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Abstract

Aging ships and offshore structures face harsh environmental and operational conditions in remote areas, leading to
age-related damages such as corrosionwastage, fatigue cracking, andmechanical denting. These deteriorations, if left
unattended, can escalate into catastrophic failures, causing casualties, property damage, andmarine pollution. Hence,
ensuring the safety and integrity of aging ships and offshore structures is paramount and achievable through
innovative healthcare schemes. One such paradigm, digital healthcare engineering (DHE), initially introduced by
the final coauthor, aims at providing lifetime healthcare for engineered structures, infrastructure, and individuals (e.g.,
seafarers) by harnessing advancements in digitalization and communication technologies. The DHE framework
comprises five interconnected modules: on-site health parameter monitoring, data transmission to analytics centers,
data analytics, simulation and visualization via digital twins, artificial intelligence-driven diagnosis and remedial
planning using machine and deep learning, and predictive health condition analysis for future maintenance. This
article surveys recent technological advancements pertinent to each DHE module, with a focus on its application to
aging ships and offshore structures. The primary objectives include identifying cost-effective and accurate techniques
to establish a DHE system for lifetime healthcare of aging ships and offshore structures—a project currently in
progress by the authors.

Impact Statement

Structural failures in aging ships and offshore installations often lead to catastrophic outcomes, including
casualties, property damage, and marine pollution. The implementation of the digital healthcare engineering
(DHE) system stands as a preventive measure against such incidents, leveraging emerging technologies in
digitalization and communication. Comprising five modules, the DHE system incorporates a range of core
technologies, some of which are still in development while others are mature for implementation. Notably,
modern sensor-equipped devices enable the direct measurement and digitization of crucial health parameters—
such aswave dynamics, wind patterns, currents, and in-service damages like corrosionwastage, fatigue cracking,
or mechanical denting—on-site. These data streams are transmitted via low earth orbit (LEO) satellite, such as
StarLink, to land-based data analytic centers equipped with digital twins. Furthermore, artificial intelligence
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algorithms powered by machine and deep learning facilitate accurate diagnosis and offer remedial action
recommendations. This article contributes significantly to the advancement of DHE systems for ensuring the
lifetime healthcare of aging ships and offshore structures, presenting recent breakthroughs in affordable, precise,
and cost-effective technologies poised for integration into the DHE framework’s five modules.

1. Introduction

In an era marked by rapid technological advancement, the last coauthor introduced a groundbreaking
concept and terminology: “digital healthcare engineering” (DHE), tailored specifically for marine
applications (Paik, 2022, 2023, 2024). DHE systems signify a profound innovation, leveraging commu-
nication and digital technologies to monitor and sustain both human health and the integrity of aging
structures and infrastructure (Paik and Melchers, 2008). These systems establish a knowledge-based
virtual model mirroring the real-time characteristics and properties of physical systems. By seamlessly
integrating a continuously synchronized virtual representation with actual operating scenarios, DHE
systems enable intelligent and timely interpretation of reality, crucial for decision-making, operational
planning, and life extension (Semeraro et al., 2021). While digitization has found widespread application
in the design, manufacturing, and lifetime healthcare of engineering structures, including ships and
offshore installations (Fernandez andCosma, 2020), its adoption in lifetime healthcare systems for human
bodies is gaining prominence. The principles of lifetime healthcare exhibit remarkable parallels between
human bodies and engineering structures, necessitating consistent care through ongoing health monitor-
ing, periodic condition assessment, and predictions of future health conditions (Paik, 2022), as illustrated
in Figure 1. This article delves into the feasibility of deployingDHE systems for aging offshore structures,
confronting numerous unresolved challenges, as underscored by Ciuriuc et al. (2022).

Furthermore, this article conducts an exhaustive review of cutting-edge technologies employed in
the key modules comprising the DHE system customized for aging ships and offshore structures, as
illustrated in Figure 2. The primary objective of health monitoring is to capture physical parameters of
actual structures governing structural safety and integrity, where direct factors such as in-service
damages (e.g., corrosion, fatigue cracking, or local denting) or sea states (e.g., waves, wind, current)
are directly measured. In scenarios where direct measurement of sea states poses challenges, indirect
factors such as load effects or structural responses (e.g., stresses, strains) may be measured to derive
environmental loads. Data collected from real structures situated remotely at sea are relayed to a land-
based big data center for comprehensive analytics and visualization. Health condition assessment aims
to ascertain the structural safety margin, defined as the ratio of residual ultimate strength to applied

Human BodyHuman Bodies

Engineering Structures

Birth Health Monitoring Health Condition Medication or Surgery Prediction of Future

(Medical Examination) Assessment Health Condition

Design and Health Monitoring Health Condition Repair or Renewal Prediction of Future

Construction (Inspection) Assessment Structure Condition

Figure 1. Lifetime healthcare processes for human bodies and engineering structures (Paik, 2022).
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loads. Nonlinear structural analyses are employed to compute the residual ultimate strength, incorp-
orating the measured age-related degradation effects. Additionally, computational fluid dynamics
(CFD) simulations are utilized to estimate applied loads based on measured sea states. Health condition
assessment entails highly nonlinear structural responses and ideally necessitates real-time execution,
demanding approaches that are exceptionally swift, efficient, and accurate. As previously noted,
indirect factors, recorded in the form of load effects or structural responses, must be translated into
loads, such as axial forces, shearing forces, or bending moments. To ensure secure operation, the safety
factor should not surpass critical values delineated by acceptance criteria (e.g., 0.9). Subsequent to
health condition assessment, optimal strategies for remedial action, encompassing repair or renewal, are
devised and recommended to operators, with a focus on minimizing downtime and costs. Predictions of
probable future health conditions can also be formulated to devise effective lifetime healthcare schemes
for future maintenance.

A pivotal facet of DHE systems, deserving special attention, is their inevitable integration into the
realm of autonomous ships. As the maritime industry advances toward heightened automation and
autonomy, incorporating DHE systems becomes imperative for ensuring the operational health and safety
of these sophisticated vessels. Raza et al. (2022) underscore the substantial potential of integrated digital
twins in autonomousmaritime surface vessels (AMSVs) for tasks like autonomous obstacle detection and
path planning, showcasing the agility and safety benefits of digital twins in AMSV design and develop-
ment. Furthermore, Hasan et al. (2023) emphasize the crucial role of predictive digital twins in
autonomous ship operations, particularly in fault diagnosis and predictive maintenance, demonstrating
their value through field experiments and simulations in accurately predicting fault parameters in
propulsion systems, thereby enhancing the safety and efficiency of autonomous maritime vessels.
Thombre et al. (2020) further bolster the importance of sensors and artificial intelligence (AI) in
situational awareness in autonomous ships, illustrating how AI-driven sensor data fusion is pivotal for
vessel localization and awareness. Collectively, these studies underscore the significance and indispens-
able role of DHE systems in the evolving domain of autonomous maritime vessels, particularly through
the utilization of their key modules.

Despite recent advancements in individual technologies, certain ones may still be in their early stages
of development or impractical for implementation within a real ship and offshore structure’s DHE system.
Hence, we propose a prototype system that leverages practical technologies and approaches to ensure the
lifetime healthcare of aging ships and offshore structures.

Figure 2. A prototype digital healthcare system of aging ships (Paik, 2024).
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2. Module 1–1: On-site measurements of in-service damage

As ships and offshore structures undergo aging, in-service damages like corrosion wastage, fatigue
cracking, or mechanical denting emerge as primary factors compromising structural safety and integrity.
Hence, precise measurement of these damages is paramount. To accurately assess the structural health
condition, especially regarding maximum load-carrying capacity or residual ultimate strength under
damaged conditions, it is imperative to thoroughly define in-service damages. This definition should
encompass the following factors (Paik and Melchers, 2008):

• type of damage;
• shape;
• size; and
• location.

Traditionally, structural health monitoring (SHM) has centered on condition monitoring rather than
direct measurements of structural damages. In condition monitoring approaches, the dynamic responses
of structures are compared between intact and damaged conditions (Tian et al., 2017;Kim et al., 2019; Bao
et al., 2021a, 2021b; Ciuriuc et al., 2022). However, these methods often lack specificity in defining

Figure 3. Photographs of a field trial for in situ monitoring on the existing offshore structures: (a)
electrochemical sensor (Simandjuntak et al., 2021); (b) optical fiber strain sensor (Lee and Chung,
2016); (c) image processing technology (Momber, 2016); and (d) Visual inspection (DEEPWATER,

2022).
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precise in-service damage factors. Nonetheless, condition-based monitoring approaches can still be
valuable for qualitatively diagnosing damaged structures. A range of methods exist for the on-site
measurement of in-service damage and deterioration, as outlined in Table 1 (Paik, 2022).

2.1 Corrosion wastage

Corrosion wastage not only diminishes structural capacity but also poses risks such as oil/gas boundary
leakages, leading to undesirable pollution, cargo mixing, or gas accumulation in enclosed spaces (Paik,
2018, 2020, 2022). The corrosion process is dynamic and influenced by factors such as the integrity of
protective coatings. Given that the health assessment of corroded structures relies on residual ultimate
strength, it is crucial to precisely define corrosion wastage parameters such as depth, extent, and location
in real-world scenarios. Conventionally, this assessment employs time-variant corrosion models which
are utilized in evaluating the structural integrity of both ships and offshore structures. Tekgoz et al. (2020)
extensively reviewed corrosion wastage modeling and its applications in ship structures. Notably, ship

Table 1. Methods for the detection of in-service damage and deterioration (Paik, 2022)

Method

Type of deterioration

RemarkCorrosion Crack Denting

Visual examination,
close-up tool-aided
examination

✓ ✓ ✓ Small equipment items are required, such as a
hammer, flashlight, calipers, andmeasuring
tape

Digital imaging ✓ ✓ ✓ Automatic processing is usually required
Leak or pressure testing ✓ ✓ Detects pit corrosion and small cracks
Dye-penetrant testing,

chemical sensor
examination

✓ Affected by cleanliness

Ultrasonic testing ✓ ✓ Time consuming
Magnetic particle

detection
✓ Applicable only for magnetic materials;

detects only (sub)surface defects
Strain gauge-based

assessment
✓ ✓ Detects reductions in stiffness caused by

damage
Electromagnetic field

examination
✓ Detects heat-treatment variations, steel

thickness, coating thickness, crack depth,
and surface and subsurface cracks at weld
seams

X-radiometry ✓ Risk of exposure to X-radiation; requires
specialized operator expertise

Acoustic emission or
natural frequency
testing

✓ ✓ Used for preliminary assessments; performed
by specialized companies

Thermal imaging ✓ Applicable to a limited range of materials and
situations

Moiré contouring ✓ Reveals deformation patterns of dents; an
emerging technique

Replica construction
and testing

✓ Simple and cost-effective: records surface
defects

Test coupon ✓ Preliminary calibration required to ensure
precise detection
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structures share similarities with ship-shaped offshore installations such as floating, production, storage,
and offloading (FPSO) units. However, there are notable uncertainties in corrosion prediction mathem-
atical models owing to the highly nonlinear nature of corrosion degradation mechanisms.

