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Abstract

In this paper we prove two results concerning Vinogradov’s three primes theorem with
primes that can be called almost twin primes. First, for any m, every sufficiently large
odd integer N can be written as a sum of three primes p1, p2 and p3 such that, for each
i ∈ {1, 2, 3}, the interval [pi, pi + H] contains at least m primes, for some H = H(m).
Second, every sufficiently large integer N ≡ 3 (mod 6) can be written as a sum of three
primes p1, p2 and p3 such that, for each i ∈ {1, 2, 3}, pi + 2 has at most two prime
factors.

1. Introduction

The Hardy–Littlewood prime tuples conjecture says that, for any admissible set of k integers
H = {h1, . . . , hk}, there are infinitely many values of n such that n+h1, . . . , n+hk are all prime.
Here H is said to be admissible if it misses at least one residue class modulo p for every prime
p. In particular, the twin prime conjecture is the special case when H = {0, 2}.

Using an elaboration of the linear sieve method, Chen [Che73] proved that there are infinitely
many primes p such that p+2 is the product of at most two primes (this property is traditionally
denoted by p + 2 = P2). If one insists on prime values, it is only recently that Zhang [Zha14],
and subsequently Maynard [May15], made the breakthrough showing that there are infinitely
many values of n for which at least two of n + h1, . . . , n + hk are prime, provided that k is
large enough but fixed. Indeed, Maynard’s argument shows that one can find m primes among
n + h1, . . . , n + hk for any m, provided that k is large enough in terms of m. This result was
proved independently by Tao in an unpublished work. We refer the reader to the excellent survey
article [Gra15] for the main ideas behind these works.

Since the introduction of the Hardy–Littlewood circle method, there have been a flurry
of results about solving linear equations in prime variables, by analyzing exponential sums over
primes. In 1937, Vinogradov showed that all sufficiently large odd positive integers can be written
as a sum of three primes. This establishes the ternary version of the Goldbach conjecture. In this
paper, we prove the analogous statement for the special types of almost twin primes mentioned
above.

Theorem 1.1. For any positive integer m, there exist positive constants H = H(m) and
N0 = N0(m) such that every odd integer N > N0 can be written in the form N = p1 + p2 + p3,
where, for i = 1, 2, 3, pi are primes such that the interval [pi, pi +H] contains at least m primes.
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In view of recent work of Helfgott [Hel15], one can in fact take N0 = 7 above (after possibly

increasing H).

Theorem 1.2. Every large enough integer N ≡ 3 (mod 6) can be written in the form

N = p1 + p2 + p3, where, for i = 1, 2, 3, pi are primes such that pi + 2 is a product of at

most two primes.

Related problems have been considered before. Green and Tao [GT06] showed that there

are infinitely many three-term arithmetic progressions in the almost twin primes considered in

Theorem 1.2, and this has been generalized in [Zho09] to handle k-term progressions for any

fixed k. See [Pin15] for analogous results for the almost twin primes considered in Theorem 1.1.

As we discuss in the next section, since the equation N = p1 +p2 +p3 is not translation-invariant,

for subsets of the primes the ternary Goldbach problem involves additional complications

compared to the problem of finding three-term arithmetic progressions. For the ternary Goldbach

problem, Matomäki [Mat09] previously showed that N = p1 + p2 + p3 is solvable in primes with

p1 + 2 = P2, p2 + 2 = P ′2, and p3 + 2 = P7.

It is worth mentioning that a vast generalization of Vinogradov’s theorem has been proved

by Green and Tao [GT10], with a crucial ingredient from the work of Green, Tao, and Ziegler

[GTZ12]. They introduced the concept of higher-order Fourier analysis, which allows one to

handle all linear systems of finite complexity (that excludes the twin prime or the binary

Goldbach case). We plan to return to a generalization of Theorem 1.1 in this direction in a

future work.

2. Outline of proof

In this section we describe the main ingredients in the proofs of Theorems 1.1 and 1.2. The

general strategy for proving both theorems follows closely the transference principle initiated in

[Gre05]. Let f be the (weighted) indicator function of the considered subset of the primes, and

let ν be a sieve majorant so that f 6 ν and that f has positive density in ν. The Fourier analytic

transference principle in [Gre05] produces a dense model f̃ of f , such that 0 6 f̃ 6 1 and that

f̃ has positive average. Moreover,∑
16n1,n2,n36N
n1+n2+n3=N

f(n1)f(n2)f(n3) ≈
∑

16n1,n2,n36N
n1+n2+n3=N

f̃(n1)f̃(n2)f̃(n3). (2.1)

If we are instead looking for solutions of a homogeneous linear equation such as n1 + n2 = 2n3,

then the right-hand side above is bounded from below by Roth’s theorem. In this way one can

find arithmetic progressions in subsets of primes [GT06, Zho09, Pin15]. In our current case, the

right-hand side above could vanish if, for example, f̃ is supported on [1, N/4] or if, writing ‖x‖
for the distance from the nearest integer, we had ‖

√
2N‖ > 3/10 and f̃ is supported on numbers

n for which ‖
√

2n‖ < 1/10.

To get around this issue, we need to know more about the structure of f̃ . Examining the

proof of the transference principle, one may observe that f̃ is the convolution of f with a Bohr

set. If we ensure that f̃ is bounded below pointwise, then the right-hand side of (2.1) is certainly

bounded below as well. This pointwise lower bound translates to the requirement that primes

from the considered subset can be found in Bohr sets.
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2.1 Smooth Bohr cutoff

Given a cyclic group G = Z/NZ, a subset Ω ⊆ G and η ∈ (0, 1/2], define the Bohr set

B = Bohr(Ω, η) = {n ∈ G : ‖ξn/N‖ 6 η for all ξ ∈ Ω}.

For technical reasons, it is more convenient to study a smooth version of 1B, whose Fourier

spectrum has bounded size.

For η ∈ (0, 1/2] and a positive integer D, let S+
D,η(x) : R/Z → [0, 2] be the Selberg polynomial

of degree D that majorizes the interval [−η, η]. The definition can be bound in [Mon94, ch. 1,

formula 21+] and is given in (3.1) below. The Selberg polynomial has a Fourier expansion

S+
D,η(x) =

∑
|k|6D

Ŝ+
D,η(k)e(kx)

with |Ŝ+
D,η(k)| 6 1/(D + 1) + min{2η, 1/|k|} by [Mon94, ch. 1, formula (22)].

Definition 2.1 (Smooth Bohr cutoff). Given a cyclic group G = Z/NZ, a subset Ω ⊆ G and

η ∈ (0, 1/2], let D = d4/ηe2|Ω| and define the smooth Bohr cutoff χ = χΩ,η : G → R>0 by

χ(n) :=
∏
ξ∈Ω

S+
D,η(ξn/N).

Note that since S+
D,η(x) is a majorant of 1‖x‖6η(x), we have the lower bound χ(n) > 1 for

n ∈ Bohr(Ω, η).

Remark 2.2. Using the Selberg polynomials S+
D,η is not essential here, one could replace them

for instance by the function (cosπx)D for some large even D depending on η and |Ω|. This way

χ(n) would no longer be at least one in the Bohr set, but one could easily prove good enough

variants of the lemmas we need.

2.2 A transference type result

Let G = Z/NZ. We use the standard notation En∈G to denote the average N−1
∑

n∈G. For a

function f : G → C, its Fourier transform is defined by

f̂(ξ) = En∈Gf(n)e

(
−ξn
N

)
,

and its L1-norm is defined by

‖f‖1 = En∈G|f(n)|.

For two functions f, g : G → C, their convolution is defined by

f ∗ g(t) = En∈Gf(n)g(t− n).

In § 4 we prove the following transference type result. It says that we can handle a non-

homogeneous linear equation if we have some additional hypotheses about averages in Bohr

sets.
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Theorem 2.3. Let G = Z/NZ for some large N , and let f1 : G → R>0 be a function. Let K > 1
and δ > 0 be parameters. There exists a Bohr cutoff χ = χΩ,η (depending on f1) with |Ω| �K,δ 1,
1 ∈ Ω, and η = η(K, δ) ∈ (0, 0.05), such that the following statement holds. Let f2, f3 : G → R>0

be functions satisfying
fi ∗ χ(t) > δ‖χ‖1, (2.2)

for every t ∈ [N/4, N/2) and i ∈ {2, 3}. Suppose that∑
0.1N6n60.4N

f1(n) > δN, (2.3)

and that ∑
ξ∈G
|f̂i(ξ)|5/2 6 K (2.4)

for every i ∈ {1, 2, 3}. Then f1 ∗ f2 ∗ f3(N) > δ3/200.

The artificial requirement 1 ∈ Ω and the assumption that (2.2) holds only for t ∈ [N/4, N/2)
come from the way Theorem 2.3 will be applied. To avoid wrapping around issues, we will
apply Theorem 2.3 with each fi supported on [N/4, N/2). If 1 ∈ Ω and η < 0.1, then
B(Ω, η) ⊂ (−0.1N, 0.1N), so that (2.2) can be expected to hold when t ∈ [N/4, N/2).

We will see that the condition (2.4) for the types of almost twin primes we consider follows
easily from the work of Green and Tao [GT06].

2.3 Almost twin primes in Bohr sets
To apply Theorem 2.3 to prove Theorems 1.1 and 1.2 in § 5, we need to verify the hypothesis
(2.2) for the indicator functions of the types of almost twin primes we consider. This is achieved
in Theorems 2.5 and 2.6, in statements of which we use the following definition.

Definition 2.4. For a function χ : Z → C, we say that it has Fourier complexity at most M if
χ can be written as a linear combination of at most M exponential phases:

χ(n) =
M∑
i=1

bie(αin),

for some |bi| 6M , and αi ∈ R/Z.

Note that since we do not request bi to be non-zero, if χ is of Fourier complexity at most M ,
then it is of Fourier complexity at most M ′ for any M ′ > M . Note also that the smooth Bohr
cutoff χΩ,η in Definition 2.1 (extended to Z in the obvious manner) has Fourier complexity at
most O|Ω|,η(1).

Theorem 2.5. For any positive integer m, there exist a positive integer k = k(m) and positive
constants δ0 = δ0(m) and ρ = ρ(m) such that the following holds. Let χ : Z → R>0 be a function
with Fourier complexity at most M for some M > 1, and let ε > 0 be given. Let W =

∏
p6w p

with w large enough in terms of m,M and ε, and let (b,W ) = 1. There exist non-zero distinct
integers h1, . . . , hk−1 = Om,M,ε(1) with hj positive for j = 1, . . . ,m − 1, and a positive integer
N0 = N0(m,M, ε, w) such that, for every N > N0 and |t| 6 5N ,∑

N6n<2N
Wn+b∈P

Wn+b+Whi∈P for i=1,...,m−1

p|
∏k−1
i=m(Wn+b+Whi) =⇒ p>Nρ

χ(t− n) > δ0
1

(logN)k
W k

ϕ(W )k

( ∑
N6n<2N

χ(t− n)− N

w1/3
+Om(εN)

)
.
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Theorem 2.6. There exists a positive constant δ1 such that the following holds. Let χ : Z → R>0

be a function with Fourier complexity at most M for some M > 1. Let W =
∏
p6w p with w

large enough in terms of M , and let (b,W ) = 1. There exists a positive constant N0 = N0(M,w)
such that, for every N > N0 and |t| 6 5N ,∑

N6n<2N
Wn+b∈P

Wn+b+2=P2

p|Wn+b+2 =⇒ p>N1/100

χ(t− n) > δ1
1

(logN)2

W 2

ϕ(W )2

( ∑
N6n<2N

χ(t− n)− N

w1/3

)
.

Let us briefly discuss the proofs of these results. In § 6 we shall state the results of Maynard
and Chen saying that one can find almost twin primes in sets that are equidistributed in
arithmetic progressions in certain precise senses. Bohr sets in general are not equidistributed
but in § 7 we will show that it is enough to show variants of Theorems 2.5 and 2.6 that are
more apt for applications of Maynard’s and Chen’s theorems. Then in §§ 9 and 10 we shall prove
these variants using the Fourier expansion of the smooth Bohr cutoff discussed in § 3 as well as
exponential sum estimates which we will state in § 8.

3. Smooth Bohr cutoff and its Fourier expansion

In this section we discuss a few basic properties of the Bohr cutoff χ = χΩ,η from Definition 2.1.

