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Summary. Any system S in which an addition is defined for some, but not 
necessarily all, pairs of elements can be imbedded in a natural way in a commuta
tive semi-group G, although different elements in S need not always determine 
different elements in G (see §2). Theorem 2.1 gives necessary and sufficient 
conditions in order that a functional p(x) on S can be represented as the su pré
muni of some family of additive functionals on S, and one such set of conditions 
is in terms of possible extensions of p(x) to G. This generalizes the case with 5 
a Boolean ring treated by Lorentz [4], Lorentz imbeds the Boolean ring in a 
vector space and this could be done for the general S; but we prefer to imbed S 
in a commutative semi-group and to give a proof (see § 1) generalizing the 
classical Hahn-Banach theorem to the case of an arbitrary commutative semi
group. 

In § 3, 5 is specialized to be a relatively complemented modular lattice with 
zero element in which perspectivity is assumed transitive. Lemmas concerning 
simultaneous decompositions of several elements in S are proved which enable 
a certain relation in G to be described in terms of canonical decompositions in S 
(see Theorem 3.1). Theorem 2.1 can then be given in a more direct form for 
this special case generalizing the concept of "covered m times" given by Lorentz 
[4] for a Boolean ring. 

1. The Hahn-Banach theorem for semi-groups. The theorem of Hahn-Banach 
concerning the extension of a linear functional [1, pp. 27-29] assumes a linear 
vector space. We establish now a general form of this theorem which includes the 
case of an arbitrary commutative group or semi-group. 

T will denote an arbitrary set of real numbers t which includes the positive 
integers and the sum and product of any two of its elements. 

A set G of elements x, y, z, . . . will be called a T-semi-group (in place of T-
commutative-semi-group) if (i) z\ + z2 is defined and in G for all zi, z2 in G 
and the commutative and associative laws hold, (ii) tz is defined and in G for all 
z in G and t in T and the following identities hold : 

t(zi + z2) = tzi + tz2l (h + t2)z = hz + t2z, 

h(t2z) = (ht2)z, \z — z. 
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In this paper function will mean one which is single-valued and has values 
which are finite real numbers. 

A function f{z) on G will be called T-additive if 

(1.1) /(*i + 22) = /(si) + / ( s 2 ) for all zu z, in G, 

(1.2) f{tz) = tf{z) for all z in G and / in T. 

A function p{z) on G will be called ^-subadditive if 

(1.3) p(zi + 22) < p(zi) + p(z2) for all 2i, 22 in G, 

(1.4) p(tz) < tp(z) for all z in G, t in T, t > 0. 

In the above nomenclature the letter T may be omitted when T consists 
precisely of all positive integers. 

Suppose now that G, G\ are ^-semi-groups with G\ contained in G, that x0 

is in G, and that G* consists of all y which possess a representation of at least one 
of the forms 

(1.5) y = x + txoj 
(1.6) y = too, 
(1.7) y = x, 

with x in G\ and £ in 7". Suppose h(z) is an arbitrary function on G and /(#) a 
T-additive function on Gi. A generalization to this situation of the Hahn-Banach 
extension lemma is given by the following theorem. 

THEOREM 1.1. Suppose that there is a function M(u) on G such that 
m n 

(1.8) /(*,) + £ ( £ « - a,)A(*«) >f(xi) + Z &y - hiWiu,) 

whenever, for arbitrary positive integers m, n, 
n m n m 

(1.9) Xi + X) *1^J + Z) <**** = *2 + ]C *2j«J + X 0*2i 

with xi, X2 in Gi, all Uj and zt in G, all tij, hiy aif fit in T, tij > t2jfor allj, aftd 
ai K Pi for all i. Then there exists a T-additive function 4>(y) on G*, which 
coincides with f(x) on Gi, such that (1.8) holds, with the same M(u), when f, G\ 
are replaced by <£, G* respectively. 

Discussion of condition (1.8). The special case of (1.8) with tij = t2j for 
all 7, can be stated as follows : 

m 

i=l 

whenever 

Xi + X « ^ = #2 + X) 0i** 

with at < 0* for all i. 
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This condition (1.10) actually implies the existence of a function M(u) for 
which (1.8) holds, if T contains at least one negative number — r, r > 0. Indeed, 
from (1.9) we obtain, using arbitrary integers p > 0, qj > 0, 

r n m ~i n n 

P\xi + 2 tijUj + Z) diZi + ]T l [ - TUj] + 2 9.A— TUJ] 

t n m "1 w 

x2 + X) feyMj + Z) 0«s< + Z) (ffi + ! ) [ - T ;̂]> 
.7=1 i = l J ./=1 

the term qj [— r Uj] to be considered absent if qj = 0. Hence 
w w m 

pxi + Z^ (^i; — QJT)UJ + Z) U— r^j] + Z] (£a<)*i 
n n m 

= px2+ J2 (phi)u, + £ (qj + 1)[- TttJ + S (£0,)*«. 

