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HOW MANY MATRICES HAVE ROOTS? 

J. M. BORWEIN AND B. RICHMOND 

0. Introduction. In many basic linear algebra texts it is shown that 
various classes of square matrices (normal, positive, invertible) possess 
square roots. In this note we characterize those n X n matrices with 
complex entries which possess at least one square root without any 
restriction on the class of root or matrix involved. We then use this 
characterization to obtain asymptotic estimates for the relative profusion 
of such matrices. 

In Section 1 we characterize those n X n matrices with entries in C (or 
any algebraically complete field) which have square roots over C. This 
characterization is in terms of similarity classes. In Section 2 we give 
asymptotic estimates for the number of Jordan forms of nilpotent n X n 
matrices which are squares. Section 3 is given over to numerical results 
concerning the actual and asymptotic frequency of such forms. 

Since the results involve both elementary algebraic notions and less 
elementary analytic number theoretic notions, we have made some 
attempt to keep our development self-contained. The essence of our 
algebraic criterion can be found on pages 234 to 239 [3], but is nowhere 
explicitly given, indeed no criterion is given which can be immediately 
verified given the Jordan normal form. Furthermore in [5, p. 96] several 
papers are referenced in which necessary and sufficient conditions on the 
matrix A are given for the solvability of p(X) = A where p(X) is a 
polynomial in X. The conditions most similar to ours seem to be those of 
[4] for the case/?(X) = X1. As we shall see when A is nonsingular there is 
always a solution and it is sufficient to consider the case when the only 
eigenvalue is zero. Given the multiplicities of the elementary divisors 
Kreis defines a set of numbers {^2} by means of congruences mod n and 
gives necessary and sufficient conditions in terms of the d/s for A to have 
an n-th root. These conditions are not as simple as ours although of course 
they and the others referenced by MacDuffee must be equivalent. No 
doubt the reason our conditions were not stated before is that most of the 
earlier work is directed towards finding all solutions of a more general 
problem and so involved more complicated conditions. 
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The reaction of many people that we showed these results to is 
invariably that they must be well-known and later that they are rather 
different than anything previously stated. We are indebted to these people 
and especially the referee for their helpful comments and references. 

1. Square roots of matrices. Throughout our discussion all matrices are 
presumed to lie in Mn(C), the n X n matrices with complex entries. Any 
other algebraically complete field would suffice. The first question we wish 
to answer is the following. 

Given a matrix A in M„(C), when can we solve 
(1) A = B2 

for some B in Mn(C)l 

Recall that two matrices A\ and A2 are similar (over Mn(C) ) if there 
exists an invertible matrix S with A2 = S 
equivalence relation and 

XA\ lS. Now similarity is an 

(2) A = B2 *=> SlAS = (S~]BS)2. 

We will write A \ ~s A2 when A \ and A2 are similar. Thus one may solve 
(1) for a matrix A if and only if one may solve (1) for some matrix similar 
to A. Since each matrix is similar to its Jordan (canonical) form we may 
rephrase our question by asking when a Jordan form is a square. 

Let Im, Sm denote respectively diagonal and super diagonal unit 
matrices of dimension m. Let a be any complex number and set 

(3) Jm(a) = alm + Sm. 

Then Jm(a) is a Jordan block and every matrix A in M/Z(C) is similar to a 
matrix in Jordan normal form which we write 

(4) JA = ®Jnk(ak\ 
k 

where ^Lk
nk = n a n d J A is the direct sum of the Jnk(ak) for suitable 

numbers ak (the eigenvalues of A). This representation is of course unique 
up to rearrangement of the Jordan blocks. In this notation one has 

(5) 

1 2 3 1 
0 
0 

1 
0 

5 
2 

7 
7 ~s 

0 0 0 2 

1 1 0 0 
0 1 0 0 
0 0 2 1 
0 0 0 2 

/2(l)e/2(2). 

