THE SUPREMUM OF A FAMILY OF ADDITIVE FUNCTIONS

ISRAEL HALPERIN

Summary. Any system S in which an addition is defined for some, but not necessarily all, pairs of elements can be imbedded in a natural way in a commutative semi-group G, although different elements in S need not always determine different elements in G (see § 2). Theorem 2.1 gives necessary and sufficient conditions in order that a functional $p(x)$ on S can be represented as the supremum of some family of additive functionals on S, and one such set of conditions is in terms of possible extensions of $p(x)$ to G. This generalizes the case with S a Boolean ring treated by Lorentz [4]. Lorentz imbeds the Boolean ring in a vector space and this could be done for the general S; but we prefer to imbed S in a commutative semi-group and to give a proof (see § 1) generalizing the classical Hahn-Banach theorem to the case of an arbitrary commutative semigroup.

In § $3, S$ is specialized to be a relatively complemented modular lattice with zero element in which perspectivity is assumed transitive. Lemmas concerning simultaneous decompositions of several elements in S are proved which enable a certain relation in G to be described in terms of canonical decompositions in S (see Theorem 3.1). Theorem 2.1 can then be given in a more direct form for this special case generalizing the concept of "covered m times" given by Lorentz [4] for a Boolean ring.

1. The Hahn-Banach theorem for semi-groups. The theorem of Hahn-Banach concerning the extension of a linear functional [1, pp. 27-29] assumes a linear vector space. We establish now a general form of this theorem which includes the case of an arbitrary commutative group or semi-group.
T will denote an arbitrary set of real numbers t which includes the positive integers and the sum and product of any two of its elements.

A set G of elements x, y, z, \ldots will be called a T-semi-group (in place of T -commutative-semi-group) if (i) $z_{1}+z_{2}$ is defined and in G for all z_{1}, z_{2} in G and the commutative and associative laws hold, (ii) $t z$ is defined and in G for all z in G and t in T and the following identities hold:

$$
\begin{aligned}
t\left(z_{1}+z_{2}\right) & =t z_{1}+t z_{2}, & \left(t_{1}+t_{2}\right) z & =t_{1} z+t_{2} z, \\
t_{1}\left(t_{2} z\right) & =\left(t_{1} t_{2}\right) z, & 1 z & =z .
\end{aligned}
$$

[^0]In this paper function will mean one which is single-valued and has values which are finite real numbers.

A function $f(z)$ on G will be called T-additive if

$$
\begin{array}{rlr}
f\left(z_{1}+z_{2}\right) & =f\left(z_{1}\right)+f\left(z_{2}\right) & \text { for all } z_{1}, z_{2} \text { in } G, \\
f(t z) & =t f(z) & \text { for all } z \text { in } G \text { and } t \text { in } T . \tag{1.2}
\end{array}
$$

A function $p(z)$ on G will be called T-subadditive if

$$
\begin{array}{cr}
p\left(z_{1}+z_{2}\right) \leqslant p\left(z_{1}\right)+p\left(z_{2}\right) & \text { for all } z_{1}, z_{2} \text { in } G, \\
p(t z) \leqslant t p(z) & \text { for all } z \text { in } G, t \text { in } T, t>0 . \tag{1.4}
\end{array}
$$

In the above nomenclature the letter T may be omitted when T consists precisely of all positive integers.

Suppose now that G, G_{1} are T-semi-groups with G_{1} contained in G, that x_{0} is in G, and that G^{*} consists of all y which possess a representation of at least one of the forms

$$
\begin{align*}
& y=x+t x_{0}, \tag{1.5}\\
& y=t x_{0}, \tag{1.6}\\
& y=x, \tag{1.7}
\end{align*}
$$

with x in G_{1} and t in T. Suppose $h(z)$ is an arbitrary function on G and $f(x)$ a T-additive function on G_{1}. A generalization to this situation of the Hahn-Banach extension lemma is given by the following theorem.

Theorem 1.1. Suppose that there is a function $M(u)$ on G such that

$$
\begin{equation*}
f\left(x_{2}\right)+\sum_{i=1}^{m}\left(\beta_{i}-a_{i}\right) h\left(z_{i}\right) \geqslant f\left(x_{1}\right)+\sum_{j=1}^{n}\left(t_{1 j}-t_{2 j}\right) M\left(u_{j}\right) \tag{1.8}
\end{equation*}
$$

whenever, for arbitrary positive integers m, n,

$$
\begin{equation*}
x_{1}+\sum_{j=1}^{n} t_{1 j} u_{j}+\sum_{i=1}^{m} a_{i} z_{i}=x_{2}+\sum_{j=1}^{n} t_{2 j} u_{j}+\sum_{i=1}^{m} \beta_{i} z_{i} \tag{1.9}
\end{equation*}
$$

with x_{1}, x_{2} in G_{1}, all u_{j} and z_{i} in G, all $t_{1 j}, t_{2 j}, a_{i}, \beta_{i}$ in $T, t_{1 j} \geqslant t_{2 j}$ for all j, and $a_{i} \leqslant \beta_{i}$ for all i. Then there exists a T-additive function $\phi(y)$ on G^{*}, which coincides with $f(x)$ on G_{1}, such that (1.8) holds, with the same $M(u)$, when f, G_{1} are replaced by ϕ, G^{*} respectively.

Discussion of condition (1.8). The special case of (1.8) with $t_{1 j}=t_{2 j}$ for all j, can be stated as follows:

$$
\begin{equation*}
f\left(x_{1}\right) \leqslant f\left(x_{2}\right)+\sum_{i=1}^{m}\left(\beta_{i}-a_{i}\right) h\left(z_{i}\right) \tag{1.10}
\end{equation*}
$$

whenever

$$
x_{1}+\sum_{i=1}^{m} a_{i} z_{i}=x_{2}+\sum_{i=1}^{m} \beta_{i} z_{i}
$$

with $a_{i} \leqslant \beta_{i}$ for all i.

This condition (1.10) actually implies the existence of a function $M(u)$ for which (1.8) holds, if T contains at least one negative number $-\tau, \tau>0$. Indeed, from (1.9) we obtain, using arbitrary integers $p>0, q_{j} \geqslant 0$,

$$
\begin{aligned}
p\left[x_{1}\right. & \left.+\sum_{j=1}^{n} t_{1 j} u_{j}+\sum_{i=1}^{m} a_{i} z_{i}\right]+\sum_{j=1}^{n} 1\left[-\tau u_{j}\right]+\sum_{j=1}^{n} q_{j}\left[-\tau u_{j}\right] \\
& =p\left[x_{2}+\sum_{j=1}^{n} t_{2 j} u_{j}+\sum_{i=1}^{m} \beta_{i} z_{i}\right]+\sum_{j=1}^{n}\left(q_{j}+1\right)\left[-\tau u_{j}\right],
\end{aligned}
$$

the term $q_{j}\left[-\tau u_{j}\right]$ to be considered absent if $q_{j}=0$. Hence

$$
\begin{aligned}
& p x_{1}+\sum_{j=1}^{n}\left(p t_{1 j}-q_{j} \tau\right) u_{j}+\sum_{j=1}^{n} 1\left[-\tau u_{j}\right]+\sum_{i=1}^{m}\left(p a_{i}\right) z_{i} \\
& =p x_{2}+\sum_{j=1}^{n}\left(p t_{2_{j}}\right) u_{j}+\sum_{j=1}^{n}\left(q_{j}+1\right)\left[-\tau u_{j}\right]+\sum_{i=1}^{m}\left(p \beta_{i}\right) z_{i} .
\end{aligned}
$$

The integers p, q_{j} can be chosen so that for every j,

$$
2 p\left(t_{1 j}-t_{2 j}\right) \geqslant q_{j} \tau \geqslant p\left(t_{1 j}-t_{2 j}\right) ;
$$

then (1.10) applies and yields

$$
\begin{aligned}
p f\left(x_{1}\right) \leqslant p f\left(x_{2}\right)+\sum_{j=1}^{n}\left[q_{j} \tau-p\left(t_{1 j}-t_{2 j}\right)\right] h\left(u_{j}\right) & +\sum_{j=1}^{n} q_{j} h\left(-\tau u_{j}\right) \\
& +\sum_{i=1}^{m} p\left(\beta_{i}-a_{i}\right) h\left(z_{i}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
f\left(x_{2}\right)+\sum_{i=1}^{m}\left(\beta_{i}-a_{i}\right) h\left(z_{i}\right) \geqslant f\left(x_{1}\right)- & \sum_{j=1}^{n} \\
& \left(t_{1 j}-t_{2 j}\right)\left(\frac{q_{j} \tau}{p\left(t_{1 j}-t_{2 j}\right)}-1\right) h\left(u_{j}\right) \\
& -\sum_{j=1}^{n}\left(t_{1 j}-t_{2 j}\right) \frac{q_{j}}{p\left(t_{1 j}-t_{2 j}\right)} h\left(-\tau u_{j}\right)
\end{aligned}
$$

so that (1.8) holds with $M(u)=-|h(u)|-(2 / \tau)|h(-\tau u)|$.
Thus, in the classical Hahn-Banach lemma, where T includes all real numbers, the function $M(u)$ does not have to be mentioned explicitly in the hypotheses. In the case of a T-semi-group with T containing non-negative numbers only, condition (1.8), and the extension theorem, too, may fail even though (1.10) is valid. An example of this is given below (Example 1).