The integers £, g;- can be chosen so that for every j , 

2p(hj — t2j) > qjT > p(tu — t2j) ; 

then (1.10) applies and yields 
n n 

pf(xi) < pf(x2) + Z) kjT - P(hj ~ hj)]h(iij) + Z) Q.M- TUJ) 
m 

Hence 

fix,) + £ ( / ?«- at)h(zt) >/(*i) - E &, - h A ÇjT - IJHUJ) 
i=i j = i \P\hj — hj) / 

n 

~ Z (hj - hj) , q} M- TUj) 
J=I P\hj — hj) 

so that (1.8) holds with M(u) = - | h (u) \ - (2/r) | h ( - r u) [. 
Thus, in the classical Hahn-Banach lemma, where T includes all real numbers, 

the function M(u) does not have to be mentioned explicitly in the hypotheses. 
In the case of a T-semi-group with T containing non-negative numbers only, 
condition (1.8), and the extension theorem, too, may fail even though (1.10) 
is valid. An example of this is given below (Example 1). 

We note that (1.10), and hence (1.8) too, include the restriction 

( L U ) / (* l ) = / ( * 2 ) 

whenever Xi + z = x2 + z with z in G. Also, the choice 
m = 1, Z\ — x, ai = 1, jffi = 2 shows that (1.10) includes the condition 

(1.12) fix) < &(*) for all x in d . 

If T contains h — h whenever it contains tu t2 with h > t2, the condition 
(1.8) simplifies to 

m n 

(1.13) /(*») + E yM*i) >/(*i) + L */M(«,) 
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whenever, for arbitrary non-negative integers m, n> 
n m 

(1.14) xi + J2 tjUj + v = x2 + X) 7<2< + v 
j=i i= i 

with Xi, X2 in Gi, all tj, Y* in T and > 0, v and all w ,̂ z* in G (the terms 
m n 

to be replaced by 0 when m, n, respectively, take the value 0). For such T, if 
h(z) happens to be ^-subadditive, it is sufficient that there be a function M{u) 
with the properties 

(1.15) M (tu) > tMiu) for all u in G, t in 7\ / > 0, 

(1.16) M{ux + u2) > M(ui) + M{u2) for all ux u2 in G, 

such that 

(1.17) f(x2)+h(z) >f(Xl) + M(u) 

whenever Xi + u + v = x2 + z + v with Xi, x2 in Gi and w, z, z; in G (the terms 
A(z), M(u) to be replaced by 0 if z, u respectively are absent in the equality). 
Finally, for such T, if T contains at least one negative number and h(z) happens 
to be ^-subadditive, it is sufficient, without postulating the function M(u), that 

(1-18) / ( * ! ) < / ( * ! ) + * ( * ) 

whenever Xi-\-v = x2 + z-\-v with Xi, x2 in G\ and z, v in G Qi(z) to be replaced 
by 0 if z is absent in the equality). 

Proof of Theorem 1.1. Consider separately two cases. 
Case 1. For some Xi, X2 in T with Xi 7e- X2 and for some gi, g2 in G\ and v in G, 

(1.19) XiXo + g\ + v = \2x0 + g2 + v = w, 

say. We may suppose Xi > X2. Set r0 = [f{g2) — f(gi)] /(Xi — X2) and define 

<l>(y) = f(x) + iro if y is given by (1.5), 
(1.20) <t>ly) = tr0 if y is given by (1.6), 

4>(y) = f(x) if y is given by (1.7). 

That this 4> is single-valued and satisfies (1.8) on G* can be seen as follows: 
suppose, corresponding to (1.9), 

n m n m 

(1.21) yi + X) *iy«j + X) a*** = 2̂ + X ^«* + Z) P&i 

with yi, y2 in G*. If y\ = x± + /ix0 and 3>2 = x2 + /2x0 we multiply (1.21) by 
Xi and by X2 and combine to obtain 

( n m \ / n m \ 

xi + hx0 + 13 *iy^ + X a^* ) + X2( x2 + t2x0 + X) hjfiij + X) 0*3* ) 
i = l i= l / \ ;=1 i=l / 

+ (/l + /2)(gl + g2 + W) 
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/ n m \ / n m \ 

= Xi( x2 + t2x0 + X hflij + 2 P&t I + X2 ( Xi + hxo + 2 hjUj + 22 a<2 J 

+ (*l + *2)(gl + *2 + l0, 

that is, 

XiXi + X2x2 + hg2 + *2gi + Z (AI/IJ + ^2t2j)uj + X) (Ala* + \20i)Zi + (h + t2} w 
j=i 

= \ix2 + X2Xi + hg! + t2g2 + X (Aifei + ^2hj)uj 
3=1 

m 

+ Z) (Ai0i + X2a<)2i + (/i + /2)w. 

Now (1.8) for f on G\ applies and gives 
m 

/(Xi*2 '+ X2xi + /igi + /2g2) + ]C (Xi — X2)(j8i - cLi)h(Zi) 

n 

</(XiXi + X2x2 + hg2 + t2gi) + Z) (Xi - A2)(*i, - t2j)M(uj). 
3=1 

From this follows at once 

m n 

(1.22) 4>(y2) + Z (Pi ~ «<)*(*<) > *(yi) + E (*i> - hùMip,). 

Similar reasoning shows that (1.21) implies (1.22) if yi,y2 have representations 
of any of the forms (1.5), (1.6), (1.7). This implies that $ is single-valued and 
satisfies (1.8) on G*. It is evident that 0 is T-additive and coincides w i t h / on 
Gi, so that Theorem 1.1 is proved for Case 1. 