This very standard material may be found in [3], [6], [7] or elsewhere. 
We begin by analysing the Jordan forms of the squares of Jordan 

blocks. Denote the greatest integer less than k by [k]. 

PROPOSITION 1. 

(6) (a) rm{a)~sJ, ,(a2) (a * 0), 
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(7)(b) 4,(0) ~ J r . . 1(0) ®Jr 1(0). 

mu)"jw 
Proof, (a) Jordan's Theorem [7, page 163] says that Jm(a) is the direct 

sum of blocks each of whose only eigenvalue is a . Now the null space 
of 

[J2
m(a) ~ a2Im] = L{a) 

is easily seen to be at least one-dimensional since L(a) is an upper 
triangular matrix with zero entries on the diagonal and entries of 2a on the 
super diagonal. As each block in the Jordan form of a matrix contributes 
exactly one eigenvector (up to multiples), the Jordan form of Jl(a) has 
only one block and must be Jm(a2). 

(b) A similar argument shows that 

VliO) 0/„ L(0) 

has a two-dimensional null space, so that Jm(0) is similar to the direct 
sum of two blocks /m,(0) and Jm2(0) with m\ + m2 = m- I n addition, 
however, 

(JmXO) ) 

since 2 

[ffl+i] 2 f ^ l 

= (s2J 2 J = 
1 

= o, 

m and S^ = 0. Thus the minimal polynomial 

. This, in turn, implies that 
2 \m + 1 

of Jm(0) has degree no greater than 

the largest block has dimension 

size of the other block as 

1 
which uniquely determines the 

m 

~2\ 

THEOREM 1. A matrix A is a square if and only if when the dimensions nif 

of its zero eigenvalue Jordan blocks, are listed in decreasing order they 
satisfy 

(8) n2l 7 - 1 

<*2k 

n2l ^ 1, / = 1, 2, 

where 2 z = i n{ is the total dimension of the zero blocks and we assume (by 
adding a zero dimensional block if need be) that there are exactly 2k 
blocks. 

Proof. Suppose B is an arbitrary matrix in Mn(C) with 

(9) B~sQJni(bi) (2/i,- = n). 

Then, on applying Proposition 1, 
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B2 ~s @ Jl (b) 

(10) ~ , 0 Jni(b]) ® (Jt +11(0)0 J\n l(O)0/u(O)). 
(MO) (bi*Q) [-^-J l^J [2J 

Since (10) is a Jordan form, any matrix A for which (1) has solution must 
have Jordan form as in (10). Thus we have: 

Suppose A is B2. Then by (10), A has the desired property except that 
the nt need not be decreasing. We can, however, always rearrange things so 
that the n2i-\ are decreasing and then that the n2i decrease. The only way 
that things go wrong is if we now have numbers such as 

d, d — 1, d, d — 1 

in a sequence. These may be replaced by d, d, d — 1, d — 1 and we will 
still have a square. Conversely, if (8) holds, each pair of zero blocks has 

7 ^ ( 0 ) 0 JÏÏ2i (0) ~ , J2(n2l + n2l^)(0l 

and for at non-zero 

Jm(ai) ~s Jm(vai) 

so that A is a square. 

Notice that in general 

A = B2 = C2 ^ B ~s C 

as is shown by 

j2(0) e /2(0) e / K O ) ~ s (/4(0) e /2(0) ? 

^ ( / 3 ( 0 ) e / 3 ( 0 ) ) 2 . 

As an immediate corollary we observe that normal and invertible 
matrices have square roots. In the normal case each zero block is 
one-dimensional while in the invertible case there are none. We don't, of 
course, deduce that the root of a normal matrix may be assumed 
normal. 

In the same fashion we may prove: 

THEOREM 2. A is the kth-power of some matrix B if and only if the 
dimensions of the zero blocks in the Jordan form of A ordered decreasingly 
satisfy 

(H) nrk + x - n{r+l)k ^ l , 0 ^ r ^ 5 - l , 

where 2 / = i nt is the total dimension of the zero blocks and we assume 
exactly sk such blocks. 