Lemma 3.1. Given a cyclic group G = Z/NZ, a subset Ω ⊆ G and η ∈ (0, 1/2], the smooth Bohr
cutoff χ = χΩ,η has the following properties:

(i) we have the lower bound
‖χ‖1 > (η/2)|Ω|;

(ii) if n /∈ Bohr(Ω, 2η), then
|χ(n)| 6 (η2/8)|Ω|.

Proof. Part (i) follows from the observation that χ(n) > 1 when n ∈ Bohr(Ω, η), together with
the lower bound |Bohr(Ω, η)| > (η/2)|Ω|N from a standard pigeon-holing argument (see, e.g.,
[TV10, Lemma 4.20]). For part (ii) we can clearly assume that η 6 1/4. Let us first give the
precise definition of S+

D,η(x). For an integer K > 1, write ∆K(x) for the Fejér kernel

∆K(x) :=
∑
|k|6K

(
1− |k|

K

)
e(kx) =

1

K

(
sinπKx

sinπx

)2

.

Then Vaaler’s polynomial VD(x) is defined as the trigonometric polynomial of degree D with

VD(x) :=
1

D + 1

D∑
k=1

(
k

D + 1
− 1

2

)
∆D+1

(
x− k

D + 1

)
+

1

2π(D + 1)
sin 2π(D + 1)x− 1

2π
∆D+1(x) sin 2πx.

Finally,

S+
D,η(x) := 2η + VD(x− η) + VD(−x− η) +

1

2D + 2
(∆D+1(x− η) + ∆D+1(−x− η)). (3.1)
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Note that, writing s(x) for the sawtooth function (so that s(x) = {x}−1/2 if x /∈ Z and s(x) = 0
if x ∈ Z),

1‖x‖6η(x) = 2η + s(x− η) + s(−x− η),

except when x = η or x = −η. By a result of Vaaler [Vaa85, Theorem 18], we know that, for
any x,

|VD(x)− s(x)| 6 1

2D + 2
∆D+1(x).

Hence,

|S+
D,η(x)− 1‖x‖6η(x)| 6 2

2D + 2
(∆D+1(x− η) + ∆D+1(−x− η))

6
1

(D + 1)2

(
1

(sinπ‖x− η‖)2
+

1

(sinπ‖−x− η‖)2

)
.

If ‖x‖ > 2η, then we get

|S+
D,η(x)| 6 2

(D + 1)2
· 1

(sinπη)2
6

2

(D + 1)2
· 1

(2η)2
6

1

η2D2
.

Now, if n /∈ Bohr(Ω, 2η), then ‖ξ0n/N‖ > 2η for some ξ0 ∈ Ω. Thus,

|χ(n)| = |S+
D,η(ξ0n/N)|

∏
ξ∈Ω\{ξ0}

|S+
D,η(ξn/N)| 6 2|Ω|

η2D2
.

The conclusion then follows by our choice D = d4/ηe2|Ω|. 2

The following lemma gives the Fourier expansion of a function of bounded Fourier complexity
in a convenient form. In particular, it allows us to separate the phases giving ‘major arc’
contribution from those giving ‘minor arc’ contribution.

Lemma 3.2. Let A,M > 1, and let B = A(3M)M . Let χ : Z → C be a function with Fourier
complexity at most M , and let W be a positive integer. Then for any large N , we may write

χ(n) =
M∑
i=1

bie

((
W
ai
qi

+ βi

)
n

)
for some |bi| 6 M , 0 6 ai < qi 6 N/(logN)100B, (ai, qi) = 1, and |βi| 6 W (logN)100B/(qiN).
Moreover, there exists a positive integer Q 6 (logN)B such that, for each 1 6 i 6 M , either
qi | Q or qi/(qi, Q

2) > (logN)A.

Proof. By the definition of Fourier complexity in Definition 2.4, we may write

χ(n) =
M∑
i=1

bie(αin),

for some |bi| 6M and αi ∈ R/Z. By the Dirichlet approximation theorem, for each 1 6 i 6M ,
there exist integers qi ∈ [1, N/(logN)100B] and ai such that (ai, qi) = 1 and∣∣∣∣αiW − ai

qi

∣∣∣∣ 6 (logN)100B

qiN
.

This gives the desired Fourier expansion of χ, apart from the existence of Q mentioned in the
last sentence of the statement.

1225

https://doi.org/10.1112/S0010437X17007072 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007072
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To define Q, let Q = {q1, . . . , qM}. Take Q0 = 1 and for i > 0 define

Qi+1 =
∏
q∈Q

q/(q,Q2
i )6(logN)A

q.

There is some I 6 |Q| = M such that QI+1 = QI . We claim that Q = QI satisfies the desired
properties. Indeed, for q ∈ Q, if q - Q, then q - QI+1 so that q/(q,Q2

I) > (logN)A by the definition
of QI+1. Furthermore, it is easy to see from the construction that

Qi+1 6 (Q2
i (logN)A)M .

Thus, a simple induction reveals that Qi 6 (logN)A·3
iM i

, so that Q 6 (logN)B. 2

This lemma can be thought of as a very special case of the general factorization theorem for
nilsequences [GT12, Theorem 1.19].

4. The transference-type result

In this section we prove Theorem 2.3. Let η, ε > 0 be small enough depending on K and δ, and
take

Ω = {ξ ∈ G : |f̂1(ξ)| > ε} ∪ {1}.

By (2.4), we have |Ω| 6 ε−5/2K+1. Let χ = χΩ,η be the smooth Bohr cutoff from Definition 2.1.
For i ∈ {2, 3}, define gi, hi : G → R by setting

gi =
1

‖χ‖1
fi ∗ χ, hi = fi − gi.

Hence,

ĝi =
1

‖χ‖1
f̂i · χ̂ and ĥi = f̂i

(
1− χ̂

‖χ‖1

)
. (4.1)

In particular, using the trivial bound |χ̂(ξ)| 6 ‖χ‖1 we obtain∑
ξ∈G
|ĝi(ξ)|5/2 6 K and

∑
ξ∈G
|ĥi(ξ)|5/2 6 25/2K. (4.2)

We write

f1 ∗ f2 ∗ f3(N) = f1 ∗ g2 ∗ g3(N) + f1 ∗ g2 ∗ h3(N) + f1 ∗ h2 ∗ g3(N) + f1 ∗ h2 ∗ h3(N).

By the assumption (2.2) we have, for i ∈ {1, 2} the pointwise lower bound gi(t) > δ for all
t ∈ [N/4, N/2). Thus,

f1 ∗ g2 ∗ g3(N) >
1

N2

∑
n1

f1(n1)
∑

N/46n2,n3<N/2
n1+n2+n3=N

δ2 >
δ2

100N

∑
0.1N6n160.4N

f1(n1) >
1

100
δ3

by the assumption (2.3).
To conclude the proof, it remains to show that

|f1 ∗ h2 ∗ h3(N)| 6 1
1000δ

3, (4.3)
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and the same bound with either h2 replaced by g2 or h3 replaced by g3. We have

|f1 ∗ h2 ∗ h3(N)| 6
∑
ξ∈G
|f̂1(ξ)ĥ2(ξ)ĥ3(ξ)|. (4.4)

First we bound the contribution of summands with ξ /∈ Ω. By the definition of Ω we have
|f̂1(ξ)| < ε for ξ /∈ Ω. Thus,∑

ξ∈G\Ω

|f̂1(ξ)ĥ2(ξ)ĥ3(ξ)| < ε1/2
∑
ξ∈G
|f̂1(ξ)|1/2|ĥ2(ξ)ĥ3(ξ)|.

By Hölder’s inequality, this is bounded by

ε1/2

(∑
ξ∈G
|f̂1(ξ)|5/2

)1/5(∑
ξ∈G
|ĥ2(ξ)|5/2

)2/5(∑
ξ∈G
|ĥ3(ξ)|5/2

)2/5

6 4Kε1/2,

by (2.4) and (4.2). This is acceptable if ε is small enough. To bound the contribution to the

right-hand side of (4.4) of summands with ξ ∈ Ω, it suffices to show that |ĥ2(ξ)| 6 30ηK2/5 for

ξ ∈ Ω (the rest of the argument follows just as above). Since, by (2.4), |f̂2(ξ)| 6 K2/5, by (4.1)
it suffices to show that ∣∣∣∣1− χ̂(ξ)

‖χ‖1

∣∣∣∣ 6 30η

for ξ ∈ Ω. We may write

1− χ̂(ξ)

‖χ‖1
=

1

N‖χ‖1

∑
n∈G

χ(n)(1− e(ξn/N)).

If n ∈ Bohr(Ω, 2η), then |1 − e(ξn/N)| 6 20η. If n /∈ Bohr(Ω, 2η), then by Lemma 3.1 we have
|χ(n)| 6 η‖χ‖1. Combining these together we obtain∣∣∣∣1− χ̂(ξ)

‖χ‖1

∣∣∣∣ 6 1

N‖χ‖1

(
20η

∑
n∈G

χ(n) +
∑
n∈G

2η‖χ‖1
)

6 30η,

as desired. This completes the proof of (4.3) and the cases where either h2 is replaced by g2 or
h3 is replaced by g3 follow completely similarly. Hence, Theorem 2.3 follows.

Remark 4.1. Theorem 2.3 in particular says that if, for a positive density subset of the primes,
the ternary Goldbach does not hold for all large odd N , then there must be some sort of
Bohr set obstruction (including, as special cases, local obstructions modulo primes), since the
condition (2.4) holds in this case by the work of Green and Tao [GT06]. On the other hand, as
mentioned in § 2, such obstructions may indeed prevent the ternary Goldbach from holding.

Remark 4.2. The condition (2.2) should be compared with the usual hypotheses needed in
carrying out the circle method. In a traditional application of the circle method, one requires the
set to be equidistributed in Bohr sets so that the minor arc contributions are negligible, leading
to an asymptotic formula for the number of solutions. In Theorem 2.3, with a weaker assumption
(2.2) about distribution in Bohr sets, we deduce a lower bound for the number of solutions (of
the correct order of magnitude).
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5. Proof of Theorems 1.1 and 1.2 assuming Theorems 2.5 and 2.6

In this section we deduce Theorems 1.1 and 1.2 from the transference principle, Theorems 2.5
and 2.6 and the work of Green and Tao [GT06]. Let us first record the consequence of [GT06] we
shall need. Here and later, we call a set of linear forms L = {L1, . . . , Lk} admissible if they are
distinct and

∏k
i=1 Li(n) has no fixed prime divisors. In this case, we define the singular series

S(L) =
∏
p∈P

(
1− |{n ∈ Z/pZ : p | L1(n) · · ·Lk(n)}|

p

)(
1− 1

p

)−k
. (5.1)

Proposition 5.1. Let ρ ∈ (0, 1/2) be real and let k > 1 be an integer. Let L = {L1, . . . , Lk} be
an admissible set of k linear functions Li(n) = ain+ bi with |ai|, |bi| 6 N . Write

X =

{
n 6 N : p

∣∣∣∣ k∏
i=1

Li(n) =⇒ p > Nρ

}
,

and let S(L) be defined as in (5.1). Let G = Z/NZ and let f : G → R>0 be such that

f(n) 6

{
(logN)k/S if n ∈ X,
0 otherwise.

Here we naturally identified G with {1, 2, . . . , N}. Then∑
ξ∈G
|f̂(ξ)|5/2 6 K,

for some positive constant K = K(k, ρ).

Proof. Let F = L1L2 · · ·Lk, R = Nρ/2, and let βR(n) be the enveloping sieve given by
[GT06, Proposition 3.1], so that βR(n)�k,ρ f(n). Applying [GT06, Proposition 4.2] with
an = f(n)/βR(n) if βR(n) 6= 0 and an = 0 otherwise, we obtain that(∑

ξ∈G
|f̂(ξ)|5/2

)2/5

�k (En6Na2
nβR(n))1/2�k,ρ (En6NβR(n))1/2�k,ρ 1,

where the last inequality follows from [GT06, Lemma 4.1]. 2

Proof of Theorem 1.1. Let k = k(m), δ0 = δ0(m) and ρ = ρ(m) be as in Theorem 2.5, and let
K = K(k, ρ/2), where K(k, ρ/2) is as in Proposition 5.1. Let ε > 0 be small enough depending
on m, let w be large enough depending on ε and m, and let W =

∏
p6w p.