On-sitemeasurements of corrosionwastage offer a precise and intuitivemeans ofmonitoring corrosion
in ships and offshore structures. Despite challenges in achieving real-timemonitoring of corrosion factors
due to technical constraints, the existing literature highlights advancements in methodologies for on-site
measurements of corrosion wastage. Xia et al. (2022) extensively reviewed recent progress in electro-
chemical techniques, instrumentation (based on virtual instrumentation), and advanced sensor/probe
methodologies for on-site corrosion measurements. However, the large size of ships and offshore
structures presents challenges, particularly with active sensors that require an independent energy source
for operation, necessitating both an emitter and a receiver. Nonetheless, these advanced sensors prove
effective in detecting corrosion degradation in specific regions prone to high corrosion rates. Other
sensors such as electrical resistance and linear polarization resistance sensors find application in corrosion
monitoring within the industry, albeit with limitations confined to specific modules (Soh et al., 2016;
Tacq, 2021). It is worth noting that the most recent technologies for monitoring ships and offshore
structures are still in experimental and theoretical stages, primarily due to the myriad challenges inherent
in industrial applications. These challenges include the large size and complex geometry of ships and
offshore structures, operation in harsh environments, uncertain reliability of sensors, and remote and
inaccessible locations. Meribout et al. (2021) conducted a comprehensive review of primary unmanned
on-site techniques for monitoring corrosion wastage, highlighting passive sensors like fiber Bragg
gratings (FBGs) as an alternative approach. They observed that while these sensors can function
collectively, offering a potential solution for remote and unmanned corrosion monitoring, they suffer
from notably low sensitivity and limited coverage area.

Recent studies on full-scale ship and offshore structure corrosion monitoring have revealed notable
methodologies. Simandjuntak et al. (2021) applied electrochemical sensors in their monitoring applica-
tion for offshore wind turbines in the United Kingdom. Their research delves into the reliability of
electrochemical sensors in estimating corrosion rates in offshore environments. Further exploration of the
technical challenges encountered could potentially elevate their approach to an industry-standard level.
Meanwhile, Lee and Chung (2016) utilized optical fiber strain sensors in a structural integrity monitoring
system, detecting corrosion wastage by measuring stiffness reduction. Although their technique neces-
sitates a substantial number of sensors to overcome the limitation of measuring strain at a single point, it
offers real-time monitoring capabilities—an advantage of their approach.

Visual inspection techniques serve as routine condition assessments for ships and offshore structures
but come with inherent limitations. Chandrasekaran (2019) highlighted in their overview on SHM that
recent findings suggest visual inspections are imprecise and unreliable. The large size and partial
submersion of ships and offshore structures make it challenging to conduct visual inspections compre-
hensively. Automated systems employing sensors emerge as effective tools for assessing offshore
structures and ensuring safe operability. Momber (2016) employed AI to process images for locating
and defining the extent of corrosion in a jacket platform installed in the North Sea. However, the image
processing method for corrosion monitoring struggles to accurately identify the depth of corrosion and
lacks mobility for operation on full-scale structures (Yao et al., 2019; Khayatazad et al., 2020). Moreover,
the method faces difficulties in detecting hidden degradation and non-visible spaces.

The introduction of robotic-based corrosion monitoring has been spurred by rapid advancements in
cutting-edge technology, leading to numerous recent investigations. A state-of-the-art review on robotic-
based damage assessments for fixed offshore structures by Liu et al. (2022) showcases various
approaches, including the utilization of X-ray, thermography, and photography techniques, tested with
mobile robots such as unmanned aerial vehicles and climbing robots. However, it is worth noting that
motion control techniques for robotic-based assessments are still in the developmental phase.

Chapter 15 of Paik (2022) elucidates advanced techniques for on-site measurements of corrosion
wastage alongside the challenges they entail. Among these methods, ultrasonic sensors emerge as
valuable tools for measuring corrosion wastage. However, they necessitate surface and coupling medium
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preparation and a meticulous point-by-point examination, particularly where heavy rust removal is
required from structures with numerous corrosion pits to obtain accurate thickness measurements.
Nondestructive examination may be feasible when the existing coating is insignificant. Additionally,
acoustic emission and natural-frequency measurements present themselves as promising methods,
offering inexpensive and reliable means of detecting significant changes in structural responses. None-
theless, they encounter difficulties in precisely quantifying essential corrosionwastage factors for residual
ultimate strength analysis. Galvanic thin-film microsensors offer the potential for in situ monitoring of
coating durability and hidden corrosion. On the other hand, dye-penetrant methods employing chemical
sensors detect corrosion through fluorescence or color changes, but their practicality for widespread
corrosion detection remains unproven. Lastly, methods utilizing strain gauges have proven impractical
due to the challenges in converting strain measurements to corrosion wastage.

2.2 Fatigue cracking

Fatigue cracking often initiates at areas of structural stress concentration due to repeated cyclic loading.
Recent technological advancements have facilitated the precise identification of suspicious areas prone
to fatigue cracking before its initiation through detailed stress and fatigue analysis. These cracks may
propagate under repeated loading or even under monotonically increasing extreme loads, potentially
leading to catastrophic structural failure, especially in scenarios where rapid and uncontrolled crack
extension occurs without arrest. As the crack lengthens and significantly degrades the structural
capacity, the risk intensifies (Paik, 2018). Fatigue cracking exhibits variations over time, as depicted
in Figure 4, illustrating the schematic of fatigue crack progression categorized into three stages:
initiation (stage I), propagation (stage II), and failure (stage III). For the health condition assessment
of aging structures through residual ultimate strength analysis, in situ measurement of fatigue cracking
is imperative.

Numerous studies in the literature delve into on-site measurements of fatigue cracking in ships and
offshore structures. Bjørheim et al. (2022) conducted a review ofmethods for monitoring fatigue cracking
and categorized them into two groups: “fatigue crack monitoring” and “fatigue damage monitoring.” The
former entails detecting and monitoring cracks after their initiation, while the latter focuses on identifying
early signs of material degradation before cracks form. On-site measurements of cracks in steel structures
can be conducted using acoustic emission, hardness, ultrasonic, magnetic, and potential drop methods.
For fatigue crack monitoring in composite structures, methods such as acoustic emissions, X-ray

I: Crack initiation stage

II: Crack propagation stage

III: Failure stage

I II III

Time TTF
ToTI0

ao

ac, min

a(T)

a(T)

ac(T) Fracture
(Failure)

a(T): Crack size (length)

ac(T): Critical crack size

Figure 4. A schematic of crack initiation and growth for a structure with time (Paik, 2018).
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diffraction, ultrasonic, strain-based, and thermometric techniques are employed. Table 2 outlines the
methods for conducting on-site measurements of existing cracks or their propagation, where visual
examination supported by portable gauges or meters emerges as a practical solution.

May et al. (2009) provided a comprehensive review of fatigue crack monitoring methods, showcasing
the diverse technologies employed for offshore platform applications. Given the array of approaches
available for fatigue monitoring in ships and offshore structures, their study meticulously evaluates each
technique’s sensitivity/effectiveness, health and safety benefits, and cost reduction potential, offering a
comparative criterion (as also delineated in Table 2). While many real-time fatigue crack monitoring
techniques and technologies presented thus far remain in the research and development stage, similar to
corrosion wastage monitoring for ships and offshore structures, the existing literature on on-site fatigue
crack monitoring methods offers valuable insights for the development of a lifetime healthcare digital
twin for ships and offshore structures, elucidating the reliability and applicability of each approach.
Despite the predominance of active techniques, the incorporation of naturally passive methods like
acoustic emissions for damage detection presents distinct advantages, including simple implementation,
no requirement for energy input for detection, early flaw detection, precise monitoring of crack
occurrences, and real-time monitoring capabilities (Gholizadeh et al., 2015; Tziavos et al., 2020).
Furthermore, Mitra and Gopalakrishnan (2016) reviewed various ultrasonic-guided wave methods for
SHM, highlighting their potential to develop high-fidelity schemes capable of detecting minute damages
such as fatigue cracking during inspection. As noted byMin et al. (2021), the FBG approach is categorized
into point and distributed sensing technologies in the marine environment. Moreover, Aalberts et al.
(2019) demonstrated the sustained effectiveness of using strain gauges to measure in-service damages
such as fatigue cracking on an FPSO unit’s hull over several years.

Tang et al. (2016) implemented a method to monitor fatigue cracks in a full-scale offshore wind
turbine structure utilizing acoustic emission sensors. These sensors were internally mounted on the
blade and effectively detected localized damages in their nascent stages over a 21-day period under
realistic fatigue loading conditions. However, their study revealed that noise in the vicinity of ships and
offshore structures influenced the results, necessitating further investigation to address this issue. In a
separate experiment, Mieloszyk and Ostachowicz (2017) tested the feasibility of using FBG sensors to
detect fatigue cracks on ships and offshore structures. Their experimental setup involved wind turbine
models—one intact and the other containing a crack—immersed in a wave tank to replicate oceanic
environmental conditions, with FBG sensors affixed to the models. Their findings demonstrated the
effectiveness of the FBG sensor approach in detecting crack presence and location. However, it is worth

Table 2. Methods for in situ measurements of existing fatigue cracks and their propagation

Category Method

Monitoring method for existing cracks Visual examination aided by portable meters
Ultrasonic method
Potential drop method
Acoustic emission technique

Monitoring method for crack propagation Visual examination aided by portable meters
Ultrasonic method
Magnetic method
Electric resistance method
Hardness–based method
X–ray diffraction method
Thermometric method
Strain–based method
Positron annihilation method
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noting that FBG sensors, due to their limited coverage area, may not adequately monitor fatigue crack
parameters across entire structural members.

Chapter 15 of Paik (2022) further discusses advanced techniques for conducting on-site measurements
of fatigue cracking in aging ships and offshore structures. Visual examination supplemented by portable
meters remains a common approach for detecting fatigue cracking. Surface cracks can be assessed using
dye-penetrant and magnetic-particle testing, although these methods cannot measure crack depth beyond
the removed material. Nondestructive examination methods outlined in Table 3 offer alternatives for
measuring fatigue cracking, each with its own set of advantages and disadvantages. Selection of
appropriate methods should be based on thorough cost–benefit analyses.

