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Ad-nilpotent Elements of Semiprime Rings
with Involution

Tsiu-Kwen Lee

Abstract. Let R be an n!-torsion free semiprime ring with involution * and with extended centroid
C, where n > 11is a positive integer. We characterize a € K, the Lie algebra of skew elements in R,
satisfying (ads )" = 0 on K. This generalizes both Martindale and Miers’ theorem and the theorem
of Brox et al. In order to prove it we first prove that if a,b € R satisfy (ads)"” = ad;, on R, where
either 7 is even or b = 0, then (a — A)[("*D/2] = ¢ for some 1 € C.

1 Results

An associative ring R is called a prime ring (resp. a semiprime ring) if, for a, b € R,
aRb = 0 implies that either a = 0 or b = 0 (resp. for a € R, aRa = 0 implies a = 0).
The primeness (resp. semiprimeness) of R is equivalent to saying that any product of
two nonzero ideals (resp. any square of a nonzero ideal) of R is nonzero.

Throughout the paper, R always denotes a semiprime ring with center Z(R) and
with Martindale symmetric ring of quotients Q. The center of Q, denoted by C, is
called the extended centroid of R. The center C is a commutative regular self-injective
ring. Moreover, R is a prime ring if and only if C is a field. We refer the reader to [1]
for details.

Let L be a Lie algebra with Lie bracket [ -, - ]. For a € L, ad,: L — L is the adjoint
map defined by x — [a,x] forx e L. Welet Z(L) := {c e L |[c,x] =0V x €L},
the center of the Lie algebra L. An element a € L is called ad-nilpotent if (ad,)* = 0
on L for some k > 1. We let Z denote the ring of integers. Given a ring R, let R™ be
the Lie algebra (R, +) over Z endowed with the Lie bracket product [x, y] := xy — yx
for x,y € R. In [18] Martindale and Miers proved the following theorem (see [18,
Corollary 1]).

Theorem 1.1 (Martindale and Miers 1983) Let R be a prime ring and let n > 1 be a
positive integer, a,b € R. Suppose that (ad,)" = ad, on R™, where either n is even or
b = 0. If char(R) = 0 or a prime p > n, then (a — A)[("*D/2] = 0 for some L € C .

Theorem 1.1 with b = 0 was first proved for simple rings by Herstein [13], and
both Herstein [13] and Kovacs [16] conjectured the generalization to prime rings. We
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also refer the reader to [8, 11] for nilpotent derivations of semiprime rings. For the
semiprime case with n = 3 and b = 0, Brox et al. proved the following (see [5, Theo-
rem 3.2]).

Theorem 1.2 (Brox et al. 2016) Let R be a 6-torsion free semiprime ring and a € R.
Suppose that (ad,)* = 0 on R™. Then (a — 1) = 0 for some A € C.

An ad-nilpotent element a in a Lie algebra L is called a Jordan element if (ad,)* = 0
on L. Jordan elements in R~ play a fundamental role in the proof of Kostrikin’s con-
jecture (see [4,20]) and are also of great importance in the Lie inner ideal structure
of associative rings (see [3]). Every Jordan element a € R™ (with % € R) gives rise to
a Jordan algebra (R™),, which is called the Jordan algebra of R™ at a (see [10, Theo-
rem 2.4]). A semiprime ring R is called centrally closed if R = RC + C. Brox et al. used
Theorem 1.2 to prove that, for a 6-torsion free centrally closed semiprime ring R, the
Jordan algebra of the Lie algebra R~ at a Jordan element is isomorphic to the sym-
metrization of a local algebra of the ring R (see [5, Lemma 5.1]). The first goal of this
paper is to generalize Theorems 1.1 and 1.2 to the semiprime case from the viewpoint
of orthogonal completion of semiprime rings (see [1]).

Theorem 1.3 Let R be an n!-torsion free semiprime ring, where n > 1 is a positive
integer, and a, b € R. Suppose that (ad,)" = ady,, where either n is even or b = 0. Then
(a- )" = 0 for some A € C.