Case 2. In every relation of the form (1.19), Xi = X2. Then, with a number 
r0 to be assigned later, we define <j>(y) as in (1.20). Irrespective of the value of 
r0, this <t> is single-valued on G*. For suppose y± = y2. If yi = x± + t±Xo and 
y2 = x2 + t2x0 then hx0 + x± + v = t2x0 + x2 + v for any z; in G, hence (this is 
Case 2) /i = /2 and, using (1.11), /(xi) = jf(#2), 0(^1) = ^(3^2). Similar reasoning 
applies if y 1,̂ 2 have representations of any of the forms (1.5), (1.6), (1.7) to 
show that <j> is single-valued on G*. It is evident that </> is ^-additive and coincides 
with / on Gi. 

Thus we need only show that an r0 exists for which (1.21) implies (1.22) with 
arbitrary y\,y2 in G*. It is easily seen that it is sufficient to do this for the yi,y2 

with representations yi = xi + hxo, y2 = x2 + t2Xo with t\ 3^ t2. There are 
therefore two conditions to satisfy, according as h > t2 or t2 > t\. Explicitly, 
we require (use a bar to distinguish the two possibilities), 

(1.23) , ~l \ f(x,) -f(xi) +jttëi- ài)H*t) - Ê <hi - tv)M(ûj) \<r0 
\t2 — tl)l_ i=l ; = 1 J 

whenever 
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lU > h 
(1.24) 

n m n m 

\Xi + tiXo + ]C tijûj + X) *<*< = x2 + t2x0 + X) h/ûj + 2 /Mi, 

and 
4 r m n "1 

(1.25) r , < ? - r r / ( * 0 - / ( * i ) + E ( jS.-aOM*.)-E («i,-fcy)M(«,) 
\h — h/l. i=i j=i J 

whenever 

(1.26) 
*1 > *2 

w m n m 

Xi + hX0 + ]£) hjUJ + ]C aiZi = X2 + hXo + X hjHj + X P&i-

That {L.H.S. of (1.23)} < {R.H.S. of (1.25)} follows from (1.24) and (1.26), 
using (1.8) fo r /on G\. Hence 

sup {L.H.S. of (1.23)} < inf{R.H.S. of (1.25)} 

showing that r0 exists, as required, if there are realizations of (1.24) and (1.26). 
Now there are realizations of (1.26), for example: x± = x2 (an arbitrary element 
in Gi), 
tx = 2, t2 = 1, n = m = 1, Ui = Zi = Xo, tn = t2± = 1 , ai = 1, /3i = 2. 

There are also realizations of (1.24) (it was to ensure this that the function 
M(u) was postulated1), for example: x± = x2 (an arbitrary element in Gi), 

h = 1, t2 = 2, n = m = 1, ûi = Zi = x0, tn = 2, t2i = 1, ai = ft = 1. 

This proves Theorem 1.1 for Case 2 and completes the proof of the theorem. 

COROLLARY. Under the conditions of Theorem 1.1 the T-additive function 
fix) can be extended by transfinite induction to a T-additive function <j> (z) on G such 
that (use (1.8) for <f> on G) M(z) < <j>(z) < h(z) for all z in G. 

THEOREM 1.2. Let h(z) be a function on a T-semi-group G such that, for some 
function M(u)y 

m n 

(1.27) (t2 - h)h(z) + X) (0* ~ *t)h(zi) > £ (hj - t2j)M(uj) 

whenever, for arbitrary positive integers m, n, 
n m n m 

(1.28) hz + X tijUj + X) aizi = hz + X hjUj + X P&i, 

with z} all uj} all Zf in G, ti, t2l all hj, t2j, au ft in T, hj > t2j, at < ft. Then 
for arbitrary (but fixed) xo in G there is a T-additive function <j> (z) on G with 
<t>(xo) = h(x0) and M(z) < 4>(z) < h(z) for all z in G. 

xIn the classical Hahn-Banach theorem for linear vector spaces, h(z) is a subadditive function 
p(z) with p(tz) = tp(z) for all t > 0 and — p( — u) acts as the function M(u) which we postu
lated explicitly. G. G. Lorentz has independently had the idea of investigating extensions of 
an additive/(x) satisfying q(x) ^ fix) <J p(x) for given subadditive p{z) and superadditive q(z). 
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Remark. The hypotheses imply: 

(1.29) h(z) is T-subadditive and h(tz) = th(z) for all z in G, t in T, t >0 , 

(1.30) h(zi) = h(z2) whenever Z\ + v = z2 + v with zi, z2, v in G. 

Proof. Let G\ be the T-semi-group of all tx0 with t in T and define jf(x), 
T-additive on d , by f(tx0) = th(x0). T h i s / is single-valued, for if tiXo = t2xQ 

the hypotheses of the theorem imply that tih(x0) = t2h(xo)- It is also evident 
from (1.27) that (1.9) implies (1.8) in the present situation. Thus Theorem 1.1 
applies to extend / to a <j> with the required properties. 

THEOREM 1.3. The hypotheses of Theorem 1.2 are necessary and sufficient in 
order that h(z) admit a representation 

(1.31) h(z) = supi^iz)} 

with a family of T-additive functions <t>\ for which inf {<t>\(u)} is finite for every 
u in G. 

