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Abstract. We prove that for a vast class of random walks on a compactly generated group, the
exponential growth of convolutions of a probability density function along almost every sample path
is bounded by the growth of the group. As an application, we show that the almost sure and L1

convergences of the Shannon–McMillan–Breiman theorem hold for compactly supported random
walks on compactly generated groups with subexponential growth.

1 Introduction

One of the fundamental results to estimate asymptotic entropy in different contexts
is the Shannon–McMillan–Breiman theorem [Bre, McM53, Sha48]. The analog of
the Shannon–McMillan–Breiman theorem for stationary processes on uncountable
spaces was developed over 20 years. It started in 60s by Moy [Moy], Perez [Per64],
and Kieffer [Kie], and completed in mid-80s by Barron [Bar] and Algoet-Cover
[AC]. In the context of random walks on countable groups, Derriennic [Der80] and
Kaimanovich and Vershik [KV] proved the Shannon–McMillan–Breiman theorem.
Their proofs heavily use Kingman’s subadditive ergodic theorem, which fails for
random walks on noncountable locally compact groups. Derriennic [Der80] asked
if one can establish similar results in the context of random walks on noncountable
locally compact groups. Although the analog of the Shannon–McMillan–Breiman
theorem for stationary processes on continuous spaces was completed in 80s, its
analog for random walks on noncountable locally compact groups remained unsolved
in the last 40 years, until, in a recent result [FT22], Forghani and Tiozzo provided
a weak version of the Shannon–McMillan–Breiman theorem for random walks on
locally compact groups.

One of the questions remaining unsolved to complete the entropy theory of
random walks on locally compact groups is proving (or disproving) strong versions of
the Shannon–McMillan–Breiman theorem such as almost sure and L1 convergences.
The goal of this short note is to provide an upper bound for the exponential growth
of convolutions of a probability density function along almost every sample path
for a vast class of random walks on compactly generated groups, Theorem 1.2.
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As a consequence of this result, we prove strong versions of the Shannon–McMillan–
Breiman theorem for groups with subexponential growth, Theorem 1.3.

Let G be a locally compact group (that includes being second countable and
Hausdorff) with the unique (up to a positive multiplicative constant) left Haar
measure m. Let μ be a Borel probability measure on G. We say that μ is absolutely
continuous if μ is absolutely continuous with respect to the left Haar measure m. We
denote by d μ

dm the Radon–Nikodym derivative of μ with respect to m, and by μ∗n the
n-fold convolution of μ. Note that when μ is absolutely continuous, μ∗n is also abso-
lutely continuous. The n-fold convolution of μ is related to the random walk generated
by μ on G. Let (g i)i≥1 be a sequence of independent identically μ-distributed random
variables. The position of the random walk (G , μ) at time n is

xn = g1 g2⋯gn .

By the definition of the n-fold convolution, the distribution of the random variable xn
is μ∗n . A sequence of x = (xn)n≥1 is called a sample path of the random walk (G , μ).
Let (Ω,P) be the space of sample paths of the random walk (G , μ). The differential
entropy of μ∗n with respect to m is

Hn = −∫
G

log dμ∗n

dm
(g)dμ∗n(g).

Note that if G is not a countable group, then Hn could be negative. For example, let
G = R and μ be uniformly distributed on the interval [−1/4, 1/4], then H1 < 0.

Conjecture 1.1 (Strong the Shannon–McMillan–Breiman) Let G be a locally compact
group. Let μ be an absolutely continuous probability measure on G with bounded density.
If Hn < ∞ for all n, then for P-almost every sample path (xn), and

− 1
n

log dμ∗n

dm
(xn) → h(μ)

in L1(Ω,P), where h(μ) = limn→∞
Hn
n .

Note that under the assumptions in Conjecture 1.1, h(μ) exists and is finite. The
invariant quantity h(μ) is called the asymptotic entropy of μ and plays a crucial role in
understanding bounded harmonic functions and the Poisson boundary of a random
walk. For instance, when the asymptotic entropy is finite, h(μ) = 0 if and only if
all bounded harmonic functions are constant (equivalently, the Poisson boundary
is trivial; see [Der80, KV]. A version of the Shannon–McMillan–Breiman theorem
is used to prove ray and strip approximations, fundamental criteria to identify the
Poisson boundary and bounded harmonic functions of a random walk (see [FT22,
Kai00] for more details).

Conjecture 1.1 has been solved when G is a countable group by Kaimanovich and
Vershik [KV] and Derriennic [Der80] by using the subadditive ergodic theorem. In
the recent development, Forghani and Tiozzo [FT22] established a weak version of
Conjecture 1.1 for random walks on locally compact groups, that is, forP-almost every
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sample path (xn),

lim inf
n→∞

− 1
n

log dμ∗n

dm
(xn) = h(μ).(1)

This paper is devoted to investigating Conjecture 1.1. Let K be a symmetric compact
subset of G that generates G, that is, G =< K >. Hence,∪∞n=0Kn = G. The growth of K is

v(K) = lim sup
n→∞

log m(Kn)
n

.

Note that v(K) is finite (see, for instance, [FT22]). We say G has a subexponential
growth if v(K) = 0 for one (equivalently, for every) compact symmetric generator K.
For a probability measure μ with the compact support K, we define vμ to be the growth
of its support, that is, vμ = v(K).

Theorem 1.2 Let G be a compactly generated locally compact group. Let μ be an
absolutely continuous probability measure on G with an almost everywhere bounded
density function. If the support of μ is compact, then for almost every sample path
x = (xn), we have

h(μ) ≤ lim sup
n→∞

− 1
n

log dμ∗n

dm
(xn) ≤ vμ .(2)

Note that the first inequality in (2) follows from (1). The inequality h(μ) ≤ vμ is
a consequence of properties of differential entropy (see [Der80]). Our contribution
is to show that the second inequality in (2) also holds. We prove this theorem in the
next section. Even the fact that the limsup should be bounded is not straightforward.
The proof is inspired by techniques in [FT22]. As an application of Theorem 1.2, we
affirmatively answer Conjecture 1.1 when G has a subexponential growth.