Let R be a semiprime ring with involution * and let K denote the set of all skew
elements in R; that is, K = {x € R | x* = —x}. Clearly, K forms a Lie algebra under
the Lie bracket product [x, y] = xy — yx for x, y € K. It is known that the involution
* on R can be uniquely extended to an involution, denoted by * also, on Q. We say
that the involution * is of the first kind if the restriction of * to C is the identity map
and it is of the second kind, otherwise. We let

Sun(Xts oo s Xm) = Y. (D) XoyXo2) -+ Xa(m)»
geSym(m)

be the standard polynomial of degree m in noncomutative indeterminates X;, X5,
..., X;n, where Sym(m) denotes the permutation group on the set {1,2,...,m}. By
an S,,-ring R we mean that the ring R satisfies the polynomial S,,, (X1, ..., X,,). Itis
known that if R is a prime S,,-ring, then dimc RC < n? (see [21, Corollary 1] and
[15, Theorem p. 17]). By [12, Corollary 8], given a prime ring R with involution * and
a € RN Z(R),if [a,K] = 0, then R is an S4-ring, i.e., dim¢ RC < 4. Martindale and
Miers proved the following result (see [19]).

Theorem 1.4 Let R be a prime ring with involution %, char(R) = 0, or a prime
p > n, where n > 1is a positive integer, and a € K. Suppose that (ad,)" = 0 on K
and that R is not an S4-ring. Then (a — ){"*D/21*1 = 0 for some skew element A € C.
Moreover, if % is of the first kind, then al("*D/21¥1 = 0, and if « is of the second kind,
then (a — A)[(+D/2] — g,
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Remarks (I) The theorem above was proved by Martindale and Miers with the
assumption that char(R) = 0 (see [19, Main Theorem]). Their argument is still effec-
tive when char(R) = 0 or a prime p > n. We sketch its proof here for the sake of the
reader. If * is of the second kind, (ad;)" = 0 on K implies that (ad,)"” = 0 on R (see
Lemma 2.5). In this case, the theorem is reduced to Theorem 1.1. Thus, * is assumed
to be of the first kind. Let m := n — 1 as given in the proof of [19, Main Theorem]. It
suffices to notice the following facts in [19]:

(a) Onpagel049,1+(5)+(7)+--=(")+(5)+(%)+---=2""e C {0} in Eq.(10);

(b) On page1050, —[(7) + (%) + (}) +--]=-2""eC~ {0}
(c) On page1048, let B; := (—1)1[(’7) - (J.TZ)] € CinEq.(8), where 0 < j < m+2and

(%) =0ifk <0ork >m. Indeed, let 2 < j < m. We have

(<1)/B; - (m) B ( .m ) _ m.!n(n —.2j+1).
j j—2 i(m—j+2)!

Note that [# —2j + 1| < n. Thus, ; = 0 in C only when 2j —1 = n. Clearly, 3; # 0 for
j=0,1,m+1,m+2. We now go to the proof on page 1050 with a”*! = 0 but a” # 0. In
this case, recall that * is of the first kind. By Eq.(17), we have Z;’;Ol Bja" e al =0,
where each f8; # 0 except in the one case when 7 is odd and j = %1, This implies that
a™1! = 0and so r < n + 1. It follows from the proof on page 1050 that al(**1)/21+1 = ¢,
as asserted.

(II) Suppose that = is of the second kind. There exists a nonzero skew element
v € C. Since v* = —v € C and (ad,;)" = 0 on K, we get (ad,,)" = 0 on Q (see
Lemma 2.5). In view of Theorem 1.3, (va — u)l("*D/2] = 0 for some y € C. By the
primeness of R, C is a field. Therefore, (a — v~'u)[("*1/2] = 0, Together with fact that
(a—-2)[("+D/21+1 = o, we see that A — v~ is a nilpotent element in Cand so A = v~ .

Therefore, (a — A)[("+D/2] = 0, as asserted.

Let Z{X} be the free associative Z-algebra in noncommutative indeterminates
X1, X3, ..., where X := {X, X,,...}. Given a polynomial f(Xi,...,X;) € Z{X} that
has zero constant term, a semiprime ring R is called faithful f-free if every nonzero
ideal of R does not satisty f. The second goal of this paper is to generalize Theorem
1.4 to the semiprime case.