Proof This is much as before except that we now show 
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(12) Jk„k + i(0) ~s ( é , y*+i(0) ) © ( ¥ , Jk(0) ). 
\ m = 1 / \ m = 1 / 

Example. 

A = /3(0) e /2(0) e /2(0) ~ , J3
7(0) 

so that A is a cube, but 4̂ is not a square. 

Example. (1) In M2(C) the only non-square Jordan form is 

'*°> - (2 2)-
Thus a 2 X 2 matrix A is a square unless it is of the form 

1 
(13) A = 

S\S4-S2S3 

1 

S\S4~S2S3 

Equivalently 

(14) A = 
-xy y2 

2 

.—x xy 

\s\ s2 "0 r 
L3 s4\ lo oj 

f ~ Y 3 *' 
s 

•j 

* 3 -

s 4 

^ 3 

^ 2 
S}1 

, ( J ^ 4 ^ ^ 3 ) 

(x, >0 * (0, 0). 

(ii) In M3(C) there are only two non-square forms 

= / i (a) 0 J2(0), (a ^ 0) 
a 0 O" 
0 0 1 
0 0 0 

and 

"0 1 0" 
0 0 1 
0 0 0 

y3(0). 

One could explicitly write down the matrices which possess these forms 
but it does not yield anything particularly pleasant such as (14). 

The problem of telling whether an arbitrary matrix is a square or 
/cth-power is thus reduced to combinatoric calculations concerning the size 
of the zero blocks in its Jordan form. These will in general be complicated 
and not easily computable. We can, however, use Theorem 1 to estimate 
the relative "density" of such square matrices. This is the subject of the 
next section in which we count the relative profusion of "squarable" 
Jordan forms of nilpotent matrices. 
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2. How many squares are there? There are of course many ways of 
measuring the relative frequency of square matrices of dimension n inside 
MW(C). Some such estimates, especially probabilistic ones, would show 
squares to be in the preponderance, since a necessary condition for a 
matrix to be non-square is that its determinant vanish. As our 
characterization is in terms of Jordan forms, and since every invertible 
matrix is square, it seems reasonable to ask initially for an asymptotic 
estimate of the number, N(n), of Jordan forms of «-dimensional nilpotent 
matrices (matrices which have only zero eigenvalues) which are squares, 
and then to compare that number to the total number of Jordan forms of 
such matrices, M(n). 

It is immediate from Theorem 1 that N(n) is the number of partitions of 
n which satisfies: 

(a) n = n\ + n2 + . . . + n2m {n2m = 0 if need be), 

(15) ( ^ « ^ « 2 ^ 3 ^ . . ^ n2m n2m-\ * 0, 

(c) n2i-\-n2i ~ I i = 1, 2, . . . , m. 

We will call such partitions squarable. 
It is also immediate that M(n) is just the total number of partitions of 

n. 
Let q(n) denote the number of partitions of n whose odd parts occur at 

most once. As an example, notice that 13 = 5 + 5 + 2 + 1 will be 
counted in N{\3) but not #(13), while 13 = 6 + 4 + 3 will be counted in 
#(13) but not iV(13). The reader is referred to [1], [2] for details of the 
relevant partition theory. 

THEOREM 3. With N(n), M(n) and q(n) defined as above we have: 
(a) q(n - 1) < N(n) < q(n). 

(b) N(n) = — ^ - g ( ^ ' V 2 ) (1 + 0(n-y4 + 8)) 
Ayln 

where 8 is any positive constant. 

(c) M(n) = -\=- ^v^/VâTï) ( 1 + o ( « _ l / 2 ) ) . 
4y3« 

Proof. Consider the Ferrer's graph of a partition 

2m 

77- = (nu n2, • • • , n2m) where 2 nt = n. 

