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1. Introduction

Let G be a group. The Fitting subgroup F(G) of G is defined to be the
set union of all normal nilpotent subgroups of G. Since the product of two
normal nilpotent subgroups is again a normal nilpotent subgroup (see
[10] p. 238), F(G) is the unique maximal normal, locally nilpotent subgroup
of G. In particular, if G is finite, then F(G) is the unique maximal normal
nilpotent subgroup of G. If G is a nontrivial solvable group, then clearly
F(G) * 1.

The principal result of this paper is the following theorem.

THEOREM 1. Let G be a completely reducible solvable subgroup of the
general linear group GL (n, &) over an algebraically closed field 3F. Then

\G:F(G)\ ^a-W

where a = 2.3* = 2.88 • • • and b = 2.3? = 4.16 • • •.
Moreover the bound is attained by some finite solvable group over the

complex field whenever n = 2.4* (k = 0, 1, • • •).

NOTE. When G is finite and SF is perfect, then the condition "alge-
braically closed" is unnecessary since the field may be extended without
affecting the complete reducibility. See [3] Theorem (70.15).

A theorem of A. I. Mal'cev shows that there is a bound /?„ such that
each completely reducible linear solvable group of degree n has a normal
abelian subgroup of index at most /?„. (See [5].) The previous estimates for
/?„ are by no means precise, but Theorem 1 allows us to give quite a precise
estimate of the corresponding bound for a subnormal abelian subgroup.

THEOREM 2. There is a constant c such that each completely reducible
solvable subgroup G of GL (n, IF) (over an algebraically closed field fF) has a
subnormal abelian subgroup A with

\G:A\ ^ (2a)~1cn.

The best value for c lies between -\/2b and 2b. (a and b are defined in Theorem 1).
417
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The proofs of these theorems require the following result which is of
interest in itself.

THEOREM 3. Let a(n) and v(n) denote the largest orders of subgroups of
the symmetric group Sn which are solvable and nilpotent, respectively. Then,
for each n ^ 1,

a(n) 5S a""1 and v(n) 5S 2n - 1 .

The bounds are attained in the former case whenever n = 4*, and in the latter
case whenever n = 2* (k = 0, 1, • • •).

NOTE. It will be clear from the proof how to prove the corresponding
bound a(») for abelian subgroups of Sn. We have «(n) 5S 3n/3 with equality
whenever n = Zk (k = 1, 2, • • •). (See [2]).

2. The proof of theorem 3

The proofs of the inequalities in Theorem 3 are similar in the two cases.
We shall give the proof for a(n), and it will be evident how to modify this
proof (with substantial simplifications in (iii)) to give one for v(n).

We proceed by induction, and note that the result holds if n = 1. Let
G be a solvable subgroup of order a(n) in Sn (n 5: 2), and consider three
cases.

(i) Suppose G is intransitive. If Qx, • • •, Qk are the orbits of G, then
G( = {a; \Q(\ x e G} is a solvable permutation group on \Qt\ = n( symbols
(i = 1, • • •, k). The mapping

x -> {x \Qlt • • -, x\ Qk) (x e G)

is an isomorphism of G onto a subgroup of Gxx • • • xGk. Hence, by the
induction hypothesis,

\G\ ^ n \Gt\ < n a*-1 < «-1

since n = wx+ • • • +nk.
(ii) Suppose G is transitive but imprimitive. Then n = md where G has

d blocks (sets of impritivity) Ft (i' = 1, • • •, d) each containing m symbols.
The set of elements in G which map each block into itself is a normal sub-
group H of G, and GjH is isomorphic to a subgroup of Sd. Since H is in-
transitive, we have (as in (i))

\G\ = 1G/H1 \H\ ^ o{d)o{my % ai-l[am-l)i = a""1.
(iii) Suppose G is primitive. Let A be a minimal normal subgroup of

C. Since G is solvable, A is an elementary abeUan/--subgroup of order/,*,

™'\ IOt SOme prime f l i Qx is a stabilizer oi G (i.e. tive subgroup iixing a
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given symbol), then Gx is maximal because G is primitive. Since G is tran-
sitive, G1 contains no nontrivial normal subgroup of G, and so G = GXA.
The centralizer C (A) of A in G is normal in G, so C (A) n Gx is normalized
by both A and Gx. Thus C{A) n Gx = 1. Thus C(^4) = 4̂ and n = |G : Gjl
= \A | = >̂*. It now follows that Gt s G[C (A) which is isomorphic to a
subgroup of the automorphism group Aut A (See [7] p. 50). Since A is
elementary abelian

\AutA\ = {p*-i)U>*-

(see [10] p. 112), and so

Finally, by direct calculation

o(p*) < p*+k% ^ a"*-1 (k ^ 3, p* gfe 23),

<x(23) ^ 23(23-l)(23—2)(23—22) < a2*"1 (/>* = 23),

<x(̂ >2) ^ P 2 ( p 2 ~ l ) ( p 2 - p ) ^ a"'-1 (ft = 2),

and a{p) ^ p(p—l) ^ a"'1 {k = 1).

