let M be the module of all weights of u® with respect
to t€ and let My be the submodule of M consisting of all weights of dp for all

representations ¢ of U. Then we know that
(3.4.2) [N : Myd=Lr (O],

where =;(U) is the fundamental group of U. We also know that the bases
{Ay ooy A1), 20V =1Ac. . ., 22V =14} for M, My, respectively, are determined
by the following orthogonality conditions

ZH,',;'

(3.4.3) g s ) =T =0y 154 5=,

here {a;}i=i=1, is a system of fundamental roots of u€ with respect to {€. The
right hand side of (3.4.1) can be computed from (3.4.2), (3.4.3), and we get

@m'2c?

(3.4.4) {47 =T Wi iy >, with C = det(Zana),

{aj, aj>
(ii) Volume of V=U/T
The following computation is due to A. Orihara and I learned it through

M. Ise. Let t" be the orthogonal complement of t with respect to (B.)u= — Bu.

Let X.s be root vectors of u® with respect to 1€ which satisfy the-condition

B(X,, X-o) = =1, (Xs)= X-u,

and put
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_ 1 _V=lix _
x"—_k/zA(X“+X_G)’ ya——,\/T(Xa X—(z)-

Then {%., ¥s}o=o forms an orthonormal basis for {" with respect to — Bu.

Identifying t* with the tangent space V, at 0= n(e) as in 3.2, let {£u, 7a}s>0 De
invariant 1-forms on V dual to {%X«, Ys}«=o. Then dV has the form

(345) dV=Ha>o$a/\77cz-
On the other hand, we know that the Euler form 2(V) is given by
,.Q( V)= H¢>ogay

where 2. is the following 2-form on V':

1w .
.Qa_—' 2;:?;;<a, B>:ﬂ/\77ﬁ

([5, I. 10.3 and 14.5]). Hence, we get from (3.4.5)

(3.4.6) OV = st Tlame ( S3<ear, B2 Ap)
(2 7'[') >0
1
= Wé;, “Z,W)QZI, afi1> st <a‘zv, lliN>)dV,
where (¢1, ..., iy) are all permutations of (1,..., N). We also know that
(3.4.7) ( > )<oc1, aiy - Lay, aiyy =[WID I 4= a, 6,
Tyueey IN
with b= 3 Sa®.
a>0

From (3.3.7), (3.4.6), (3.4.7), we get

(3.4.8) [ av=(m"Meika, >,  6=1 Sa.
14

Multiplying (3.4.4) by (3.4.8), we get

3 (2 1) ¥l ou e .
(3.4.9) ‘s‘UdU— ‘—“[T“(U)]““ <d1, a'|> Ha>0 <(X, 6> .

4. Tamagawa number
4.1. Definition of 7(G)

Let G be a connected semi-simple algebraic group defined over Q. We

* A, Orihara informed me a proof in the framework of [6].
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shall recall briefly the definition of the Tamagawa number =(G) (as for the
detail, see [25, Chap. 1I]). We shall fix an imbedding over Q of G in a GL(#n)
so that the definition of the group Gz of units and the notion of the reduction
modulo p make sense. Let w be a highest invariant differential form on G
defined over Q. On each local group Gv= Gqu, v being a valuation of Q, w
induces a Haar measure wy. Since the product

-

H,,S Gzpa)p

is absolutely convergent (see e.g. [18, Appendix II]), a Haar measure w, is
well-defined on the adele group G., independently of the choice of o by the
product formula in Q. It is fundamental that the volume of a fundamental
domain for the discrete subgroup Gq in G. is finite ([4, Th. 5.8]). Thus a
positive real number ¢(G), the Tamagawa number, can be attached to G by

(4.1.1) «(G) =j wa,

@Q\G4

and by the construction it is easily be seen that r(G) is independent of the
choice of the imbedding of G in a GL(n).

4.2. Fundamental domain
We shall consider the fundamental domain for Gg in G. more closely. We

put
G% = Gr x 11,Gz,,

this being an open subgroup of G4. It is known that the double coset space
Go\G.4/G3 consists of a finite number of elements ([4, Th, 5.17). This number
depends on the imbedding of G in GL(n), and will be called the class number
of G as a subgroup of GL(»n). Let ¢ be the class number and let

(4.2.1) Gi= Ui GoxiG3

be the disjoint decomposition of G, into double cosets. Since Gg acts inde-
pendently on each coset Ggx;Gz, in order to find a fundamental domain for Gq
in Ga, it is enough to find a fundamental domain for Gq in Gqx:G for each i,
1=i=<c. Then the union of these fundamental domains will be a fundamental
domain for Gq in G..

For any adele x= G4, put
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(4.2.2) Te=GoN xG3x%.