Proof. The hypotheses of Theorem 1.2 imply a representation (1.31), in 
fact with h{z) = max \<j>{z)} for a family of T-additive (j)(z) with M(u) < 4>(u) 
for all <t> in the family and all u in G. 

Conversely, if there is a representation (1.31), then for each X, 
n m n m 

h<t>\{z) + ]C hj<l>\(uj) + XI <iifa(zi) = t2<t>\(z) + X) hjfaiuj) + J2 iMx(s*)-

Hence (1.27) holds with M(u) = inf{0x(«)}. 

COROLLARY 1. Ifh(z) admits a representation (1.31) it admits such a represen
tation with sup replaced by max (possibly with a different family of T-additive 
functions <j>\). 

COROLLARY 2. The M(u) in (1.27) may be restricted to functions satisfying 
(1.15), (1.16). 

THEOREM 1.4. If T contains t\ — t2 whenever it contains h, t2 with t\ > t2, 
then necessary and sufficient conditions that h(z) admit a representation (1.31) are: 
(1.29) and 

(1.32) for some M(u) satisfying (1.15), (1.16), h(zi) > h(z2) + M(u) whatever 
Zi + v = z2 + u + v (with h(zi), h(z2), M(u) replaced by 0 if Z\, z2, u respectively 
are absent in the equality). 

Proof. This follows easily from Theorem (1.3). 

Remark. For the particular case when T consists precisely of all positive 
integers, (1.29) can be replaced by 

(1.33) h(zi + z2) < h(zi) + h(z2) for all Z\,z2 in G, 

(1.34) h(z + z) = h(z) + h(z) for all z in G. 
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To prove this we need only show that (1.33) implies h(nz) = nh(z) for all 
positive integers n. But repeated applications of (1.33) give h{nz) < nh(z) and 
repeated applications of (1.34) give h(2mz) = 2mh(z). By choosing 2m > n we 
obtain 

h{2mz) < h((2m - n)z) + h{nz) 
by (1.33), and hence 

2mh(z) < (2m - n)h{z) + h{nz), 

from which follows nh(z) < h(nz) and therefore h(nz) = nh{z), as required. 

THEOREM 1.5. If T contains at least one negative number — T, T > 0, then 
necessary and sufficient conditions that h(z) admit a representation (1.31), whether 
inf {</>x (u)} is required to be finite or not, are the same, namely: 

m 

(h - t2)h{z) < T, (Pi- *i)h(Zi) 

whenever, for a positive integer m, 
m m 

hZ + S aiZi = hZ + 22 PiZii 

with z, all Zi in G, h, t2 all ait /?* in T, at < pt. 

Proof. The methods used on page 465 in the discussion of condition (1.8), 
Theorem 1.1, show that, with the present hypotheses, (1.28) implies (1.27) 
if M(u) is taken as — | h{u) \ — (2/r) \h{ — ru) |. 

COROLLARY. If T contains t\ — t% whenever it contains t\, h with t± > t2 and T 
also contains at least one negative number, then necessary and sufficient conditions 
that h(z) admit a representation (1.31) are: 

h(zi + z2) < h(zi) + h(z2) for all zh z2 in G, 

h(tz) = th(z) for all z in G, t in T, t > 0, 
h(zi) = h(z2) whenever Z\ + v = z2 + v, z\, z2, v in G. 

The following examples show the necessity of postulating the function M(u) 
in Theorem 1.1, and the finiteness of inf {</>\ (u)} in the representation (1.31). 

Example 1. T consists of all real non-negative numbers; G consists of all 
two-dimensional vectors [ai,a2] with a\ > 0, a2 > 0; G\ consists of all [ai,0] 
and XQ = [0,1]; h [aha2] = a2 if a2 > 0 and h[aha2] = a,\ if a2 = 0; f[ai,0] = a±. 

Then / is jT-additive on G\ and condition (1.10) is satisfied. But for any 
7"-additive extension <j> of / (G* = G in this example) and for every positive 
integer n, <t>[n,l] = n + 4>{xo), whereas h[n,l] = 1 so that there is no such <f> 
with 4> [n,l] < / [ ^ , l ] for all n. Thus Theorem 1.1 cannot be proved on the basis 
of (1.10) alone. 

In this example h is ^-subadditive and satisfies (1.29), (1.30), yet h does not 
admit a representation (1.31) (even with inf {4>\(u)} unrestricted). For if <j> 
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is T-additive and $[#i>#2] < h[ai,a,2] then 

4>[n,\] = »0[1,O] + 0[O,1] < 1 for all w; 

hence <£[1,0] < 0 for all such <f>, whereas A [1,0] = 1. 

Example 2. 7" consists of all non-negative integers; G consists of all infinite-
dimensional vectors a = (a0,ai, . . .,am, . . .) with every am a non-negative integer 
and at most a finite number of am different from 0; h(a) = max {m(am — a0)}. 

Then h (a) = sup {<£x (a) ) with <£x (a) the T-additive function X (a\ — a0) 
(X = 0,1,2, . . .)• Nevertheless h does not admit a representation (1.31) with 
inf {(t>\(a)} finite. To see this, let an denote the vector with (an)m = 0 for m y^n 
and (an)m = 1 for m — n. If 4>(a) is a T-additive function with <j>(a) < A (a) 
for all a then 

<£(aw) + *(a°) = 0(an + a0) < A(aw + a0) = 0. 