2.3 Mechanical damage

Mechanical damage, such as local denting, often results from impacts by falling objects during craning
operations on deck plates. This denting can lead to cracking, residual stresses or strains due to plastic
deformation, or coating damage. The presence of mechanical damage diminishes the ultimate strength of
the structure, necessitating its consideration in residual ultimate strength analysis. Close-up tool-aided
examination stands as the most practical method for measuring mechanical damage. Although advanced
techniques like guided wave techniques and magnetic flux leakage inspection have been developed, they
pose challenges for in situ measurements of local denting in ships and offshore structures.

Table 3. Comparison of nondestructive examination methods used for crack detection (Paik, 2022)

Factor Ultrasonic X-ray Eddy current Magnetic particle Liquid penetrant

Capital costs Medium to
high

High Low to medium Medium Low

Consumable costs Very low High Low Medium Medium
Result availability Immediate Delayed Immediate Short delay Short delay
Geometry effects Important Important Important Less important Less important
Accessibility Important Important Important Important Important
Defect-type

applicability
Internal Most External External Surface-breaking

Relative
sensitivity

High Medium High Low Low

Formal-record
availability

Extensive Standard Extensive Low Low

Operator skill
required

High High Medium Low Low

Operator training Important Important Important Important Important
Level of training

required
High High Medium Low Low

Equipment
portability

High Low High to medium High to medium High

Dependence on
material
composition

High High High High (magnetic
material only)

Low

Automatability Good Fair Good Fair Fair
Assessment

capability
Thickness
gauging

Thickness
gauging

Thickness
gauging

Defects only Defects only
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2.4 Challenges and practical solutions

Three methods for on-site measurements of in-service damage applicable to DHE of aging ships and
offshore structures are outlined below:

• unmanned detection approach via remote sensing in real time;
• manned detection approach in specific intervals (e.g., months, quarters, or years) and
• hybrid approach of both unmanned and manned approaches.

The first approach is ideally suited for the real-time monitoring of structural health. However, it faces
significant challenges due to the large size and complex geometry of ships and offshore structures. Despite
recent advancements in traditional real-time sensing methods such as distributed optical fiber sensors,
FBGs, strain gauges, and acoustic emission sensors, these techniques have not yet been effectively scaled
for large-scale structural monitoring (Martinez-Luengo et al., 2016; Min et al., 2021; Yang et al., 2023).
Consequently, determining the location and number of health sensors to embed becomes challenging,
especially considering the uncertainties surrounding in-service damage formation. Furthermore, emer-
ging unconventional methods, such as the use of remotely operated vehicles (ROVs), autonomous
underwater vehicles (AUVs), and specifically drones for structural monitoring, hold promise but have
not fully realized their potential for large-scale inspections of ships and offshore structures (Shafiee et al.,
2021; Benzon et al., 2022). Given these challenges, the second approach may prove more practical, as it
enables direct measurement of physical in-service damage parameters, albeit without real-time capability.
The third approach is particularly advantageous for addressing critical and sensitive regions prone to in-
service damages.

For the prototype DHE system proposed in this paper, employing visual examination aided by
advanced equipment is deemed appropriate. This visual examination or close-up survey can be conducted
by inspectors visiting ships and offshore installations or operators utilizing advanced equipment to
quantify damage and transmit data. While this approach may not facilitate real-time monitoring every
second, such close-up surveys can be scheduled at periodic intervals. Current inspection practices and
classification societies’ standards stipulate that essential structural elements should undergo inspection at
least once a year, with a strong recommendation to inspect all elements at least once every five years or
depending on their exposure level (ISO, 2007, 2019; DNV GL, 2014, 2016, 2018; Vázquez et al., 2023).
However, the prototype DHE system aims to extend the service life of ships and offshore assets and
prevent failures, necessitating more frequent inspections and maintenance (Soliman et al., 2016; Abbas
and Shafiee, 2020). Therefore, it is suggested that in-service damages be measured on a weekly, monthly,
or quarterly basis rather than annually or bi-annually. Additionally, suspicious areas that are critical and
vulnerable to significant impacts of structural failures may be monitored by health sensors in real time.

Nevertheless, underwater and confined spaces often pose challenges for human accessibility, neces-
sitating specialized monitoring techniques. Historically, inspection services were conducted by divers,
and with the advancement of ROVs, the latter gained popularity (Rocha and De Tomi, 2015). Visual
inspection underwater by divers offers the advantage of human judgment, enabling coverage of large
areas where ROVs may easily become disoriented. Moreover, it is considered the most maintenance-free
and least breakdown-prone inspection method (Hughes, 1972; Faulds, 1982), thus playing a pivotal role
in determining the success or inadequacy of an inspection program. ROVs provide a versatile platform for
comprehensive underwater inspections, offering high-definition visual assessments and advanced sensor
modalities. They prove invaluable for ships and offshore structure operations, particularly at depths
beyond diver reach (Capocci et al., 2017). Their capabilities range from visual examinations in turbid
waters to 3D sonar mapping and scour estimation, and they can be operated remotely from secure
locations, making them ideal for subsea inspection, maintenance, and repair (Chemisky et al., 2021).
However, ROVs require tethering to a large surface vessel for power and control, incurring significant
operational costs (Bogue, 2015). AUVs are a newer breed of self-driven underwater robots, untethered
and powered and directed by internal computers. They are primarily utilized for seafloor mapping and
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inspecting underwater structures. However, they suffer from limitations such as a restricted mission
duration, inability to provide continuous surveillance/inspection, and high costs (Bogue, 2015; Capocci
et al., 2017). Therefore, for the prototype DHE system, underwater inspections are suggested to be
undertaken by divers due to their efficiency and adequacy in assessment.

3. Module 1–2: On-site measurements of ocean environmental conditions

In assessing the health condition of aging ships and offshore structures, which relies on the ratio of
residual ultimate strength to applied loads, it is imperative to define ocean environmental conditions that
induce environmental loads. These loads can be calculated through CFD simulations, given the meas-
urement of parameters associated with ocean environmental conditions. Various types of ocean envir-
onmental conditions are pertinent to this assessment (Paik, 2022):

• wind;
• waves and swell;
• current;
• tide;
• sea surface temperature;
• rain and squall;
• humidity;
• snow;
• ice;
• marine growth and
• seafloor earthquakes and tsunamis.

In the prototype DHE system for ships and offshore structures presented in this paper, we focus solely
on primary types of ocean environmental conditions, including waves, wind, and icebergs. Although
extreme events such as earthquakes and tsunamis can have significant impacts, they are rare incidents for
which safety measures are typically implemented in advance. Therefore, we have opted to exclude them
from our assessments.

3.1 Waves

Wave loads represent the primary structural loading on both local components and global systems. To
compute wave loads accurately, the following wave parameters need to be statistically defined:

• significant wave height;
• modal wave period;
• wave direction and spreading.

Wave parameters in the surrounding environment of ships and offshore structures can be measured
using various methods, including visual observation, on-site instrumentation, and remote sensing
techniques. Visual observation, historically relied upon, involves estimating wave information based
on the crew’s experience. This method is commonly employed during sea trials for ships (ISO, 2015).
Guedes Soares (1986) compared visual observations with hindcast predictions and found them to be of
comparable quality, with visual observations even preferred for long-term predictions of ship response
during transiting. Pitman and Lee (2019) analyzed the accuracy of lifeguards’ visual observations of wave
heights and identified significant variations between coasts. Specifically, east-coast lifeguards underesti-
mated wave heights by approximately 0.12 m, while their west-coast counterparts underestimated by a
larger margin of 0.39 m. Plant and Griggs (1992) discovered that observers tended to underestimate high
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wave heights (greater than 2.0 meters) by 33 ± 28 cm to 1.01 ± 35 cm, while periods of short waves (less
than 11 seconds) were overestimated by up to 5 ± 4 seconds. These findings underscore the substantial
deviations in human visual estimations compared to instrumental measurements.

Wave measurement directly on a platform offers the highest accuracy, with measurement data
transmitted in real-time to a land-based analytic center. In the DHE system, the data analytic center aims
to model wave environmental conditions to compute loads on the ships and offshore structures. Several
widely used modeling techniques for hindcasting long-term wave characteristics using energy balance
equations include Wavewatch 3, SWAN, and MIIKE21 (Tolman, 2009; Akpınar et al., 2012; Kim et al.,
2022). However, hindcast data are not as accurate asmeasurements taken directly on a platform, making it
less ideal for wave load computations. Ocean wave measurement methods can be categorized based on
installation methods and contact with water into on-site and remote sensing techniques. On-site
approaches involve measuring specific points, typically using devices such as wave buoys, air gap
sensors (sea level monitors), pressure sensors, or acoustic Doppler current profilers (ADCPs). Remote
sensing techniques, on the other hand, capture the spatial characteristics of the wave surface using tools
like X-band marine radar (ship-borne) and synthetic aperture radar (SAR) on satellites. Additionally,
numerical modeling techniques are available for estimating wave parameters. Further details on these
methods are provided in Table 4.

Wave buoys represent the most reliable on-site measurement method for estimating sea state in the
surrounding environment of ships and offshore structures (Raghukumar et al., 2019; Lin et al., 2020a).
However, for large areas such as wind farms, wave buoys are not suitable due to their measurements being
confined to a single point. Alternatively, air gap sensors can be employed for fixed and/or floating offshore
platforms to estimate wave height and period by measuring the elevation of the water surface (Anokhin
and Ewans, 2018). Although air gap sensors cannot directly measure wave direction as they are installed
on the structure, they can provide information on ocean waves distorted by the column.While impractical
in deep water, recent advancements in acoustic wave and current sensors (AWAC) combine an ADCP
with a directional wave gauge, allowing for the measurement of wave parameters near coastal structures
(Mendelsohn et al., 2017, 2019).