Theorem 1.5  Let R be an n!-torsion free semiprime ring with involution  and a € K,
where n > 1is a positive integer. Suppose that (ad,)" = 0 on K. Then there exist an
idempotent e = ¢* € C and a skew element A € C such that (ea — A)[("D/2141 = o, ¢R
is a faithful Sy-free ring, and (1 — e)R is an Sy-ring. Moreover,

[+

(E[/\]ea—A)[nTﬂ]zo and ((1-E[A])ea)

We refer the reader to the next section for the definition of E[A] for A € C. Given a
ring T with involution =, let K(T) denote the Lie algebra of all skew elements in T. We
also write K instead of K(R) for simplicity. An elements € T is called symmetricif s* =
s. With Theorem 1.5 in hand, we have to characterize skew ad-nilpotent elements in a
semiprime S4-ring with involution *. Such a characterization is obtained as follows.
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Theorem 1.6  Let R be a (2n — 1)!-torsion free semiprime Sy-ring with involution *,
where n > 1 is a positive integer and a € K. Suppose that (ad,)" = 0 on K. Then there
exist orthogonal symmetric idempotents e;, e, € C, e; + e; = 1, and a skew element
A € e,C such that eja € Z(eK) and (eya — A)* = 0. In particular, ea is a Jordan
element of the Lie algebra (e;R)™.

As a consequence of Theorems 1.5 and 1.6, we have the following corollary.

Corollary 1.7  Let R be a (2n —1)!-torsion free semiprime ring with involution * and
a € K, where n > 1is a positive integer. Suppose that (ad,)" = 0 on K. Then there exist
orthogonal symmetric idempotents e, ...,es € C, e; + -+ + e5 = 1, and skew elements
> Ay € C satisfying the following:

n+l

() (aa-M)E1=0;

(i) (e2a)["7'1* = 0 and (e, + e3)R is an faithful S4-free ring
(iii) [esa,K]=0;

(iv) (esa—213)2=0, (e3 + eq)R is an S4-ring and esa = 0;
(v)  RaR is an essential ideal of (1 - es)R.

2 Proofs

Recall that R always denotes a semiprime ring with extended centroid C. The set B of
all idempotents of C forms a Boolean algebra with respect to the operations e+h :=
e+h—-2ehande-h :=ehforall e, h € B. It is complete with respect to the partial
order e < h (defined by eh = e) in the sense that any subset S of B has a supremum
V S and an infimum A S. Given a subset S of Q, we define E[S] to be the infimum
of the subset {e € B | ex = x Vx € S§}. If S = {b}, we write E[b] instead of E[S] for
simplicity.

We call a set {e, € B | v € A} an orthogonal subset of B if e,e, = 0 for v # yanda
dense subset of Bif ., e, C is an essential ideal of C. A subset T of Q, where 0 € T, is
called orthogonally complete in the following sense: given any dense orthogonal subset
{e, | v € A} of B, there exists a one-one correspondence between T and the direct
product [T, Te, via the map

x+—> (xe,) e [ Te, forxeT.
veA

Therefore, given any subset {a, € T | v € A}, there exists a unique a € T such
that a ~ (aye,). The element a is written as Y., @,e, and is characterized by the
property that ae, = aye, forall v € A.

In view of [1, Proposition 3.1.10], Q is orthogonally complete. Moreover, P is a
minimal prime ideal of Q if and only if P = mQ for some m € Spec(B), the spectrum
of B (i.e., the set of all maximal ideals of B) (see [1, Theorem 3.2.15]). In particular, it
follows from the semiprimeness of Q that Nmespec(s) MQ = 0. We refer the reader to
[1] for details.

To begin with, we prove the following.

https://doi.org/10.4153/CMB-2017-005-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-005-3

322 T.-K. Lee

Lemma 2.1 Let R be an n!-torsion free semiprime ring, where n is a positive integer.
Then char(Q/mQ) = 0 or a prime p > n for any m € Spec(B).

Proof Let m € Spec(B). Suppose on the contrary that char(Q/mQ) is a prime
p < n. Then n!(Q/mQ) = 0; that is, n!Q € mQ. Since n!Q is orthogonally complete,
it follows from [1, Corollary 3.2.4] that nleQ = 0 for some e € B \ m. Thus, nle =
0. Since R is an n!-torsion free semiprime ring, so is Q. This implies that e = 0, a
contradiction. This proves that char(Q/mQ) = 0 or a prime p > n. [ |

We let C[¢] denote the polynomial ring over C in the indeterminate ¢.

Theorem 2.2  Let R be a semiprime ring, a; € Q and g;(t) € C[t] for1 < i < n.
Suppose that, given any m € Spec(B), there exists Ay € C such that Y7, gi(Am)a; €
mQ. Then 3.7, gi(A)a; =0 for some A € C.