We note that (1.10), and hence (1.8) too, include the restriction

$$
\begin{equation*}
f\left(x_{1}\right)=f\left(x_{2}\right) \tag{1.11}
\end{equation*}
$$

whenever $x_{1}+z=x_{2}+z$ with z in G. Also, the choice $x_{1}=x+x, x_{2}=x$, $m=1, z_{1}=x, a_{1}=1, \beta_{1}=2$ shows that (1.10) includes the condition

$$
\begin{equation*}
f(x) \leqslant h(x) \tag{1.12}
\end{equation*}
$$

for all x in G_{1}.
If T contains $t_{1}-t_{2}$ whenever it contains t_{1}, t_{2} with $t_{1}>t_{2}$, the condition (1.8) simplifies to

$$
\begin{equation*}
f\left(x_{2}\right)+\sum_{i=1}^{m} \gamma_{i} h\left(z_{i}\right) \geqslant f\left(x_{1}\right)+\sum_{j=1}^{n} t_{j} M\left(u_{j}\right) \tag{1.13}
\end{equation*}
$$

whenever, for arbitrary non-negative integers m, n,

$$
\begin{equation*}
x_{1}+\sum_{j=1}^{n} t_{j} u_{j}+v=x_{2}+\sum_{i=1}^{m} \gamma_{i} z_{i}+v \tag{1.14}
\end{equation*}
$$

with x_{1}, x_{2} in G_{1}, all t_{j}, γ_{i} in T and $>0, v$ and all u_{j}, z_{i} in G (the terms

$$
\sum_{i=1}^{m} \gamma_{i} \hbar\left(z_{i}\right), \quad \sum_{j=1}^{n} t_{j} M\left(u_{j}\right)
$$

to be replaced by 0 when m, n, respectively, take the value 0). For such T, if $h(z)$ happens to be T-subadditive, it is sufficient that there be a function $M(u)$ with the properties

$$
\begin{array}{rrr}
M(t u) \geqslant t M(u) & \text { for all } u \text { in } G, t \text { in } T, t>0, \\
M\left(u_{1}+u_{2}\right) \geqslant M\left(u_{1}\right)+M\left(u_{2}\right) & \text { for all } u_{1} u_{2} \text { in } G, \\
f\left(x_{2}\right)+h(z) \geqslant f\left(x_{1}\right)+M(u) & \tag{1.17}
\end{array}
$$ such that

whenever $x_{1}+u+v=x_{2}+z+v$ with x_{1}, x_{2} in G_{1} and u, z, v in G (the terms $h(z), M(u)$ to be replaced by 0 if z, u respectively are absent in the equality). Finally, for such T, if T contains at least one negative number and $h(z)$ happens to be T-subadditive, it is sufficient, without postulating the function $M(u)$, that

$$
\begin{equation*}
f\left(x_{1}\right) \leqslant f\left(x_{2}\right)+h(z) \tag{1.18}
\end{equation*}
$$

whenever $x_{1}+v=x_{2}+z+v$ with x_{1}, x_{2} in G_{1} and z, v in $G(h(z)$ to be replaced by 0 if z is absent in the equality).

Proof of Theorem 1.1. Consider separately two cases.
Case 1. For some λ_{1}, λ_{2} in T with $\lambda_{1} \neq \lambda_{2}$ and for some g_{1}, g_{2} in G_{1} and v in G,

$$
\begin{equation*}
\lambda_{1} x_{0}+g_{1}+v=\lambda_{2} x_{0}+g_{2}+v=w \tag{1.19}
\end{equation*}
$$

say. We may suppose $\lambda_{1}>\lambda_{2}$. Set $r_{0}=\left[f\left(g_{2}\right)-f\left(g_{1}\right)\right] /\left(\lambda_{1}-\lambda_{2}\right)$ and define

$$
\phi(y)=f(x)+t r_{0}
$$

$$
\begin{equation*}
\phi(y)=t r_{0} \quad \text { if } y \text { is given by (1.6) } \tag{1.20}
\end{equation*}
$$

$$
\phi(y)=f(x) \quad \text { if } y \text { is given by (1.7). }
$$

That this ϕ is single-valued and satisfies (1.8) on G^{*} can be seen as follows: suppose, corresponding to (1.9),

$$
\begin{equation*}
y_{1}+\sum_{j=1}^{n} t_{1 j} u_{j}+\sum_{i=1}^{m} \alpha_{i} z_{i}=y_{2}+\sum_{j=1}^{n} t_{2 j} u_{j}+\sum_{i=1}^{m} \beta_{i} z_{i} \tag{1.21}
\end{equation*}
$$

with y_{1}, y_{2} in G^{*}. If $y_{1}=x_{1}+t_{1} x_{0}$ and $y_{2}=x_{2}+t_{2} x_{0}$ we multiply (1.21) by λ_{1} and by λ_{2} and combine to obtain

$$
\begin{aligned}
\lambda_{1}\left(x_{1}+t_{1} x_{0}+\sum_{j=1}^{n} t_{1 j} u_{j}+\sum_{i=1}^{m} a_{i} z_{i}\right)+\lambda_{2}\left(x_{2}+t_{2} x_{0}\right. & \left.+\sum_{j=1}^{n} t_{2 j} u_{j}+\sum_{i=1}^{m} \beta_{i} z_{i}\right) \\
& +\left(t_{1}+t_{2}\right)\left(g_{1}+g_{2}+v\right)
\end{aligned}
$$

$$
\begin{array}{r}
=\lambda_{1}\left(x_{2}+t_{2} x_{0}+\sum_{j=1}^{n} t_{2 j} u_{j}+\sum_{i=1}^{m} \beta_{i} z_{i}\right)+\lambda_{2}\left(x_{1}+t_{1} x_{0}+\sum_{j=1}^{n} t_{1 j} u_{j}+\sum_{i=1}^{m} a_{i} z_{i}\right) \\
+\left(t_{1}+t_{2}\right)\left(g_{1}+g_{2}+v\right)
\end{array}
$$

that is,

$$
\begin{aligned}
\lambda_{1} x_{1}+\lambda_{2} x_{2}+t_{1} g_{2}+t_{2} g_{1}+\sum_{j=1}^{n}\left(\lambda_{1} t_{1 j}+\lambda_{2} t_{2 j}\right) u_{j} & +\sum_{i=1}^{m}\left(\lambda_{1} a_{i}+\lambda_{2} \beta_{i}\right) z_{i}+\left(t_{1}+t_{2}\right) w \\
=\lambda_{1} x_{2}+\lambda_{2} x_{1}+t_{1} g_{1}+t_{2} g_{2}+\sum_{j=1}^{n}\left(\lambda_{1} t_{2 j}\right. & \left.+\lambda_{2} t_{1 j}\right) u_{j} \\
& +\sum_{i=1}^{m}\left(\lambda_{1} \beta_{i}+\lambda_{2} a_{i}\right) z_{i}+\left(t_{1}+t_{2}\right) w
\end{aligned}
$$