X-band radars installed on ships or offshore platforms offer the capability to measure wave parameters
on-site, providing real-time estimates within a range of several kilometers from their location (Wang et al.,

Table 4. Summary of methods and their characteristics for estimation of the wave parameters

Method Accuracy Cost Data transmission Limitation

Wave buoy Very high High Real time Single point measuring coverage, lost
Air gap sensor High Medium Real time -Inadequacy to estimate wave

direction data
-Influence of structure on near field

wave environment
Acoustic wave and

current profiler
(AWAC)

High Medium Real time -Inadequacy in deep water
-Influence of structure on near field

wave environment
X-band radar High Medium Real time Wind required (wind speed ≥4 m/s)
Satellite-based

observation
High Very high Different time

intervals
depending on
orbital periods

High cost

Numerical modeling
technique

Medium Low - Hindcasting based energy balance
equation
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2018). Moreover, these radars offer additional advantages such as the ability to measure the surface wave
field in real time and distinguish between wind, waves, and swell (Chernyshov et al., 2022). Since swell
acts as an external force on offshore structures, it is crucial to separate its measurement from that of wind
andwaves. Themeasurement principle involves computing the spatial–temporal radar image by applying
three-dimensional fast Fourier transform to the intensity of the signal reflected from the sea level. X-band
radar provides a means to determine the profile of incident waves in real time, which can be pivotal in
predicting the motion of floating bodies. Satellite-borne SAR systems also utilize X-band frequencies;
however, they utilize the Doppler effect to measure the ocean’s surface wave field. While SAR systems
can measure a wide area exceeding tens of kilometers, they face challenges such as high cost and
difficulties in providing real-time responses. In contrast, C-band radar is widely used on offshore
platforms to measure wave parameters and surface currents effectively. However, it relies on the Doppler
effect and only provides statistical characteristics of the waves rather than enabling direct wave field
measurement. Additionally, high frequency radar, typically installed along coastlines, is specifically
designed to measure surface currents. Jiao et al. (2021) conducted a comprehensive review of on-site
methods for measuring hydrodynamic and structural loads on large-scale floating structures, highlighting
ongoing advancements in large-scalemodelmeasurements. Figure 5 depicts the installation of various on-
site instruments.

3.2 Wind

Wind loads exert significant forces on ships and offshore structures, posing potential risks of catastrophic
damage, particularly during severe storms. Consequently, they demand careful consideration both during
the design phase and in ongoing structural health assessments. These loads are characterized by several
parameters, necessitating measurement at the structure’s site (Paik, 2022):

• windage area;
• wind speed at the standard World Meteorological Office height of 10m above mean sea level for its
known suitable estimates (McQueen and Watson, 2006; Jimenez et al., 2007);

• wind direction.

Wind sensors, particularly anemometers, offer valuable on-site measurements of wind parameters.
Anemometers, categorized by their working principles such as effect, hot wire, and ultrasonic, are among
the most common and accurate instruments for this purpose. Table 5 provides a detailed overview of the
various types of anemometers and their properties (Wang et al., 2018). However, a common challenge
with all types of anemometers is the potential distortion of wind flow, often caused by superstructures or
mounting arrangements (Moat et al., 2005). In recent methodologies aimed at estimating wind parameters
on-site, emerging technologies like satellite-based methods and X-band radar have gained traction,
addressing some of the limitations associated with traditional anemometers. Satellite-based methods
offer the significant advantage of measuring extensive areas. Nonetheless, studies by Chen et al. (2018)
and Majidi Nezhad et al. (2021) suggest that these methods may exhibit relatively lower accuracy
compared to on-site measurements.

Offshore wind turbines are continually increasing in size, necessitating the placement of anemometers
on taller masts to accurately capture wind parameters. However, traditional mast installations face both
technical and economic challenges, particularly regarding their height. In response to this, light detection
and ranging (LiDAR) systems, which are remote sensing technologies with fewer height limitations, have
gained popularity for estimating wind parameters in offshore settings. Research by Shu et al. (2016)
explored the wind characteristics of offshore wind turbines using both LiDAR systems and traditional
meteorological masts. Their study revealed that LiDAR measurements closely correlated with mast
anemometer readings in terms of wind direction and speed. However, notable deviations were observed at
higher altitudes when comparing LiDAR-derived profiles with standard wind profiles. Figure 6 illustrates
the different LiDAR and anemometer installations on offshore structures.
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Figure 5. Photographs of in situ instruments (Zwick, 2022): (a) wave buoy; (b) air gap sensor; (c)
acoustic wave and current profiler (AWAC); (d) X-band radar; (e) C-band radar (Salcon Petroleum,

n.d.); (f) SAR radar; (g) HF radar; and (h) pressure sensor.
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Table 5. Summary of different anemometers and their characteristics

Type Accuracy (%) Wind speed (m/s)
Wind
direction Remarks

Hall effect 1.1 0–20 ✓ Minor accuracy issue in readings
Vane 1.5 ≥3 ✓ Friction losses of generator unexpected

voltage drops and system limitations distort
the exact value of wind speed

Hot wire 5.0 1–9 Requires more studies to shorten its response
time and increase its upper limit of
measurement

Ultrasonic 1.5 1–25 ✓ Not very sensitive to possible inaccuracies
which can appear due to their assembly
under field conditions

Figure 6. Various instruments for the wind parameters: (a) Hall effect anemometer (Rutledge et al.,
2022); (b) vane anemometer; (c) ultrasonic anemometer; and (d) LiDAR (Shu et al., 2016).
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3.3 Moving iceberg

Ships and offshore structures operating in Arctic environments may encounter infrequent but potentially
significant external forces resulting from collisions with drifting icebergs, as depicted in Figure 7. The
acceleration of climate change has heightened the occurrence of drifting icebergs in open waters, thereby
posing a notable threat to ships and offshore structures in Arctic regions. In conducting structural health
condition assessments, calculations of iceberg-induced loads rely on measured parameters of the moving
iceberg, which encompass:

• iceberg mass;
• iceberg shape;
• moving speed; and
• moving direction.

Predictive analytical models aimed at forecasting drifting iceberg collisions with ships and offshore
structures have been put forth, as delineated byWagner et al. (2017). These models hinge on precise, on-
site measurements of waves, currents, and wind to ensure accurate predictions of iceberg drift trajectories.
However, inaccuracies in themeasured parameters, especially concerning current direction, canmarkedly
diminish the reliability of the predictive model, as evidenced by Turnbull et al. (2015) in their study.

Visual examination by operators serves as an effective means to relay measured parameters of moving
icebergs to the data center of the digital healthcare system for calculating iceberg loads. Advanced
technologies, such as SAR and marine radar, have been developed for unmanned iceberg monitoring
applications.Marine radars have gainedwidespread adoption for iceberg detection and sizemeasurement,
often deployed on ships and offshore platforms for such purposes. This application is evident in Lund et al.
(2018), where drifting icebergs were monitored, and their speed and direction were measured using a
marine radar installed on a vessel. Similarly, Long et al. (2021) characterized drifting iceberg parameters
using a marine radar mounted on an offshore platform. However, it is important to note, as highlighted in
Lee and Park’s (2021) review, that detecting large icebergs using marine radar can present challenges.
SAR has emerged as a highly effective satellite-based method for detecting and monitoring icebergs, as
underscored in various research studies and in Hannevik’s (2017) review. Among its notable advantages

Figure 7. A moving iceberg at sea.
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over other iceberg detection methods is its capability to measure iceberg parameters regardless of weather
conditions, cloud cover, and day-night cycles. However, the relatively large sensor size of SAR systems
poses a limitation to their effectiveness, resulting in lower resolution compared to on-site measurements
obtained from instruments mounted on offshore platforms (Kaspersen, 2017). Additionally, satellite
technologies often entail significant time intervals between measured data points due to the orbital period
of satellites (AMEC et al., 2007).

3.4 Challenges and practical solutions

On-site measurement methods for ocean environmental conditions provide real-time data through sensors
or visual examination, enabling the immediate calculation of ocean environmental loads. Given the
intricate nonlinear dynamics between ocean environments and structures, CFD remains indispensable for
accurately determining these loads. However, the current computational demands of CFDpose challenges
in processing real-time simulations directly from transmitted on-site data. As computational technologies
advance, the prospect of real-time CFD simulations may become more attainable in the future. Mean-
while, periodic assessments based on average values of measured parameters over weeks or months
intervals can be conducted, with real-time measurement reserved for significant storm conditions or
iceberg collision events. Depending on the sensitivity of the outputs to collected data, this approach
proves both adequate and cost-effective. Furthermore, weather forecasts or previous examinations can
complement this strategy.

4. Module 2: Data transmission and communication

4.1 Data digitalization and transmission

Connectivity and data sharing pose significant challenges to the advancement of Maritime 4.0, encom-
passing factors such as speed, capacity, reliability, and security (de la Peña Zarzuelo et al., 2020). To
facilitate the transmission of digitized environmental and in-service damage parameters, data must be sent
to a land-based data center for computations related to offshore structure loads and strength evaluation.
For fixed offshore structures, especially those near shorelines, Wi-Fi broadband offers a viable option for
data transmission. However, in remote areas where ships and floating offshore installations are prevalent,
satellite communication becomes essential. Yang et al. (2018) compared various transmission methods
(ZigBee, Wi-Fi, radio frequency [RF], 4G, and 5G), highlighting Wi-Fi as the preferred choice for
automated ports due to its wide coverage and broadband bandwidth advantages. RF communication is
typically utilized for ships and offshore structures within a 20 km range from the port. Meanwhile, 4G and
5G technologies offer lower infrastructure costs, improved coverage, and enhanced flexibility compared
to earlier methods. Notably, 5G, with its capacity for evolution, adaptation, and growth, emerges as the
preferred solution in scenarios requiring higher speeds, stronger security, and greater reliability (Capela
et al., 2021; Zmysłowski et al., 2023). In a case study by Loughney et al. (2021) focusing on offshore gas
turbines, four wireless sensor network (WSN) designs were evaluated: Single-hop transmission (WSN 1),
Single-hop transmission with cluster head nodes (WSN 2), Multi-hop transmission with a small sensor
node radius (WSN3), andmulti-hop transmissionwith a large sensor node radius (WSN4). Their findings
indicated that WSN 3 represents the optimal solution for structural integrity monitoring driven by
electrical generators.

Terrestrial communication systems, including broadband cellular networks, low power wide area
networks (LPWANs), and massive machine type communication (mMTC) technologies, present viable
options for offshore structures, albeit with limitations primarily confined to coastal regions. Parri et al.
(2020) advocate for advanced LPWAN solutions tailored for marine industry monitoring systems,
emphasizing their ability to achieve significant operational ranges while addressing challenges related
to packet losses and power consumption. Meanwhile, mMTC technology offers specialized connectivity
for large-scale machine-to-machine interactions, crucial for Internet of Things (IoT) applications. These
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systems provide extensive and energy-efficient wireless connectivity, making them well-suited for
applications such as remote data collection in environments like wind farms (Ullah et al., 2021).