Proof Let
2::{eeB|e( Zn:gi(ﬁ)ai) :OforsomeﬁeC}.
i=1

We claim that £ is an ideal of the complete Boolean algebra B. Clearly, if f < e and
e € X, then f € X. Lete,f € . We have to prove that e + f — ef € X. Since
e+f—ef=e+f(1-e)ande, f(1-e) € =, we may assume from the start that e f = 0.
Choose «, 8 € C such that

e( égi(oc)ai) =0 :f( igi(ﬁ)“:’)-
Note that (e + f)gi(ae + ff) = egi(a) + fgi(8), and so
(€+f)( égi(“e“'ﬂf)ai) = e( égi(a)ai) +f( igi(ﬁ)ai) =0.

This proves that e + f € X, as asserted. If 1 € X, then we are done. Suppose on
the contrary that 1 ¢ . Then £ € m for some m € Spec(B). By hypothesis, there
exists Ay € C such that Y7, ¢;(Am)a; € mQ. Thus, there exists e € B \ m such that
e(X7, gi(Am)a;) = 0. This implies that e € ¥ and so e € m, a contradiction. [ |

Proof of Theorem 1.3  Since R and Q satisfy the same GPIs with coefhicients in Q
(see [1, Theorem 6.4.1]), we have (ad, )" = ad;, on Q. Let

_[n+1] and gi(t)::(_l)q—i(?)tq-feC[t]

for 0 <i < q. Then
q .
(a-1)7T=3 gi(V)a’

i=0

forall A € C. Let m € Spec(B). By Lemma 2.1, char(Q/mQ) = 0 or a prime p > n.
Moreover, (adz)" = ad; on Q/mQ, where Z := z + mQ € Q/mQ for z € Q. Note
that C + mQ/mQ is the extended centroid of the prime ring Q/mQ (see [1, Theo-
rem 3.2.5]). In view of Theorem 1.1, there exists A, € C such that (a — Ay )? = 0.
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Thatis, 3.7 | gi(Am)a’ € mQ. In view of Theorem 1.3, there exists A € C such that
¥ ,8i(M)a' =0,ie, (a-1)1=0. [ |

Lemma 2.3 Let R be an n!-torsion free, faithful Sy-free semiprime ring with involu-
tion %, a € K, where n > 1. Suppose that (ad,)" = 0 on K. Then (a — A)L"D/21+1 =
for some skew element A € C.

Proof Letm € Spec(B). By Lemma 2.1, char(Q/mQ) = 0 or a prime p > n. Since R
is a faithful S,-free semiprime ring, by [22, Theorem 2.3] Q/mQ does not satisfy S4.

Case 1: m* = m. Then (mQ)* = mQ. Thus, Q/mQ can be endowed with an invo-
lution, denoted by * also, defined by x* = x* for x € Q. Since (ad,)"(x — x*) = 0
for all x € R, it follows from [2, Theorem 1.4.1] that (ad,)"(x — x*) = 0 for all x € Q.
This implies that (adz)"(x — x*) = 0 for all x € Q. Thus, (ad7)"(z) = 0 for all
z € K(Q/mQ) as Q/mQ is 2-torsion free. In view of Theorem 1.4, there exists A, € C
such that (@ — Ay )[(**D/2141 = 0; that is, (a — Ay )L**D/24 e mQ.

Case 2: m* # m. As proved in Case 1, (ad;)"(x —x*) =0 forall x € Q. Thenx = x —
X" emQ+m*Q/mQ for all x e m*Q. Thus, (ad;)"(z) =0 forz e mQ + m*Q/mQ.
Note that mQ + m*Q/mQ is a nonzero ideal of the prime ring Q/mQ. In view of
[1, Theorem 6.4.1] or [7, Theorem 2], mQ + m*Q/mQ and Q/mQ satisfy the same
GPIs. Therefore, (adz)"(z) = 0 for z € Q/mQ. In view of Theorem 1.3, there exists
Am € C such that (7 — 1x)["3] = 0; that is, (a — A )["*D/2] ¢ mQ. In particular,
(a _ Am)[(n+1)/2]+1 e mQ.