Let N ′ be an odd positive integer, sufficiently large in terms of all the preceding quantities
m, k, δ0, ρ,K, ε,W . Our goal is to find a representation

N ′ = p1 + p2 + p3,

where, for j = 1, 2, 3, pj are primes such that the interval [pj , pj +H] contains at least m primes.
For j = 1, 2, 3, let bj be integers such that 1 6 bj 6W , (bj ,W ) = 1, and N ′ ≡ b1+b2+b3 (mod W ).
Let

N =
N ′ − b1 − b2 − b3

W
.
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Let h
(1)
1 , . . . , h

(1)
k−1�m 1 be as in Theorem 2.5 with χ = 1. We can assume that w is so large that

|h(1)
i | < w/2 for each i.

With these choices w, b1, h
(1)
j we define

X1 =

{
n 6 N : Wn+ b1 ∈ P,Wn+ b1 +Wh

(1)
i ∈ P for i = 1, . . . ,m− 1,

and p

∣∣∣∣ k−1∏
i=m

(Wn+ b1 +Wh
(1)
i ) =⇒ p > Nρ/2

}
, (5.2)

and let f1 : Z → R>0 be defined by

f1(n) =

(logN)k
ϕ(W )k

W k
if n ∈ X1 ∩ [0.2N, 0.4N),

0 otherwise.
(5.3)

Theorem 2.5 implies ∑
0.2N6n<0.4N

f1(n) >
δ0

10
N

whereas Proposition 5.1 applied with the linear forms

L = {Wn+ b1,Wn+ b1 +Wh
(1)
1 , . . . ,Wn+ b1 +Wh

(1)
k−1}

implies ∑
ξ∈G
|f̂1(ξ)|5/2 6 K

since |h(1)
j | 6 |w|/2, so that S(L) 6 (W/ϕ(W ))k.

Further, let χ = χΩ,η be the Bohr cutoff associated to f1 with δ = δ0/40 from Theorem 2.3,

with |Ω|�m 1, 1 ∈ Ω, and 1�m η < 0.05. For j = 2, 3, let h
(j)
1 , . . . , h

(j)
k−1�m 1 be as in

Theorem 2.5 with b = bj and this choice of χ. We can assume that w is so large that |h(j)
i | < w/2.

With these choices w, bj , h
(j)
i we define, for j = 2, 3, Xj and fj analogously to (5.2) and (5.3),

but with fj now supported on [N/4, N/2). For t ∈ [N/4, N/2), Theorem 2.5 implies∑
N/46n<N/2

fj(n)χ(t− n) >
δ0

10

( ∑
N/46n<N/2

χ(t− n) +O

(
N

w1/3
+ εN

))

>
δ0

30

(∑
n∈G

χ(n) +O

(
N

w1/3
+ εN

))
,

where the second inequality follows since χ is symmetric around zero and is essentially supported
on |n| 6 0.1N , in the sense that ∑

0.1N<n<0.9N

χ(n) 6 η
∑
n∈G

χ(n) (5.4)

by Lemma 3.1. When w is large enough and ε is small enough in terms of m, η and |Ω| (the size
of which depend only on m), this together with Lemma 3.1 implies that

fj ∗ χ(t) >
δ0

40
‖χ‖1.
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Furthermore, Proposition 5.1 implies that, for j = 2, 3,∑
ξ∈G
|f̂j(ξ)|5/2 6 K.

Hence, all the assumptions of Theorem 2.3 are satisfied, and thus f1 ∗ f2 ∗ f3(N) � δ3.
In particular, there exists n1, n2, n3 lying in the support of f1, f2, f3, respectively, such that
n1 +n2 +n3 ≡ 0 (mod N). By the definitions of f1, f2, f3, we necessarily have n1 +n2 +n3 = N ,

and moreover for i = 1, 2, 3, Wni + bi are primes and so are Wni + bi +Wh
(i)
j for 1 6 j 6 m− 1.

This gives the desired representation

N ′ = (Wn1 + b1) + (Wn2 + b2) + (Wn3 + b3),

once H is large enough in terms of m. 2

Proof of Theorem 1.2. Let K = K(2, 1/2000), where K(k, ρ) is as in Proposition 5.1. Let w be
a large parameter, and let W =

∏
p6w p.

Let N ′ ≡ 3 (mod 6) be a positive integer, sufficiently large in terms of K,W . Our goal is to
find a representation

N ′ = p1 + p2 + p3,

where, for j = 1, 2, 3, pj + 2 has at most two prime factors. For j = 1, 2, 3, let bj be integers such
that 1 6 bj 6W , (bj ,W ) = (bj + 2,W ) = 1, and N ′ ≡ b1 + b2 + b3 (mod W ). Let

N =
N ′ − b1 − b2 − b3

W
.

For j = 1, 2, 3, we define

Xj = {n 6 N : Wn+ bj ∈ P,Wn+ bj + 2 = P2, p |Wn+ bj + 2 =⇒ p > N1/1000},

and let f1 : Z → R>0 be defined by

f1(n) =

(logN)2ϕ(W )2

W 2
if n ∈ X1 ∩ [0.2N, 0.4N),

0 otherwise.

Now Theorem 2.6 with χ = 1 implies that∑
0.2N6n<0.4N

f1(n) >
δ1

10
N.

Further, let χ = χΩ,η be the Bohr cutoff associated to f1 with δ = δ1/40 from Theorem 2.3, with
|Ω| � 1, 1 ∈ Ω and 1� η < 0.05. We define fj for j = 2, 3 as f1 but with support [N/4, N/2).
Now Theorem 2.6 implies that, for j = 2, 3, and t ∈ [N/4, N/2),∑
N/46n<N/2

fj(n)χ(t− n) >
δ1

10

( ∑
N/46n<N/2

χ(t− n) +O

(
N

w1/3

))
>
δ1

30

(∑
n∈G

χ(n) +O

(
N

w1/3

))
since χ(n) is essentially supported on |n| 6 0.1N (see (5.4)) and is symmetric around zero. When
w is large enough in terms of η and Ω (sizes of which depend only on m), this and Lemma 3.1
imply that

fj ∗ χ(t) >
δ1

40
‖χ‖1.
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Furthermore Proposition 5.1 implies that, for j = 1, 2, 3,∑
ξ∈G
|f̂j(ξ)|5/2 6 K.

Hence, all the assumptions of Theorem 2.3 are satisfied, and thus f1 ∗ f2 ∗ f3(N) � δ3.
In particular, there exists n1, n2, n3 lying in the support of f1, f2, f3, respectively, such that
n1 +n2 +n3 ≡ 0 (mod N). By the definitions of f1, f2, f3, we necessarily have n1 +n2 +n3 = N ,
and moreover for each i = 1, 2, 3, Wni + bi is a prime and Wni + bi + 2 has at most two prime
factors. This gives the desired representation

N ′ = (Wn1 + b1) + (Wn2 + b2) + (Wn3 + b3). 2

6. Weighted versions of Maynard’s theorem and Chen’s theorem

As discussed in the introduction, the celebrated result of Maynard [May15] (obtained
independently by Tao in an unpublished work) states that, for each m > 1, there exists a
constant H = H(m) such that there exists infinitely many primes p for which the interval
[p, p+H] contains at least m primes. In a subsequent paper [May16], Maynard generalized the
result to show that any subset of the primes which is well-distributed in arithmetic progressions
(in a certain precise sense) contains many primes with bounded gaps, and also made an extension
to linear forms representing primes.

In this section we state a slight variant of the main result of [May16] in the case when the
underlying set is weighted with weights ωn > 0. We also carefully state the dependencies between
different parameters.

For a linear function L(n) = l1n+ l2, we define ϕL(q) = ϕ(|l1|q)/ϕ(|l1|). Let us first state the
required hypotheses which correspond to [May16, Hypothesis 1].

Hypothesis 6.1. For a sequence (ωn), a set of k admissible linear forms L and real numbers
x > 2, θ ∈ (0, 1) and CH > 0, we formulate the following hypothesis.

(i) The sequence (ωn) is well-distributed in arithmetic progressions: we have

∑
r6xθ

max
c

∣∣∣∣ ∑
x6n<2x

n≡c (mod r)

ωn −
1

r

∑
x6n<2x

ωn

∣∣∣∣ 6 CH

∑
x6n<2x ωn

(log x)101k2
.

(ii) Primes represented by linear forms in L are well-distributed in arithmetic progressions:
for any L ∈ L, we have∑

r6xθ

max
(L(c),r)=1

∣∣∣∣ ∑
x6n<2x

n≡c (mod r)
L(n)∈P

ωn −
1

ϕL(r)

∑
x6n<2x
L(n)∈P

ωn

∣∣∣∣ 6 CH

∑
x6n<2x ωn

(log x)101k2
.

(iii) The sequence (ωn) is not too concentrated in any arithmetic progression: for any r 6 xθ

and any c, we have ∑
x6n<2x

n≡c (mod r)

ωn 6 CH
1

r

∑
x6n<2x

ωn.
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The slight variant of Maynard’s main theorem [May16, Theorem 3.1] can now be stated as
follows.

Theorem 6.2. Let α > 0, θ ∈ (0, 1) and CH > 0. There exist a constant C = C(α, θ) such that,
for any k > C there exist positive constants x0 = x0(α, θ, k, CH), δ0 = δ0(α, θ, k) and ρ= ρ(α, θ, k)
such that the following holds.

Let (ωn) be a sequence of non-negative real numbers, let L = {L1, . . . , Lk} be an admissible
set of k linear functions and let x > x0 be an integer. Assume that the coefficients of
Li(n) = ain+ bi satisfy 1 6 ai, bi 6 xα for all 1 6 i 6 k, and assume that k 6 (log x)α.

If Hypothesis 6.1 holds and δ > 1/(log k) is such that

1

k

∑
L∈L

ϕ(ai)

ai

∑
x6n<2x
L(n)∈P

ωn >
δ

log x

∑
x6n<2x

ωn, (6.1)

then ∑
x6n<2x

#({L1(n),...,Lk(n)}∩P)>C−1δ log k
p|L1(n)···Lk(n) =⇒ p>xρ

ωn > δ0
S(L)

(log x)k exp(Ck)

∑
x6n<2x

ωn,

where S(L) is defined as in (5.1).

Proof. The proof is the same as Maynard’s [May16, Proof of Theorem 3.1]. Introducing the
weights ωn makes no difference once one replaces #A(x) in [May16] by the weighted version∑

x6n<2x ωn, etc. Furthermore, to see that the constants δ0 and ρ do not depend on CH , note
that Hypothesis 6.1(1, 2) imply [May16, Hypothesis 1(1, 2)] with implied constant one once x is
large enough in terms of CH . On the other hand, in [May16, Proof of Theorem 3.1], [May16,
Hypothesis 1(3)] is only used together with [May16, Hypothesis 1(1) or (2)] to dispose of some
divisor functions through the Cauchy–Schwarz inequality (see [May16, Formulas (9.2) and (9.3)]
for a typical example). In these situations one also wins a power of log x and thus can take the
implied constant in the resulting bounds to be one once x is large enough in terms of CH . Hence,
none of the implied constants in the proof of Maynard’s theorem depend on CH once x is large
enough in terms of CH . 2

Next we formulate a similar general version of Chen’s theorem. We will need the notion of
a well-factorable function of level R by which we mean a function λ : N ∩ [1, R] → [−1, 1] such
that, for any S, T > 1 with ST = R, we can write λ = γ ∗ δ with 1-bounded functions γ and δ
supported on [1, S] and [1, T ], respectively.

Hypothesis 6.3. For ε ∈ (0, 0.1), a sequence (ωn) of non-negative real numbers, a set of two
admissible linear forms L= {L1, L2} with Li(n) = uin+vi, and a real number x> 2, we formulate
the following hypotheses.