Satellite communication stands as the predominant data transmission method inmaritime and offshore
environments, boasting expansive coverage capabilities, particularly when contrasted with conventional
techniques. Satellite systems are typically classified into three primary types: low-earth orbit (LEO),
positioned below 2000 km; medium earth orbit, spanning distances from 2000 to 35,786 km; and
geostationary earth orbit, situated at 35,786 km. LEO satellites, in particular, offer improved communi-
cation efficiency with reduced propagation attenuation and faster transmission times, albeit necessitating
constellations for continuous coverage. Recent technological strides have underscored the significance of
free-space optical communication technology in LEO constellations, heralding fiber-like data rates. This
advancement holds pivotal importance for broad maritime connectivity, as evidenced by initiatives like
SpaceX’s Starlink, Telesat Lightspeed, and OneWeb constellation (Guan et al., 2021; Alqurashi et al.,
2022). Moreover, the integration of mMTC and LPWAN technologies with satellites facilitates direct
device communication and extends coverage to remote areas, thereby suggesting the potential for more
efficient and widespread connectivity solutions (Liu et al., 2021; Ullah et al., 2021, 2022).

4.2 Satellite-assisted health data management

Following the transmission and reception of health parameters at the data analytic center, thorough
analysis ensues to compute loads and assess structural integrity. Visualization emerges as a pivotal tool in
scrutinizing the characteristics of these conditions and delineating their trends over time. Fang et al.
(2022) pioneered the development of a digital twin system tailored for fatigue monitoring in marine
structures, harnessing advanced data visualization techniques within a virtual model. Renowned for its
high-fidelity representation, this model faithfully captures physical attributes such as geometry, boundary
conditions, and damage, effectively crafting a cyber-counterpart to the physical system. Moreover,
emerging methodologies for modeling ships and offshore structures incorporate virtual reality visualiza-
tion, offering an immersive virtual onboard experience. This approach encompasses diverse functional-
ities, including equipment handling simulations, a dynamic positioning system simulator for platform
motion control, walk-through simulations enabling monitoring from a worker’s perspective on the
platform, and more (Park et al., 2020).

Through simulation-based monitoring, the structural characteristics are virtually rendered in real-time,
facilitating diagnosis, prognosis, and health management. Fang et al. (2022) emphasize the necessity of
exploring multi-scale and multi-physical field modeling methods, given the large size of ships and
offshore structures and the localized nature of damages. A recent illustration of this approach is provided
byAugustyn et al. (2021), who delved into digital twinmodeling and visualization by crafting a simulated
numerical model of a jacket support structure. Leveraging advanced modeling techniques for ships and
offshore structures, Augustyn et al. (2021) achieved remarkable precision in representing structural
dynamics. Their meticulous methodology comprised several key steps:

1. Adopting Craig-Bampton (Craig and Bampton, 1968) as a reduced model for wave loading.
2. Conducting aeroelastic computations for wind loading.
3. Retrieving the substructure response and extracting pertinent measurements for force recovery,

following the guidelines set by Nielsen et al. (2016).

Nonetheless, there remains an imperative for more extensive investigations into real-time simulation
approaches tailored specifically for ships and offshore structures, particularly as real-time computing of
the reduced order models (ROMs) continues to pose challenges (Zheng et al., 2023). Zhao et al. (2023)
demonstrate how ROMs can achieve real-time predictions with exceptional efficiency, enabling swift
structural health assessments of offshore wind turbines at speeds up to 650 times faster than conventional
models, with an accuracy level of less than 0.2% error.
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4.3 Challenges and practical solutions

The virtual model relies on the aggregation of both sensor and historical data (Uhlemann et al., 2017;
Wang et al., 2021), necessitating substantial data volumes for the on-site measurements across different
locations, time variants, and parameters. Thus, periodic time-variant data analyticsmight be contemplated
at certain intervals, utilizing average parameter values for health condition assessment over time. Data
fusion, ideally, encompasses data preprocessing, mining, and optimization (Tao et al., 2018b), facilitating
timely information exchange between the digital twin’s system modules to achieve seamless information
sharing. The overarching objective of the digital twin is to operate as a service system, prioritizing
intelligent control and task optimization of the physical model (Wang et al., 2021). Technologies such as
IoT, big data driving, status monitoring of the virtual model, and feedback to the physical model are
continuously updated in real time to realize the service goal (Tao et al., 2018a).

With adequate data transfer rates, real-time continuousmonitoring, data collection, and transmission of
structural damage and environmental loads can be assured. Sensors can be deployed for continuous online
data gathering and transmission, enabling the estimation of damage severity and identification of affected
structure locations (Wang et al., 2018). While the DHE system predominantly relies on periodic visual
examinations with advanced equipment due to computational demands and efficiency considerations,
integrating real-time monitoring for critical areas ensures prompt detection and response to vulnerabil-
ities. Additionally, to comprehensively characterize the load and damage of support structures, it is
imperative to integrate online monitoring with nondestructive testing, given the discrete nature of
nondestructive testing data (Wang et al., 2021).

5. Module 3: Data analytics and visualization with digital twin

5.1 Residual ultimate strength-based safety criteria

Progressive collapse, stemming from a loss of structural stiffness and strength due to factors like buckling,
plasticity, and fracture (Paik, 2018, 2020, 2022), can lead to the failure of a specific structural member or
an entire structure. Such failures may have dire consequences, including human casualties, structural
collapse, and environmental damage. Thus, conducting a health condition assessment of offshore
structures based on their ultimate strength is imperative.

This paper adopts a deterministic approach, employing CFD and finite element analysis (FEA) to
compute ocean environmental and operational loads, alongwith their effects on the structure. Thismethod
offers a straightforward and tangible assessment, enabling prompt decision-making, which is crucial for
operators and engineers during emergent situations. The criteria for conducting health condition assess-
ments based on ultimate strength are outlined as follows (Hughes and Paik, 2010; Paik, 2018):

η=
C
D
> ηcr (1)

whereC is the ultimate strength or maximum load-carrying capacity,D is the applied loads, η is the safety
factor, and ηcr is the critical safety factor. To be safe, the computed safety factor, η should always be
greater than the critical safety factor, ηcr, despite in-service damage and ocean environmental conditions.

While probabilistic methods provide valuable insights into uncertainties and risk factors, the deter-
ministic approach better aligns with the real-time decision-making framework of the proposed DHE
system. Jiang et al. (2017) conducted a comprehensive review of reliability analysis methods for offshore
wind turbines, underscoring the significant role of probabilistic methods and the challenges in quantifying
uncertainties for novel structures. Traditional probabilistic methods such as the first-order reliability
method (FORM) and second-order reliability method (SORM) are commonly utilized. SORM is known
for its potential accuracy, albeit being computationally expensive compared to FORM (Lee and Kim,
2019). In their investigation of offshore wind turbine support structures, Kim and Lee (2015) introduced a
static analysis-based reliability method that estimates dynamic response by multiplying the static
response and peak response factor, thereby significantly reducing computational efforts. However, they
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noted a limitation concerning the approach’s potential inaccuracy for structures with high nonlinear
properties. Abaei et al. (2018) employed a Bayesian network for probabilistic hydrodynamic analysis to
assess the safety of floating structures, successfully identifying critical design points associated with
hydrodynamic responses in various sea states. Their methodology not only demonstrated the effective-
ness of Bayesian networks for their specific study but also suggested their applicability to diverse failure
modes with appropriate modifications.

5.2 Calculations of ocean environmental loads

The applied loads in Equation (1) can be determined through analytical, numerical, or experimental
approaches. Traditionally, experimental and analytical methods were the primary means of calculating
applied loads, especially in aero-hydrodynamic analysis. However, with the introduction of CFD
simulations utilizing Reynolds-averaged Navier–Stokes equations, a more comprehensive approach
has emerged for computing complex wave and wind-induced loads, particularly considering the com-
bined effects of these forces. The prevalent methods for conducting CFD simulations of combined wind
and wave loads on offshore structures typically involve the utilization of advanced industrial-grade
software packages such as ANSYS Fluent, STAR-CCM+, and OpenFOAM.

For instance, Figure 8 showcases a CFDmodel depicting wave-induced hull girder load computations
for FPSO hull structures, as demonstrated in the research by Paik (2022). Additionally, it presents the
intricate dynamics of wind, wave, and rotor-induced loads on an offshore wind turbine. These visual
representations elucidate the multifaceted factors influencing the calculation of environmental loads,
which significantly affect the structural integrity and durability of these engineering marvels.

There has been a notable surge in research publications focusing on wind and wave simulation
employing these computational tools. For instance, Temarel et al. (2016) provided a review on evaluation
methods for wave-induced loads, offering a comparative analysis of CFDmethods against analytical and
experimental approaches. Similarly, Liu et al. (2020) conducted a review on practical methods for
calculating wind-induced loads acting on offshore platforms, classifying these methods into numerical
simulation, experimentation, and on-site measurement. Although published experimental studies, includ-
ingwave tank andwind tunnel test analyses, are often deemed unsuitable for industrial applicationswithin
a lifetime healthcare digital twin monitoring system. This limitation stems primarily from the high costs
and lengthy preparation periods associated with their implementation (Xie et al., 2021). Nevertheless,
these studies offer valuable insights guiding the further development of the proposed approach toward
achieving industrial applicability. Hence, based on the current state-of-the-art literature, the most viable
solution appears to be the utilization of CFD simulations based on measured environmental conditions.

(a) FPSO hull structures in waves (b) Offshore wind turbine under wind,

wave, and rotor loads

Figure 8. CFD models for environmental load computations on ship-shaped offshore structures and
offshore wind turbines.
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Throughout their operational lifespan, ships and offshore structures endure the relentless forces of
waves andwinds, which combine to influence their structural responses. However, these responses are not
merely a simple summation of wave-induced and wind-induced effects; rather, they are influenced by
nonlinear coupling effects (Inoue et al., 2020). Recent studies that account for such coupling effects in
CFD simulations offer valuable insights into advanced techniques for calculating environmental loads.
Notably, advancements highlighted by Wang and Wan (2020) underscore the increasing preference for
CFD in predicting complex viscous flows across various domains of ship and ocean engineering.
Specifically, they emphasize the significance of coupled CFD analysis for floating offshore wind turbines
under combined wind and wave conditions, positioning it as a superior method for aero-hydrodynamic
analysis compared to traditional numerical methods like blade element momentum and vortex methods.

To assess the impacts of iceberg-induced forces on ships and offshore structures, numerical dynamic
structural analysis methods are employed. Xue et al. (2020) provide a comprehensive review detailing the
primary numerical methods for computing ice-induced loads on hull structures, as summarized in Table 6.
Utilizing FEA simulation software such as LS-DYNA proves effective due to its robust theoretical
foundation in simulating collisions, large deformations, and dynamic fractures induced by icebergs.