In either case, if m € Spec(B), there exists Ay € C such that (a — Ay, )[("D/2141 ¢
mQ. Thatis, 7 | gi(Am)a’ € mQ, whereq:= [27] +1and g;(t) := (-1)47/(9)t17" ¢
C[t] for 0 < i < g. In view of Theorem 2.2, "7 | g;(1)a’ = 0 for some A € C, i.e.,

(a - M)+ = 0 for some A € C. Since a* = —a, we have (a + A*)[(»D/2]+1 _ ¢
Thus, A* + A is nilpotent as A* + A = (a + A*) — (a — A). Hence, A* = —A by the
semiprimeness of Q. [ ]

Lemma 2.4  Let R be a semiprime ring with involution * and A € C. Then CE[A] =
CA and E[A*] = E[A]*. Moreover, if CA = CA*, then E[A]* = E[A].

Proof Since C is a regular ring, AA;A = A for some A; € C. Then e := A1, is a central
idempotent. We claim that e = E[1]. Indeed, E[A]e = E[A]AA; = AL, = e, implying
e < E[A]. On the other hand, e = AA;A = A, implying E[A] < e. Thus, e = E[1], as
asserted. Clearly, CE[A] = CAA; € CA. On the other hand, CA = CAM'A € CAN =
CE[A]. Thus, CE[A] = CA.

We have CE[A]* = CA*. However, CA* = CE[A*] and so CE[A]* = CE[A*],
implying E[A]* = E[A*], as asserted. Finally, suppose that CA = CA*. Then CE[A] =
CE[A*] and so E[A] = E[A*] = E[A]*. [ |

Let R be a semiprime ring with involution *. An ideal I of R is called a *-ideal if
I=T1".
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Lemma 2.5 Let R be a semiprime ring with involution . Suppose that (ad,)" = 0
on K, where a € K and n is a positive integer. If R is 2-torsion free, then (ady;)" = 0
and (adgr14)" =00n Q for A* = -1 € C.

Proof Suppose that R is 2-torsion free. Choose an essential *-ideal I of R such that
Al C R. Letx € I. Then 2x = s + k, where s = x + x* e I and k = x — x* € I. Then
As € K and so

2(adya)"(x) = (adya)" (s + k) = A" (ad,)" (As) + A" (ad, )" (k) = 0.

Thus, (ady,)"(x) = 0. This proves that (ad,, )" = 0 on I. In view of [2, Theorem 1.4.1],
I and Q satisfy the same *-GPIs with coefficients in Q. Thus, (ad,,)"” = 0 on Q. By
Lemma 2.4, E[A] = A1, for some A, € C. Then (adgy),)" = 1] (adjs)" =0on Q. M

Proof of Theorem 1.5 In view of [22, Theorem 2.2], there exists an idempotent e € C
such that (1-e)Q isan S4-ring and eQ is a faithful S,-free ring. Moreover, Rn(1-¢)Q
is the largest ideal of R satisfying S, (see [22, Theorem 2.2(3)]). Since (1-e)Q satisfies
S4,s0does (1-e*)Q. Thus, Rn(1-¢*)Q € Rn(1-e)Q, implying thate(1-e*) = 0
andsoe =e”.

Thus, ea € K(eQ). Since (ad,)"” = 0 on K(Q) (see the proof of Lemma 2.3), we
have (ad.,)" = 0 on K(eQ). But eQ is an n!-torsion free, faithful S4-free semiprime
ring. By Lemma 2.3, there exists A € eC ¢ C such that (ea — 1)[("*D/2+1 = 0, Since
(ea)* = —ea, we have (ea+A*)L("1/21*1 = o which implies that A + 1* is a nilpotent
element in C. By the semiprimeness of Q, we get A* = —A.

By Lemma 2.4, we have CA = CE[A] and E[A]* = E[A]. In view of Lemma 2.5,
(adg[a1a)" = 0 on Q. By Theorem 1.3, there exists 4 € C such that

(ElMea-p)" "= (1-E[A]) (ea- 1)1 =0,

as (1-E[A])A = 0. Since (ea—A)[(**D/21+1 — o it follows that (E[A]ea—A)["2' 11 = 0
as E[1]A = A. This implies that A = . That is, (E[A]ea — A)[("*D/2] = ¢, [

10 and ((1—E[A])ea)[2

nT+1 n+1]+

We now turn to the proof of Theorem 1.6. Given an ideal I of R, for g € R we have
gl = 0 if and only if Iq = 0. Thus, Anng(I) := {g € R | gI = 0} is an ideal of R. An
ideal J of R is called essential if Anng(J) = 0. An ideal J of R is called an annihilator
ideal of R if ] = Anng(I) for some ideal I of R. The following is well known in the
literature (see, for instance, [17, Lemma 2.10]).