Hence if h(an) = sup {<j>(an) ) for every n it would follow that inf {#(a°) ) < — n 
for every w. 

An elegant generalization (in a different way) of the classical Hahn-Banach 
theorem has been given by Hidegoro Nakano [5, pp. 89-91]. Nakano deals with 
a linear vector space, that is, with all real numbers as scalar multipliers, but for 
given h(z) and x0, the requirements that there shall be a jH-additive $ with 
<t>(xo) = h(xo), <j>(z) < h(z) for all zy are replaced by the requirements that 
there shall be a T-additive <j> with <f>(z) < 4>(x0) — h(x0) + h (z) for all z. 

Theorems 1.1 to 1.5 of the present paper can be extended to include Nakano's 
generalization. 

THEOREM 1.6. In order that h(z) admit a representation 

(1.35) h(z) = sup{Ax + Mz)} 

with a family of T-additive <t>\ and constants A\ for which\A\\ < K < oo for all X and 
inf{</>x(̂ )} is finite for every u in G, it is necessary and sufficient that functions 
A (u), M(u) exist with \A(u)\ < K for all u and 

(1.36) (/, - h)h(z) + £ (fit - at)h(zt) 
i=i 

n / m n \ 

> £ (fij - t2j)M(uj) + ( h - h + £ (0, - a0 - Z (fu ~ *»,) M CO 
j=l \ î= l ;=1 / 

whenever (1.28) holds. 

Proof. If (1.28) implies (1.36), the argument used in the proof of Theorem 
1.2 shows that for every Xo in G there is a T-additive <j>o such that <£o(xo) 
= h(xo) — A(x0) and 

M(z) - A(xo) < <t>o(z) <h(z) - A(xo) 

for all z in G. Hence (1.35) holds with these functions A(x0) + <j>o(z). 
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Conversely if (1.35) does hold then (1.28) implies (1.36) if M(u) is taken to be 
inf {̂ 4\ + <l>\(u)} and A (z) is taken to be the limit of A\n for any sequence of Xn 

for which A\n + 4>\n(z) converges to h(z) and A\n converges, asnbecomes infinite. 

Remark, If h(z) admits a representation (1.35) then h is T-convex, that is, 

(1.37) h(ax + (1 - a)y) < ah(x) + (1 - a)h(y) 

whenever x,y are in G and a,l — a are in T (0 < a < 1). 

2. Systems S with partially-defined addition operator. Now let 5 be any 
system of elements, a, 6, c, . . . with an addition a + b defined, and in S, for some, 
but not necessarily all, ordered pairs a,b in S. No further properties of + will 
be postulated in this section. We shall call a function 4>{d) on 5 additive if 
4>(a + b) = 4>(a) + <j)(b) whenever a -j- 6 is defined. 

Let G be the set of all formal sums x= a\ + • . . + aT with an arbitrary (but 
finite) number of at from 5, the order being immaterial by definition and with 
two sums x,y identified in G (x = y) if x can be transformed into y by a finite 
number of changes of the form: a is replaced by &i + a2 or conversely a\ + a2 

is replaced by a if &i + a2 = a. If x = ai + . . . + aT and y = bi + . . . + bs, 
let the definition of x + 3/ in G be 

x + y = ai + . . . + ar + 61 + . . • +6S. 

Then G is a semi-group and each element a in S determines an element x = a 
in G. We shall say 5* determines G. 

THEOREM 2.1. J. function p(a) on S admits a representation 

(2.1) p(a) = sup{</>x(a)} 

(<£ additive on S, inf {<£x(a)} jftm'te /or mcfe a in S) if and only if it admits a repre
sentation 

(2.2) p(a) = maxj^x (a)} 

(\f/\ additive on S, inf j ^ ( a ) } finite for each a in S) and if and only if p(a) has an 
extension pi(x) defined for all x in the G determined by S so that pi satisfies (1.32), 
(1.33), and (1.34), and if and only if p(a) has the two properties: 

(2.3) mp(a) < pfa) + . . . + p(ar) 

whenever ma + u = a\ + . . . -\- ar -\- u in G; 

(2.4) in f jm-^fo i ) + • • • + PM - p(bi) - . . . - p{bn))) > - » 

whenevery for fixed cly . . . , cs, /&6 integers m, r, n and the au . . . t ar, &i, . . . , bn 

vary so that 

m(d + . . . + cs) + 61 + . . . + bn = ax + . . . + ar. 

(In connection with this theorem see Lorentz [4]. The definition of pi (x) in 
(2.5) below was suggested by [4].) 
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Proof. For each additive <\>{d) on S define <t>i(x) = <t>(ai) + • • • + 4>(^r) 
if x s= ai + . . . + ar. Then </>i is single-valued and additive on G and is 
an extension of 0. Hence if p(a) does admit a representation (2.1) then the 
function 

pi(x) = sup {0xi (x)} 

is an extension of £(a) which, by Theorem 1.4, satisfies (1.32), (1.33), (1.34)-
On the other hand, if p(a) has any extension p±(x) which satisfies these condi
tions, then by Theorem 1.4, pi(x) admits a representation (1.31) on G, which, 
when considered on S only, gives a representation (2.2) for p{a) on S. 