This concludes the proof that a(n) ^ a""1. (For the nilpotent case (iii)
is trivial because a primitive nilpotent group is cyclic of prime order).

We conclude the proof of Theorem 3 by showing that the bounds are
attained. This is easy for v(n) because the Sylow 2-groups of 52* have order
22*"1. In the solvable case we proceed as follows. Put Ho = 1, and for
k ^ 1 partition {1, 2, • • •, 4*} into four blocks r{ = {4s+i | s = 1, 2, • • •, 4*-1}
(*' = 1, 2, 3, 4). By induction on k we may suppose that there is a solvable
subgroup Hk_x of order a4*"1"1 in 54»_i. We construct isomorphic copies
H^ of Hk_1 acting on the blocks rt. Then the group Hk = S4 TJt=i Hk-i
is a solvable subgroup of order 24(a**~1~1)4 = a4*"1 in S4*.

3. The proof of the direct part of theorem 1

We shall use the following observations about the Fitting subgroup.
If H is a normal subgroup of a group G, then the characteristic subgroup
F(H) of H is normal in G, and so F(H) Q F(G). On the other hand, if G is
contained in a group K, then F(K)nG QF(G) and so \G: F{G)\^\K :F(K)\.
Finally, if G = Gxx •••xGk, then F(G) = F ( G J x • • • xF(Gk), and so
\G:F(G)\ = n t i \Gt:F(Gt)\.

The proof of the direct part of Theorem 1 will consist of two main
steps. The first is to reduce the problem to the case of a primitive group,
and from that to a problem on solvable subgroups of the finite symplectic
groups, (Lemma 1). The second step is the proof of Lemma 1.
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Using induction on the degree n we first show that we may take G
to be primitive (and irreducible). First of all, if G is reducible, then the
underlying vector space ir = <il1 @ <%2 where <H1, <%2 are nontrivial in-
variant subspaces for G of degrees «x and n2, say. Then the group
Gt = {x\<&i\ x e G} is a solvable subgroup of GL(nt, 3F) for * = 1, 2. The
mapping

x -> {x \%lt x\ %2) (xeG)

is an isomorphism of G onto a subgroup of G1xG2. Therefore, by the ob-
servations above and the induction hypothesis,

\G : F(G)\ ^ | d : F(GJI \Ga : F(G2)\ < (a-W)(a"1 bn>) < a^b".

Similarly, if G is imprimitive (but transitive), then n = md (d > 1) where
the underlying vector space 'V = °UX © • • • © aUi where the ^,- are non-
trivial invariant subspaces for G transitively permuted under the action
of G. Each fflf has dimension m. The set of elements of G mapping each %i

into itself is a normal subgroup N of G, and G/N is isomorphic to a sub-
group of Sd. (See [3] Theorem (50.2).) Since N is intransitive, and N
restricted to <%t has degree m, we find (as in the case above)

\G : F(G)\ ^ |G :N\ \N : F{N)\ <\G:N\ (a^ft"-1)'
^ a"-1 {a-i-b™-1)* (by Theorem 3)

< a'1 bn.

Thus we may suppose that G is a primitive solvable group. We now
apply some results of Suprunenko [8]. Consider a normal series

G242Z21

of G where Z is the centre of G and AjZ is a maximal normal abelian sub-
group of G\Z. Since G is primitive it has no noncentral normal abelian
subgroup ([8] Lemma 7), and so Z is the unique maximal abelian sub-
group of G. Therefore, by [8] Theorem 11 (with F = Z,V = G), GjA has
the following form:

There is a divisor d of n whose cannonical decomposition into primes
is d = ql1 • • • ql" such that G\A is isomorphic to a subgroup of the direct
product of k symplectic groups Sp(2lit qt) (i = 1, • • •, k).

Since A' QZQZ{A),AQ F(G), and so \G : F(G)\ ^ \G : A\. Therefore
Theorem 1 will follow from Suprunenko's theorem when we have proved
the following lemma.