Fluid–structure interaction (FSI) methods have been introduced to integrate wind andwave effects into
simulations, particularly by researchers focused on dynamic structural and aero-hydrodynamic inter-
action analyses. In a study by Song et al. (2016), a comparative analysis of the FSI method to the constant
addedmass (CAM)methods using LS-DYNA software for an iceberg-floating structure collision analysis
was conducted, validating their results against ice tank tests. Their study revealed that while the FSI
method, coupled with a specific ice material model, yielded significantly more accurate results aligned
with potential theory, it required an order of magnitude greater CPU power consumption compared to the
CAM method. Therefore, a carefully calibrated CAM approach remains a desirable option.

In Guo et al. (2018), a numerical and experimental investigation of ice-induced forces on an ice-going
ship utilized the FSI method for numerical analysis and compared the results with towing tank test
outcomes. The findings indicated good agreement between the numerical simulation and the experiments,
both in observed phenomena and resistance values, suggesting the promise of their numerical simulation
approach for future related studies. Furthermore, Sayeed et al. (2017), in their state-of-the-art literature
review on iceberg-induced impact forces on offshore structures, with a focus on hydrodynamic inter-
action, highlighted that the accurate prediction of these forces is currently limited by understanding of
hydrodynamic effects near the icebergs.

5.3 Calculations of residual ultimate strength

The ultimate strength, as defined in Equation (1), is derived from a function incorporating nine parameters
(Paik, 2018, 2020, 2022). This relationship can be expressed as follows:

C = f X1,X2,X3,X4,X5,X6,X7,X8,X9ð Þ, (2)

where X1 is the parameter associated with geometric properties,
X2 is the parameter associated with material properties,

Table 6. Numerical methods used in the previous studies for iceberg induced forces analysis
(Xue et al., 2020)

Type Method Computational cost Theory robustness

Continuum method Finite element method (FEM) Low High
Particle method Discrete element method (DEM) Medium Low

Smoothed particle
hydrodynamics (SPH) method

High Medium

Peridynamics (PD) High High

Data-Centric Engineering e18-21

https://doi.org/10.1017/dce.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.14


X3 is the parameter associated with fabrication-related initial imperfections,
X4 is the parameter associated with the loads on various types of components,
X5 is the parameter associated with loading speed,
X6 is the parameter associated with temperature,
X7 is the parameter associated with age-related degradation,
X8 is the parameter associated with accident-induced damage, and
X9 is the parameter associated with human error.

Nonlinear finite element methods (FEMs), or advanced large-scale FEMs as proposed by Paik (2018),
are utilized to compute the residual ultimate strength under damaged conditions. Finite element (FE)
models, established prior to the deployment of offshore installations, undergo regular updates using in-
service damage parameters. This iterative process is illustrated in the approach outlined by Lampe and
Hamann (2018), which entails model refinement through incorporation of fresh measurements derived
from inspection data.

The computational modeling depicted in Figure 9 displays a nonlinear FE model employed for
progressive collapse analysis of aging FPSO hull structures in wave conditions and aging offshore wind
turbines subjected to wind, wave, and rotor-induced loads, as presented by Sindi et al. (2023). Specif-
ically, ALPS/ULSAP and ALPS/HULL are software modules integrated within the MAESTRO platform

Figure 9.Nonlinear finite element models for progressive collapse analysis illustrating the calculation of
the ultimate strength.
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for ultimate strength analysis of plate panels and hull girder structures (ALPS/HULL, 2023; ALPS/
ULSAP, 2023;MAESTRO, 2023). This visualization underscores the intricate interplay of various factors
and the meticulousness required in their modeling to ensure an accurate evaluation of the structural
integrity of these expansive engineering systems.

Tekgoz et al. (2020) provide an exhaustive review of current methodologies for computing the residual
ultimate strength of aging ships and offshore structures, with a specific focus on steel-plated structures
such as plates, stiffened panels, box girders, and hull girder structures. Their work comprehensively
examines these structures’ responses to in-service damages, encompassing corrosion wastage, fatigue
cracking, and mechanical damages. In alignment with Wang et al. (2014), Babazadeh and Khedmati
(2018) and Tekgoz et al. (2020) have also contributed reviews, with Wang et al. (2014) emphasizing
corrosion wastage and fatigue cracking in steel-plated structures. Together, these studies underscore the
breadth of research in modeling residual ultimate strength under diverse loading conditions. However,
they collectively suggest the need for further investigation to refine the accuracy of conventional
prediction methods for load-bearing capacity.

Recent advancements in evaluating the residual ultimate strength of aging ships and offshore structures
include the work of Ji et al. (2016), which combines numerical and experimental investigations. Their
study focuses on corroded or cracked jacket structures under a 50-year service life assumption, employing
a time-dependent mathematical model to characterize crack size and volume loss in the target structure.
The results reveal that corrosion and fatigue cracks not only reduce the ultimate strength of the aged jacket
structure but also shift its failure mode from global yielding to local tearing. Moreover, their research
indicates that models incorporating both corrosion and cracks exhibit lower residual ultimate strength
compared to those with corrosion alone. This suggests that in real-world structures where corrosion and
cracks coexist, the ultimate strength of the existing jacket structures in operation may exceed the findings
of this study. Additionally, Nouri and Khedmati (2020) delve into the progressive collapse behaviors of
corroded FPSO hull structures using four different corrosionmodels: uniform, random, pitting, and tanker
pattern corrosion. Their analysis reveals that hull structures with pitting and tanker pattern corrosion
models exhibit significantly lower residual ultimate strength compared to other corrosion models.

Through extensive physical testing, Ahn et al. (2016) examined the effects of pit corrosion on the
ultimate compressive strength of steel tubular members, which constitute a fundamental structural
element of jacket platforms. They derived an empirical formula that correlates the ultimate strength with
parameters obtained from material testing and the extent of the damaged area. Given the prevalence of
pitting corrosion in marine structures, the insights gleaned from these large-scale physical tests are
invaluable. However, it is important to acknowledge that the practical applicability of the empirical
formula warrants further investigation, particularly due to the limited test data and the utilization of a
simple linear regression technique.

In the realm of digital twin modeling for the lifelong healthcare monitoring of aging ships and offshore
structures, it is imperative to consider the collective impact of all in-service damages to accurately
replicate the structure’s real condition. This holistic approach not only enhances the reliability of
diagnostic and prognostic analyses conducted by the digital twin but also underscores the necessity of
investigating the effects of each type of in-service damage while considering all other damages. This
significance is vividly portrayed inKim et al.’s (2017) examination of various corrosionmodels applied to
steel-plated structures. In their research, they explored the residual ultimate strength of corroded jacket
structures using FEM, aiming to gauge their service life under distinct environmental conditions. Opting
for a uniform corrosion model to minimize modeling expenses, they observed a notable disparity in
service life between benign and harsh environments such as the North Sea, suggesting a potential
difference of at least 15 years. Consequently, there is a pressing need for further exploration incorporating
the combined effects of all in-service damages to refine the existing methodology.

Additionally, Li et al., 2021b delved into the synergistic impact of pitting corrosion and cracks on the
residual ultimate strength of stiffened box girders subjected to vertical bendingmoments. Their numerical
investigation unveiled that the cumulative reduction in ultimate strength stemming from a solitary pit
corrosion or crack closely resembled that induced by the combined damage. Leveraging their findings,
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they proposed an empirical formula, dependent on volume loss and crack length, to predict the residual
ultimate strength of stiffened box girders afflicted with concurrent damages.

5.4 Challenges and practical solutions

Calculating ocean environmental loads and residual ultimate strength demands considerable time and
computational resources, underscoring the quest for efficient methodologies to facilitate prompt health
condition assessments and timely interventions. Particularly, CFD simulations conducted in the time
domain entail extensive computational efforts and time investments. Aviable alternative is the utilization
of CFD simulations in the frequency domain, offering superior efficiency, as exemplified by Pegalajar-
Jurado et al.’s (2018) comparative study, which delineated notable time disparities between the two
approaches.

Conversely, while analytical solutions present themselves as potential tools for determining charac-
teristic values of strength or loads, their applicability often entails increased complexity. Furthermore,
ROMs emerge as a promising avenue to circumvent computational limitations, facilitating real-time
health monitoring of intricate systems such as ships and offshore structures. This attribute renders ROMs
particularly attractive for integration within digital twins, as highlighted by Lin et al. (2020b).

6. Module 4: AI-driven diagnosis and remedial action recommendations

6.1 AI-driven diagnosis with machine and deep learning

After acquiring detailed on-site measurements of health parameters and computing environmental loads
and residual ultimate strength, a pivotal component of the DHE system for aging ships and offshore
structures involves timely data interpretation, ideally in real-time or within short intervals (e.g., weekly,
monthly, or quarterly rather than annually or biannually). This capability, crucial for precise health
diagnostics, harnesses the capabilities of AI, particularly machine learning (ML) and deep learning
algorithms.

AI not only demonstrates proficiency in approximating data output but, more significantly, excels at
deciphering complex patterns within the measured data and computed outputs from CFD and FEA. The
integration of AI-driven diagnoses within the DHE system, notably in the framework of digital twins,
substantially enhances the efficiency and viability of real-time health condition assessments and recom-
mendations for remedial actions across various critical aspects of aging offshore structures.

AI technology is currently experiencing a stage of rapid development (Kuang et al., 2021). Numerous
studies have delved into the application of AI in evaluating offshore structures. Richmond et al. (2020)
underscore the effectiveness of AI in analyzing offshore wind farms, employing CFD for flow field
estimation. Their research conducted a comparative assessment of variousMLmodels, including artificial
neural network (ANN), Gaussian process, and radial basis function, among others, revealing that radial
basis function and ANNs emerged as the most efficient methods.

Conversely, Häfele et al. (2019) employed the openFAST simulation tool, coupled with Gaussian
process regression-basedML, to optimize jacket substructures for offshore wind turbines. This approach,
tested on the NREL 5 MW turbine under FINO3 conditions, demonstrates the effectiveness of AI in
managing intricate simulations and a diverse array of design parameters. These instances showcase AI’s
capability to integrate field measurements and simulation data for ML analyses of offshore structures.