Now (1.8) for f on G_{1} applies and gives

$$
\begin{aligned}
f\left(\lambda_{1} x_{2}+\lambda_{2} x_{1}+\right. & \left.t_{1} g_{1}+t_{2} g_{2}\right)+\sum_{i=1}^{m}\left(\lambda_{1}-\lambda_{2}\right)\left(\beta_{i}-a_{i}\right) h\left(z_{i}\right) \\
& \leqslant f\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+t_{1} g_{2}+t_{2} g_{1}\right)+\sum_{j=1}^{n}\left(\lambda_{1}-\lambda_{2}\right)\left(t_{1 j}-t_{2 j}\right) M\left(u_{j}\right)
\end{aligned}
$$

From this follows at once

$$
\begin{equation*}
\phi\left(y_{2}\right)+\sum_{i=1}^{m}\left(\beta_{i}-a_{i}\right) h\left(z_{i}\right) \geqslant \phi\left(y_{1}\right)+\sum_{j=1}^{n}\left(t_{1 j}-t_{2 j}\right) M\left(u_{j}\right) . \tag{1.22}
\end{equation*}
$$

Similar reasoning shows that (1.21) implies (1.22) if y_{1}, y_{2} have representations of any of the forms (1.5), (1.6), (1.7). This implies that ϕ is single-valued and satisfies (1.8) on G^{*}. It is evident that ϕ is T-additive and coincides with f on G_{1}, so that Theorem 1.1 is proved for Case 1.

Case 2. In every relation of the form (1.19), $\lambda_{1}=\lambda_{2}$. Then, with a number r_{0} to be assigned later, we define $\phi(y)$ as in (1.20). Irrespective of the value of r_{0}, this ϕ is single-valued on G^{*}. For suppose $y_{1}=y_{2}$. If $y_{1}=x_{1}+t_{1} x_{0}$ and $y_{2}=x_{2}+t_{2} x_{0}$ then $t_{1} x_{0}+x_{1}+v=t_{2} x_{0}+x_{2}+v$ for any v in G, hence (this is Case 2) $t_{1}=t_{2}$ and, using (1.11), $f\left(x_{1}\right)=f\left(x_{2}\right), \phi\left(y_{1}\right)=\phi\left(y_{2}\right)$. Similar reasoning applies if y_{1}, y_{2} have representations of any of the forms (1.5), (1.6), (1.7) to show that ϕ is single-valued on G^{*}. It is evident that ϕ is T-additive and coincides with f on G_{1}.

Thus we need only show that an r_{0} exists for which (1.21) implies (1.22) with arbitrary y_{1}, y_{2} in G^{*}. It is easily seen that it is sufficient to do this for the y_{1}, y_{2} with representations $y_{1}=x_{1}+t_{1} x_{0}, y_{2}=x_{2}+t_{2} x_{0}$ with $t_{1} \neq t_{2}$. There are therefore two conditions to satisfy, according as $t_{1}>t_{2}$ or $t_{2}>t_{1}$. Explicitly, we require (use a bar to distinguish the two possibilities),

$$
\begin{equation*}
\frac{-1}{\left(\bar{t}_{2}-\bar{t}_{1}\right)}\left[f\left(\bar{x}_{2}\right)-f\left(\bar{x}_{1}\right)+\sum_{i=1}^{\bar{m}}\left(\bar{\beta}_{i}-\bar{\alpha}_{i}\right) h\left(\bar{z}_{i}\right)-\sum_{j=1}^{\bar{n}}\left(\bar{t}_{1 j}-\bar{t}_{2 j}\right) M\left(\bar{u}_{j}\right)\right] \leqslant r_{0} \tag{1.23}
\end{equation*}
$$

whenever

$$
\left\{\begin{array}{l}
\bar{t}_{2}>\bar{t}_{1} \tag{1.24}\\
\bar{x}_{1}+\bar{t}_{1} x_{0}+\sum_{j=1}^{\bar{n}} \bar{t}_{1 j} \bar{u}_{j}+\sum_{i=1}^{\bar{m}} \bar{a}_{i} \bar{z}_{i}=\bar{x}_{2}+\bar{t}_{2} x_{0}+\sum_{j=1}^{\bar{n}} \bar{t}_{2 j} \bar{u}_{j}+\sum_{i=1}^{\bar{m}} \bar{\beta}_{i} \bar{z}_{i},
\end{array}\right.
$$ and

$$
\begin{equation*}
r_{0} \leqslant \frac{1}{\left(t_{1}-t_{2}\right)}\left[f\left(x_{2}\right)-f\left(x_{1}\right)+\sum_{i=1}^{m}\left(\beta_{i}-a_{i}\right) h\left(z_{i}\right)-\sum_{j=1}^{n}\left(t_{1 j}-t_{2 j}\right) M\left(u_{j}\right)\right] \tag{1.25}
\end{equation*}
$$

whenever

$$
\left\{\begin{array}{l}
t_{1}>t_{2} \tag{1.26}\\
x_{1}+t_{1} x_{0}+\sum_{j=1}^{n} t_{1 j} u_{j}+\sum_{i=1}^{m} a_{i} z_{i}=x_{2}+t_{2} x_{0}+\sum_{j=1}^{n} t_{2 j} u_{j}+\sum_{i=1}^{m} \beta_{i} z_{i} .
\end{array}\right.
$$

That $\{$ L.H.S. of $(1.23)\} \leqslant\{$ R.H.S. of (1.25) $\}$ follows from (1.24) and (1.26), using (1.8) for f on G_{1}. Hence

$$
\sup \{\text { L.H.S. of }(1.23)\} \leqslant \inf \{\text { R.H.S. of }(1.25)\}
$$

showing that r_{0} exists, as required, if there are realizations of (1.24) and (1.26). Now there are realizations of (1.26), for example: $x_{1}=x_{2}$ (an arbitrary element in G_{1}),
$t_{1}=2, \quad t_{2}=1, \quad n=m=1, \quad u_{1}=z_{1}=x_{0}, \quad t_{11}=t_{21}=1, \quad a_{1}=1, \quad \beta_{1}=2$. There are also realizations of (1.24) (it was to ensure this that the function $M(u)$ was postulated ${ }^{1}$), for example: $x_{1}=x_{2}$ (an arbitrary element in G_{1}), $\bar{t}_{1}=1, \quad \bar{t}_{2}=2, \quad \bar{n}=\bar{m}=1, \quad \bar{u}_{1}=\bar{z}_{1}=x_{0}, \quad \bar{t}_{11}=2, \quad \bar{t}_{21}=1, \quad \bar{a}_{1}=\bar{\beta}_{1}=1$.

This proves Theorem 1.1 for Case 2 and completes the proof of the theorem.
Corollary. Under the conditions of Theorem 1.1 the T-additive function $f(x)$ can be extended by transfinite induction to a T-additive function $\phi(z)$ on G such that (use (1.8) for ϕ on $G) M(z) \leqslant \phi(z) \leqslant h(z)$ for all z in G.

Theorem 1.2. Let $h(z)$ be a function on a T-semi-group G such that, for some function $M(u)$,

$$
\begin{equation*}
\left(t_{2}-t_{1}\right) h(z)+\sum_{i=1}^{m}\left(\beta_{i}-a_{i}\right) h\left(z_{i}\right) \geqslant \sum_{j=1}^{n}\left(t_{1 j}-t_{2 j}\right) M\left(u_{j}\right) \tag{1.27}
\end{equation*}
$$

whenever, for arbitrary positive integers m, n,

$$
\begin{equation*}
t_{1} z+\sum_{j=1}^{n} t_{1 j} u_{j}+\sum_{i=1}^{m} a_{i} z_{i}=t_{2} z+\sum_{j=1}^{n} t_{2 j} u_{j}+\sum_{i=1}^{m} \beta_{i} z_{i}, \tag{1.28}
\end{equation*}
$$

with z, all u_{j}, all z_{i} in G, t_{1}, t_{2}, all $t_{1 j}, t_{2 j}, a_{i}, \beta_{i}$ in $T, t_{1 j} \geqslant t_{2_{j}}, a_{i} \leqslant \beta_{i}$. Then for arbitrary (but fixed) x_{0} in G there is a T-additive function $\phi(z)$ on G with $\phi\left(x_{0}\right)=h\left(x_{0}\right)$ and $M(z) \leqslant \phi(z) \leqslant h(z)$ for all z in G.