LEMMA I. If q is a prime, then the largest order s(ql) of a solvable subgroup
of Sp (21, q) is at most a'W1 (= 1, 2, • • •).

PROOF. \Sp(2l, q)\ = ( ?
2 l - l ) ( ? 2 ' - 2 - l ) • • • ( ? 2 - l ) q1' < ?1(2I+1> (see [1]

page 147). We consider several cases.
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(a) The cases ql =£ 22, 23 or 24. Direct calculation shows that

s{ql) < ?!<2I+1> < 4«'/3 < a-n°l (ql > 4, ql ^ 2s, 2*)

s(3) ^ (32—1)3 < a^b3 = 72/a,

and s(2) ^ (2 2 - l )2 = 6 = a"1*2

(b) The cases q = 22 or 2*. In the former case, Sp (4, 2) ~ 56 ([4]
Theorem 118 where Sp is denoted by SA). An analysis similar to that of (i)
and (ii) of the proof of Theorem 3 then shows that s (22) = a (6) = 72 < a'1 b**
as required. In the second case we use the fact that Sp (21, 2) is simple
when / 2̂  3 ([1] page 177). Suppose that H is a solvable subgroup of index
h in Sp(S, 2). Since h > 1, there is a representation of Sp(8, 2) as a permuta-
tion group on the set of h cosets of H. Since Sp (8, 2) is simple, the representa-
tion is faithful and so \Sp(8,2)\ = 216.34.52.7.51 divides \Sh\ = h\. Hence
h ^ 51, and so

s(24) ^ |S^>(8,2)|/51 < 4!«/3 < a~lbie.

(c) The final case ql = 23 requires a deeper analysis of the symplectic
group. I am indebted to Professor G. E. Wall who first supplied the proof
of this case.

By definition Sp(6,2) is the set of all nonsingular linear operators on a
6-dimensional vector space "f over CF(2) with the property that they
leave invariant a certain alternate metric ( , ) on "f". If ~W is a sub-
space of V, then W* = {v e "T\ (v, w) = 0 (Vw eW)} is the perpendicular
subspace, and dimW-^dimW* = dinff = 6 (see [1] p. 117). Consider
two cases.

If 7T n TT"* = 0, then V = 1T © 7T"* and the restriction of the
alternate metric to W and W* is nondegenerate. In this case dimW is
even, and (if 'W =fc 0 or V) the subgroup of S/>(6,2) leaving W (and hence
TF*) invariant is isomorphic to Sp(4,2)xSp(2,2) which has order 25.33.5.

If W Q W*, then from above dim if = d sg 3, and the alternate metric
vanishes identically on if, i.e. W is totally isotropic. Witt's theorem ([1]
p. 121) shows that Sp(6,2) permutes transitively the set of all totally
isotropic subspaces of f of given dimension, and so the index in 5^>(6,2)
of the subgroup leaving iV invariant equals the number of totally isotropic
subspaces of dimension d. This is

(2«—1)/(2—1) = 32.7 for d = 1

(2«- l ) (2 6 -2) / (2 2 - l ) (2 2 -2) = 3.5.7 for d = 2

(2«—l)(2s-2)(24-22)/(23—1)(23—2)(23—22) = 33.5 for d = 3.

Thus in all cases considered the order of the subgroup consisting of all
elements of Sp(6,2) which leave W invariant is at most 29.32.5.
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Let G be a solvable subgroup of order s(23) in Sp (6,2). If G is reducible,
then a minimal invariant subspace "W for G satisfies either iV n iV* = 0
or WQW*, and so from the result above \G\ ̂  29.32.5 ^ 48/3 < a^b*.
On the other hand, if G is irreducible, then we may apply a result of Huppert
([6] Satz 14) which states that any completely reducible solvable linear
group of degree n over GF(2f) has its Sylow 2-groups of order at most
2/(«-i). i n our case this means that \G\ divides 25.34.5.7. Since the latter
number is less than 5a~x b8, it will be sufficient to show, in order to prove
this final case, that 35 \ \G\. Suppose, on the contrary that 35 | |G|. Since
G is solvable, it has a Hall subgroup of order 35, and since each group of
order 35 is cyclic (from the Sylow theorems), therefore G has an element
x of order 35. Let m(X) be the minimal polynomial for x. Then m(X)
divides the cyclotomic polynomial <P35(x). But <£35(a;) is the product of two
irreducible factors of degree 12 (over GF(2)), and so m(X) has degree at
least 12. But x acts on a 6-dimensional space and so the degree of m(X)
is at most 6. This contradiction shows that 35 \ \G\ and completes the proof
of this case.