Literature also showcases applications more focused on fault detection. Okenyi et al. (2022) delve into
the application of ANN within digital twin systems for offshore wind turbines, particularly highlighting
their efficacy in fault detection. They emphasize that ANN, alongside other ML techniques, excels in
tracing patterns in fault diagnosis, crucial for addressing challenges in corrosion fatigue assessment. This
application not only enhances accuracy in assessing the state of horizontal-axis offshore wind turbine
structures but also contributes to reducing computational costs.

In Li et al.’s (2020) study, they concentrate on enhancing fault diagnosis in wind turbines using
Gaussian process classifiers (GPC) applied to operational data from the Supervisory Control and Data

e18-24 Abdulaziz Paik et al.

https://doi.org/10.1017/dce.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.14


Acquisition system. Their research demonstrates that GPC, providing probabilistic information about
fault types, outperforms traditional methods like support vector machines (SVMs) in accuracy, both in
real-time and predictive fault diagnosis. This approach, emphasizing the utility of Bayesian nonpara-
metric classification, marks a significant advancement in data-driven methodologies for wind turbine
maintenance and monitoring.

Dervilis et al. (2014) explored advancedML techniques, specifically ANNs and Radial Basis Function
(RBF) networks, for SHM of wind turbine blades. Leveraging vibration analysis data from a 9mCX-100
blade, they applied pattern recognition methods, including novelty detection techniques, to effectively
identify early signs of blade damage. Their results highlight the potential of these ML approaches in
detecting structural changes and potential damage.

In DHE systems, numerical model updating using ML and measured health parameters is critical.
Tygesen et al. (2019) underscore Ramboll’s predictive maintenance process as a prime example, where
high-fidelity FE models are constructed and calibrated with data such as accelerations and strains. This
process, involving stochastic subspace identification and Bayesian estimation, refines models to replicate
the dynamic behavior of structures, thereby improving decision-making in maintenance and operation by
reducing uncertainties and enhancing predictive accuracy.

ROMs represent an emerging ML technique in the field, correlating input and output data to simplify
full 3D simulations and system simulations. They operate similarly to ANNs but excel in analyzing
correlations within operational parameters. Due to their efficiency, ROMs can handle real-time data from
IoT sensors and utilize weather forecasts to estimate ships or offshore structure outputs. Takami et al.
(2020) demonstrated the effective reduction of CFD and FEA models using ROMs. Similarly, Kim et al.
(2022) tailored an ROM for a 10 MW FOWT for a digital twin. This model achieved up to 98.9%
accuracy, and the digital twin system, incorporating the ROM, achieved an accuracy of 92.3%, surpassing
the 90% target.

6.2 Remedial action recommendations

An effective program of remedial actions for aging ships and offshore structures should be integrated into
the digital healthcare system, aiming not only to mitigate costs but also to prevent catastrophic failures.
Remedial actions become essential when the safety criteria outlined in Equation (1) are not met, signaling
potential structural vulnerabilities. Additionally, warning signals of significant structural failures may be
issued. Depending on the severity of the damage, renewal of structural members may be required, and a
health condition assessment should be conducted following the implementation of remedial measures.

Nichols andKhan (2017) undertook a comprehensive examination of remediation and repair strategies
for ships and offshore structures, identifying techniques such as remediation and strengthening, modi-
fication and repair (SMR), as well as inspection, maintenance, and monitoring methods. They advocate
for an initial detailed assessment to gauge the extent of defects or damages, thereby determining the need
for SMR. Once SMR is deemed necessary, they recommend evaluating multiple options for feasibility,
considering regional resources, operational capabilities, and technical expertise in design and execution.
Additionally, they propose the development of a database of SMR options sourced from global and
regional studies to support proactive decision-making. Finally, they underscore the importance of
ensuring the efficacy of SMR schemes over time, which includes integrating inspection and monitoring
techniques.

Additionally, Dehghani and Aslani (2019) conducted a literature survey on defects in ships and
offshore structures and devised strengthening techniques, including welding enhancements, clamp
systems, grout filling, among others, as detailed in Table 7. They highlighted the critical importance of
life extension for many steel jacket platforms due to sustained damages and the potential for increased
production from recently discovered reserves. Emphasizing tubular joints as particularly vulnerable, they
called for focused attention on their SMR, advocating for new experimental and theoretical studies to
address gaps in SMR techniques. In a related development, Ng et al. (2020) introduced a digitalized
structural integrity management (SIM) system for ships and offshore structures. This system captures data
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and assesses risks to facilitate decision-making, including considerations for SMR, utilizing the SMR
Toolkit©2015. The SMR Toolkit©2015 is a web-based application tailored for SIM of fixed offshore
structures, offering prompt decision-making solutions on the most viable and optimal SMR approaches
(Nichols et al., 2015). Furthermore, Nichols et al. (2015) noted that while the SMRToolkit©2015 is well-
suited for operators managing an aging fleet of ships and offshore structures, more intricate SMR
technologies like clamp design require appropriate engineering and design refinement after selection
as the preferred option.

6.3 Challenges and practical solutions

One of the key hurdles in integratingAI into theDHE system for aging ships and offshore structures lies in
effectively diagnosing issues and recommending remedial actions based on complex data. Given the
significance of handling big data for precise AI diagnostics, it is imperative to establish streamlined
procedures for data collection and management. This could entail implementing automated systems or
enhancing data integration techniques to ensure that the data are accurate, consistent, and timely, thereby
laying a robust groundwork for AI analysis.

Sircar et al. (2021) underscore the critical necessity of high-quality, large-volume data to facilitate
effective AI training, a task often impeded by data quality concerns and the absence of systematic, long-
term data collection practices. Enhancing IoT data integration processes could prove pivotal in

Table 7. SMR techniques applicability to in-service damages for offshore structures from Dier (2004)

Technique

Defect

Fatigue
crack

Non-fatigue
crack Dent Corrosion

Inadequate
static strength

Inadequate fatigue
strength

Member Joint
High
loads

Fabr.
fault

Wet welding ✗ b ✓ ✓ c ✓ c ✓ a ✓ a ✗ ✗
Dry welding ✓ a ✓ ✓ c ✓ c ✓ a ✓ a ✗ ✗
Toe grinding ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Remedial grinding ✓ ✓ a ✗ ✗ ✗ ✗ ✗ ✗
Hammer peening ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Stress mechanical

clamp
✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Unstressed grouted
clamp

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Stress grouted clamp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Neoprene-lined
clamp

✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Grout filling of
member

✗ ✗ ✓ ✓ ✓ ✓ d ✓ d ✗

Grout filling of joints ✗ ✗ ✓ ✗ ✓ ✓ d ✓ d ✗
Bolting ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Member removal ✓ e ✓ e ✓ e ✓ e ✗ ✗ ✓ e ✓ e
Composites ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: a. Usually combined with additional strengthening measures. b. Except to apply weld beads in stressed grouted connection/clamp repairs.
c. Applying patch plates. d. Its application depends on the type and sense of loading. e. Under the condition that the member is redundant, otherwise it’s
replaced.
✓, applicable; ✗, not applicable.
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streamlining these operations and bolstering the reliability of AI diagnostics. Moreover, ensuring the
reliability and precision of AI algorithms poses significant challenges. While ML holds promise in
managing these uncertainties, accurately quantifying and mitigating them is paramount for refining
predictions and optimizing maintenance strategies. Tygesen et al. (2019) advocate for the continual
refinement and real-world testing of AImodels, coupled with the adoption of advancedML techniques, to
elevate predictive capabilities and analytical prowess.

In addition, acquiring high-quality historical data are paramount for trainingML algorithms tailored to
diagnose aging ships and offshore structures effectively. Ensuring that AI models accurately reflect age-
related degradation and historical data are essential for proficient monitoring and maintenance. Further-
more, integrating AI into the DHE system for aging structures necessitates alignment with existing
maritime infrastructures, adapting to the unique challenges posed by deterioration over time. Yeter et al.
(2022) highlight the critical importance of systematic data collection and the development of failure
prediction models tailored to specific aging characteristics, such as corrosion and crack growth. Their
study underscores the significance of amalgamating structural integrity analysis with techno-economic
assessments, leveraging ML methods like k-means clustering for informed decision-making in life-
extension projects. This approach not only guarantees AI compatibility with current maritime protocols
but also underscores the necessity for AI models adept at capturing the aging process’s impact on ships
and offshore structures.

Effectively addressing the challenges of AI integration into the DHE system is pivotal for enhancing
the lifetime healthcare of aging ships and offshore structures. By prioritizing robust data management,
customizing AImodels to specific aging characteristics, regularly calibrating numerical models with real-
time health parameters, and ensuring seamless integration with maritime infrastructure, the DHE system
will harness AI for precise and reliable diagnoses.

7. Module 5: Predictive health condition analysis for future maintenance planning

7.1 Mathematical models

Contemporary methodologies facilitate the accurate anticipation of probable future structural health
conditions, which is essential for developing future maintenance schemes. Take, for instance, the
projection of corrosion degradation over time, achievable through sophisticated mathematical models.
Typically, these models are empirically derived and formulated as time-dependent functions based on
statistical analyses of corrosion measurement data. Moreover, leveraging existing survey data, encom-
passing corrosion measurements and maintenance records, becomes pivotal for such prognostications
when directly measured data are inadequate or absent. By incorporating these data into predictive models,
not only do predictions gain in reliability, but they also empower a more astute approach to maintenance
and risk management strategies.

Wang et al. (2021) conducted a comprehensive review of recent advancements in reliability analysis
concerning offshore wind turbine support structures, with a particular focus on digital twin solutions.
Their review underscores notable progress in prediction models tailored for maintenance applications
within the marine industry. Notably, Werner et al. (2019) devised a pioneering approach to predictive
maintenance models, distinguished by its heightened efficiency and cost-saving benefits, achieved
through the integration of digital twin methods.

In developing time-variant mathematical corrosion models for steel plates, two primary corrosion
mechanisms are typically considered: uniform (or general) corrosion and pitting corrosion. While uniform
corrosion represents an idealized form, pitting corrosion is more commonly observed in ships and offshore
structures (Paik, 2022). When constructing mathematical models for corrosion, it becomes imperative to
account for various environmental factors such as seawater salinity, temperature, pH, and oxygen levels.
Additionally, factors like stress andmechanical properties play a pivotal role in elucidating corrosion behavior
and are integral to deriving the mathematical framework for corrosion (Yang et al., 2016; Rajput et al., 2020).

Mathematical models for predicting time-variant corrosion wastage have been extensively explored in
the literature. Bhandari et al. (2015) conducted a thorough review of mathematical modeling techniques
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for predicting time-variant corrosion degradation. Their analysis revealed that while short-term pitting
corrosion can be effectively modeled using experimental field data, long-term modeling of pitting
corrosion remains challenging due to unreliable data. However, notable progress has been made in
probability modeling for uniform corrosion over time, albeit less so for pitting corrosion under marine
immersion conditions.