(i) Primes represented by L1 are well-distributed in arithmetic progressions: we have∑
r

(r,u2(u2v1−u1v2))=1

µ(r)2λr

( ∑
x6n<2x
r|L2(n)
L1(n)∈P

ωn −
u1

ϕ(ru1)

∑
x6n<2x

ωn
logL1(n)

)
6

∑
x6n<2x ωn

(log x)10

whenever λ is a well-factorable function of level x1/2−ε or λ = 1p∈[P,P ′) ∗ λ′, where λ′ is a

well-factorable function of level x1/2−ε/P and 2P > P ′ > P ∈ [x1/10, x1/3−ε].
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(ii) Almost primes represented by L2 are well-distributed in arithmetic progressions: we have,
for j = 1, 2, ∑

r
(r,u1(u1v2−u2v1))=1

µ(r)2λr

( ∑
x6n<2x
r|L1(n)
L2(n)∈Bj

ωn −
1

ϕL2(r)

∑
x6n<2x
L2(n)∈Bj

ωn

)
6

∑
x6n<2x ωn

(log x)10

whenever λ is a well-factorable function of level x1/2−ε, where

B1 = {n = p1p2p3 | x1/10 6 p1 < x1/3−ε, x1/3−ε 6 p2 6 (L2(2x)/p1)1/2, p3 > x1/10} (6.2a)

and
B2 = {n = p1p2p3 | x1/3−ε 6 p1 6 p2 6 (L2(2x)/p1)1/2, p3 > x1/10}. (6.2b)

(iii) The sequence (ωn) is not concentrated in Bj : we have, for j = 1, 2,∑
x6n<2x
L2(n)∈Bj

ωn 6 (1 + o(1))
|Bj ∩ [L2(x), L2(2x))|

ϕ(u2)
· 1

x

∑
x6n<2x

ωn,

Note that the factor u1/(ϕ(ru1) logL1(n)) in the first hypothesis is the probability that a
randomly chosen n ∈ [x, 2x) satisfies r | L2(n) and L1(n) ∈ P. Note also that it is straightforward
to find the density of Bj : if u2, v2 6 xo(1), then

|Bj ∩ [L2(x), L2(2x))| = (δ(Bj) + o(1))
u2x

log x
,

where

δ(B1) =

∫ 1/3−ε

1/10

∫ (1−α1)/2

1/3−ε

dα2 dα1

α1α2(1− α1 − α2)
, δ(B2) =

∫ 1/3

1/3−ε

∫ (1−α1)/2

α1

dα2 dα1

α1α2(1− α1 − α2)
.

(6.3)
To see that the coprimality conditions (r, u2(u2v1 − u1v2)) = 1 and (r, u1(u1v2 − u2v1)) = 1

occur naturally, note that if r and ui share a common prime divisor p, then p - Li(n) for all n by
the admissibility of Li, and thus the sum over those n satisfying r|Li(n) is empty. Similarly, if
(r, ui) = 1 but r and u2v1 − u1v2 share a common prime divisor p < x1/10, then p|Li(n) implies
p|Lj(n) (where j = 3 − i), and thus the sum over those n satisfying r|Li(n) and Lj(n) ∈ B (or
Lj(n) ∈ P) is empty.

Theorem 6.4. There exist positive constants δ0, ε and x0 such that the following holds. Let
(ωn) be a sequence of non-negative real numbers, L = {L1, L2} be an admissible set of two linear
functions and let x > x0. Assume that the coefficients of Li(n) = uin+vi satisfy 1 6 ui, vi 6 xo(1),
and that Hypothesis 6.3 holds. Then∑

x6n<2x
L1(n)∈P
L2(n)=P2

p|L2(n) =⇒ p>x1/10

ωn > δ0
S(L)

(log x)2

∑
x6n<2x

ωn −O
(
x0.9 max

n
ωn

)
,

where S(L) is as in (5.1).

Since the proof is essentially Chen’s sieving device written in general terms, we postpone its
proof to Appendix A.
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7. Technical reductions

The conclusion of Maynard’s theorem does not quite correspond to the conclusion we want in
Theorem 2.5. However, we can quickly deduce Theorem 2.5 from the following variant which is
more apt for an application of Maynard’s theorem.

Proposition 7.1. For any positive integerm, there exist a positive integer k = k(m) and positive
constants δ1 = δ1(m) and ρ = ρ(m) such that the following holds. Let χ : Z → R>0 be a function
with Fourier complexity at most M for some M > 1, let W =

∏
p6w p and let (b,W ) = 1. There

exists a positive constant N0 = N0(m,M,w) such that, for any distinct integers h1, . . . , hk with
|hj | < w/2, any N > N0 and |t| 6 5N ,∑

N6n<2N
|{W (n+hi)+b}∩P|>m

p|
∏k
i=1(W (n+hi)+b) =⇒ p>Nρ

χ(t− n) > δ1
1

(logN)k
W k

ϕ(W )k

( ∑
N6n<2N

χ(t− n) +O

(
M2N

w1/2

))
.

Proof that Proposition 7.1 implies Theorem 2.5. Let k = k(m), δ1 = δ1(m) and ρ = ρ(m) be as
in Proposition 7.1. Let α1, . . . , αM be the phases appearing in the Fourier expansion of χ. By
the simultaneous version of the Dirichlet approximation theorem, we can find k distinct positive
integers h′j�M,ε,m 1 such that

‖αih′j‖ 6
ε

M2
for every i = 1, . . . ,M and j = 1, . . . , k.

These choices ensure that, whenever n− n′ ∈ {h′1, . . . , h′k}, we have

|χ(n)− χ(n′)| � ε. (7.1)

We can assume that w is so large in terms of M, ε and m that |h′j | < w/2 for all j and w1/6 is

at least 2M2 times the implied constant in the conclusion of Proposition 7.1. By Proposition 7.1
we see that, for any |t| 6 5N ,∑

N6n<2N
|{W (n+h′i)+b}∩P|>m

p|
∏k
i=1(W (n+h′i)+b) =⇒ p>Nρ

χ(t− n) > δ1
1

(logN)k
W k

ϕ(W )k

( ∑
N6n<2N

χ(t− n)− N

2w1/3

)
.

We get that, for some J ⊆ {1, . . . , k} with #J = m,∑
N6n<2N

W (n+h′j)+b∈P for each j∈J
p|
∏k
i=1(W (n+h′i)+b) =⇒ p>Nρ

χ(t− n) >
δ1(
k
m

) · 1

(logN)k
W k

ϕ(W )k

( ∑
N6n<2N

χ(t− n)− N

2w1/3

)
.

Let r ∈ J be such that h′r is the minimal among h′j with j ∈ J . We take h1, . . . , hk−1 to be any
choice (unique up to permutation) such that

{hi : i = 1, . . . ,m− 1} = {h′i − h′r : i ∈ J \{r}}

and
{hi : i = m, . . . , k − 1} = {h′i − h′r : i ∈ {1, . . . , k}\J }.
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Substituting n′ = n+ h′r, we see that∑
N+h′r6n

′<2N+h′r
Wn′+b∈P

Wn′+Whi+b∈P for i=1,...,m−1

p|
∏k−1
i=m(Wn′+Whi+b) =⇒ p>Nρ

χ(t− n′ + h′r) >
δ1(
k
m

) · 1

(logN)k
W k

ϕ(W )k

( ∑
N6n<2N

χ(t− n)− N

2w1/3

)
.

(7.2)
By (7.1) we may replace the summand χ(t− n′ + h′r) above by χ(t− n′) using a standard sieve
bound for the number of elements counted on the left-hand side of (7.2), getting that∑

N+h′r6n
′<2N+h′r

Wn′+b∈P
Wn′+Whi+b∈P for i=1,...,m−1

p|
∏k−1
i=m(Wn′+Whi+b) =⇒ p>Nρ

χ(t−n′) > δ1(
k
m

) · 1

(logN)k
W k

ϕ(W )k

( ∑
N6n<2N

χ(t−n)− N

2w1/3
+O(εN)

)

with the implied constant depending only on k and ρ and thus only on m. Theorem 2.5 follows
with δ0 = δ1/(2

(
k
m

)
) through noting that the terms with n′ ∈ [2N, 2N +h′r) on the left-hand side

contribute at most M2h′r. 2

Since Bohr sets (and, in general, functions with bounded Fourier complexity) are not
equidistributed in arithmetic progressions, we cannot apply Maynard’s theorem to the situation
in Proposition 7.1 directly, but we need to be careful with our choice of the sequence ωn to which
we apply Maynard’s theorem. In particular, the moduli qi | Q in the Fourier expansion of χ in
Lemma 3.2 are problematic, and for this reason we will split into residue classes (mod Q).

In § 9 we shall use Maynard’s theorem (Theorem 6.2) and exponential sum estimates (which
we will state in § 8) to prove the following proposition.

Proposition 7.2. For any positive integerm, there exist a positive integer k = k(m) and positive
constants δ1 = δ1(m), ρ = ρ(m) and A = A(m) such that the following holds. Let χ : Z → R>0 be
a function with Fourier complexity at most M for some M > 1. Let W =

∏
p6w p, let (b,W ) = 1

and let N > N0(m,M,w) be large. Let Q be from Lemma 3.2 corresponding to A. Then, for any
distinct integers h1, . . . , hk with |hj | < w/2, any |t| 6 5N and c0 ∈ CM ,∑

N6n<2N
n≡c0 (mod Q)

|{W (n+hi)+b}∩P|>m
p|
∏k
i=1(W (n+hi)+b) =⇒ p>Nρ

χ(t−n) > δ1
1

(logN)k
W k

ϕ(W )k
Q

|CM |

( ∑
N6n<2N

n≡c0 (mod Q)

χ(t−n) +O

(
N

Qw10

))
,

where
CM = {c0 (mod Q) : (Wc0 +Whi + b,Q) = 1 for every i = 1, . . . , k}.

Note that, since |hi| < w/2, by the Chinese reminder theorem

|CM | = Q
∏

p|Q,p>w

(
1− k

p

)
. (7.3)

Let us next state a similar proposition that we shall prove using Chen’s theorem
(Theorem 6.4).
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Proposition 7.3. Let χ : Z → R>0 be a function with Fourier complexity at most M for some
M > 1. Let W =

∏
p6w p, let (b,W ) = (b+ 2,W ) = 1 and let N > N0(M,w) be large. Let Q be

from Lemma 3.2 corresponding to some large enough A. Then, for any |t| 6 5N , and c0 ∈ CC ,

∑
N6n<2N

n≡c0 (mod Q)
Wn+b∈P

Wn+b+2=P2

p|Wn+b+2 =⇒ p>N1/100

χ(t−n) > δ1
1

(logN)2

W 2

ϕ(W )2

Q

|CC |

( ∑
N6n<2N

n≡c0 (mod Q)

χ(t−n)+O

(
N

Q(logN)100

))
,

for some absolute constant δ1 > 0, where

CC = {c0 (mod Q), (Wc0 + b,Q) = (Wc0 + b+ 2, Q) = 1}.

To show that Propositions 7.2 and 7.3 imply Proposition 7.1 and Theorem 2.6, we use the
following lemma allowing us to sum over all the residue classes in CM and CC .

Lemma 7.4. Let χ be a function of Fourier complexity at most M for some M > 1, and let N,Q
be positive integers with N > 2Q2. Let also Q be a collection of residue classes modulo Q such
that, for all 1 6= q | Q and (a, q) = 1, one has∑

c0∈Q
e

(
a

q
c0

)
= O(η|Q|), (7.4)

for some η > 0. Then

Q

|Q|
∑
c0∈Q

∑
N6n<2N

n≡c0 (mod Q)

χ(t− n) >
∑

N6n<2N

χ(t− n) +O(ηM2N +QM2N1/2). (7.5)

Proof. By Definition 2.4, we have the Fourier expansion

χ(t− n) =
M∑
i=1

bie(αi(t− n)),

for some |bi| 6M and αi ∈ R/Z. For each 1 6 i 6M , we may find integers 0 6 ai < qi 6 N1/2

with (ai, qi) = 1 such that |αi − ai/qi| 6 1/(qiN
1/2).

Let us first consider the contribution of those i with qi = 1 to the left-hand side of (7.5).
This contribution is, using Lemma B.1,

Σ1 :=
Q

|Q|
∑
c0∈Q

∑
16i6M
qi=1

bi
∑

N6n<2N
n≡c0 (mod Q)

e(αi(t− n))

=
Q

|Q|
∑
c0∈Q

∑
16i6M
qi=1

bi

(
1

Q

∑
N6n<2N

e(αi(t− n)) +O(N1/2)

)

=
∑

16i6M
qi=1

bi
∑

N6n<2N

e(αi(t− n)) +O(QM2N1/2).
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By Lemma B.2 we can extend the sum to go over all 1 6 i 6 M , at the cost of an error of size
M2 maxi qi �M2N1/2, obtaining

Σ1 =
∑

N6n<2N

∑
16i6M

bie(αi(t− n)) +O(QM2N1/2)

=
∑

N6n<2N

χ(t− n) +O(QM2N1/2).