This is the diagram with n\ dots in the first row, n2 dots in the second row 
and so on. Let TT denote the conjugate partition of 77. This is the partition 
whose Ferrer graph is obtained from the Ferrer graph of 77 by 
interchanging the rows and the columns. The condition (15) (c) in a 
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squarable partition 77 that n\ — n2 < 1, states that at most one part equal 
to 1 occurs in 5r. Similarly the condition n2i~\ — n2\ < 1 states that at 
most one part equal to 2i — 1 occurs in 77. When 77 has an odd number of 
parts we have, from (15) (b), the additional restriction that the largest part 
occurs exactly once. Omitting this last restriction yields 

(16) N(n) < q(n). 

Imposing this last restriction, we see that we have at least q(n — 1) such 
77. Indeed, we may add one to the largest summand in a partition of n — 1, 
counted in q(n — 1), and obtain a partition of n with unique largest part 
whose conjugate is squarable. Thus 

(17) q(n - 1) < N(n). 

We now show 

(18) q(n- \) = q(n)(\ + 0 ( « - ' / 4 + 5 ) ) 

and that 

(19) ^ ) = ^ ^ / v / I ( 1 + ° ( n H / 4 + 5 ) ) 
by using a result of [6] (see also [1, Chapter 6] ). The generating function for 
q(n) (with q(0) = 1) is 

oo oo oo 

2 q(n)xn = I I (1 + x2l + l) I I (1 - x2Tl 

n=0 i=\ i=\ 

as each odd part may occur only once. Thus 

oo oo 

(20) 2 q{n)xn = I I (1 - x ' ) - 1 = I T (1 " * " ) " " " 
n = 0 z^2(mod4) n = \ 

where 

/ 0 if n 
a«= [lifn 

= 2(mod 4) 
3Ê 2(mod 4). 

Before applying Meinardus' theorem we state it in its full generality. 

THEOREM 4 (Meinardus). Let 

oo oo 

(21) I I (1 - e-rnra» = 1 + 2 q{n)e~m (Rer > 0). 
i=\ n=\ 

Consider the Dirichlet series 
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(22) D(s) = 2 ann~s (s = a + it) 

and assume that (i) for o > a, a positive real number, D{s) converges. 
Assume also that (ii) D(s) may be analytically continued to the region o > 
— CQ (0 < CQ < 1) and that in this region D(s) is analytic except at s = a 
where it has a simple pole with residue A. Assume that (iii) D(s) = 0( \t\C]) 
uniformly in o > —CQ as \t\ tends to infinity, where C\ is a fixed positive 
number. Consider the function 

oo 

(23) g(r) = 2 a„e-"\ 
n=\ 

and assume that (iv) ifj = y + lirix (x,y real) one has for |arg T| > 7r/4, \X\ 
^ 1/2 

(24) Rc[g(r)- g(y)] â - C ^ - ' o , 

for y sufficiently small where to is an arbitrary positive constant and C2 is a 
suitable positive constant depending on t$. Then as n tends to infinity 

(25) q(n) = CnK e x p l r c 1 ^ (1 + -)[AT(a + l)f(a + 1 ) ] ^ J 

X (1 + 0( / i~* ' ) ) 

where f is the Riemann zeta function, T is the gamma function, and 

\-2D(0) 
(26) C = eD'{0)[2<ir(\ + a)rl/2[AT(a + l)?(a + 1) ] (2+2a) ? 

D(0) - 1 - a/2 
(27) K= V \ , 

(1+a) 
(28) Ki-^nànfe-'-,1--*), 

a + 1 \ a 4 2 / 

and 8 is an arbitrary real number. 

In our case 
00 00 

(29) D(s) = 2 n"s - 2 (4fl + 2)~ s = (1 - 2~s + 4~5)?(*). 