In a similar vein, Tekgoz et al. (2020) reviewed various advanced methods for modeling corrosion
thickness wastage in steel plates within marine environments. They proposed empirical formulas for
predicting in-service damages, particularly focusing on corrosion and the load capacity of offshore
structures. Their review emphasized the necessity for further research to enhance confidence levels in
conventional load capacity predictionmethods.Moreover, Kim et al. (2020) conducted a literature review
on two corrosion modeling approaches: physical and empirical models. They proposed an advanced
probabilistic approach, specifically a nonlinear time-variant corrosion wastage model, which stands out
for its accuracy, as confirmed by their investigation.

The conventional method for predicting fatigue crack growth relies on the stress intensity factor (SIF)
and crack growth rates, as established by Paris and Erdogan (1963). Over time, this theory has undergone
continuous refinement to broaden its applicability. While the classic approach relies on specialized
derivatives of continuummechanics, Nguyen et al. (2021) introduced a novel energy-based peridynamics
model. Unlike the traditional method, this nonlocal theory utilizes integral equations instead of deriva-
tives, resulting in more accurate damage prediction. The computed results from this approach align well
with experimental data, particularly concerning crack paths and growth rates. Furthermore, Bocher et al.
(2018) developed a function aimed at enhancing the accuracy of fatigue life prediction by introducing a
new shape function.

Regarding recent advancements in time-variant fatigue crack models, Fang et al. (2022) proposed a
mathematical model for predicting fatigue crack growth in digital twin applications for ships and offshore
platform healthcare. Their algorithm employs FEA to calculate the SIF, serving as input for a dynamic
Bayesian network prediction method. Their results demonstrated valid verification, showcasing the
capability of the proposed method to predict fatigue crack growth under various load changes. However,
further investigation into the impact of fatigue crack growth in high-humidity, high-salt marine environ-
ments, along with experimental verification, is warranted for industrial application.

The proposed prediction models aimed at assessing full-scale ships and offshore structures have
proven to be a valuable approach for health condition prognoses. This is exemplified in the experiment
conducted by Vidal et al. (2020), where they utilized accelerometer data focusing solely on vibration
responses to detect any damage or structural changes leading to variations in the structure’s vibrational
behavior. Their prognostic mathematical model, which incorporates ML classifiers such as the k-nearest
neighbor and SVM, shows significant promise. Although further validation in a more realistic environ-
ment, considering varying environmental and operational conditions, is necessary, their approach
demonstrated an impressive 99.99% accuracy with remarkably fast prediction speeds.

7.2 Challenges and practical solutions

The reliability of predicting in-service damages hinges on the accuracy of the mathematical model
employed. Despite advancements in monitoring methods, forecasting the health of ships and offshore
structures remains challenging. Beganovic and Söffker (2016) highlighted that this challenge arises from
the stochastic nature of the deterioration process. While current methods, such as the linear Palmgren–
Miner rule combined with probabilistic models, offer valuable insights, further investigations are
warranted to optimize these models and enable accurate lifetime predictions based on measured data.
Zhang et al. (2017) proposed a stochastic Markov chain model for predicting deteriorating structures,
emphasizing its ability to more flexibly capture uncertainties compared to deterministic approaches,
particularly for low-probability, high-consequence events.

The accuracy of numerical simulations encounters challenges, often constrained by limitations in
measurement points, primarily due to cost and environmental factors. Data assimilation has thus become
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crucial, serving as a bridge between simulations and real-world measurements, particularly in digital
twins. Sugimura et al. (2021) integrated remote monitoring results with hull structural digital twins,
employing a Bayesian approach to enhance prediction accuracy. This integration streamlines data
assimilation, facilitating decision-making for maintenance and inspection tasks.

The Inver FEM (iFEM) offers a cost-effective solution for SHM systems, enabling the management of
complex structures without extensive sensor installations (Kefal and Oterkus, 2015; Kefal et al., 2016; Li
et al., 2020). Li et al. (2023) underscored iFEM’s capability for real-time displacement predictions using
minimal sensors. Their findings from 2020 further emphasized iFEM’s accuracy in predicting total
displacements and stress for offshore wind turbines. Houtani et al. (2022) introduced data assimilation
methods for digital twins utilizing tank verification experiments and a bulk carrier elasticity model. Their
results indicated that techniques like iFEM and the Kalman filtering (KF) method can accurately estimate
strain variations at unmeasured points. By integrating these methods with current hull monitoring
systems, comprehensive structural response estimations become feasible, with iFEM being particularly
adept at identifying strain deviations unrelated to wave impacts.

In recent years, advancements in weather forecasting have been propelled by enhanced computational
capabilities and the evolution of the 4D-Var data assimilation technique, supported by the broader
availability of global satellite observations (Dewitte et al., 2021). Rasheed et al. (2020) acknowledge
the effectiveness of 4D-VAR and ensemble KF approaches in operational weather centers, emphasizing
their role in minimizing discrepancies between forecast trajectories and observational data. With AI and
deep learning poised to reshape future operational weather forecasting, data-driven deep learning models
have demonstrated the potential to seamlessly integrate with existing physics-based numerical weather
prediction models, promising improved forecast accuracy (Dewitte et al., 2021).

8. A prototype digital healthcare system for aging ships and offshore structures

Based on a comprehensive review of current practices, this paper proposes a prototype DHE system for
aging ships and offshore structures, as outlined in Figure 10. During the design phase, initial imperfec-
tions resulting from fabrication, such as distortions, residual stresses, or softening in the weld fusion zone
or HAZ regions, are meticulously considered (Paik, 2018).

In-service damage, including corrosion wastage, fatigue cracking, and local denting, is systematically
monitored at regular intervals, typically every three months, utilizing visual examination methods
complemented by advanced equipment. Data from various structural member locations are meticulously
recorded using a touchscreen tablet PC, adhering to a designated template format. These data are then
integrated into embedded nonlinear FE models, facilitating residual ultimate strength analysis. Further-
more, to monitor areas prone to or at risk of developing unstable fatigue cracks, health sensors may be
strategically attached to enable real-time monitoring of crack damage.

Real-time sensors are deployed to measure the parameters of ocean environmental conditions, and the
collected data are transmitted to a central data analytic center via the LEO satellite for analysis and
visualization. This data integration process encompasses both ocean environmental loads and residual
ultimate strength calculations, incorporating measurements of in-service damage. Ocean environmental
loads are computed through CFD simulations, whereas residual ultimate strength is determined using
nonlinear FEMs, with validation being a fundamental prerequisite. These nonlinear FE models are
established during the initial phase and are continually updated as new measurements of in-service
damage become available.

The safety factor, calculated as the ratio of residual ultimate strength to applied loads, serves as a crucial
determinant of structural integrity. To ensure safety, this safety factor should exceed a critical threshold. If
this threshold is not met, remedial actions, such as maintenance or renewal of structural members, are
recommended. Subsequently, a reassessment of the health condition is conducted to verify the adequacy
of the implemented remedial measures.

In this framework, prospective in-service damage scenarios are contemplated to anticipate future
health conditions. This innovative approach facilitates the digitization of ships and offshore structures by
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leveraging current technological capabilities to ensure their lifelong healthcare. Traditional methods have
yet to achieve comprehensive lifetime healthcare analysis for ships and offshore structures, often
concentrating on isolated structural elements (e.g., fatigue cracking, wave loading). Moreover, these
methods frequently rely on estimated data rather than direct measurements, mainly because of the
challenges associated with implementing a DHE system that relies on on-site measurements. Conse-
quently, practical solutions are employed by integrating existing and relevant technologies within the
proposed framework.

9. Concluding remarks and future works

This review is centered on the advancements in lifetime healthcare digital twins for aging ships and
offshore structures, providing insights into the current technological landscape, the feasibility of its
implementation on full-scale ships and offshore structures, and its potential to substantially enhance
lifetime healthcare practices.

While contemporary literature suggests that digital twin technologies for aging ships and offshore
structures are still evolving, there is a widespread acknowledgment of their considerable potential.
Building upon these insights, this paper introduces a novel framework for DHE tailored to ships and
offshore structures. This framework advances existing digital twin methodologies by addressing their
limitations through the strategic integration of optimal methods. By employing manual visual examin-
ation assisted by advanced equipment and environmental sensors to directly measure in-service damages

Figure 10. A proposal for a prototype of the digital healthcare system for aging ships and offshore
structures.
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and ocean environmental conditions, and subsequently transmitting these data via Wi-Fi for comprehen-
sive health condition assessments, it becomes feasible to account for the combined effects of all in-service
damages and ocean conditions on the entire ships and offshore structures.

Consistently implementing this process at appropriate intervals serves to safeguard aging ships and
offshore structures against unexpected failures and prolongs their operational lifespan. Moreover, as
digital twin technologies continue to mature, receiving ongoing support from developers and researchers,
their potential is further enhanced by converging advancements in related technologies such as big data,
IoT,ML algorithms, sensor technologies, Wi-Fi, and numerical modeling and simulation techniques. The
concept of the “digital twin” was initially introduced by NASA during the Apollo mission in the 1960s
(Allen, 2021). Since then, its evolution has traversed multiple industries including aerospace, robotics,
automotive, marine, manufacturing, civil, andmedical, witnessing remarkable growth (Hu et al., 2021; Li
et al., 2021a, 2021b; Qi et al., 2021; Botín-Sanabria et al., 2022). Particularly noteworthy are the
advancements in the scale, non-deterministic attributes, and originality of digital twins, largely driven
by the aerospace sector, which are instrumental in realizing industrial objectives (Allen, 2021; Yin and
Wang, 2020).

This review underscores a notable gap in the marine industry’s adoption of digital twin implementa-
tions compared to global leaders. Leveraging the breakthroughs achieved in other sectors can substan-
tially accelerate the development of digital twins tailored for aging ships and offshore structures. The
proposed prototype DHE system represents a compelling demonstration of the potential of digital twin
applications within this domain. It not only addresses the current challenges in lifetime healthcare but also
paves the way for the realization of a fully digitized system. As the associated technologies continue to
mature, there is considerable scope for enhancing the capabilities of this prototype system.

Consequently, both present and future research endeavors will be directed toward identifying and
incorporating the most suitable solutions into the prototype DHE system. Rigorous testing and verifica-
tion processes will be pivotal in ensuring the efficacy and reliability of this system in accurately assessing
and managing the health of offshore structures over their operational lifespans.
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