Hence, we are finished if we can show that, for each i such that with qi > 1, we have

Q

|Q|
∑
c0∈Q

∑
N6n<2N

n≡c0 (mod Q)

e(αi(t− n)) = O(ηN +QN1/2). (7.6)

In case qi - Q, we have qi/(qi, Q) > 1 and, thus, by Lemma B.2, the left-hand side is O(Qqi) =
O(QN1/2).

In case qi | Q, writing αi = ai/qi + βi, the sum over n on the left-hand side of (7.6) equals

e

(
ai
qi

(t− c0)

) ∑
N6n<2N

n≡c0 (mod Q)

e(βi(t− n))

= e

(
ai
qi

(t− c0)

)
· 1

Q

( ∑
N6n<2N

e(βi(t− n))

)
+O(N1/2)

by Lemma B.1. Hence, the left-hand side of (7.6) equals∑
N6n<2N

e

(
βi(t− n) +

ai
qi
t

)
1

|Q|
∑
c0∈Q

e

(
−ai
qi
c0

)
+O(QN1/2),

and (7.6) follows from the assumption (7.4). 2

To show that (7.4) holds for Q = CM and for Q = CC , we shall use the following elementary
lemma related to a certain modification of Ramanujan sums.

Lemma 7.5. Let q be a natural number, (a, q) = 1 and let P (n) be a polynomial with integer
coefficients. Write ρ(n) = #{k (mod n) : P (k) ≡ 0 (mod n)}. Then∣∣∣∣ ∑

n (mod q)
(P (n),q)=1

e

(
an

q

)∣∣∣∣ 6 ρ(q).

Proof. By Möbius inversion,∑
n (mod q)
(P (n),q)=1

e

(
an

q

)
=
∑
d|q

µ(d)
∑

n (mod q)
P (n)≡0 (mod d)

e

(
an

q

)
.

For a fixed d | q, write x1, . . . , xρ(d) for the roots of P (n) (mod d). Then

∑
n (mod q)

P (n)≡0 (mod d)

e

(
an

q

)
=

ρ(d)∑
i=1

∑
n (mod q)

n≡xi (mod d)

e

(
an

q

)
=

ρ(d)∑
i=1

e

(
axi
q

) ∑
k (mod q/d)

e

(
ak

q/d

)
, (7.7)

where we have written n = xi + kd. The last sum vanishes unless d = q in which case (7.7) has
absolute value at most ρ(q), and the claim follows. 2
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Proof that Proposition 7.2 implies Proposition 7.1. We may assume that w is large enough
in terms of m, since otherwise the error term dominates and the claim is trivial. By
Lemma 7.4 it remains to show (7.4) for Q = CM and 1 6= q | Q with η = w−1/2. Writing
R(n) =

∏k
i=1(Wn+Whi + b), equation (7.4) reduces to∑

c0 (mod Q)
(R(c0),Q)=1

e

(
a

q
c0

)
= O

(
Q

w1/2

∏
p|Q
p>w

(
1− k

p

))
. (7.8)

We can uniquely decompose Q = qq′Q′, where (Q′, q) = 1 and p | q′ =⇒ p | q. Then, when c1

and c2 run through residue classes (mod q′Q′) and (mod q), respectively, c1q+c2Q
′ runs through

residue classes (mod Q). Writing c0 in this form, the left-hand side of (7.8) becomes∑
c1 (mod q′Q′)
(R(c1q),Q′)=1

∑
c2 (mod q)

(R(c2Q′),q)=1

e

(
aQ′

q
c2

)
. (7.9)

Since R(n) is always co-prime to W , Lemma 7.5 implies that the inner sum in (7.9) vanishes
unless (q,W ) = 1. Furthermore, in this case it has absolute value at most

#{c2 (mod q) : R(c2Q
′) ≡ 0 (mod q)} 6 kΩ(q) 6 q1/3,

since p | q =⇒ p > w and w is large enough. Hence, we obtain that the absolute value of (7.9)
is at most ∑

c1 (mod q′Q′)
(R(c1q),Q′)=1

q1/3 = q′q1/3
∑

c1 (mod Q′)
(R(c1q),Q′)=1

1.

By the definition of R(n), R(n) is always co-prime to W =
∏
p6w p, and for every p > w,

R(n) ≡ 0 (mod p) has k incongruent solutions (mod p) (since |hi| < w/2 for every i). Hence, the
absolute value of (7.9) is at most

q1/3q′Q′
∏

p|Q′,p>w

(
1− k

p

)
6

Q

q1/2

∏
p|Q,p>w

(
1− k

p

)
,

and (7.8) follows since q > 1 and (q,W ) = 1, so that q > w. 2

Proof that Proposition 7.3 implies Theorem 2.6. By Lemma 7.4 it remains to show (7.4) for
Q = CC and 1 6= q | Q with η = w−1/2. This time we take R(n) = (Wn + b)(Wn + b + 2),
and the claim follows exactly as in the previous proof, with k = 2. 2

8. Exponential sum estimates

In this section we state exponential sum estimates that we will use in the proofs of
Propositions 7.2 and 7.3. Since the proofs closely follow previous works, we postpone them
to Appendix B.

8.1 Major arc estimates
Lemma 8.1. Let C1, C2 > 1 and ε > 0. There exists a constant x0 = x0(C1, C2, ε) such that the
following holds. Let Q 6 (log x)C1 and let q > 1 and a be integers such that q | Q and (a, q) = 1.
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Assume that |α− a/q| 6 (log x)C1/x. Then, for every x > x0,∑
r6x1/2−ε

max
(c,rQ)=1

∣∣∣∣ ∑
x6p<2x

p≡c (mod rQ)

e(αp)− Q

ϕ(rQ)

∑
x6n<2x

n≡c (mod Q)

e(αn)

log n

∣∣∣∣ 6 x

Q(log x)C2
.

Lemma 8.2. Let C1, C2 > 1 and ε > 0. There exists a constant x0 = x0(C1, C2, ε) such that the
following holds. Let Q 6 (log x)C1 and let q > 1 and a be integers such that q | Q and (a, q) = 1.
Assume that |α− a/q| 6 (log x)C1/x. Then, for every x > x0, any bounded sequences {am} and
{bn}, and any x1/4 6M 6 x3/4,∑

r6x1/2−ε

max
(c,rQ)=1

∣∣∣∣ ∑
x6mn<2x

mn≡c (mod rQ)
M6m<2M

ambne(αmn)− 1

ϕ(rQ)

∑
x6mn<2x
(mn,rQ)=1
M6m<2M

ambne(αmn)

∣∣∣∣
6

x

Q(log x)C2
.

8.2 Minor arc estimates
Our minor arc estimates are close variants of those proved in earlier papers. In particular, we
follow [Mat09] which, in turn, is based on ideas developed in [BP85, Mik00].

Lemma 8.3 (Type I estimate). There exists x0 such that the following holds. Let Q, q > 1 and
a be integers such that (a, q) = 1. Let |am| 6 1. Write h = (q,Q). Assume that α is such that
|α− a/q| < 1/(Qq2) and that Q 6 x1/2. Then, for every x > x0 and any M > 1,

∑
r6x1/2

max
(c,rQ)=1

∣∣∣∣ ∑
x6mn<2x

mn≡c (mod rQ)
M6m<2M

ame(αmn)

∣∣∣∣ 6 x

Q

((
h

q

)1/2

+

(
MQ

x1/2

)1/2

+

(
q

x/Q

)1/2)
(log x)4.

Lemma 8.4 (Type II estimate). Let C > 1. There exists a constant x0 = x0(C) such that the
following holds. Let Q, q > 1 and a be integers such that (a, q) = 1, write h = (q,Q2), and
assume that |α − a/q| < 1/(4q2Q2(log x)2C). Let M ∈ [x1/2, x3/4], Q 6 x3/2/(2M2(log x)C),
D 6 x/(MQ(log x)C) and R 6M/x1/2, and let c′ ∈ Z.

Then, for every x > x0 and any |ak|, |bk| 6 τ(k),∑
D6d<2D

max
(c,dQ)=1

∑
R6r<2R

(r,c′dQ)=1

∣∣∣∣ ∑
x6mn<2x

mn≡c′ (mod r)
mn≡c (mod dQ)
M6m<2M

ambne(αmn)

∣∣∣∣

6
x

Q
·
(

(log x)C/2

(q/h)1/8
+ (log x)C/2Q1/2 q

1/8

x1/8
+

1

(log x)C/8

)
(log x)10.

Combining the type I and II estimates through Vaughan’s identity we will obtain the following
minor arc estimates for exponential sums over primes.

Lemma 8.5. Let C > 1. There exists a constant x0 = x0(C) such that the following holds.
Let Q, q > 1 and a be integers such that (a, q) = 1, write h = (q,Q2), and assume that
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|α− a/q| < 1/(4q2Q2(log x)2C). Then, for every x > x0, and Q 6 x1/10,

∑
r6x1/8

max
(c,rQ)=1

∣∣∣∣ ∑
x6p<2x

p≡c (mod rQ)

e(αp)

∣∣∣∣ 6 x

Q
·
(

(log x)C/2

(q/h)1/8
+ (log x)C/2Q1/2 q

1/8

x1/8
+

1

(log x)C/8

)
(log x)15.

Lemma 8.6. Let C > 1. There exists a constant x0 = x0(C) such that the following holds.
Let Q, q > 1 and a be integers such that (a, q) = 1, write h = (q,Q2), and assume that
|α− a/q| < 1/(4q2Q2(log x)2C). Let λr be as in Hypothesis 6.3(i).

Then, for every x > x0, Q 6 xε/2, (c,Q) = 1 and c′ ∈ Z,∣∣∣∣ ∑
r6x1/2−ε

(r,c′Q)=1

µ(r)2λr
∑

x6p<2x
p≡c′ (mod r)
p≡c (mod Q)

e(αp)

∣∣∣∣ 6 x

Q
·
(

(log x)C/2

(q/h)1/8
+ (log x)C/2Q1/2 q

1/8

x1/8
+

1

(log x)C/8

)
(log x)15.

9. Proof of Proposition 7.2

In this section we prove Proposition 7.2 using Maynard’s theorem (Theorem 6.2). Let us
start by choosing the sequence ωn and other parameters to which we apply Theorem 6.2. Let
C = C(1/8, 1/8) be as in Theorem 6.2, k = max{C, e4Cm}, and let ρ = ρ(k, 1/8, 1/8) be as in
Theorem 6.2. We take x = N/Q,

(ωn) = (χ(t−Qn− c0)), and, for i = 1, . . . , k, Li(n) = W (Qn+ c0 + hi) + b.

We can assume that
∑

x6n<2x ωn > x/w10 since otherwise Proposition 7.2 is trivial. With these
choices, we shall show that, for any i = 1, . . . , k,∑

r6x1/8

max
c

∣∣∣∣ ∑
x6n<2x

n≡c (mod r)

ωn −
1

r

∑
x6n<2x

ωn

∣∣∣∣�M,w
x

(log x)105k2
, (9.1)

∑
r6x1/8

max
c

(W (Qc+c0+hi)+b,r)=1

∣∣∣∣ ∑
x6n<2x

n≡c (mod r)
W (Qn+c0+hi)+b∈P

ωn −
QW

ϕ(QWr)

∑
x6n<2x

ωn
log(W (Qn+ c0 + hi) + b)

∣∣∣∣
�M,w

x

(log x)105k2
, (9.2)

and that, for any r 6 x1/8 and any c, we have∑
x6n<2x

n≡c (mod r)

ωn�M,w
x

rw10
. (9.3)

Now (9.1) implies Hypothesis 6.1(i) and (9.3) implies Hypothesis 6.1(iii). Furthermore,
looking only at the r = 1 summand, we see that (9.2) implies that∣∣∣∣ ∑

x6n<2x
W (Qn+c0+hi)+b∈P

ωn −
QW

ϕ(QW )

∑
x6n<2x

ωn
log(W (Qn+ c0 + hi) + b)

∣∣∣∣�M,w
x

(log x)105k2
, (9.4)
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which implies (6.1) with δ = 1/2 (say). Furthermore, multiplying (9.4) by ϕ(QW )/ϕ(QWr) and
summing over r 6 x1/8, we see that∑

r6x1/8

max
c

(W (Qc+c0+hi)+b,r)=1

×
∣∣∣∣ ϕ(QW )

ϕ(QWr)

∑
x6n<2x

W (Qn+c0+hi)+b∈P

ωn −
QW

ϕ(QWr)

∑
x6n<2x

ωn
log(W (Qn+ c0 + hi) + b)

∣∣∣∣
�M,w

x

(log x)103k2
,

which together with (9.2) implies Hypothesis 6.1(ii) through the triangle inequality.