It is easy to see that I'y is discrete in Gr and commensurable with Gz=1T%, e
being the identity of G4. Let F) be a fundamental domain for I'x in Gr and
put

(4.2.3) Fe=Fax M,Gz,x;",

where x = (x,) € G4. It is easy to see that F, is a fundamental domain for
Gq in GoxG3ix™'. Therefore F.x becomes a fundamental domain for Gq in
GoxG;. In view of the invariance of the measure, we have

L Wa= \_ W4

Fypa Fo

and

[ ep={ wp forallp.
2,97 pxp GZp

Hence, from (4.1.1), (4.2.1), (4.2.3), we get
«(@=3_
;%

=1

=19 Ty
(4.2.4) % (Smwgnpfazpwp)

1

(cy
=(>) w)H§ )

Slraer ¥ »9Zy b

where =Ty, 1<i<c. Since all I, are commensurable with Gz, we see from
(4.2.3) that Gz\GRr has a finite measure and that

-

I

GQ\G4 is compact & Gz\Gr is compact.
ProrosiTiON 4.2.5. The integral »sz wp s a rational number for every p.
p

In fact, choose an imbedding G GL(n) and put

Gz, ={r=Gz,, x=¢ mod. p"}

where 7 is a natural number. The group Gy, is normal in Gz, with finite

index. Hence, to prove our assertion it is enough to show that the integral
(4.2.6) S (r) Wp

@Zp

is rational for a suitable . Let #1, ..., s, d=dim G, be a system of Jocal
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coordinates defined over Q around e such that #(e) =0, 1=<:=<d. For suffici-
ently large », the map x - ((x), ..., ta(x)) gives a homeomorphism in the
sense of p-adic topology between Gy, and a compact neighborhood U of the
origin in the p-adic space Q). Now the given differential form w can be ex-
pressed, around e, as w = f(x)dt;\ ... Adts, where f(x) is a rational function
on G defined over Q and holomorphic at e. By multiplying a rational number
if necessary, we may assume without loss of generality that f(e) =1. Then
we take again 7 large enough so that the power series expansion of f(x) in
the parameters #;, 1 <i<d, converges in U and that | f(x)|,=1 for x= GZ,.
The local expression of w, on Gy, is then simply wp=|dtilp. . . |dtsls, where
|dtl, means the canonical measure on Q,. Hence the integral (4.2.6) is equal
to the volume of U by the canonical measure on Q‘f;, which is a rational number
(more precisely, a rational number whose denominator is a power of p) because
the compact neighborhood U is a disjoint union of a finite number of cosets in

QZ modulo various powers of p, q.e.d.

Remark 4.2.7. For almost all p, it is known that

prl

where G is the reduction modulo p of G ([25, Th. 2.2.5]). Hence, using

(D)
§. a= Grd | 4y_dim G,
Ozp

the notation in 1.4, we may write

I1; f,, op~e(G/@)™

4.3. 7(G) mod. Q*

Let G be a connected semi-simple algebraic group defined over Q of di-
mension d, ¢ be the Lie algebra of G. As explained in 0.4, gr is identified
with the Lie algebra g, of the Lie group G, which is the topological identity
component of Gr, and hence §=¢C. Let {Xj, ..., X4} be a basis of 8q. Let
¢ be a compact involution of ¢ and let B. be the positive definite hermitian
form on g. The volume element dG, corresponding to the canonical riemannian

metric on G, is given by
(4.8.1) dGy= (det (B.(Xi, X)) wg,

where wgr is the invariant d-form on G, which is the product of 1-forms dual

to Xi, 1<i=d. Let I' be an arithmetic subgroup of G (a subgroup of Gq
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commensurable with Gz) such that I'C G, and that I" acts on the symmetric
space X = Go/K without fixed points. From (4.2.4), (4.3.1) we get

(4.3.2) (@)~ (] d6y)det B.(X;, X)) el G/

Furthermore, from (2.2.5), (3.3.10), (4.3.2), we get
(4.3.3) o(G) ~ 2 E(IM\X) 4(G/Q)e(G/Q)
provided E(X,)>0.

5. Evaluation of zeta and L-functions

Let %2 be an algebraic number field and let G = SL(#n), =2, be the special
linear group viewed as an algebraic group defined over %2 The group G is
obviously of Chevalley type over k& and simple. Denote by f the automorphism
x-'x"! of G. Let K be a quadratic extension of k and @ - @ be the conjugation
of K over k. Since we have ff =id. (€ AutxG), (id., 1) is a cocycle of 8(K/k)
in AutxG, and hence there is a unique algebraic group G defined over &, up
to isomorphisms over %, and an isomorphism ¢ of G with G defined over K
such that f=¢¢ ". The map ¢ induces an isomorphism of (&) with the sub-
group {xe Gg, ‘"' =%} where the latter group is usually called the special
unitary group with respect to K/k. We shall also call G the special unitary
group with respect to K/k. Since f is not an inner automorphism of G and ¢
is defined over K, we see at once that K is the nuclear field for G over k:
Nzr=K. We shall put G= Riq(G), this being a connected semi-simple alge-
braic group defined over Q.