[^1]Remark. The hypotheses imply:
(1.29) $h(z)$ is T-subadditive and $h(t z)=t h(z)$ for all z in G, t in $T, t>0$,
(1.30) $h\left(z_{1}\right)=h\left(z_{2}\right)$ whenever $z_{1}+v=z_{2}+v$ with z_{1}, z_{2}, v in G.

Proof. Let G_{1} be the T-semi-group of all $t x_{0}$ with t in T and define $f(x)$, T-additive on G_{1}, by $f\left(t x_{0}\right)=t h\left(x_{0}\right)$. This f is single-valued, for if $t_{1} x_{0}=t_{2} x_{0}$ the hypotheses of the theorem imply that $t_{1} h\left(x_{0}\right)=t_{2} h\left(x_{0}\right)$. It is also evident from (1.27) that (1.9) implies (1.8) in the present situation. Thus Theorem 1.1 applies to extend f to a ϕ with the required properties.

Theorem 1.3. The hypotheses of Theorem 1.2 are necessary and sufficient in order that $h(z)$ admit a representation

$$
\begin{equation*}
h(z)=\sup \left\{\phi_{\lambda}(z)\right\} \tag{1.31}
\end{equation*}
$$

with a family of T-additive functions ϕ_{λ} for which $\inf \left\{\phi_{\lambda}(u)\right\}$ is finite for every u in G.

Proof. The hypotheses of Theorem 1.2 imply a representation (1.31), in fact with $h(z)=\max \{\phi(z)\}$ for a family of T-additive $\phi(z)$ with $M(u) \leqslant \phi(u)$ for all ϕ in the family and all u in G.

Conversely, if there is a representation (1.31), then for each λ,
$t_{1} \phi_{\lambda}(z)+\sum_{j=1}^{n} t_{1 j} \phi_{\lambda}\left(u_{j}\right)+\sum_{i=1}^{m} a_{i} \phi_{\lambda}\left(z_{i}\right)=t_{2} \phi_{\lambda}(z)+\sum_{j=1}^{n} t_{2 j} \phi_{\lambda}\left(u_{j}\right)+\sum_{i=1}^{m} \beta_{i} \phi_{\lambda}\left(z_{i}\right)$.
Hence (1.27) holds with $M(u)=\inf \left\{\phi_{\lambda}(u)\right\}$.
Corollary 1. If $h(z)$ admits a representation (1.31) it admits such a representation with sup replaced by max (possibly with a different family of T-additive functions ϕ_{λ}).

Corollary 2. The $M(u)$ in (1.27) may be restricted to functions satisfying (1.15), (1.16).

Theorem 1.4. If T contains $t_{1}-t_{2}$ whenever it contains t_{1}, t_{2} with $t_{1}>t_{2}$, then necessary and sufficient conditions that $h(z)$ admit a representation (1.31) are: (1.29) and
(1.32) for some $M(u)$ satisfying (1.15), (1.16), $h\left(z_{1}\right) \geqslant h\left(z_{2}\right)+M(u)$ whenever $z_{1}+v=z_{2}+u+v$ (with $h\left(z_{1}\right), h\left(z_{2}\right), M(u)$ replaced by 0 if z_{1}, z_{2}, u respectively are absent in the equality).

Proof. This follows easily from Theorem (1.3).
Remark. For the particular case when T consists precisely of all positive integers, (1.29) can be replaced by

$$
\begin{array}{lr}
h\left(z_{1}+z_{2}\right) \leqslant h\left(z_{1}\right)+h\left(z_{2}\right) & \text { for all } z_{1}, z_{2} \text { in } G, \\
h(z+z)=h(z)+h(z) & \text { for all } z \text { in } G . \tag{1.34}
\end{array}
$$

To prove this we need only show that (1.33) implies $h(n z)=n h(z)$ for all positive integers n. But repeated applications of (1.33) give $h(n z) \leqslant n h(z)$ and repeated applications of (1.34) give $h\left(2^{m} z\right)=2^{m} h(z)$. By choosing $2^{m}>n$ we obtain

$$
h\left(2^{m} z\right) \leqslant h\left(\left(2^{m}-n\right) z\right)+h(n z)
$$

by (1.33), and hence

$$
2^{m} h(z) \leqslant\left(2^{m}-n\right) h(z)+h(n z)
$$

from which follows $n h(z) \leqslant h(n z)$ and therefore $h(n z)=n h(z)$, as required.
Theorem 1.5. If T contains at least one negative number $-\tau, \tau>0$, then necessary and sufficient conditions that $h(z)$ admit a representation (1.31), whether $\inf \left\{\phi_{\lambda}(u)\right\}$ is required to be finite or not, are the same, namely:

$$
\left(t_{1}-t_{2}\right) h(z) \leqslant \sum_{i=1}^{m}\left(\beta_{i}-a_{i}\right) h\left(z_{i}\right)
$$

whenever, for a positive integer m,

$$
t_{1} z+\sum_{i=1}^{m} a_{i} z_{i}=t_{2} z+\sum_{i=1}^{m} \beta_{i} z_{i}
$$

with z, all z_{i} in G, t_{1}, t_{2} all α_{i}, β_{i} in $T, a_{i} \leqslant \beta_{i}$.
Proof. The methods used on page 465 in the discussion of condition (1.8), Theorem 1.1, show that, with the present hypotheses, (1.28) implies (1.27) if $M(u)$ is taken as $-|h(u)|-(2 / \tau)|h(-\tau u)|$.

Corollary. If T contains $t_{1}-t_{2}$ whenever it contains t_{1}, t_{2} with $t_{1}>t_{2}$ and T also contains at least one negative number, then necessary and sufficient conditions that $h(z)$ admit a representation (1.31) are:

$$
\begin{array}{rlr}
h\left(z_{1}+z_{2}\right) & \leqslant h\left(z_{1}\right)+h\left(z_{2}\right) & \text { for all } z_{1}, z_{2} \text { in } G, \\
h(t z) & =\operatorname{th}(z) & \text { for all } z \text { in } G, t \text { in } T, t>0, \\
h\left(z_{1}\right) & =h\left(z_{2}\right) \quad \text { whenever } z_{1}+v=z_{2}+v, z_{1}, z_{2}, v \text { in } G .
\end{array}
$$

The following examples show the necessity of postulating the function $M(u)$ in Theorem 1.1, and the finiteness of $\inf \left\{\phi_{\lambda}(u)\right\}$ in the representation (1.31).

Example 1. T consists of all real non-negative numbers; G consists of all two-dimensional vectors $\left[a_{1}, a_{2}\right.$] with $a_{1} \geqslant 0, a_{2} \geqslant 0 ; G_{1}$ consists of all [$a_{1}, 0$] and $x_{0}=[0,1] ; h\left[a_{1}, a_{2}\right]=a_{2}$ if $a_{2}>0$ and $h\left[a_{1}, a_{2}\right]=a_{1}$ if $a_{2}=0 ; f\left[a_{1}, 0\right]=a_{1}$.

Then f is T-additive on G_{1} and condition (1.10) is satisfied. But for any T-additive extension ϕ of $f\left(G^{*}=G\right.$ in this example) and for every positive integer $n, \phi[n, 1]=n+\phi\left(x_{0}\right)$, whereas $h[n, 1]=1$ so that there is no such ϕ with $\phi[n, 1] \leqslant f[n, 1]$ for all n. Thus Theorem 1.1 cannot be proved on the basis of (1.10) alone.

In this example h is T-subadditive and satisfies (1.29), (1.30), yet h does not admit a representation (1.31) (even with $\inf \left\{\phi_{\lambda}(u)\right\}$ unrestricted). For if ϕ
is T-additive and $\phi\left[a_{1}, a_{2}\right] \leqslant h\left[a_{1}, a_{2}\right]$ then

$$
\phi[n, 1]=n \phi[1,0]+\phi[0,1] \leqslant 1 \quad \text { for all } n
$$

hence $\phi[1,0] \leqslant 0$ for all such ϕ, whereas $h[1,0]=1$.
Example 2. $\quad T$ consists of all non-negative integers; G consists of all infinitedimensional vectors $a=\left(a_{0}, a_{1}, \ldots, a_{m}, \ldots\right)$ with every a_{m} a non-negative integer and at most a finite number of a_{m} different from $0 ; h(a)=\max \left\{m\left(a_{m}-a_{0}\right)\right\}$.