Hence, assuming we can prove (9.1)–(9.3), recalling our choice of k, Maynard’s theorem with

δ = 1/2 gives ∑
x6n<2x

#({L1(n),...,Lk(n)}∩P)>m
p|L1(n)···Lk(n) =⇒ p>xρ

ωn�m
S(L)

(log x)k

∑
x6n<2x

ωn.

Here

S(L) =
∏
p

(
1−

#{1 6 n 6 p : p |
∏k
i=1(W (Qn+ c0 + hi) + b)}
p

)(
1− 1

p

)−k
� 1

exp(O(k))
·
(

QW

ϕ(QW )

)k
=

1

exp(O(k))
·
(

W

ϕ(W )

)k
· Q

|CM |

by (7.3).

Recalling the definitions of ωn and Li(n), we obtain,

∑
N6n<2N

n≡c0 (mod Q)
#({W (n+hi)+b}∩P)>m

p|
∏k
i=1(W (n+hi)+b) =⇒ p>Nρ/2

χ(t− n)�m

(
W

ϕ(W )

)k
· Q

|CM |
1

(log x)k

∑
N6n<2N

n≡c0 (mod Q)

χ(t− n)

which was the claim.

Hence, it remains to show (9.1)–(9.3). By the Fourier expansion of χ(n) in Lemma 3.2, it is

enough to show these with

ωn = e

((
W
a

q
+ β

)
Qn

)
, (9.5)

where 0 6 a < q 6 N/(logN)100B, (a, q) = 1, |β| 6 W (logN)100B/(qN), and, moreover, either

q | Q or q/(q,Q2) > (logN)A. In particular, (9.3) follows immediately from a trivial estimate.

We also note that when considering (9.1)–(9.2) with ωn as in (9.5), in case

|β| 6 1/(Qx(log x)111k2) we can assume that β = 0 since |e(y + h) − e(y)| = O(h). On the
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other hand, if |β| > 1/(Qx(log x)111k2), then this combined with the upper bound for |β| implies
that |β| < 1/(4Q2q2(log x)3200k2). Hence, we can in any case assume that

|β| < min

{
1

4Q2q2(log x)3200k2
,
(log x)110B

x

}
. (9.6)

9.1 Establishing (9.1)
For q | Q, the left-hand side of (9.1) with ωn as in (9.5) equals∑

r6x1/8

max
c

∣∣∣∣ ∑
x6n<2x

n≡c (mod r)

e(βQn)− 1

r

∑
x6n<2x

e(βQn)

∣∣∣∣� ∑
r6x1/8

(|β|Qx+ 1)� x1/2

by Lemma B.1.
For q - Q, the left-hand side of (9.1) with ωn as in (9.5) is by triangle inequality at most

log x
∑
r6x1/8

max
c

∣∣∣∣ ∑
x6n<2x

n≡c (mod r)

e

((
W
a

q
+ β

)
Qn

)∣∣∣∣. (9.7)

Recall (9.6) and that q/(q,WQ) > (logN)A/W , so that, by Lemma 8.3 with M = Q = h = 1
and q/(q,QW ) in place of q, we obtain that (9.7) is at most

x

(
W 1/2

(logN)A/2
+

1

x1/4
+

N1/2

x1/2(logN)50B

)
(log x)4 � x

(log x)110k2

once A is large enough in terms of k.

9.2 Establishing (9.2)
By changes of variables p, n′ = W (Qn+ c0 + hi) + b and c′ = W (Qc+ c0 + hi) + b, the left-hand
side of (9.2) with ωn as in (9.5) is at most∑

r6x1/8

max
(c′,QWr)=1

∣∣∣∣ ∑
QWx6p<2QWx
p≡c′ (mod QWr)

e

((
a

q
+

β

W

)
p

)

− QW

ϕ(QWr)

∑
QWx6n′<2QWx
n′≡c′ (mod QW )

(log n′)−1e

((
a

q
+

β

W

)
n

)∣∣∣∣+O(x1/2).

In case q | Q this is O(x/(log x)200k2) by Lemma 8.1 recalling (9.6).
In case q - Q, note that q/(q, (QW )2) > (logN)A/W 2 and recall (9.6). We use the

triangle inequality and estimate the two terms corresponding to the two sums inside the absolute
values separately. The contribution corresponding to the sum over n′ can be satisfactorily
estimated by Lemma 8.3 with r = M = 1 after partial summation. Furthermore, Lemma 8.5
with C = 1600k2 implies∑
r6x1/8

max
(c′,QWr)=1

∣∣∣∣ ∑
QWx6p<2QWx
p≡c′ (mod QWr)

e

((
a

q
+

β

W

)
p

)∣∣∣∣
6 x ·

(
(log x)800k2

((logN)A/W 2)1/8
+ (log x)800k2Q1/2W

q1/8

x1/8
+

1

(log x)200k2

)
(log x)15 � x

(log x)150k2

when A is large enough in terms of k.
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10. Proof of Proposition 7.3

In this section we prove Proposition 7.3 using Chen’s theorem (Theorem 6.4). Let L = {L1, L2}
be the collection of two linear forms L1(n) = W (Qn+ c0) + b and L2(n) = W (Qn+ c0) + b+ 2,

and note that

S(L) �
∏
p|QW

(
1− 1

p

)−2

=

(
QW

ϕ(QW )

)2

� W 2

ϕ(W )2

Q

|CC |
.

Let x = N/Q. Define the sequence (ωn) for x 6 n < 2x by

ωn = χ(t−Qn− c0).

Since χ has Fourier complexity at most M , we have ωn 6M2 for every n. Thus, the conclusion

follows from Chen’s theorem (Theorem 6.4), once we verify the hypotheses. We may assume that∑
x6n<2x ωn > x/(log x)100 since otherwise the conclusion is trivial. Under this assumption, it

suffices to show that, for λr as in Hypothesis 6.3(i),

∑
r

(r,QW )=1

µ(r)2λr

( ∑
x6n<2x

r|W (Qn+c0)+b+2
W (Qn+c0)+b∈P

ωn −
QW

ϕ(QWr)

∑
x6n<2x

ωn
log(W (Qn+ c0) + b)

)
� x

(log x)200

(10.1)

and that, for Bj and λr as in Hypothesis 6.3(ii),

∑
r

(r,QW )=1

µ(r)2λr

( ∑
x6n<2x

r|W (Qn+c0)+b
W (Qn+c0)+b+2∈Bj

ωn −
ϕ(QW )

ϕ(QWr)

∑
x6n<2x

W (Qn+c0)+b+2∈Bj

ωn

)
� x

(log x)200
(10.2)

and that, for δ(Bj) as in (6.3),

∑
x6n<2x

W (Qn+c0)+b+2∈Bj

ωn =
δ(Bj) + o(1)

log x
· QW

ϕ(QW )

∑
x6n<2x

ωn. (10.3)

By the Fourier expansion of χ(n) in Lemma 3.2, it is enough to show these with

ωn = e

((
W
a

q
+ β

)
Qn

)
, (10.4)

where 0 6 a < q 6 N/(logN)100B, (a, q) = 1, |β| 6 W (logN)100B/(qN) and, moreover, either

q | Q or q/(q,Q2) > (logN)A. Furthermore, arguing as before (cf. (9.6)), we can assume

|β| < min

{
1

4Q2q2(log x)40000
,
(log x)110B

x

}
. (10.5)

10.1 Establishing (10.1)
After changes of variables p, n′ = W (Qn + c0) + b, we can rewrite the left-hand side of (10.1)
with ωn as in (10.4) essentially as
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r

(r,QW )=1

µ(r)2λr

( ∑
QWx6p<2QWx
p≡−2 (mod r)

p≡Wc0+b (mod QW )

e

((
a

q
+

β

W

)
p

)

− QW

ϕ(QWr)

∑
QWx6n′<2QWx

n′≡Wc0+b (mod QW )

(log n′)−1e

((
a

q
+

β

W

)
n′
))

.

In case q | Q, this is O(x/(log x)200) by Lemma 8.1 recalling (10.5). In case q - Q, note that
q/(q, (QW )2) > (logN)A/W 2 and recall (10.5). We estimate the two terms corresponding to the
sums over p and n′ separately. The contribution from the term corresponding to the sum over
n′ can be satisfactorily estimated by Lemma 8.3 with r = M = 1 after partial summation. For
the term corresponding the sum over p, Lemma 8.6 with C = 20000 implies the desired bound
once A and B are large enough.

10.2 Establishing (10.2)
By the definition of B1 in (6.2) we can write

1W (Qn+c0)+b+2∈B1
=

∑
mp=W (Qn+c0)+b+2

p>x1/10

am,

where am = 1 if m = p1p2 for some x1/10 6 p1 < x1/3−ε and x1/3−ε 6 p2 < (L2(2x)/p1)1/2, and
am = 0 otherwise. Note that am is supported on m ∈ [x1/3, x2/3]. After a dyadic division and
changes of variables mp = W (Qn+ c0) + b+ 2, to prove (10.2) with ωn as in (10.4) it suffices to
show that for M ∈ [x1/3, x2/3],∑

r
(r,QW )=1

µ(r)2λr

( ∑
QWx6mp<2QWx
mp≡2 (mod r)

mp≡Wc0+b+2 (mod QW )
M6m<2M

ame

((
a

q
+

β

W

)
mp

)

− ϕ(QW )

ϕ(QWr)

∑
QWx6mp<2QWx

mp≡Wc0+b+2 (mod QW )
M6m<2M

ame

((
a

q
+

β

W

)
mp

))
� x

(log x)210
.

In case q | Q, this follows from Lemma 8.2 applied twice (once with the r = 1 term only),
recalling (10.5) and noting that we may add the restriction (mp,QWr) = 1 in the second sum
above at a negligible cost, since for each r there are O(x0.9) values of mp with (mp,QWr) > 1. In
case q - Q, note that q/(q, (QW )2) > (logN)A/W 2 and recall (10.5). We estimate the two sums
separately. The easier second sum can be estimated by Lemma 8.3 with r = 1. The first sum can
be estimated by Lemma 8.4 (after factorizing λr) with C = 20000 once A is large enough.

Hypothesis (10.2) for B2 follows similarly noting that

1W (Qn+c0)+b+2∈B2
=

∑
mp=W (Qn+c0)+b+2

p>x1/10

am,

where am = 1 if m = p1p2 for some x1/3−ε 6 p1 6 p2 6 (L2(2x)/p1)1/2 and am = 0 otherwise;
thus, am is supported on m ∈ [x2/3−2ε, x2/3+o(1)], so that our type II results (Lemmas 8.2 and 8.4)
are still applicable.
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10.3 Establishing (10.3)
In case q | Q, by partial summation it is enough to prove (10.3) in case β = 0 (strictly speaking
one should consider the interval n ∈ [x, x′] instead of n ∈ [x, 2x) but this makes no difference).
Since q | Q, we have ωn ≡ 1. By a change of variables n′ = W (Qn + c0) + b + 2, it suffices to
show that ∑

QWx6n′<2QWx
n′≡Wc0+b+2 (mod QW )

1n′∈Bj =
δ(Bj) + o(1)

ϕ(QW )
· QWx

log x
,

which follows easily from the prime number theorem in arithmetic progressions. In case q - Q,
both sides of (10.3) are easily shown to be small using the argument from the previous subsection:
the left-hand side can be estimated by Lemma 8.3 and the right-hand side can be estimated by
Lemma B.2.
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Appendix A. Proof of the generalized Chen’s theorem

In this section we prove Theorem 6.4.

A.1 The linear sieve
For a (finitely supported) sequence A = (am) of non-negative numbers we write |A| =

∑
m am

and Ad = (adm)m. We also define a sieving function

S(A, z) =
∑

(m,P (z))=1

am,

where
P (z) =

∏
p<z

p.