Now, assume that % is totally real and K is totally imaginary. Then, for
every infinite places oo ; of k, (G )rw; is isomorphic to the usual special unitary
group SU(n) and so it is compact. Therefore Ggr is also compact and one has
E(I'\X) =1, trivially. As for the numbers I/, N for G, they are ¢ (=[%:Q])
times of the corresponding numbers I, N for G; T=n—-1, N=n(n—1)/2.
The square root of the discriminant 4 (G/Q) can be seen from Table 3, i.e.

| 4|02 if n=1,2 mod. 4

5.1) 4(G Q)"2~{
( / [ de )" V246 1M if #=0, 3 mod. 4.

Finally, the number e(G/Q)(~e(G/k) by (1.4.4)) is obtained from Table 2:
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Ce(n) : m even

(5.2) e(GIQ) ~ H(@ Lin($) D Lin(®) - - - { ®: »odd
x/k\n): n o

On the other hand, we know that
(5.3) (G)=(G) =1

([25, Th. 4.4.1]). Substituting (5.3) in (4.3.3), we get

S(n—-1)(n+2)

(5.4) e(G/Q) ~r— 1 4(G/Q",

which holds for every #=2. In view of (5.1), (5.2), the system of formulas
(5.4) for all #=2 determines the values of (x(n) (n: even) and Lxp(n) (%:

odd) mod. Q*. Namely, we get the following

THEOREM 5.5. Let K/k be a quadratic extension such that k is totally real
and K is totally imaginary. Denote by Cr the zeta function of k and by Lk
the L-function with respect to the character belonging to the quadratic extension
K/k. Let dr(resp. dx) be the discriminant of k(resp. K), and let n be an integer
=2. Then we have

(5.6) Cp(n) ~ " QY| g, |12 if n is even
(5.7) Lep(n) ~ 2™ Q| 4,12\ 4| if m s odd.

Remark 5.8. (5.6), (5.7) were proved by Siegel [23, p. 289]. See also Klingen
[12]. For a special K/k, Leopoldt [15] gave explicit formulas for (5.6), (5.7).

6. Main theorem

Let G be a connected semi-simple algebraic group defined over Q. As
before, we denote by I, N the rank and the number of positive roots of G.
Assuming that G is of type (P) over Q, we want to obtain an explicit form
of the number ¢(G/Q). In view of (1.4.2), (1.4.3), we may assume that G
is Q-simple. Let G be any simple factor of G and % be the smallest field of
definition for G. Then e(G/Q)~e(G/k) by (1.4.4). Since we assumed that
G is of type (P) over Q, G is of type (P) over £ by (1.5.8). Hence % is
totally real by (1.7.6). Let Ng be the nuclear field for G over k. Then Ngu
is totally real or totally imaginary and we have

N is totally imaginary & G is of type Aj (71 =2), Di (7 :0dd=5) or Es

(cf. (1.7.6)), here and from now on 7, N will mean the rank and the number
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of positive roots of G. We put d=[k:QJ, and so I=07, N=0N. As before,

we discuss four cases separately.

Case 1. Nsgr=~F

Since % is totally real, it can not be totally imaginary and hence groups
of type Ai (1=2), D;i (I :0dd=5) and E; must be excluded. This implies
that the numbers 4., 1 <» <7, appeared in the Poincaré polynomial (cf (1.2.3))
are all even. Hence, by (1.4.5), (5.5), we get

6.1) e(GIk) ~ 1L .. Chlay) ~ ) 4|

i
because [ + N = > a,.
v=1

Case 2. [Ngr:kl=2

All values of ¢ in Table 2 are computable (mod. Q*) since % is totally
real and all arguments are even. As for A7 (1 =2), D;j (7 : odd=5) and Es,
Ng, is totally imaginary and the L-functions are computable since all arguments
are odd. For the case Di (7 : even=4) N is totally real and so Lwg,yx(7)

=g, (1) /¢(7) is computable. Using (5.5), we get the following

TABLE 4
type e(G/k) (mod. Q¥)
- B e 12| A |0 T odd
AT (I=2) ~ ~ -
ab+ V| A |2 | dg, 14 l: even
D7 (I=4) 2+ i U2 | A |12
Es i+ N =428