Lemma 2.6 Let R be a semiprime ring. Then every annihilator ideal of Q is generated
by one central idempotent.

Given additive subgroups A, B of R, let AB (resp. [ A, B]) denote the additive sub-
group of R generated by all ab (resp. [a, b]) for a € A and b € B. If A is generated by
one element, say a, we write aB (resp. [a, B]) to stand for AB (resp. [A, B]).

Theorem 2.7  Let R be a semiprime ring, a; € Q and g;(t) € C[t] for1< i < n. Sup-

pose that, given any m € Spec(B), there exists Ay € C such that [Y; gi(Am)ai, Q] €
mQ. Then Y7, gi(M)a; € C for some A € C.
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Proof The proof is analogous to that of Theorem 2.2. We only sketch it. Let

2::{eeB|e( igi(ﬁ)ai) eC forsomeﬁeC}.

Applying an analogous argument as given in the proof of Theorem 2.2, we get that >
is an ideal of the complete Boolean algebra B. If 1 € %, then we are done. Suppose on
the contrary that 1 ¢ X. Then there exists a maximal ideal m of B such that £ ¢ m.
By hypothesis, there exists Ay € C such that [Y7; gi(Am)ai, Q] € mQ. Note that
[>7, gi(Am)a;, Q] is an orthogonally complete subset of Q. In view of [1, Proposi-
tion 3.1.11], there exists e € B \ m such that e[Y}_; gi(Am)a;, Q] = 0. This implies
thate .7, g¢i(Am)a; € C and so e € X, contradicting to the fact that £ ¢ m. [

Let R be a semiprime S,,-ring. Recall that R and Q satisfy the same GPIs with
coefficients in Q. Thus, Q is also a semiprime S,,-ring. It is known that every nilpo-
tent element in a semiprime S5,-ring has nilpotence index < ». Thus, a” = 0 for any
nilpotent element a € Q. We will use this fact in the proof below.

Proof of Theorem 1.6 By Lemma 2.6, Anng(Q[a,K]Q) = ¢,Q for some e; € B.
Since a is a skew element, Q[a, K]Q is a *-ideal of Q and so e; = e;. This implies
that [eja, e;K] = 0; that is, e;a € Z(e;K). Let e, := 1 — ¢;. For simplicity of notation,
let Ry := e2Q N R, a3 := e;a and Q, = e;Q. Then Q, is equal to the Martindale
symmetric ring of quotients of R, (see [1, Proposition 2.3.14]). By assumption, we
have (ad,,,)" (K(Rz)) = 0, implying (ad,,,)"(K(Q3)) = 0 (see [2, Theorem 1.4.1]).
By a direct computation, we get

2.1 (ade,a) ™ (K(Q2)*) = 0.

Let B, := e,B. Let m € Spec(B,). Note that Q, isa (2n—1)!-torsion free semiprime
S4-ring with involution *. By Lemma 2.1, char(Q,/mQ,) = 0 or a prime p > 2n — 1.
Case 1: m = m”. Then * canonically induces an involution, denoted by * also, on
the prime ring Q,/mQ,. That is, x* := x* for x € Q. We claim that K(Q,/mQ;) =
(K(Q2)+mQ;)/mQ;. Clearly, (K(Qz)+mQ;)/mQ; ¢ K(Qp/mQ;). For the reverse
inclusion, let y € K(Q,/mQ;), where y € Q,. Since % € (Ce, + mQ,)/mQ,, there
exists z € K(Q,/mQ; ), where z € Q,, such that

y=22=2-2"=z-2 € (K(Q) +mQ;) /mQ,.
Thus, K(Q2/mQ,) ¢ (K(Qz) + mQ;)/mQ,, as asserted. By (2.1), we get
—
(ade)*"(K(Q2) ) =0.

Notg that K (Qz)2 is a Lie ideal of Q, (see [14, Lemma 2.1]). Suppose first that
K(Q) is noncentral. In view of [6, Theorem], (adz;)*"!(Q;) = 0. By Theorem L.,
there exists A € e2C such that (a; — 1)" = 0. But Q;/mQ; is a prime S4-ring. 2This
implies that (a; — 1) = 0. That is, (a, — A)* € mQ,. Suppose next that K(Q,) isa
central Lie ideal. In particular, % € Ce,.