To bound S(A, z) we need some information about A. We will assume that, for all square-free
integers d, we have

|Ad| =
g(d)

d
X + r(A, d),

where g(d) is multiplicative and X is independent of d. Further, let

V (z) =
∏
p|P (z)

(
1− g(p)

p

)
.

We will use the linear sieve with a well-factorable error term due to Iwaniec [Iwa80]. For the
following statement, see [FI10, Theorems 12.19 and 12.20].

Lemma A.1. Let 2 6 z 6 D1/2 and s = logD/log z. Let ε > 0 be small enough and let
L(ε) = e1/ε3 . Assume that, for some absolute constant K > 1,∏

z16p<z2

(
1− g(p)

p

)−1

6 K
log z2

log z1
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for all z2 > z1 > 2. Then

S(A, z) 6 XV (z)(F (s) +OK(ε)) +
∑
l<L(ε)

∑
d|P (z)

λ+
l (d)r(A, d)

and
S(A, z) > XV (z)(f(s)−OK(ε))−

∑
l<L(ε)

∑
d|P (z)

λ−l (d)r(A, d).

Here, for each l, λ±l are well-factorable functions of level D, and F, f : [1,∞) → R>0 are the
continuous solutions to the system

sF (s) = 2eγ if 1 6 s 6 3,

sf(s) = 0 if 1 6 s 6 2,

(sF (s))′ = f(s− 1) if s > 3,

(sf(s))′ = F (s− 1) if s > 2.

A.2 Introducing Chen’s weights
Write A = (am) for the sequence defined by

am =

{
ωn · 1L1(n)∈P m = L2(n) for some x 6 n < 2x,

0 otherwise.

Note that A is supported on L2(x) 6 m < L2(2x).
Using a slight modification of the weighted sieve method of Chen, we consider

S =
∑
m

(m,P (x1/10))=1

am

(
1− 1

2

∑
x1/106p1<x1/3−ε

p1|m

1

− 1

2

∑
m=p1p2p3

x1/106p1<x1/3−ε

x1/3−ε6p26(L2(2x)/p1)1/2

p3>x1/10

1−
∑

m=p1p2p3
x1/3−ε6p16p26(L2(2x)/p1)1/2

p3>x1/10

1

)
.

Observe that the quantity in the parenthesis above is positive only if m = P2 or p2 | m for some
x1/10 6 p < x1/3−ε. Since the number of those m of the latter type is O(x0.9), it suffices to show
that

S � S(L)

(log x)2

∑
x6n<2x

ωn.

Using the sieve notation, we can write

S = S(A, x1/10)− 1

2

∑
x1/106p<x1/3−ε

S(Ap, x1/10)

− 1

2

∑
p1,p2,p3

x1/106p1<x1/3−ε

x1/3−ε6p26(L2(2x)/p1)1/2

p3>x1/10

ap1p2p3 −
∑

p1,p2,p3
x1/3−ε6p16p26(L2(2x)/p1)1/2

p3>x1/10

ap1p2p3

= S1 −
1

2
S2 −

1

2
T1 − T2,

say.
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A.3 Handling S1 and S2

Write

X =
u1

ϕ(u1)

∑
x6n<2x

ωn
logL1(n)

and let g1 be the multiplicative function defined by

g1(d) =

0 (d, u2(u2v1 − u1v2)) > 1,
dϕ(u1)

ϕ(u1d)
(d, u2(u2v1 − u1v2)) = 1.

Since |Ad| = 0 whenever (d, u2(u2v1 − u1v2)) > 1, we have, by Hypothesis 6.3,

∑
d|P (x1/10)

λd

(
|Ad| −

g1(d)

d
X

)
� (log x)−10

∑
x6n<2x

ωn,

for any well-factorable function λ of level D = x1/2−ε.

Hence, by Lemma A.1 with z = x1/10,

S1 > XV1(x1/10)(f(5− 10ε)− o(1))−O
(

(log x)−9
∑

x6n<2x

ωn

)
,

where

V1(z) =
∏
p|P (z)

(
1− g1(p)

p

)
=

∏
p<z

p|u1,p-u2

(
1− 1

p

) ∏
p<z

p-u1u2(u1v2−u2v1)

(
1− 1

p− 1

)
.

Similarly, for any 2P > P ′ > P ∈ [x1/10, x1/3−ε] and any well-factorable bounded function λ

of level x1/2−ε/P we have, by Hypothesis 6.3,

∑
P6p<P ′

∑
d|P (x1/10)

λd

(
|Apd| −

g1(d)

d

g1(p)

p
X

)
� (log x)−10

∑
x6n<2x

ωn,

since |Apd| = 0 whenever (d, u2(u2v1 − u1v2)) > 1 and also (p, d) = 1 whenever d|P (x1/10).

By Lemma A.1 with s = log(x1/2−ε/P )/log x1/10 = 5− 10ε− 10 logP/log x, we obtain

S2 6
∑

x1/106p<x1/3−ε

g1(p)

p
XV1(x1/10)(F (5−10ε−10 log p/log x)+o(1))+O

(
(log x)−9

∑
x6n<2x

ωn

)
.

Using the fact that

X =
u1

ϕ(u1)
· 1 + o(1)

log x

∑
x6n<2x

ωn

since logL1(n) = (1 + o(1)) logL1(x) = (1 + o(1)) log x, we conclude that

S1 −
1

2
S2 >

V (x1/10)

log x

(
f(5− 10ε)− 1

2

∫ 1/3−ε

1/10
F (5− 10ε− 10t)

dt

t

)
(1− o(1))

∑
x6n<2x

ωn,
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where

V (z) = V1(z)
u1

ϕ(u1)
=

∏
p|(u1,u2)

p

p− 1

∏
p6z

p -u1u2(u1v2−u2v1)

(
1− 1

p− 1

)
.

A.4 Handling T1 and T2

Let j ∈ {1, 2}. For Bj defined as in (6.2), we write

Xj =
∑

x6n<2x
L2(n)∈Bj

ωn

and let g2 be the multiplicative function defined by

g2(d) =

0 (d, u1(u2v1 − u1v2)) > 1,
dϕ(u2)

ϕ(u2d)
(d, u1(u2v1 − u1v2)) = 1.

We consider the sequence B(j) = (b
(j)
m ) defined by

b(j)m =

{
ωn · 1L2(n)∈Bj m = L1(n) for some x 6 n < 2x,

0 otherwise.

Note that B(j) is supported on L1(x) 6 m < L1(2x), and that, for j = 1, 2,

Tj =
∑
m∈P

b(j)m 6 S(B(j), x1/6).

Note also that, for j = 1, 2,

|B(j)
d | =

∑
x6n<2x
d|L1(n)

ωn1L2(n)∈Bj .

We may apply Hypothesis 6.3(ii) to obtain that∑
d|P (x1/6)

λd

(
|B(j)
d | −

g2(d)

d
Xj

)
� (log x)−10

∑
x6n<2x

ωn

for any well-factorable function λd of level D = x1/2−ε. Hence, by Lemma A.1 with z = x1/6, we
have

Tj 6 XjV2(x1/6)(F (3− 6ε) + o(1)) +O

(
(log x)−9

∑
x6n<2x

ωn

)
,

where

V2(z) =
∏
p6z

p|u2,p -u1

(
1− 1

p

) ∏
p6z

p -u1u2(u1v2−u2v1)

(
1− 1

p− 1

)
.

By Hypothesis 6.3(iii) and using (6.3), we have

Xj 6
u2

ϕ(u2)
· δ(Bj) + o(1)

log x

∑
x6n<2x

ωn.

Hence,

Tj 6
V (x1/6)

log x
F (3− 6ε)δ(Bj)(1 + o(1))

∑
x6n<2x

ωn,

since V (z) = V2(z)(u2/ϕ(u2)).
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A.5 Final numerical work

We may write

V (z) =

( ∏
p|(u1,u2)

p

p− 1

∏
p>2

p|u1u2(u1v2−u2v1)

p− 1

p− 2

) ∏
2<p6z

(
1− 1

p− 1

)
,

and note that the two products in the parenthesis contribute � S(L) by the definition of the

singular series. Thus,

V (x1/6) =

(
3

5
+ o(1)

)
V (x1/10), V (x1/10)� S(L)

log x
.

Since all the bounds we have obtained are continuous in ε and the double integral in δ(B2)

from (6.3) tends to zero when ε → 0, it suffices to verify that

f(5)− 1

2

∫ 1/3

1/10
F (5− 10t)

dt

t
− 1

2
· 3

5
F (3)

∫ 1/3

1/10

∫ (1−α1)/2

1/3

dα2 dα1

α1α2(1− α1 − α2)
> 0

just like in Chen’s work. This is shown, for instance, in [HR74, ch. 11].

Appendix B. Proof of the exponential sum estimates

In this appendix we prove a couple of very simple auxiliary lemmas as well as the exponential

sum estimates stated in § 8.

Lemma B.1. Let N > Q > 1 and c0 be integers, and let β ∈ R. Then∑
N6n<2N

n≡c0 (mod Q)

e(βn) =
1

Q

∑
N6n<2N

e(βn) +O(|β|N + 1).

Proof. We can clearly assume that 0 6 c0 < Q. Let us write n = c0 + kQ, obtaining that∑
N6n<2N

n≡c0 (mod Q)

e(βn) = e(βc0)
∑

(N−c0)/Q6k<(2N−c0)/Q

e(βkQ)

= (1 +O(βQ))
∑

N/Q6k<2N/Q

e(βkQ) +O(1)

=
∑

N/Q6k<2N/Q

e(βkQ) +O(|β|N + 1).

Since the last expression is independent of c0, summing over 0 6 c0 < Q, we see that

Q
∑

N/Q6k<2N/Q

e(βkQ) =
∑

N6n<2N

e(βn) +O((|β|N + 1)Q),

and the claim follows. 2
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Lemma B.2. Let Q, q > 1 and a be integers such that (a, q) = 1 and (Q, q) < q. Assume that
|α− a/q| 6 1/(2qQ) and let c0 ∈ Z. Then∣∣∣∣ ∑

N6n<2N
n≡c0 (mod Q)

e(αn)

∣∣∣∣� q

(Q, q)
.

Proof. Let us write n = c0 + kQ, obtaining that∣∣∣∣ ∑
N6n<2N

n≡c0 (mod Q)

e(αn)

∣∣∣∣ =

∣∣∣∣ ∑
(N−c0)/Q6k<(2N−c0)/Q

e(αkQ)

∣∣∣∣� 1

‖αQ‖
6

1

1/(2q/(Q, q))
. 2

B.1 Major arc estimates

Proof of Lemma 8.1. By partial summation, it is enough to prove the claim in case α = a/q
(strictly speaking one should consider intervals p, n ∈ [x, x′] instead of [x, 2x] but this makes no
difference). Since q | Q, the left-hand side of the claim equals∑

r6x1/2−ε

max
(c,rQ)=1

∣∣∣∣ ∑
x6p<2x

p≡c (mod rQ)

1− Q

ϕ(rQ)

∑
x6n<2x

n≡c (mod Q)

1

log n

∣∣∣∣
6

∑
r6x1/2−ε

max
(c,rQ)=1

∣∣∣∣ ∑
x6p<2x

p≡c (mod rQ)

1− |P ∩ [x, 2x)|
ϕ(rQ)

∣∣∣∣+O(x(log x)−C1−C2)

6
∑

d6x1/2−ε/2

max
(c,d)=1

∣∣∣∣ ∑
x6p<2x

p≡c (mod d)

1− |P ∩ [x, 2x)|
ϕ(d)

∣∣∣∣+O((log x)−C1−C2),

and the claim follows from the Bombieri–Vinogradov prime number theorem. 2

Proof of Lemma 8.2. Arguing similarly, Lemma 8.2 reduces to showing∑
d6x1/2−ε/2

max
(c,d)=1

∣∣∣∣ ∑
x6mn<2x

mn≡c (mod d)
M6m<2M

ambn −
1

ϕ(d)

∑
x6mn<2x
(mn,d)=1
M6m<2M

ambn

∣∣∣∣� x

(log x)2C1+C2+1

which follows from type II information used in the proof of the Bombieri–Vinogradov prime
number theorem (see, e.g., [IK04, Theorem 17.4]). 2

B.2 Minor arc estimates for type I sums
Note that all the minor arc estimates are trivial if q > x, so that we can always assume that
q 6 x. Lemma 8.3 follows easily from the following slight variant of a lemma usually used in
type I estimates.