Thus, by well known properties of f, Z>(s) is analytically continuable to 
the entire complex plane and is analytic everywhere except at s — 1 where 
it has a simple pole with residue 3/4. Furthermore, since Ç(s) is a function 
of finite order in the sense of Dirichlet series in any half plane a > CQ, 

D(a + it) = 0( \t\k), lc = k(C0). 

https://doi.org/10.4153/CJM-1984-018-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-018-0


294 J. M. BORWEIN AND B. RICHMOND 

Finally, in our case 

oo 

(30) g(T) = 2 anr" = 2 e~>" - 2 2 ne~2'" + 4 2 ne~Am 

n = 1 n = 1 « = 1 n = 1 

1 2e 2 T 4e 4 T 

+ e T - l ' ( e 2 T - l ) 2 ( e 4 T - l ) 2 ' 

Hence if T = y + lirix 

(31) Re(g(r) - g (>>) ) ^ C z y " 1 

and the hypotheses of Meinardus Theorem are satisfied. Moreover 

v D(0)-1-1/2 f (0 ) -3 /2 

* = m = i =~l 

(32) A", = l- min [co - ^ - s ) = ± - S, 

AT(2)Ç(2) = - 2 / 8 , 

and 

so 

c , J ) = r w ( 1 _ . + . ) + ( ^ _ ^ ) M , 

(33) D'(0) = f'(0) + ^ = - ^ (log lit - log 2). 

It follows that for our particular q(n), 

q{n) = 4 ^ 7 5 e(V7'V/VT) (l + 0(n-]/4+s) ) 

and that 

q(n - 1) = q(n)(\ + <9(«~1/4 + ô) ). 

Our proof of Theorem 3 (a) (b) is complete. Part (c) is more standard but 
could be deduced in the same fashion. Our estimate is due to Siegel [2]. 

In particular, it follows that the ratio, R(n)y of square nilpotent forms to 
all nilpotent forms is 

w*^) ]-
(Recall tha t / ( / J ) ~ g(n) if lim f(n)/g(n) = 1.) 

(34) R(n) = ^Ç\ ~ V372 exp 
M(n) 
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Thus, while for small n many nilpotent Jordan forms are squares, 
asymptotically very few forms are. 

Similar calculations could be undertaken for the density of the Jordan 
forms of nilpotents which are /cth-powers. 

Another calculation which in some senses is more representative of the 
density of squares is to look at 

n 

(35) T(n) = 2 N(k)M(n - k). 

T(n ) counts the number of Jordan forms of dimension n which are squares 
if one identifies all non-zero eigenvalues. In this case it would make sense 
to compare T(n) to 

n 

(36) S(n) = 2 M(k)M(n - k), 
k = 0 

since S(n) will count all distinct Jordan forms of matrices with eigenvalues 
zero and one. 

Since S(n) is the coefficient of xn in 

oo 

I I (1 - xnya'n where a'n = 2 
n=\ 

and 

n 

U(n) = 2 q(n)M(n - k) 
k = 0 

is the coefficient of xn in 

oo 

n (i - *nya" 

where 

„ _ f 1 if n == 2 (mod 4) 
a" ~ \ 2 i f n m 2 (mod 4) 

we may use Meinardus' theorem to determine the asymptotic behaviour of 
S(n) and U(n). Arguments completely analogous to those in the proof of 
Theorem 3 apply and we deduce 

(37) [/(«) = ^ 4 - exp (W V^/V677)(1 + 0 ( « - | / 4 + s ) ) , 
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(38) S(n) = A 5/4 exp (2*V^V3)0 + 6>(«~ , /4+s)). 
4 3 n 

Since N(k) ~ q(n) it is easily shown that T(n) ~ U(n) and hence we 
have 

THEOREM 5. As n —> oo 

a) S^/i) - 33 /44^5 /4 exp (2vr^/n/y/ï) 

(l/6)3/4 

b) r(w) - ^JJT exp ( 7 7 ^ / ^ 6 7 7 ) . 

Thus T(n)/S(n) becomes very small however it is much larger than the 
ratio of N(n)/M(n). 

Finally the error terms in equations (6) of Theorem 3 and equations a) 
and b) of Theorem 5 may be shown to be 0(n~]/1) of the principal terms. 
This requires an analysis which is more complicated than the one we have 
given using Meinardus' theorem and so in the interests of simplicity we 
have chosen the above course. 