Again if pi(x) on G satisfies (1.32), (1.33), (1.34), then clearly it satisfies 
(2.3) and (2.4). If such a pi(x) is an extension of p(a) then p{a) must satisfy 
(2.3) and (2.4). Conversely, if p(a) on 5 satisfies (2.3) and (2.4) we define 

(2.5) p1(x) = inflm-K^Gi) + . . . + p(ar))} 

for all ah . . ., ar with mx + u = a\ + . . . + ar + u for some positive integer 
m and some u in G. Then (2.3) ensures that pi(x) is an extension of p(a), 
(2.4) ensures that pi(x) has finite real numbers as values, and from (2.5) it 
follows that (1.32), (1.33), (1.34), with M(cx + . . . + cs) = L.H.S. of (2.4), 
hold for pi(x). 

Remark. If the cancellation law, x + u = y + u implies that x = y, holds 
in G, the condition (2.3) is equivalent to the (apparently) weaker condition 

(2.6) mp(a) < p{ax) + . . . + p(ar) 

whenever ma = a\ + . . . + ar in G (see the definition of multiple subadditivity 
given in [4]). 

3. Modular lattices with zero and relative complements. Suppose now 
that S is a modular (but not necessarily distributive) relatively complemented 
lattice with zero element 0, so that the von Neumann theory of ' 'independence'' 
(or "independence over 0" in terms of [3]) is valid at least for finite collections 
of elements of 5 [6; 7; 3, p. 539; 2, p. 114]. Suppose too that ei + e2 is identical 
with lattice union e\ VJ e2 restricted to independent elements. 

We recall that 
n 

e = U et 
2 = 1 

is called a direct decomposition if ei, . . ., en are independent and e is called 
perspective to / (with axis a) written e^f, if eW a = f' W a and e Pi a = 
f C\a = 0 for some a in S. 

In what follows we shall postulate that S has the additional property that 
perspectivity is transitive, that is, 

(3.1) e*f, f^g imply e ^ g. 

(In a Boolean ring (3.1) holds trivially since e ^ / implies e = / . But (3.1) holds 
also for the continuous geometries of von Neumann or more generally [6; 7; 3] 

https://doi.org/10.4153/CJM-1952-042-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-042-1


474 ISRAEL HALPERIN 

if S has certain continuity properties.) With the hypothesis (3.1) we shall 
show, for given d, . . ., en, fi, . . .,fm in 5, that equality in G, 

d + . . . + en + In + . . . + hv = /i + . . . + /TO + hi + . . . + hp 

for some hi, . . ., hp in 5, can be expressed in a simple way in terms of direct 
decompositions of d, . . ., en, fi, • • ->/m-

LEMMA 1. Suppose that 
n 

e = U fi* 

is a direct decomposition and that e ^f. Then there exists a direct decomposition 
f = U fi with et^fi for each i. 

LEMMA 2. Suppose that e = eiUe2, / = f^Jfz are direct decompositions with 
e^f and d ^ / i . Then ei ^fi. 

LEMMA 3 (Additivity of perspectivity). Suppose that 
n n 

e = U et and f = U fi 
i = i i=i 

are direct decompositions with et ^ ft for each i. Then e^f. 

Under stronger assumptions these lemmas were proved in [7] but the proofs 
are valid without change in the present case. Lemma 1 corresponds to a corollary 
of [3, Lemma 3.3] and Lemmas 2 and 3 correspond to [3, Lemmas 6.2, 6.4]. 

LEMMA 4. Suppose fi, . . ., fm and e are arbitrary. Then there exist direct 
decompositions fj=fij^Jf/, £ = ei W . . . U em+i such that ej^fij for 
1 < j < m and d \J . . . KJ em = e H (/i VJ . . . \Jfm). 

Proof. The lemma can be verified as follows: Let aj = / i U . . . ^Jfj-i 
for 1 < j < m + 1 and let ai = 0. Replacing fj for 1 < j < m by a complement 
of aj C\fj with respect to fj we may, and shall, suppose that / i , . . ., /m are 
independent. Set ei = e C\fi\ for 1 < j < w set ê  equal to a complement of 
e C\ a3 with respect to e C\ aj+i\ set em+i equal to a complement of e O aw+i 
with respect to e; set fn = ei; for 1 < j < m set fij = fjC\ (ejU a3)\ 
for 1 < j < m set / / equal to a complement of/i^ with respect to j). 

We shall show that eô ^fij with axis aj. This is trivial for j — 1 and for 
j > 1 we have 

/ i , U a, = ( / , Pi 0 , U a,)) U a, 

= (fj \J aj) H (e,- U a,) = ej\J aj 

by the modular law and since eô < / ^ U a ^ = a;+i and a^ < / ^ U a;-. On the 

other hand, 

since the / i , . . ., fj are independent and ejr\aj = ejC\(eC\ a^) = 0. This 
proves that ej ^fij. The other parts of the lemma are easily verified. 
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LEMMA 5. Suppose e\, . . ., en are arbitrary. Then there are independent 
elements gj (J = 1, . . ., Nn) and direct decompositions 

ei = gi U . . . U &vlf 

e2 = gi2) U . . . U ^ U gy1+i U . . . U gyif 

* = ^ 1 U ) U • • • U «&L U fir„-1+i U . . . U «y„ 

SWC& /&a/ 

Ug(/} = «rn ( « i U . . . u u 

2/ = 0 or g, ^ g;., 

/or 1 < r < « awd 1 < j < iVr_i. 