Case 8. [Ngpr:kl=3
In this case, N is totally real. From (1.4.6), we get

e(G/R) ~ Cug, (4)Ch(4) 7k (2)Ck(6) ~ ™% | 4k 2| dugys 112
Now, it is an easy exercise to show that | dwg/,|">~|4e|"*. Hence, we get
(6.2) e(G/R) ~ % = '*¥,

Case 4. [Nz :k1=6
The field Ngr is again totally real, and so is the quadratic subfield Mg,
From (1.4.7), we get
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(6.3) e(G/R) ~ Cvg (D)% ng,(4)C(2)C(6)
- 71165\/7 — ”l-uv\/?, re Q,

here we used again the fact that | dvg;, |'* ~ | dug, |"*.
Combining (6.1), Table 4, (6.2), (6.3) with the corresponding values of
4(G/Q™ in (2.2.6), we get, for Q-simple group G,

(6.4) 2 "V4(G/Q)%e(G/Q) T ~ 1
except the case where [Vgr; B]=6. For this exceptional case, we get
(6.5) UG/ e(G/Q) T ~Va, qeQ

Let G be a simple group defined over @ of type D, and % be the smallest
field of definition for G. By abuse of language, we shall G a trialitarian form
of the first (resp. second) kind over k if [N : k1= 3 (resp. =6). From (4.3.3),
(6.5), we get the following

THEOREM 6.6. Let G be a connected semi-simple algebraic group defined
over Q, Gy be the topological identity component of Gr and X be the symmetric
space attached to Go. Let I" be an arithmetic subgroup of G such that I'C G,
and that T acts on X without fixed points. If G is of type (P) over Q and if
G does not contain a simple factor which is a trialitarian form of the second

kind of type D4 over its smallest field of definition, then we have
(G)~ E(INX).
If, in particular, Gz\Gr is compact, then t(G) is a rational number.

Remark 6.7. Notation being as in (6.6), if X is hermitian symmetric, then
G is of type (P) over Q: this can be seen from [11, Prop. 5.5, Th. 6.1, pp.
310-311]. Furthermore, by looking at Cartan’s list of irreducible symmetric
spaces ([11, p. 354, Table 2]) we see that every Q-simple group of type E:, Es,
Fi, Gy is of type (P) over Q if the smallest field of definition for a simple
factor is totally real.

Remark 6.8. It is quite likely that E(I'\X) is rational even for the case
where Gz\GRr is not compact as Satake has shown for symplectic groups ([21]).

We hope to come back to this question some time in the future.

Remark 6.9. When G is a Qsimple group whose simple factor is a
trialitarian form of second kind of type Dsover its smallest field of definition,
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then (6.6) must be modified as
(G)~YyqETNX), qeQ.

Let G be a simple factor of G, k be the smallest field of definition for G. Put
N = Ngpr, M= Mz, the latter being the quadratic subextension of V. If G is
of type (P) over Q, all fields IV, M, k are totally real. Define rational numbers
oy, px by

Ch(4) = PNﬂ‘EN:QJI dy|M?

CM(4“ - pun_JM: Q]l Au 11/2,

1/2

and put pym =|4dy|"*| 4x|™"*, this being a rational number. Then,

e(G/Q) -~ e(é/k) ~ (pNo;jle/M)llznu[k:QJ.
From (6.5), we see that
(610) \/E"'l(‘—:} ONOMON/IM = IAMI mod. (Q*)Z

In order to prove the right hand side of (6.9), more detailed study of the
numbers py, ou Will be required. In terms of L-function, we can restate (6.9)

as
(6.11) Va~16 Lyu(Z, 4) ~a'l Q) g, |2,
where # is a cubic character belonging to N/M.

Remark 6.12. If we do not stick to the Tamagawa number, we can restate
(6.6) as follows. Namely, let I" be any discrete subgroup of Gr such that
I'\GRr is of volume finite. Put I"=I"N Gr. The space I"\X is not a manifold,
in general, but a V-manifold. However, the Euler form still makes sense and
one can define E(I"\X) in the same manner as in 3.3. Accordingly, (3.3.10)
still holds for this case™. Then the proof of (6.6) shows that

Jrgpr~BUIMX)G/Q).

If, in particular, I'\Gr is compact, so is I"\X and E(J'\X) is rational, the

Euler number in the sense of Satake [21]. Hence, we get

S T\GR

* The only thing we have to modify is to divide the right hand side of (3.3.10) by
[I"s] where Iy is the finite normal subgroup of /” consisting of all 7&/ " which act trivially
on X.
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this is the formula (*) in the introduction because e(G/Q) can be expressed
as a product of L-functions as shown in (1.4) and one can replace w by aw with
any a< Q"
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