3. Numerical calculations. The following tables show the actual and 
asymptotic estimates of N(n), M(n) and R(n) with errors. 

Specifically, N, M and R are, as above, the actual partition numbers 
while 

Asymptotic Estimates 

MA(n) = JTr^ exP (V" "/V2)> 

(39) MA(n) = —T=- exp (y/H <n/^[V2\ 

RA(") = NA(n)/MA(n), 

Error Estimates 

EN(n) = (N(n) - NA(n))/(N(n), 

(40) EM(n) = (M(n) - MA(n))/M(n), 

ER{n) = (R(n) - RA(n))/R(n). 

We have-included the actual numbers for n less than twenty-one; all 
three sets of numbers, incremented by twenties, for n less than 
one-hundred and fifty; and the asymptotic numbers, incremented by 
hundreds, between one and two thousand. 

The actual values of M (n ) were calculated directly from the generating 
function while N(n) is calculable from a relatively straightforward two 
variable, two term recurrence relationship. 
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TABLE I Actual Values of N, M and R 

N(n) M(n) R(n) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 
1 
2 
3 
4 
5 
7 

10 
13 
16 
21 
28 
35 
43 
55 
70 
86 

105 
130 
161 

1 1.000000 
2 .500000 
3 .666667 
5 .600000 
7 .571429 

11 .454545 
15 .466667 
22 .454545 
30 .433333 
42 .380952 
56 .375000 
77 .363636 

101 .346535 
135 .318519 
176 .312500 
231 .303030 
297 .289562 
385 .272727 
490 .265306 
627 .256778 

TABLE 2 Asymptotic Values of NA, MA and RA 

n NA(n) MA{n) RA(*) 

1000 .5699119345E + 27 .244019963 IE + 32 .00002335514 
1100 .1597695778E + 29 .1162714315E + 34 .00001374109 
1200 .3877060741E + 30 .4683699364E + 35 .00000827777 
1300 .8286858422E + 31 .1627752327E + 37 .00000509098 
1400 .1582348882E + 33 .4961779550E + 38 .00000318908 
1500 .2730983322E + 34 .1344797089E + 40 .00000203078 
1600 .4302252581E 4- 35 .3277966561E + 41 .00000131248 
1700 .6237930303E + 36 .7255759369E 4- 42 .00000085972 
1800 .8383842692E + 37 . 1470585184E + 44 .00000057010 
1900 .1050932722E + 39 .2748755413E + 45 .00000038233 
2000 .1235275003E + 40 .476792901 IE + 46 .00000025908 
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TABLE III Comparitive Values and Errors 

(For each «, the first line gives EN(n), EM(n), ER(n), the second N(n), M(n), R(n) and the 

third gives NA(n), MA(n), RA(K).) 

n N(n) M(n) R(n) 

10 -.24206208 -.14534069 -.084448 

10 16 42 .380952 

10 19.873 48.104 .413123 

30 -.11587859 -.08501701 -.028443 

30 1016 5604 .181299 

30 1133.733 6080.435 .186456 

50 -.08708927 -.06543975 -.020320 

50 21581 204226 .105672 

50 23460.474 217590.499 .107819 

70 -.07281424 -.05496666 -.016918 

70 277691 4087968 .069078 

70 297910.859 4312669.963 .069078 

90 -.06388875 -.04826745 -.014902 

90 2623017 56634173 .046315 

90 2790598.289 59367760.238 .047005 

110 -.05760878 -.04352276 -.013499 

110 19961498 607163746 .032877 

110 21111455.534 633589185.901 .033320 

130 -.05287423 -.03993928 -.012438 

130 129139468 5371315400 .024042 

130 .13596E + 09 .558584E+10 .024341 

150 -.04913933 -.03711092 -.011598 

150 735099980 40853235313 .017994 

150 .77122E + 09 .423693E+ 11 .018202 
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