Then $h(a)=\sup \left\{\phi_{\lambda}(a)\right\}$ with $\phi_{\lambda}(a)$ the T-additive function $\lambda\left(a_{\lambda}-a_{0}\right)$ ($\lambda=0,1,2, \ldots$. . Nevertheless h does not admit a representation (1.31) with $\inf \left\{\phi_{\lambda}(a)\right\}$ finite. To see this, let a^{n} denote the vector with $\left(a^{n}\right)_{m}=0$ for $m \neq n$ and $\left(a^{n}\right)_{m}=1$ for $m=n$. If $\phi(a)$ is a T-additive function with $\phi(a) \leqslant h(a)$ for all a then

$$
\phi\left(a^{n}\right)+\phi\left(a^{0}\right)=\phi\left(a^{n}+a^{0}\right) \leqslant h\left(a^{n}+a^{0}\right)=0 .
$$

Hence if $h\left(a^{n}\right)=\sup \left\{\phi\left(a^{n}\right)\right\}$ for every n it would follow that $\inf \left\{\phi\left(a^{0}\right)\right\} \leqslant-n$ for every n.

An elegant generalization (in a different way) of the classical Hahn-Banach theorem has been given by Hidegoro Nakano [5, pp. 89-91]. Nakano deals with a linear vector space, that is, with all real numbers as scalar multipliers, but for given $h(z)$ and x_{0}, the requirements that there shall be a T-additive ϕ with $\phi\left(x_{0}\right)=h\left(x_{0}\right), \phi(z) \leqslant h(z)$ for all z, are replaced by the requirements that there shall be a T-additive ϕ with $\phi(z) \leqslant \phi\left(x_{0}\right)-h\left(x_{0}\right)+h(z)$ for all z.

Theorems 1.1 to 1.5 of the present paper can be extended to include Nakano's generalization.

Theorem 1.6. In order that $h(z)$ admit a representation

$$
\begin{equation*}
h(z)=\sup \left\{A_{\lambda}+\phi_{\lambda}(z)\right\} \tag{1.35}
\end{equation*}
$$

with a family of T-additive ϕ_{λ} and constants A_{λ} for which $\left|A_{\lambda}\right| \leqslant K<\infty$ for all λ and $\inf \left\{\phi_{\lambda}(u)\right\}$ is finite for every u in G, it is necessary and sufficient that functions $A(u), M(u)$ exist with $|A(u)| \leqslant K$ for all u and

$$
\begin{gather*}
\left(t_{2}-t_{1}\right) h(z)+\sum_{i=1}^{m}\left(\beta_{i}-a_{i}\right) h\left(z_{i}\right) \tag{1.36}\\
\geqslant \sum_{j=1}^{n}\left(t_{1 j}-t_{2 j}\right) M\left(u_{j}\right)+\left(t_{2}-t_{1}+\sum_{i=1}^{m}\left(\beta_{i}-a_{i}\right)-\sum_{j=1}^{n}\left(t_{1 j}-t_{2 j}\right)\right) A(z)
\end{gather*}
$$

whenever (1.28) holds.
Proof. If (1.28) implies (1.36), the argument used in the proof of Theorem 1.2 shows that for every x_{0} in G there is a T-additive ϕ_{0} such that $\phi_{0}\left(x_{0}\right)$ $=h\left(x_{0}\right)-A\left(x_{0}\right)$ and

$$
M(z)-A\left(x_{0}\right) \leqslant \phi_{0}(z) \leqslant h(z)-A\left(x_{0}\right)
$$

for all z in G. Hence (1.35) holds with these functions $A\left(x_{0}\right)+\phi_{0}(z)$.

Conversely if (1.35) does hold then (1.28) implies (1.36) if $M(u)$ is taken to be $\inf \left\{A_{\lambda}+\phi_{\lambda}(u)\right\}$ and $A(z)$ is taken to be the limit of $A_{\lambda_{n}}$ for any sequence of λ_{n} for which $A_{\lambda_{n}}+\phi_{\lambda_{n}}(z)$ converges to $h(z)$ and $A_{\lambda_{n}}$ converges, as n becomes infinite.

Remark. If $h(z)$ admits a representation (1.35) then h is T-convex, that is,

$$
\begin{equation*}
h(a x+(1-a) y) \leqslant a h(x)+(1-a) h(y) \tag{1.37}
\end{equation*}
$$

whenever x, y are in G and $a, 1-a$ are in $T(0 \leqslant a \leqslant 1)$.
2. Systems S with partially-defined addition operator. Now let S be any system of elements, a, b, c, \ldots with an addition $a \dot{+} b$ defined, and in S, for some, but not necessarily all, ordered pairs a, b in S. No further properties of $\dot{+}$ will be postulated in this section. We shall call a function $\phi(a)$ on S additive if $\phi(a+b)=\phi(a)+\phi(b)$ whenever $a+b$ is defined.

Let G be the set of all formal sums $x \equiv a_{1}+\ldots+a_{\tau}$ with an arbitrary (but finite) number of a_{i} from S, the order being immaterial by definition and with two sums x, y identified in $G(x \equiv y)$ if x can be transformed into y by a finite number of changes of the form: a is replaced by $a_{1}+a_{2}$ or conversely $a_{1}+a_{2}$ is replaced by a if $a_{1}+a_{2}=a$. If $x \equiv a_{1}+\ldots+a_{r}$ and $y \equiv b_{1}+\ldots+b_{s}$, let the definition of $x+y$ in G be

$$
x+y \equiv a_{1}+\ldots+a_{r}+b_{1}+\ldots+b_{s}
$$

Then G is a semi-group and each element a in S determines an element $x \equiv a$ in G. We shall say S determines G.

Theorem 2.1. A function $p(a)$ on S admits a representation

$$
\begin{equation*}
p(a)=\sup \left\{\phi_{\lambda}(a)\right\} \tag{2.1}
\end{equation*}
$$

(ϕ additive on $S, \inf \left\{\phi_{\lambda}(a)\right\}$ finite for each a in S) if and only if it admits a representation

$$
\begin{equation*}
p(a)=\max \left\{\psi_{\lambda}(a)\right\} \tag{2.2}
\end{equation*}
$$

(ψ_{λ} additive on $S, \inf \left\{\psi_{\lambda}(a)\right\}$ finite for each a in S) and if and only if $p(a)$ has an extension $p_{1}(x)$ defined for all x in the G determined by S so that p_{1} satisfies (1.32), (1.33), and (1.34), and if and only if $p(a)$ has the two properties:

$$
\begin{equation*}
m p(a) \leqslant p\left(a_{1}\right)+\ldots+p\left(a_{r}\right) \tag{2.3}
\end{equation*}
$$

whenever $m a+u \equiv a_{1}+\ldots+a_{r}+u$ in G;

$$
\begin{equation*}
\inf \left\{m^{-1}\left(p\left(a_{1}\right)+\ldots+p\left(a_{\tau}\right)-p\left(b_{1}\right)-\ldots-p\left(b_{n}\right)\right)\right\}>-\infty \tag{2.4}
\end{equation*}
$$

whenever, for fixed c_{1}, \ldots, c_{s}, the integers m, r, n and the $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{n}$ vary so that

$$
m\left(c_{1}+\ldots+c_{s}\right)+b_{1}+\ldots+b_{n} \equiv a_{1}+\ldots+a_{r}
$$

(In connection with this theorem see Lorentz [4]. The definition of $p_{1}(x)$ in (2.5) below was suggested by [4].)

Proof. For each additive $\phi(a)$ on S define $\phi_{1}(x)=\phi\left(a_{1}\right)+\ldots+\phi\left(a_{\tau}\right)$ if $x \equiv a_{1}+\ldots+a_{r}$. Then ϕ_{1} is single-valued and additive on G and is an extension of ϕ. Hence if $p(a)$ does admit a representation (2.1) then the function

$$
p_{1}(x)=\sup \left\{\phi_{\lambda 1}(x)\right\}
$$

is an extension of $p(a)$ which, by Theorem 1.4, satisfies (1.32), (1.33), (1.34). On the other hand, if $p(a)$ has any extension $p_{1}(x)$ which satisfies these conditions, then by Theorem 1.4, $p_{1}(x)$ admits a representation (1.31) on G, which, when considered on S only, gives a representation (2.2) for $p(a)$ on S.