This completes the proof of Lemma 1 and hence the proof of the direct
part of Theorem 1.

NOTE. The second half of (c) above is different from the original proof
of Professor Wall which was longer but more direct.

4. The limiting cases in theorem 1

We shall now show that the bound given in Theorem 1 is attained
when !F is the field of complex numbers and n = 2.4* [k = 0, 1, • • •).
For n = 2 this is implied by the next lemma.

LEMMA 2. The matrix group G generated by

x = I I and y = I I

(where f = (i+l)/y /2) is a solvable group of order 48 whose Frattini
subgroup has order 8.

PROOF. Clearly x3 = y8 = 1. Putting z = yx we find that F = (y2, z2}
is a normal subgroup of G because yxz%y = xz2x~x = (xy)2 = z2y2. F has
order 8, and G/F s {X, Y\X3 = Ys = (XY)2 = 1> ~ St. Thus F is
the largest normal 2-subgroup of G, and G is solvable of order 48. Since
the Sylow 3-groups (of order 3) in G are not normal, F = F(G).

COROLLARY. The matrix group Go generated by the elements of G
together with any 2 x 2 scalar matrix al ^ 0 has |G0 : F(G0)\ = 6 = a^b2.
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In the general case n = 2.4* we proceed as follows. Choose a in the
preceding corollary as a primitive ^>th root of unity for a prime p ^ 2 or 3.
Let N be the group of all diagonal block matrices diag (x1, • • •, a;4*) with
each x{ e Go. Let H be a group of nxn block permutation matrices (with
blocks of the form

0 1

such that H is isomorphic to a solvable permutation group of degree w/2 = 4*
and order a4*"1. (See Theorem 3.) Then we assert that Gk = HN is a solvable
matrix group of degree n such that \Gk : F(Gk)\ = \Gk : F(N)\ = a^b".

We first note that F{Gk) 2 F{N) and

\Gk : F(N)\ = \Gk :N\\N: F(N)\ = \H\ \G0 : F(G0)\*

= arx bn (because N ^ Gox • • • xG0 (4&times)).

Since Gk is obviously solvable, there only remains to show that F(Gk)QF(N).
Let xeGk, x$N. Then the subgroup A of N consisting of all matrices
diag (041, • • •, <x4*l) (with each <xt- a pth root of unity) is clearly not cen-
tralized by x.

Thus the (abelian) Sylow ^>-group of the group B generated by A and
x is not in the centre Z(B). In particular, B is not a direct product of its
Sylow subgroups, and so B is not nilpotent. Therefore B £ F(Gk), but
A Q F(N) Q F(Gk), and so x $ F{Gk). This proves that F(Gk) QN, and so,
by the definition of F(N), F(Gk) Q F(N) as required.

NOTE. In the same way we can construct examples over any algebraical-
ly closed field whose characteristic is not 2 or 3. In the exceptional cases
it may be possible to sharpen the bound in Theorem 1.

5. The proof of theorem 2

From its definition F(G) is locally nilpotent. By Clifford's theorem ([3]
Theorem (49.2)) and the complete reducibility of G, F(G) is completely
reducible, and so F(G) corresponds to a group of monomial matrices
over a suitable basis for the underlying vector space. (See [8] Lemma 38.)
The elements of F(G) which correspond to diagonal matrices form a normal
abelian subgroup A of F(G), and the factor group F{G)jA is isomorphic
to a subgroup of Sn. (This latter isomorphism corresponds to the natural
homomorphism of the group of monomial matrices onto the group of per-
mutation matrices.) Since F(G) is locally nilpotent, F{G)jA is nilpotent
and so \F(G) : A\ 5S v(n) ^ 2n~x by Theorem 3. Therefore, by Theorem 1,

\G:A\ = \G : ,F(G)| \F(G) : A\ ^ a-16"2"-1 = (2a)-1(2b)n.
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This proves the existence of c and gives the upper bound for c.
On the other hand every subnormal nilpotent subgroup of G is contained

in F(G) (by the observations at the beginning of § 3.) Thus each subnormal
abelian subgroup A 0 of G is in F(G). In the group Gk defined in § 4 a largest
subnormal abelian subgroup Ao of F(Gk) = F(N) has index 2** in F(Gk).
But Ao is a largest subnormal abelian subgroup of Gk, and

\Gk : Ao\ = a-1bn2n/* = «-i W2b)n.

This gives the lower bound on c.
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