Theorem 1.3 Let G be a compactly generated locally compact group of subexponential
growth. Let μ be an absolutely continuous probability measure on G with an almost
everywhere bounded density function. If the support of μ is compact, then for almost
every sample path x = (xn), and

lim
n→∞

1
n

log dμ∗n

dm
(xn) = 0

in L1(Ω,P).

Remark 1.4 A compactly generated group has polynomial growth if there exists
d > 0 such that m(Kn) = O(nd) for some compact symmetric generator K. The class
of subexponential groups includes groups with polynomial growth. By Gromov’s
result, a finitely generated group has polynomial growth if and only if it is virtually
nilpotent. More generally, for compactly generated locally compact groups, Losert
[Los01] proved that polynomial growth is equivalent to an existence of a normal series
of normal closed subgroups {e} ⊂ ⋯G1 ⊂ Gn = G such that G i/G i+1 is an FC-group
for i = 0, . . . , n.
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Remark 1.5 Note that Erschler [Ers04] provided examples of countable groups
with subexponential growth which admit symmetric probability measures with finite
entropy such that the asymptotic entropy is positive. Indeed, those probability mea-
sures are infinitely supported (hence not compactly supported) and do not contradict
Theorem 1.3.

2 Proof of theorems

2.1 Proof of Theorem 1.2

The proof relies on the Borel–Cantelli lemma. Let K be the support of the probability
measure μ. The support of μ∗n is Kn . For almost every sample path x = (xn), define

Fn(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

( d μ∗n

dm (xn))
−1

, xn ∈ Kn ,
0, otherwise.

Note that d μ∗n

dm is a density function, so d μ∗n

dm (x) > 0 for μ∗n-almost every x in G.
Hence, Fn(x) is well defined. Let

lim sup
n→∞

1
n

log m(Kn) = vμ = v .

For ε > 0, define

Bn(ε) = Bn = {x ∈ Ω ∶ 1 ≤ e−n(ε+v)Fn(x)}.

The definition of the measurable set Bn implies that

P(Bn) = ∫
Bn

dP ≤ e−n(ε+v)∫
Ω

Fn(x)dP(x).(3)

Because Fn(x) only depends on the nth position of the sample path x, the Markovian
property of the random walk implies that

∫
Ω

Fn(x)dP(x) = ∫
{x ∶ xn=g}

Fn(x)dμ∗n(g).(4)

Using the definition of Fn in the above equation yields

∫
Ω

Fn(x)dP(x) = ∫
Kn
(dμ∗n

dm
(g))

−1
dμ∗n(g) = ∫

Kn
1dm(g) = m(Kn).(5)

By combining (3) and (5), we obtain

P(Bn) ≤ e−n(ε+v)m(Kn).

Because ε + v > 0, we deduce that∑n P(Bn) < ∞, and applying the Borel–Cantelli
lemma implies that

P(lim sup
n→∞

Bn) = 0.
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Therefore, the complement of Bn occurs for n sufficiently large. We conclude that for
ε > 0, for n sufficiently large, and for almost every x in Ω,

en(ε+v) ≥ Fn(x) �⇒ n(ε + v) ≥ log Fn(x);

therefore, lim supn→∞
1
n log Fn(x) ≤ (ε + v) for every ε > 0, which implies the desired

result after letting ε decrease to 0.

2.2 Proof of Theorem 1.3: almost sure convergence

Note that for every g in G and for every natural number n, we can write

dμ
dm

∗(n+1)
(g) = ∫

G

dμ
dm
(x−1 g)dμ∗n(x) ≤ ∥ dμ

dm
∥
∞
∫

G
dμ∗n(x) = ∥ dμ

dm
∥
∞

.

For every sample path x = (xn),

lim sup
n→∞

1
n

log dμ∗n

dm
(xn) ≤ lim sup

n→∞

1
n

log∥ dμ
dm
∥
∞
= 0.(6)

Since G has subexponential growth, hence v = 0. Applying Theorem 1.2, we obtain
for P-almost every sample path x in Ω

lim sup
n→∞

− 1
n

log dμ∗n

dm
(xn) ≤ 0.(7)

Because lim supn→∞ − 1
n log d μ∗n

dm (xn) = − lim inf n→∞
1
n log d μ∗n

dm (xn), combining
with (6) yields

lim sup
n→∞

1
n

log dμ∗n

dm
(xn) ≤ 0 ≤ lim inf

n→∞

1
n

log dμ∗n

dm
(xn),

and hence 1
n log d μ∗n

dm (xn) → 0 as n →∞ for almost every sample path x = (xn).

2.3 Proof of Theorem 1.3: L1 convergence

The proof follows from Scheffé’s lemma (see, for example, [Wil91, 5.10]). We have
1
n log d μ∗n

dm (xn) → 0 for almost every sample path x = (xn). Define

bn =
1
n

log∥ dμ
dm
∥
∞
− 1

n
log dμ∗n

dm
(xn).

We have bn ≥ 0 and

∫
Ω

bndP = 1
n

log∥ dμ
dm
∥
∞
+ 1

n
Hn → 0.

Thus, bn → 0 in L1(Ω,P). Also, 1
n log ∥ d μ

dm ∥∞ → 0 in L1(Ω,P). Therefore,
1
n log d μ∗n

dm (xn) → 0 in L1(Ω,P).
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