Proof. This lemma can be verified by induction on n, using Lemma 4. 

LEMMA 6 (Superposition of decompositions). Suppose that 
n m 

e = U et and f = U / ; 

are direct decompositions and that e ̂ f. Then there exist direct decompositions 
e± = U etj, fj = U fij such that etj "^fijfor all i,j. 

Proof. We shall assume, as we clearly may by Lemma 1 and the transitivity 
of perspectivity, that e = / . Apply Lemma 4 to / i , . . .,fm and ei (in place of e) 
and obtain the direct decompositions 

m 

ei = U e -̂, / , = fu U / / with eij *fij. 

By Lemma 3, ei ̂  U/i^ and hence by Lemma 2 (e2 W . . . U £n) ^ U / / . This 
means that the lemma for n has been reduced to the lemma for n — 1. By 
successive reductions the lemma can be reduced to the case n = 1 and for this 
case the lemma holds by Lemma 1. 

THEOREM 3.1. If x = e\ + . . . + en and y = fi + • • .+/»»» ^ew # + w 
= y + w/or som^ z/ in G if and only if there exist independent elements gi, . . ., gN 
and direct decompositions 

N N 

(3.2) et= \Jeijf ft = U fiJf 

swc& that each eiô is either 0 or ̂  gy, m d / ^ is ei//zer Oor ^ gy, and for each j 
the number Ej of i for which e%u^ gô is equal to the number Fj of if or which 
fij ^ gr 

Proof. Write x ^y(d) if decompositions (3.2) do exist and write x = y(c) 
if x + u = y + u for some w in G. Since e ^ / implies e + a = / + a for some 
axis of perspectivity a in 5, it follows that 0 ̂ f implies that e = f(c) and hence 
x ^ y{d) implies x = ;y(c). 
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The converse, x = y(c) implies x ^ y(d), will follow by induction if we prove: 

(3.3) x^x(d); 

(3.4) if x ^ y(d), this relation remains valid i f / i in y is replaced by / ' + / " , 
providing that / i = / ' + / " ; 

(3.5) if x ^ 3>(d), this relation remains valid if / i + / 2 in y is replaced by / , 
providing that ft+f2= / ; 

(3.6) if x + « ^ 3/ + w(d) then x ^ y(d). 

For x + w = y + w means that x -\- u can be transformed into y + w by the 
changes named in (3.3), (3.4), and (3.5) and it will follow thatx + u ^ y + u(d). 
From (3.6) we will then have x^y{d) as required. 

Proof of (3.3). Given arbitrary elements ei, . . ., en we need only show that 
there are independent elements gi, . . ., gN and direct decompositions 

N 

e* = U etj 
3=1 

such that each etj is either 0 or ^ gj. But this follows from Lemma 5. 

Proof of (3.4). Suppose x ^ y(d). This implies an independent set gi, . . ., &v 
and a particular decomposition (we shall call it the previous decomposition) 
for each ft in y. If now /1 is replaced b y / ' + / " , then Lemma 6 can be applied 
to the previous decomposition of fi, say /1 = U/iy, and the decomposition 
f'^Jf" of/i. Direct decompositions /i;- = / i / ^Jfij" result, and these, with the 
help of Lemma 1, lead to direct decompositions gj = g / U g / ' w i t h / i / ^ g/, 
/ 1 / ' ^ g / ' if / i ; is different from 0 and with gj = gh g/f = 0 if fij = 0. From 
these decompositions of gj we obtain direct decompositions, ftj = ft/ \Jft/' 
for i > 1 and e^ = e*/ U e*/' so that x ^ 3;(J) remains valid with g/, . . . &/, 
gi", • • •> &/' in place of gh . . ., g^. 

Pr^o/ 0/ (3.5). Suppose x ^ y(^), that the etlfif etj, gj satisfy (3.2), and that 
/1 + /2 in y is replaced by / . (Note that 

/ N N 

f={ U/i,u U/„ 

is a direct decomposition for / ; but this fails to prove that x ^y(d) remains 
valid with the same gi, . . ., g#- since, for some/, both/i^ and/2;- may differ from 
zero.) We may suppose that all gj are different from 0, that / i^ = gj for/ = 1, 
. . ., p (in place of fij ^ gy), and that /1 ̂  = 0 for/ > p (apply Lemmas 2 and 1 
to the complements of gi L> . . . \Jgv and / n \J . . . / i p with respect to gi LA . . 
VJ gp U / n U . . . U / ip) . By rearranging indices we may now suppose that 
hi ^hi = gj f o r 7 = !» • • •» r w i t n r < £> t h a t / 2 i ^ gj for / = £ + 1, . . ., q, 
and that/2^ = 0 for all other/. Then we may even suppose f2j = gjtorj = p + 1, 
. . ., <?. Next, by changing the gj with / > q and increasing N if necessary, we 
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may suppose that each such gj satisfies either gj C\ (/i U/2) = 0 or 
r 

gj< U/ 2 ; ; 
3=1 

letting gN + 1 be a complement of 

feiU...u«v)n( Û/2,) 
with respect to 

and writing iV again for the former N + 1 we may now suppose that 

U/ 2 ,< U gj. 
3=1 ;=<z+i 

Then 

U gj= U/2 ,u/o 
J=Q+l 3=1 

are two direct decompositions of the same element (with / 0 a suitable comple -
ment) and Lemma 6 applies. We derive direct decompositions for all elements 
used previously, such that (using the previous notation again) we may even 
suppose t h a t / 2 y ^ gq + j for j = 1, . . ., r. Now a direct decomposition for / is 