Again if $p_{1}(x)$ on G satisfies (1.32), (1.33), (1.34), then clearly it satisfies (2.3) and (2.4). If such a $p_{1}(x)$ is an extension of $p(a)$ then $p(a)$ must satisfy (2.3) and (2.4). Conversely, if $p(a)$ on S satisfies (2.3) and (2.4) we define

$$
\begin{equation*}
p_{1}(x)=\inf \left\{m^{-1}\left(p\left(a_{1}\right)+\ldots+p\left(a_{\tau}\right)\right)\right\} \tag{2.5}
\end{equation*}
$$

for all a_{1}, \ldots, a_{r} with $m x+u \equiv a_{1}+\ldots+a_{r}+u$ for some positive integer m and some u in G. Then (2.3) ensures that $p_{1}(x)$ is an extension of $p(a)$, (2.4) ensures that $p_{1}(x)$ has finite real numbers as values, and from (2.5) it follows that (1.32), (1.33), (1.34), with $M\left(c_{1}+\ldots+c_{s}\right)=$ L.H.S. of (2.4), hold for $p_{1}(x)$.

Remark. If the cancellation law, $x+u \equiv y+u$ implies that $x \equiv y$, holds in G, the condition (2.3) is equivalent to the (apparently) weaker condition

$$
\begin{equation*}
m p(a) \leqslant p\left(a_{1}\right)+\ldots+p\left(a_{r}\right) \tag{2.6}
\end{equation*}
$$

whenever $m a \equiv a_{1}+\ldots+a_{r}$ in G (see the definition of multiple subadditivity given in [4]).
3. Modular lattices with zero and relative complements. Suppose now that S is a modular (but not necessarily distributive) relatively complemented lattice with zero element 0 , so that the von Neumann theory of "independence" (or "independence over 0 " in terms of [3]) is valid at least for finite collections of elements of $S\left[6 ; 7 ; 3\right.$, p. $539 ; 2$, p. 114]. Suppose too that $e_{1} \dot{+} e_{2}$ is identical with lattice union $e_{1} \cup e_{2}$ restricted to independent elements.
We recall that

$$
e=\bigcup_{i=1}^{n} e_{i}
$$

is called a direct decomposition if e_{1}, \ldots, e_{n} are independent and e is called perspective to f (with axis a) written $e \backsim f$, if $e \cup a=f \cup a$ and $e \cap a=$ $f \cap a=0$ for some a in S.

In what follows we shall postulate that S has the additional property that perspectivity is transitive, that is,

$$
\begin{equation*}
e \sim f, \quad f \sim g \quad \text { imply } \quad e \sim g . \tag{3.1}
\end{equation*}
$$

(In a Boolean ring (3.1) holds trivially since $e \backsim f$ implies $e=f$. But (3.1) holds also for the continuous geometries of von Neumann or more generally [6;7;3]
if S has certain continuity properties.) With the hypothesis (3.1) we shall show, for given $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{m}$ in S, that equality in G,

$$
e_{1}+\ldots+e_{n}+h_{1}+\ldots+h_{p} \equiv f_{1}+\ldots+f_{m}+h_{1}+\ldots+h_{p}
$$

for some h_{1}, \ldots, h_{p} in S, can be expressed in a simple way in terms of direct decompositions of $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{m}$.

Lemma 1. Suppose that

$$
e=\bigcup_{i=1}^{n} e_{i}
$$

is a direct decomposition and that $e \backsim f$. Then there exists a direct decomposition $f=\bigcup f_{i}$ with $e_{i} \backsim f_{i}$ for each i.

Lemma 2. Suppose that $e=e_{1} \cup e_{2}, f=f_{1} \cup f_{2}$ are direct decompositions with $e \backsim f$ and $e_{1} \backsim f_{1}$. Then $e_{2} \sim f_{2}$.

Lemma 3 (Additivity of perspectivity). Suppose that

$$
e=\bigcup_{i=1}^{n} e_{i} \quad \text { and } \quad f=\bigcup_{i=1}^{n} f_{i}
$$

are direct decompositions with $e_{i} \backsim f_{i}$ for each i. Then $e \backsim f$.
Under stronger assumptions these lemmas were proved in [7] but the proofs are valid without change in the present case. Lemma 1 corresponds to a corollary of [3, Lemma 3.3] and Lemmas 2 and 3 correspond to [3, Lemmas 6.2, 6.4].

Lemma 4. Suppose f_{1}, \ldots, f_{m} and e are arbitrary. Then there exist direct decompositions $f_{j}=f_{1 j} \cup f_{j}{ }^{\prime}, \quad e=e_{1} \cup \ldots \cup e_{m+1}$ such that $e_{j} \backsim f_{1 j}$ for $1 \leqslant j \leqslant m$ and $e_{1} \cup \ldots \cup e_{m}=e \cap\left(f_{1} \cup \ldots \cup f_{m}\right)$.

Proof. The lemma can be verified as follows: Let $a_{j}=f_{1} \cup \ldots \cup f_{j-1}$ for $1<j \leqslant m+1$ and let $a_{1}=0$. Replacing f_{j} for $1<j \leqslant m$ by a complement of $a_{j} \cap f_{j}$ with respect to f_{j} we may, and shall, suppose that f_{1}, \ldots, f_{m} are independent. Set $e_{1}=e \cap f_{1}$; for $1<j \leqslant m$ set e_{j} equal to a complement of $e \cap a_{j}$ with respect to $e \cap a_{j+1}$; set e_{m+1} equal to a complement of $e \cap a_{m+1}$ with respect to e; set $f_{11}=e_{1}$; for $1<j \leqslant m$ set $f_{1 j}=f_{j} \cap\left(e_{j} \cup a_{j}\right)$; for $1 \leqslant j \leqslant m$ set f_{j}^{\prime} equal to a complement of $f_{1 j}$ with respect to f_{j}.

We shall show that $e_{j} \backsim f_{1 j}$ with axis a_{j}. This is trivial for $j=1$ and for $j>1$ we have

$$
\begin{aligned}
f_{1 j} \cup a_{j} & =\left(f_{j} \cap\left(e_{j} \cup a_{j}\right)\right) \cup a_{j} \\
& =\left(f_{j} \cup a_{j}\right) \cap\left(e_{j} \cup a_{j}\right)=e_{j} \cup a_{j}
\end{aligned}
$$

by the modular law and since $e_{j} \leqslant f_{j} \cup a_{j}=a_{j+1}$ and $a_{j} \leqslant f_{j} \cup a_{j}$. On the other hand,

$$
f_{1 j} \cap a_{j}=f_{1 j} \cap f_{j} \cap a_{j}=0
$$

since the f_{1}, \ldots, f_{j} are independent and $e_{j} \cap a_{j}=e_{j} \cap\left(e \cap a_{j}\right)=0$. This proves that $e_{j} \sim f_{1 j}$. The other parts of the lemma are easily verified.

Lemma 5. Suppose e_{1}, \ldots, e_{n} are arbitrary. Then there are independent elements $g_{j}\left(j=1, \ldots, N_{n}\right)$ and direct decompositions

$$
\begin{aligned}
& e_{1}=g_{1} \cup \ldots \cup g_{N_{1}} \\
& e_{2}=g_{1}^{(2)} \cup \ldots \cup g_{N_{2}}^{(2)} \cup g_{N_{1}+1} \cup \ldots \cup g_{N_{2}} \\
& e_{n}=g_{1}^{(n)} \cup \ldots \cup g_{N_{n-1}}^{(n)} \cup g_{N_{n-1}+1} \cup \ldots \cup g_{N_{n}},
\end{aligned}
$$

such that

$$
\begin{aligned}
& \bigcup_{j=1}^{N_{r}-1} g_{j}^{(r)}=e_{r} \cap\left(e_{1} \cup \ldots \cup e_{r-1}\right) \\
& g_{j}^{(r)}=0 \quad \text { or } \quad g_{j}^{(r)} \backsim g_{j}
\end{aligned}
$$

for $1<r \leqslant n$ and $1 \leqslant j \leqslant N_{r-1}$.
Proof. This lemma can be verified by induction on n, using Lemma 4.
Lemma 6 (Superposition of decompositions). Suppose that

$$
e=\bigcup_{i=1}^{n} e_{i} \quad \text { and } \quad f=\bigcup_{j=1}^{m} f_{j}
$$

are direct decompositions and that $e \backsim f$. Then there exist direct decompositions $e_{1}=\bigcup e_{i j}, f_{j}=\bigcup f_{i j}$ such that $e_{i j} \sim f_{i j}$ for all i, j.