Lemma B.3. Let q > 1 and a be integers such that (a, q) = 1 and assume that |α− a/q| < 1/q2.
For any x >M > 1 and any integer k > 2,∑

M6m<2M

τk(m) min

{
x

M
,

1

‖αm‖

}
�k

(
x

q1/2
+ x1/2M1/2 + x1/2q1/2

)
(log 3x)k

2/2.
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Proof. By the Cauchy–Schwarz inequality( ∑
M6m<2M

τk(m) min

{
x

M
,

1

‖αm‖

})2

6

( ∑
M6m<2M

τk(m)2 x

M

)
·
( ∑
M6m<2M

min

{
x

M
,

1

‖αm‖

})
�k x(log 3x)k

2−1 ·
(
x

q
+M + q

)
(log 3x),

by a standard ingredient in type I estimates (see, e.g., [IK04, Formula before Lemma 13.7]). 2

Proof of Lemma 8.3. We can clearly assume that M 6 x1/2/Q. Write S for the left-hand side of
the claim, and write m for the inverse of m (mod rQ). Then

S 6
∑
r6x1/2

max
(c,rQ)=1

∑
M6m<2M
(m,rQ)=1

∣∣∣∣ ∑
x/m6n<2x/m
n≡cm (mod rQ)

e(αmn)

∣∣∣∣.
Writing n = cm+ krQ, with k running over an interval with elements of size x/(mrQ)� 1, and
summing the geometric series, we see that

S �
∑
r6x1/2

∑
M6m<2M

min

{
x

mrQ
,

1

‖αmrQ‖

}
6

∑
d62Mx1/2

τ(d) min

{
x/Q

d
,

1

‖(αQ)d‖

}
.

By our assumption on α, we have |αQ − (Qa/h)/(q/h)| < 1/q2 6 1/(q/h)2. Hence, after a
dyadic division on d, Lemma B.3 gives

S �
(
x

Q
· 1

(q/h)1/2
+

(
x

Q

)1/2

(Mx1/2)1/2 +

(
x

Q

)1/2

(q/h)1/2

)
(log x)3. 2

B.3 Minor arc estimates for type II sums
In the proof of Lemma 8.4 we use the following auxiliary exponential sum estimate due to
Mikawa [Mik00], in the proof of which one Fourier expands the min-function on the left-hand
side and uses Weyl differencing.

Lemma B.4. Let |α− a/q| < 1/q2 for some (a, q) = 1. For 0 < M,J 6 x, one has

M
∑

M6m<2M

∑
J6j<2J

τ3(j) min

{
x

m2j
,

1

‖αm2j‖

}
�
(
M2J + x3/4

(
x

q
+

x

M
+ q

)1/4)
(log x)8.

Proof of Lemma 8.4. Let us first note that in case D 6 (log x)C , we can combine
dr = d′ ∈ [D′, 4D′] with 2D′ = 2DR 6 2(log x)CM/x1/2 6 x/(MQ(log x)C) which is still at
most the upper bound for D in Lemma 8.4. This allows us to assume that R = 1 in case
D 6 (log x)C ; combining dr = d′ introduces at worst a divisor function τ(d′), but the claim
follows in any case if we can show the claimed upper bound for

I =
∑

D6d<2D

τ(d)
∑

R6r<2R
(r,c′dQ)=1

θ(d, r)
∑

x6mn<2x
mn≡c′ (mod r)
mn≡cd (mod dQ)

M6m<2M

ambne(αmn),

1251

https://doi.org/10.1112/S0010437X17007072 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007072
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for any choice of residue class cd (mod dQ) with (cd, dQ) = 1 and any choice of θ(d, r) ∈ C with
|θ(d, r)| = 1. By the Cauchy–Schwarz inequality, we have

|I|2 � DM(log x)6
∑

D6d<2D

∑
M6m<2M

∣∣∣∣ ∑
R6r<2R

(r,c′dQ)=1

θ(d, r)
∑

x/m6n<2x/m
mn≡c′ (mod r)
mn≡cd (mod dQ)

bne(αmn)

∣∣∣∣2.

Expanding out the square, moving the sum over m inside, and noting that |bn1bn2 | 6
τ(n1)2 + τ(n2)2, we obtain

|I|2 � DM(log x)6
∑

D6d<2D

∑
R6r1,r2<2R

(r1,c′dQ)=(r2,c′dQ)=1

∑
x/2M6n1,n262x/M

τ(n1)2

×
∣∣∣∣ ∑

M6m<2M
x/nj6m<2x/nj
mn1≡c′ (mod r1)
mn2≡c′ (mod r2)

mn1≡mn2≡cd (mod dQ)

e(αm(n1 − n2))

∣∣∣∣.

The simultaneous congruences above are soluble if and only if (n1, r1dQ) = (n2, r2dQ) = 1 and
n1 ≡ n2 (mod dQ(r1, r2)), in which case they reduce to the single equation m ≡ b (mod dQ[r1, r2])
for some b. Thus, substituting m = b + kdQ[r1, r2] (and noticing DQR2 6 M), we see that the
inner sum over m is

� min

(
M

dQ[r1, r2]
,

1

‖α(n1 − n2)dQ[r1, r2]‖

)
.

Writing n1 = n2 + ` · dQ(r1, r2), we have

α(n1 − n2)dQ[r1, r2] = α`(dQ)2(r1, r2)[r1, r2] = α`(dQ)2r1r2,

so that

|I|2 � DM(log x)6
∑

D6d<2D

∑
R6r1,r2<2R

∑
x/2M6n162x/M

τ(n1)2
∑

|`|62x/MdQ(r1,r2)

× min

(
M

dQ[r1, r2]
,

1

‖α`(dQ)2r1r2‖

)
� Dx(log x)9

∑
D6d<2D

∑
R6r1,r2<2R

∑
|`|62x/MdQ(r1,r2)

min

(
M

dQ[r1, r2]
,

1

‖α`(dQ)2r1r2‖

)
.

The terms with ` = 0 contribute to the right-hand side

� D2x(log x)9
∑

R6r1,r2<2R

M

DQ[r1, r2]
� D2x(log x)10 M

DQ
� x2

Q2
(log x)−C+10

by the assumption on D, which is acceptable. To treat the terms with ` 6= 0, write j = `r1r2 so
that

0 < |j| < 4R2 · 2x

MDQ(r1, r2)
6

8R2x

MDQ

and that
M

dQ[r1, r2]
=
M(r1, r2)

dQr1r2
� M

DQR2
· R2x

MDQ|j|
� x

(dQ)2|j|
.
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It follows that

|I|2 � x2

Q2
(log x)−C+10 +Dx(log x)9

∑
D6d<2D

∑
0<|j|68R2x/(MDQ)

τ3(j) min

(
x

(dQ)2|j|
,

1

‖α(dQ)2j‖

)
.

By a dyadic division, it suffices to show that

D
∑

D6d<2D

∑
J6j<2J

τ3(j) min

(
x/Q2

d2j
,

1

‖(αQ)2d2j‖

)

� x

Q2

(
(log x)C

(q/h)1/4
+ (log x)CQ

(
q

x

)1/4

+
1

(log x)C/4

)
(log x)8 (B.1)

for 1 6 J 6 4R2x/(DMQ). To prove this we divide into two cases depending on whether D is

large or small.

Case 1. First assume that D > (log x)C . Note that, by assumption,∣∣∣∣αQ2 − aQ2/h

q/h

∣∣∣∣ 6 1

4q2(log x)2C
6

1

(q/h)2
.

It is also easy to see that D,J 6 x/Q2. We may thus apply Lemma B.4 to bound the left-hand
side of (B.1) by

�
(
D2J +

(
x

Q2

)3/4(x/Q2

q/h
+
x/Q2

D
+ q

)1/4)
(log x)8

� x

Q2

(
1

(log x)C
+

1

(q/h)1/4
+

1

(log x)C/4
+Q1/2

(
q

x

)1/4)
(log x)8

by the upper bound on J and the assumptions on D and R.

Case 2. Now assume that D 6 (log x)C . Recall that in this case we can assume that R = 1. In

this case, for each fixed D 6 d < 2D we have, by assumption,∣∣∣∣α(dQ)2 − a(dQ)2

q

∣∣∣∣ 6 1

q2
.

Moreover, the denominator of the fraction a(dQ)2/q is at least q/hD2 > q/(h(log x)2C) after
reducing it to the reduced form. Applying Lemma B.3 to the inner sum over j in (B.1) (noting
that J 6 x/(D2Q2)), we may bound the left-hand side of (B.1) by

� D2

(
x/(Q2D2)

(q/(h(log x)2C))1/2
+

(
x

Q2D2

)1/2

·
(

x

DMQ

)1/2

+

(
x

Q2D2

)1/2

q1/2

)
(log x)9/2

� x

Q2

(
(log x)C

(q/h)1/2
+

1

(log x)C/2
+Q

(
q

x

)1/2

(log x)C
)

(log x)9/2

by our assumptions on D and M . 2
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B.4 Minor arc estimates for sums over primes

Proof of Lemma 8.6. By partial summation it is enough to consider the claim of Lemma 8.6
with ∑

x6p<2x
p≡c′ (mod r)
p≡c (mod Q)

e(αp) replaced by
∑

x6n<2x
n≡c′ (mod r)
n≡c (mod Q)

Λ(n)e(αn).

Then, by a dyadic splitting on r, Vaughan’s identity (see [IK04, Proposition 13.4]) with
y = z = x2/3, and further partial summation, it is then enough to show that, for any M 6 x1/3,
R 6 x1/2−ε/2 and any |am| 6 1, one has the type I estimate∣∣∣∣ ∑

R6r<2R
(r,c′Q)=1

µ(r)2λr
∑

x6mn<2x
mn≡c′ (mod r)
mn≡c (mod Q)
M6m<2M

ame(αmn)

∣∣∣∣

6
x

Q
·
(

(log x)C/2

(q/h)1/8
+ (log x)C/2Q1/2 q

1/8

x1/8
+

1

(log x)C/8

)
(log x)12. (B.2)

and that, for any x1/3 6 M 6 x2/3, R 6 x1/2−ε/2 and any |ak|, |bk| 6 τ(k), one has the type II
estimate ∣∣∣∣ ∑

R6r<2R
(r,c′Q)=1

µ(r)2λr
∑

x6mn<2x
mn≡c′ (mod r)
mn≡c (mod Q)
M6m<2M

ambne(αmn)

∣∣∣∣

6
x

Q
·
(

(log x)C/2

(q/h)1/8
+ (log x)C/2Q1/2 q

1/8

x1/8
+

1

(log x)C/8

)
(log x)12. (B.3)

The estimate (B.2) follows directly from Lemma 8.3. On the other hand, to estimate (B.3),
by symmetry we may assume that M > x1/2, and we take D = min{R, x/(MQ(log x)C)} and
R′ = R/D. Note that D > min{R, x1/3−ε} and, thus, for either possibility of λr from
Hypothesis 6.3(i), by the well-factorability property we always get for the left-hand side of (B.3)
the upper bound ∑

d6D
(d,c′Q)=1

∑
r′6R′

(r′,c′dQ)=1

∣∣∣∣ ∑
x6mn<2x

mn≡c′ (mod dr′)
mn≡c (mod Q)
M6m<2M

ambne(αmn)

∣∣∣∣

6
∑
d6D

(d,Q)=1

max
(c0,dQ)=1

∑
r′6R′

(r′,c′dQ)=1

∣∣∣∣ ∑
x6mn<2x

mn≡c′ (mod r′)
mn≡c0 (mod dQ)

M6m<2M

ambne(αmn)

∣∣∣∣,

and the claim follows from Lemma 8.4 after dividing the variables d and r′ dyadically. 2

Let us note that, in the previous proof, in order to apply Lemma 8.4 when M is close to x2/3,
we needed to take D to be slightly smaller than x1/3. This is in contrast to what was claimed in
[Mat09, Remark 10], but the caused mistake in the proof of [Mat09, Theorem 2] could be easily
fixed by using a slight modification of Chen’s weights used here in Appendix A.
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Proof of Lemma 8.5. The proof is analogous to the proof of Lemma 8.6 but, since r 6 x1/8, after
a dyadic division to R 6 r < 2R, we can always take D = R when we apply Lemma 8.4. 2
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