Case2:m # m*. Then m* Q,+mQ,/mQ,, which is contained in K(Q; ) +mQ,/mQ,,
is a nonzero ideal of the prime ring Q,/mQ,. Thus, by (2.1),

(adz)?" ' (m* Q") =0,
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where m* Q, is a nonzero ideal of Q,/mQ);,. Note that m* sz and Q,/mQ; satisfy the
same GPIs (see [1, Theorem 6.4.1] or [7, Theorem 2]). Therefore, (adz;)*"(Q;) = 0
(see also [9, Theorem]). Since char(Q,/mQ;) = 0 or a prime p > 2n — 1. By The-
orem L1, there exists Ay € Ce, such that (a3 - K)" = 0. But Q;/mQ, is a prime
S4-ring. We have (@; — Ay )* = 0. That is, (a; — A )? € mQ,.

In either case, we have proved that given an m € Spec(B;), there exists A, € Ce;
such that [(a; — Am)?, Q2] € mQ;,. In view of Theorem 2.7, there exists A € Ce, such
that (a, - 1)? € Ce,.

We claim that (a, — A)* = 0. Suppose not. Let b := a, — A and f := b. Then
0 # 8 € Ce,. Note that (ad,)"” = (ad,,)" = 0 on K,. Given any k € K;, we expand
(adp)" (k) = 0 to get 2" ' B9k = 2" ' B47bkb if n = 2q and 2" ' B9bk = 2" kb if
n = 2q + 1 for some positive integer g, where we have used the fact that

() ()

Since Q, is 2-torsion free, we see that either f%k = f97'bkb or 9bk = B9kb. Since
B =b* e C,weget f4(bk—kb) = 0forall k € K,. By [2, Theorem 1.4.1], B9 (bk—kb) = 0
for all k € K(Q,).

Let m € Spec(B,). Then Bq [b,K(Q3)] = 0, where Q, := Q,/mQ,. This implies
that either f € mQ, or [b,K;] € mQ,. Thus, fQ,[b,K;]Q2 € mQ,. Note that
Nmespec(B,) MQ2 = 0. Therefore, Q,[b, K;]Q; = 0. That is, (e2a-1)2Q[a,K]Q =0,
implying that (e;a — 1)? € €;Q and so (e;a — 1) = 0, as asserted. [ |

Lemma 2.8  Suppose that R is a faithful f-free semiprime ring. Then eR is also a
faithful f-free ring for any nonzero e € B.

Proof Let N be a nonzero ideal of eR. Choose an essential ideal J of R such that
eJ € R. Then eJR is a nonzero ideal of R contained in eR. Then JN = eJN, which
is a nonzero ideal of R. Since R is faithful f-free, JN does not satisfy f. Note that
JN = eJN c N. In particular, N does not satisfy f. This proves that eR is a faithful
f-free ring. [ |

Proof of Theorem 1.7 By [22, Theorem 2.2], there exists orthogonal idempotents
g1, 92 € C, ;1 + g2 = 1, such that g, Q is faithful S4-free and g, Q is an S4-ring. Since the
ideal of Q generated by S4(x;, ..., x4) forall x; € Q is a *-ideal, it follows that g; and
&> are symmetric. In view of Theorems 1.5 and 1.6, there exist orthogonal symmetric

idempotents fi,...,fa € C, fi, 2 € 21C, f5, fa € £2C, i+ =g, 5+ fa = g2, and
Y1, p2 € C such that

M) (fa-p)F=0;
(i) (fra)"T 1" = 0and (f; + )R is an faithful S4-free ring;
(iii) [fsa,K]=0;
(iv) (fsa—p2)* =0and (fs + f4)Ris an Sy-ring.

It follows from Lemma 2.6 that Anng(QaQ) = (1 - e)Q for some symmetric
idempotent e € C. Thus, RaR < eR and Ann,z(RaR) = 0. Thatis, RaR is an essential
ideal of eR. Sete; = fiefor1<i<4,es=1-eand A; = e;y; fori =1,2.
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Then (eja — M) = 0, (e20)"7 1! = 0, [e3a,K] = 0, (e4a — A2)* = 0, and
esa = 0. Since (e; + e2)R = (e + e2)(f1 + f2)R, it follows from Lemma 2.8 that
(e1 + e2)R is a faithful S,-free ring. Finally, it is obvious that (e; + e4 )R is an S4-ring
since (e3 + e4)R S (f3 + f4)R and (f3 + f4)R is an S4-ring. This proves (i)-(v). H
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