N 

j=l 

with fj = f±j for j = 1, . . ., p, fj = f2j for j = p + 1, . . ., q, fq + s = /2y for j = 
1, . . ., r, and /^ = 0 for all other j . When the decompositions for fh / 2 used in 
(3.2) are replaced by this decomposition for/ the number Fj is altered by — 1 if 
j = 1, . . ., r and by + 1 if j = q + 1, . . ., q + r. However, the equality of 
Ej, F j can be restored as follows. For each fixed j — 1, . . . , r we have gj^ gq + j . 
If Fj < 2 + FQ+ j then there must be an i > 2 with / ^ = 0 and /î)ff + ^ ^ gff + .,•; 
in this case we interchange these elements so' that fij^gj a n d / f i f f + i = 0. 
If however Fj > 2 + Fq + jy then Ej > 2 + Eq + ^ and there must be some i for 
which e^ ^ g.,- and eitQ + ^ = 0; in this case we interchange these two elements 
so that etj = 0 and eitQ + 3 < ^ gq + j . 

This completes the proof of (3.5). 

Proof of (3.6). Suppose 

(3.7) ex + . . . + en + h + . . . + hp - / ! + . . . +fm + h + . . . + hv{d). 

We wish to deduce ei + • • - + en^fi + . . . + /OT(d). Proof by induction will 
apply here and we need only consider (3.7) with p = 1. Then, as detailed in 
(3.2), there are independent gi, . . ., gN and direct decompositions of the eiy ft, 
and hi into elements each of which is perspective to one of the gj. We may 
replace hi in (3.7) by the lattice union of its corresponding set of gj. We note 
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that hi may be assigned two different sets L and Roi gj according as h\ appears 
on the left or right of (3.7). Since the two replacements for hi are perspective 
by Lemma 3, we may apply Lemmas 2, 1, and 6 to obtain decompositions of the 
gj in L but not in R and of the gj in R but not in L into new elements (which 
we will again call gj) which are perspective in pairs. Thus we may suppose 
(3.7) given in the form 

(3.8) ex+ . . . +en+gi+ . . . +gr ^fi+ . . . +fm+gr+i+ . . • +g2r(d) 

with gi, . . .,g2r a subset of the gi, . . ., gN mentioned in (3.2) and with gt ^ gr+ t 

for i = 1, . . ., r. 
For fixed j let Ej be the number of i for which etj ^ gj and let Fj be the 

number of i for which ftj ^ gj. Then for j > 2r we deduce from (3.8) that 
Ej — Fj. If j < r we obtain £;- + 1 = i*V, - E r + ^ = - F r + y + l . Hence at least 
one of Ej < Er + ,̂ 7^ > Fr + j holds. If £., < Er+ ô there must be an e* for 
which dj — 0 and ei)7.+ j "^ gr + j] in that case we interchange these elements 
eijf eitT + j so that now 0^ ^ gr + y ^^ gy and 6i>r + j = 0, thus obtaining Ej = i7^, 
ET + j = Fr + j for the new decompositions. In the same way, if Fj > Fr+ j we 
can rearrange the decomposition of some ft to obtain Ej = Fj and ET + j = 
Fr + y. After this is done for each j < r we obtain decompositions in terms of 
gi, • • <> gN f° r which (3.2) can be easily verified. 

This completes the proof of Theorem 3.1. 

COROLLARY TO THEOREM 3.1. Two elements e, f in S satisfy e + u = f + u 
for some u in G if and only if e^f. 

(It is easy to prove directly that e = / if and only if e = /.) 

Remark. The relation x = y in G can also be characterized in terms of 
decompositions in 5 but we omit the somewhat involved statement. In the 
special case of 5 a Boolean ring, e ̂ f holds if and only if e = / , and Theorem 
3.1 shows that x -\- u = y -\- u ïî and only if x = y. Thus the cancellation law 
holds in G if 5 is a Boolean ring but not if S is a general relatively complemented 
modular lattice. 

THEOREM 3.2. me + u = ei + • • • + en + u as in the condition (2.3) if and 
only if there are direct decompositions 

m n 

ei = U et/ (i = 1, . . . , »), e = U etj" (j = 1, . . . , m) 

zw/A e*/ ^ eij' for all i,j. 

Proof. Apply Theorem 3.1 wi th / i = . . . = fm = e to obtain the decomposi
tions of (3.2) with gi, . . ., gN which we may suppose all non-zero. For given 
p, a let J(p, q) be the set of j for which fPj and eqj are both different from zero, 
and the number of r < p for which frj is different from zero is equal to the 
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number of r < q for which eTj is different from zero. Set 

ej = U eqj (j e J(p,q)). 

With this construction the theorem can be easily verified. 
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