Proof. We shall assume, as we clearly may by Lemma 1 and the transitivity of perspectivity, that $e=f$. Apply Lemma 4 to f_{1}, \ldots, f_{m} and e_{1} (in place of e) and obtain the direct decompositions

$$
e_{1}=\bigcup_{j=1}^{m} e_{1 j}, \quad f_{j}=f_{1 j} \cup f_{j}^{\prime} \text { with } e_{1 j} \backsim f_{1 j} .
$$

By Lemma 3, $e_{1} \backsim \bigcup f_{1 j}$ and hence by Lemma $2\left(e_{2} \cup \ldots \cup e_{n}\right) \backsim \bigcup f_{j}^{\prime}$. This means that the lemma for n has been reduced to the lemma for $n-1$. By successive reductions the lemma can be reduced to the case $n=1$ and for this case the lemma holds by Lemma 1.

Theorem 3.1. If $x \equiv e_{1}+\ldots+e_{n}$ and $y \equiv f_{1}+\ldots+f_{m}$, then $x+u$ $\equiv y+u$ for some u in G if and only if there exist independent elements g_{1}, \ldots, g_{N} and direct decompositions

$$
\begin{equation*}
e_{i}=\bigcup_{j=1}^{N} e_{i j}, f_{i}=\bigcup_{j=1}^{N} f_{i j}, \tag{3.2}
\end{equation*}
$$

such that each $e_{i j}$ is either 0 or $\sim g_{j}$, each $f_{i j}$ is either 0 or $\sim g_{j}$, and for each j the number E_{j} of i for which $e_{i j} \backsim g_{j}$ is equal to the number F_{j} of i for which $f_{i j} \sim g_{j}$.

Proof. Write $x \backsim y(d)$ if decompositions (3.2) do exist and write $x \equiv y(c)$ if $x+u \equiv y+u$ for some u in G. Since $e \backsim f$ implies $e+a \equiv f+a$ for some axis of perspectivity a in S, it follows that $e \sim f$ implies that $e \equiv f(c)$ and hence $x \backsim y(d)$ implies $x \equiv y(c)$.

The converse, $x \equiv y(c)$ implies $x \sim y(d)$, will follow by induction if we prove:

$$
\begin{equation*}
x \sim x(d) \tag{3.3}
\end{equation*}
$$

(3.4) if $x \sim y(d)$, this relation remains valid if f_{1} in y is replaced by $f^{\prime}+f^{\prime \prime}$, providing that $f_{1}=f^{\prime} \dot{+} f^{\prime \prime}$;
(3.5) if $x \sim y(d)$, this relation remains valid if $f_{1}+f_{2}$ in y is replaced by f, providing that $f_{1} \dot{+} f_{2}=f$;

$$
\begin{equation*}
\text { if } x+u \backsim y+u(d) \text { then } x \sim y(d) \tag{3.6}
\end{equation*}
$$

For $x+u \equiv y+u$ means that $x+u$ can be transformed into $y+u$ by the changes named in (3.3), (3.4), and (3.5) and it will follow that $x+u \sim y+u(d)$. From (3.6) we will then have $x \sim y(d)$ as required.

Proof of (3.3). Given arbitrary elements e_{1}, \ldots, e_{n} we need only show that there are independent elements g_{1}, \ldots, g_{N} and direct decompositions

$$
e_{i}=\bigcup_{j=1}^{N} e_{i j}
$$

such that each $e_{i j}$ is either 0 or $\sim g_{j}$. But this follows from Lemma 5 .
Proof of (3.4). Suppose $x \sim y(d)$. This implies an independent set g_{1}, \ldots, g_{N} and a particular decomposition (we shall call it the previous decomposition) for each f_{i} in y. If now f_{1} is replaced by $f^{\prime}+f^{\prime \prime}$, then Lemma 6 can be applied to the previous decomposition of f_{1}, say $f_{1}=\bigcup f_{1 j}$, and the decomposition $f^{\prime} \cup f^{\prime \prime}$ of f_{1}. Direct decompositions $f_{1 j}=f_{1 j}^{\prime} \cup f_{1 j}^{\prime \prime}$ result, and these, with the help of Lemma 1, lead to direct decompositions $g_{j}=g_{j}{ }^{\prime} \cup g_{j}{ }^{\prime \prime}$ with $f_{1 j}{ }^{\prime} \sim g_{j}{ }^{\prime}$, $f_{1 j}{ }^{\prime \prime} \sim g_{j}{ }^{\prime \prime}$ if $f_{1 j}$ is different from 0 and with $g_{j}{ }^{\prime}=g_{j}, g_{j}{ }^{\prime \prime}=0$ if $f_{1 j}=0$. From these decompositions of g_{j} we obtain direct decompositions, $f_{i j}=f_{i j}{ }^{\prime} \cup f_{i j}{ }^{\prime \prime}$ for $i>1$ and $e_{i j}=e_{i j}{ }^{\prime} \cup e_{i j}{ }^{\prime \prime}$ so that $x \backsim y(d)$ remains valid with $g_{1}{ }^{\prime}, \ldots g_{N}{ }^{\prime}$, $g_{1}{ }^{\prime \prime}, \ldots, g_{N}{ }^{\prime \prime}$ in place of g_{1}, \ldots, g_{N}.

Proof of (3.5). Suppose $x \sim y(d)$, that the $e_{i}, f_{i}, e_{i j}, g_{j}$ satisfy (3.2), and that $f_{1}+f_{2}$ in y is replaced by f. (Note that

$$
f=\left(\bigcup_{j=1}^{N} f_{1,} \cup \bigcup_{j=1}^{N} f_{2 j}\right)
$$

is a direct decomposition for f; but this fails to prove that $x \sim y(d)$ remains valid with the same g_{1}, \ldots, g_{N} since, for some j, both $f_{1 j}$ and $f_{2 j}$ may differ from zero.) We may suppose that all g_{j} are different from 0 , that $f_{1 j}=g_{j}$ for $j=1$, \ldots, p (in place of $f_{1 j} \sim g_{j}$), and that $f_{1 j}=0$ for $j>p$ (apply Lemmas 2 and 1 to the complements of $g_{1} \cup \ldots \cup g_{p}$ and $f_{11} \cup \ldots f_{1 p}$ with respect to $g_{1} \cup \ldots$ $\left.\cup g_{p} \cup f_{11} \cup \ldots \cup f_{1 p}\right)$. By rearranging indices we may now suppose that $f_{2 j} \backsim f_{1 j}=g_{j}$ for $j=1, \ldots, r$ with $r \leqslant p$, that $f_{2 j} \backsim g_{j}$ for $j=p+1, \ldots, q$, and that $f_{2 j}=0$ for all other j. Then we may even suppose $f_{2 j}=g_{j}$ for $j=p+1$, . . ., q. Next, by changing the g_{j} with $j>q$ and increasing N if necessary, we
may suppose that each such g_{j} satisfies either $g_{j} \cap\left(f_{1} \cup f_{2}\right)=0$ or

$$
g_{j} \leqslant \bigcup_{j=1}^{r} f_{2 j} ;
$$

letting g_{N+1} be a complement of

$$
\left(g_{1} \cup \ldots \cup g_{N}\right) \cap\left(\bigcup_{j=1}^{r} f_{2 j}\right)
$$

with respect to

$$
\bigcup_{j=1}^{\tau} f_{2 j}
$$

and writing N again for the former $N+1$ we may now suppose that

$$
\bigcup_{j=1}^{r} f_{2 j} \leqslant \bigcup_{j=q+1}^{N} g_{j}
$$

Then

$$
\bigcup_{j=q+1}^{N} g_{j}=\bigcup_{j=1}^{r} f_{2 j} \cup f_{0}
$$

are two direct decompositions of the same element (with f_{0} a suitable complement) and Lemma 6 applies. We derive direct decompositions for all elements used previously, such that (using the previous notation again) we may even suppose that $f_{2 j} \sim g_{q+j}$ for $j=1, \ldots, r$. Now a direct decomposition for f is

$$
\bigcup_{j=1}^{N} f_{j}
$$

with $f_{j}=f_{1 j}$ for $j=1, \ldots, p, f_{j}=f_{2 j}$ for $j=p+1, \ldots, q, f_{q+j}=f_{2 j}$ for $j=$ $1, \ldots, r$, and $f_{j}=0$ for all other j. When the decompositions for f_{1}, f_{2} used in (3.2) are replaced by this decomposition for f the number F_{j} is altered by -1 if $j=1, \ldots, r$ and by +1 if $j=q+1, \ldots, q+r$. However, the equality of E_{j}, F_{j} can be restored as follows. For each fixed $j=1, \ldots, r$ we have $g_{j} \backsim g_{q+j}$. If $F_{j}<2+F_{q+j}$ then there must be an $i>2$ with $f_{i j}=0$ and $f_{i, q+j} \sim g_{q+j}$; in this case we interchange these elements so that $f_{i j} \sim g_{j}$ and $f_{i, q+j}=0$. If however $F_{j} \geqslant 2+F_{q+j}$, then $E_{j} \geqslant 2+E_{q+j}$ and there must be some i for which $e_{i j} \sim g_{j}$ and $e_{i, q+j}=0$; in this case we interchange these two elements so that $e_{i j}=0$ and $e_{i, q+j} \sim g_{q+j}$.

This completes the proof of (3.5).
Proof of (3.6). Suppose

$$
\begin{equation*}
e_{1}+\ldots+e_{n}+h_{1}+\ldots+h_{p} \sim f_{1}+\ldots+f_{m}+h_{1}+\ldots+h_{p}(d) \tag{3.7}
\end{equation*}
$$

We wish to deduce $e_{1}+\ldots+e_{n} \backsim f_{1}+\ldots+f_{m}(d)$. Proof by induction will apply here and we need only consider (3.7) with $p=1$. Then, as detailed in (3.2), there are independent g_{1}, \ldots, g_{N} and direct decompositions of the e_{i}, f_{i}, and h_{1} into elements each of which is perspective to one of the g_{j}. We may replace h_{1} in (3.7) by the lattice union of its corresponding set of g_{j}. We note
that h_{1} may be assigned two different sets L and R of g_{j} according as h_{1} appears on the left or right of (3.7). Since the two replacements for h_{1} are perspective by Lemma 3, we may apply Lemmas 2, 1, and 6 to obtain decompositions of the g_{j} in L but not in R and of the g_{j} in R but not in L into new elements (which we will again call g_{j}) which are perspective in pairs. Thus we may suppose (3.7) given in the form

$$
\begin{equation*}
e_{1}+\ldots+e_{n}+g_{1}+\ldots+g_{\tau} \sim f_{1}+\ldots+f_{m}+g_{\tau+1}+\ldots+g_{2 \tau}(d) \tag{3.8}
\end{equation*}
$$

with $g_{1}, \ldots, g_{2 r}$ a subset of the g_{1}, \ldots, g_{N} mentioned in (3.2) and with $g_{i} \backsim g_{\tau+i}$ for $i=1, \ldots, r$.

For fixed j let E_{j} be the number of i for which $e_{i j} \sim g_{j}$ and let F_{j} be the number of i for which $f_{i j} \sim g_{j}$. Then for $j>2 r$ we deduce from (3.8) that $E_{j}=F_{j}$. If $j \leqslant r$ we obtain $E_{j}+1=F_{j}, E_{r+j}=F_{r+j}+1$. Hence at least one of $E_{j}<E_{r+j}, F_{j}>F_{r+j}$ holds. If $E_{j}<E_{r+j}$ there must be an e_{i} for which $e_{i j}=0$ and $e_{i, r+j} \sim g_{r+j}$; in that case we interchange these elements $e_{i j}, e_{i, r+j}$ so that now $e_{i j} \sim g_{r+j} \sim g_{j}$ and $e_{i, r+j}=0$, thus obtaining $E_{j}=F_{j}$, $E_{r+j}=F_{r+j}$ for the new decompositions. In the same way, if $F_{j}>F_{r+j}$ we can rearrange the decomposition of some f_{i} to obtain $E_{j}=F_{j}$ and $E_{r+j}=$ F_{r+j}. After this is done for each $j \leqslant r$ we obtain decompositions in terms of g_{1}, \ldots, g_{N} for which (3.2) can be easily verified.

This completes the proof of Theorem 3.1.
Corollary to Theorem 3.1. Two elements e, f in S satisfy $e+u \equiv f+u$ for some u in G if and only if $e \sim f$.
(It is easy to prove directly that $e \equiv f$ if and only if $e=f$.)
Remark. The relation $x \equiv y$ in G can also be characterized in terms of decompositions in S but we omit the somewhat involved statement. In the special case of S a Boolean ring, $e \sim f$ holds if and only if $e=f$, and Theorem 3.1 shows that $x+u \equiv y+u$ if and only if $x \equiv y$. Thus the cancellation law holds in G if S is a Boolean ring but not if S is a general relatively complemented modular lattice.

Theorem 3.2. $m e+u \equiv e_{1}+\ldots+e_{n}+u$ as in the condition (2.3) if and only if there are direct decompositions

$$
e_{i}=\bigcup_{j=1}^{m} e_{i j}^{\prime}(i=1, \ldots, n), \quad e=\bigcup_{i=1}^{n} e_{i j}^{\prime \prime}(j=1, \ldots, m)
$$

with $e_{i j}{ }^{\prime} \backsim e_{i j}{ }^{\prime \prime}$ for all i, j.
Proof. Apply Theorem 3.1 with $f_{1}=\ldots=f_{m}=e$ to obtain the decompositions of (3.2) with g_{1}, \ldots, g_{N} which we may suppose all non-zero. For given p, q let $J(p, q)$ be the set of j for which $f_{p j}$ and $e_{q j}$ are both different from zero, and the number of $r<p$ for which $f_{r j}$ is different from zero is equal to the
number of $r<q$ for which $e_{r j}$ is different from zero. Set

$$
\begin{aligned}
& e_{p q}^{\prime \prime}=U f_{p j}(j \in J(p, q)) \\
& e_{q p}^{\prime}=U e_{q j}(j \in J(p, q)) .
\end{aligned}
$$

With this construction the theorem can be easily verified.

References

1. S. Banach, Théorie des opérations linéaires (Warsaw, 1932).
2. G. Birkhoff, Lattice theory, 2nd ed. (New York, 1948).
3. I. Halperin. On the transitivity of perspectivity in continuous geometries, Trans. Amer. Math. Soc., vol. 44 (1938), 537-562.
4. G. G. Lorentz, Multiply subadditive functions, Can. J. Math., vol. 4 (1952), 455-462.
5. H. Nakano, Modulared linear spaces, J. Fac. Sci., Univ. Tokyo, Sec. I, vol. 6 (1951), 85-131.
6. J. von Neumann, Continuous geometries, Proc. Nat. Acad. Sci., vol. 22 (1936), 92-108.
7. - Lectures on continuous geometry, planographed (The Institute for Advanced Study, Princeton, 1935-1937).

Queen's University

[^0]: Received June 22, 1951; in revised form February 26, 1952. Part of this research was done while the author held a Fellowship in the 1950 Summer Research Institute of the Canadian Mathematical Congress.

[^1]: ${ }^{1}$ In the classical Hahn-Banach theorem for linear vector spaces, $h(z)$ is a subadditive function $p(z)$ with $p(t z)=t p(z)$ for all $t>0$ and $-p(-u)$ acts as the function $M(u)$ which we postulated explicitly. G. G. Lorentz has independently had the idea of investigating extensions of an additive $f(x)$ satisfying $q(x) \leqslant f(x) \leqslant p(x)$ for given subadditive $p(z)$ and superadditive $q(z)$.

